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Abstract

The entanglement in operator space is a well established measure for the complex-
ity of quantum many-body dynamics. In particular, that of local operators has recently
been proposed as dynamical chaos indicator, i.e. as a quantity able to discriminate be-
tween quantum systems with integrable and chaotic dynamics. For chaotic systems the
local-operator entanglement is expected to grow linearly in time, while it is expected to
grow at most logarithmically in the integrable case. Here we study the dynamics of local-
operator entanglement in dual-unitary quantum circuits, a class of “statistically solvable"
quantum circuits that we recently introduced. We identify a class of “completely chaotic"
dual-unitary circuits where the local-operator entanglement grows linearly and we pro-
vide a conjecture for its asymptotic behaviour which is in excellent agreement with the
numerical results. Interestingly, our conjecture also predicts a “phase transition" in the
slope of the local-operator entanglement when varying the parameters of the circuits.
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1 Introduction

The complexity of classical dynamical systems is customarily characterised by the Kolmogorov-
Sinai entropy, which quantifies the rate of information-entropy produced by the dynamics.
This quantity is related to the Lyapunov exponents via the Pesin formula [1-4] and can be
thought of as a measure for the sensitivity of the dynamics to the initial conditions — the fa-
mous “butterfly effect". Such an appealing connection continues to work for quantum systems
in the semiclassical regime, or, more generally, for quantum systems with a large parameter
N identifying a small effective Planck constant A,z = 1/N. In these cases the complexity is
efficiently quantified by out-of-time-ordered correlation functions [5-25]. The “quantum Lya-
punov exponents” obtained in this way, however, make sense only up to times of the order
log N ~ log(1/H.g), hence, such a quantum dynamical chaos can only be justified in the semi-
classical limit fi. — O: the quantification of dynamical chaos in quantum many-body systems
with g ~ 1, such as quantum spin-1/2 chains, turned out to be much harder [26]. An ap-
pealing algebraic generalisation of Kolmogorov-Sinai entropy to (non-commutative) quantum
dynamical systems exists due to Alicki and Fannes [27], but it cannot discriminate between
integrable and non-integrable dynamics: the Alicki-Fannes dynamical entropy is typically pos-
itive even for non-interacting (quasi-free) extended systems [26].

A different route for measuring quantum dynamical chaos can be found by considering
the algorithmic complexity of state-of-the-art classical simulations of the quantum dynamics,
say, using matrix-product-state methods [28]. In particular, a good indicator of quantum dy-
namical complexity has been identified by looking at the Heisenberg evolution of operators
that are initially localised in a small portion of the real space [29]. The idea is to think of a
time-dependent operator as a state in an appropriate Hilbert space (the operator-space) and
characterise the complexity of its evolution using the entanglement of such a state [30, 31].
This quantity, termed operator-space entanglement, or simply operator entanglement, seems to
characterise very effectively the genuine dynamical complexity of quantum many-body sys-
tems [30-37]. Note that here we consider the operator entanglement dynamics for operators
initially supported on a small spacial region, while related concepts have been considered
for some manifestly non-local objects as well, such as, e.g., the time-dependent many-body
propagator [38-42]. For this reason, in this work we will always refer to this quantity as
local-operator entanglement.

The main problem is that, to date, there are essentially no exact benchmarks for the dynam-
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ics of the local-operator entanglement except for certain results in integrable models [30-33]
and in random models in a particular asymptotic limit [37]. Providing such exact bench-
marks for non-integrable many-body quantum dynamical systems is our main objective. We
consider systems represented as local quantum circuits [43-55], i.e. qudit chains (quantum
spin-(d — 1)/2 chains with arbitrary integer d > 2) where the time evolution is generated
by the discrete application of unitary operators coupling neighbouring sites. We measure the
local-operator entanglement through Rényi entropies at integer Rényi order. Our strategy is
to write them in terms of partition functions on a non-trivial space-time domain that we con-
tract in terms of row and corner transfer matrices. We divide this endeavour into two separate
works investigating two conceptually distinct classes of quantum circuits that are generically
non-integrable. Using the special properties of these classes we prove and conjecture some
exact statements about the dynamics of the local-operator entanglement.

In the present paper, we study the dynamics of the local-operator entanglement for dual-
unitary local quantum circuits. This is a class of local quantum circuits where the dynamics
remains unitary also when the roles of space and time are swapped [56]. As we showed in a
recent series of works, dual-unitarity is an extremely powerful property and enables the exact
calculation of many statistical and dynamical properties. These include spectral statistics [57],
(state) entanglement spreading [58], and dynamical correlations [56] (see also [54] and [59]
for other useful features of dual-unitarity). Focussing on dual-unitary quantum circuits with
no local conservation laws — the chaotic subclass — we conjecture a general formula for the
dynamics of the local-operator entanglement. The idea is to compute the local-operator en-
tanglement by considering separately the entanglement produced by the two edges of the
spreading operator — as if the opposite edge were effectively sent to infinity. Dual-unitarity
allows us to evaluate these contributions exactly revealing a simple and remarkable prediction,
which is in excellent agreement with exact short-time numerical results. First, we find that in
chaotic dual-unitary circuits the local-operator entanglement always grows linearly with time.
Second, the slope of growth displays an abrupt transition when varying the parameters of the
circuits. Third, the slope is maximal on one side of the transition. This has to be contrasted
with the linear growth observed in Haar-random noisy circuits [37], where the slope is around
half of the maximal one. These results once again put forward dual-unitary circuits (in appro-
priate parameter ranges) as minimal models — with fixed local Hilbert space dimension and
local interactions — for the maximally-chaotic dynamics.

In the companion paper [60] (Paper II) we consider the dynamics of local-operator entan-
glement in local quantum circuits exhibiting local dynamical conservation laws, i.e. solitons.
These conservation laws are generically not enough to generate an integrable structure a la
Yang-Baxter. Limiting to the circuits of qubits (d = 2), we classify all instances of circuits with
solitons and show that if a spreading operator crosses some soliton, the dynamics of its local-
operator entanglement can be computed explicitly and exhibits saturation. Interestingly, we
show that all circuits admitting moving solitons are dual-unitary. Importantly, since they have
conservation laws, those dual-unitary circuits are not chaotic as the ones studied here.

The rest of this paper is laid out as follows. In Section 2 we give a detailed definition of the
quantum many-body systems of interest for this work — local quantum circuits — and intro-
duce a useful diagrammatic representation to study their dynamics. In Section 3 we introduce
the local operator entanglement entropies and write them in terms of partition functions on
appropriate space-time surfaces. In Section 4 we specialise the treatment to dual-unitary lo-
cal quantum circuits, recalling their main defining features and characterising the “completely
chaotic" class of interest in this paper. In Section 5 we formulate our conjecture and use it
to explicitly compute the local-operator entanglement dynamics (explicitly comparing it with
the numerical evaluation of the space-time partition functions). Finally, Section 6 contains
our conclusions. Five appendices complement the main text with a number of minor technical
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points.

2 Local Quantum Circuits

In this work we consider periodically-driven quantum many-body systems represented as local
quantum circuits. These systems consist of a periodic chain of 2L sites, where at each site is
embedded a d-dimensional local Hilbert space H; = C¢ so that the total Hilbert space is

HZL = H?ZL- (1)

The time evolution in the system is discrete and each time-step is divided into two halves. In
the first half the time evolving operator is

Ue = ® Usx,x+1/2> (2)

XEZy,

where Z; = ZN(—L/2,L/2], while U, , € U(H; ® H;) is the unitary “local gate” connecting
the qdits at sites x and y and encoding all physical properties of a given quantum circuit. In
the second half, instead, the system is evolved by

U° =T, U°T}, , 3)

where T, is a {—periodic translation by one site
']I‘g(01®02---®oe)’]1‘z502®03---®oe®01. @

Here {o;} are generic operators in ;. In summary, the “Floquet operator" — the time evolu-
tion operator for one period of the drive (one time-step) — is given by

U =TU°U° =T,, U°TS U°. (5)

Note that, since the local gate is unitary, the Floquet operator U is also unitary. Moreover, from
the definition (5) it immediately follows that U is invariant under two-site shifts

2 _ 2
UT;, = Tj, U. (6)

Note that in this work we consider translationally invariant quantum circuits which are speci-
fied by a single 2-qudit gate U, ./, = U forall x € %ZZL, while we expect that the formalism
we develop here should be useful also for generalizations to disordered and/or noisy quantum
circuits.

Local quantum circuits admit a convenient diagrammatic representation. One depicts
states as boxes with 2L outgoing legs (or wires) representing the local sites and operators
as boxes with a number of incoming and outgoing legs corresponding to the number of local
sites they act on. Each leg carries a Hilbert space H,. For instance, the identity operator on a
single site, 1, is represented as

1=, (7)

while a generic single-site operator a is represented as

a=+. 8)

The local gate and its Hermitian conjugate are instead represented as

U= x, Ut = , )
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where we added a mark 1to stress that U and U" are generically not symmetric under space
reflection (left to right flip) and time reversal (up to down flip, transposition of U). The time
direction runs from bottom to top, hence lower legs correspond to incoming indices (matrix
row) and upper legs to outgoing indices (matrix column). With these conventions, the dia-
grammatic representation of U reads as

’ (10)

(= N

where we labelled sites x by half integers, x € %Zz 1, and boundary conditions in space (hori-
zontal direction) are periodic. This means that the ultralocal operator

a4, =1®---®l®a®le---®l, (11)
— —
L—-1+2y L2y

evolved up to time t is represented as

a,(t) = (U")a,U" = (12)

Before concluding we note that time-evolving operators transform covariantly under the fol-
lowing gauge transformation in the space of local gates

U wev) UK eu'), u,v e u(d). (13)
Specifically, we have

(v @ u)®t (UT)t(uTau)yTUt(vT eu)® yez, +1

— (m1T\¢t t 2
a,()= (U a,U {(v ®uw)*L (UM (viav), U'(vF @ u® yez, ' (19
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2.1 Operator-to-state mapping

The time evolution of operators in  can be mapped into that of states in the “doubled" Hilbert
space ‘H ® H by performing an operator-to-state (or vectorization) mapping

End(H) — H®H. (15)
Choosing any basis {|n)} of H we completely specify the mapping by defining
Im)(n| — [m)®In)", (16)
so that the time evolution maps to

a0, () — o, ()= (nla,()m)In) & Im)" = (U @ U™ |a,) . (17)

The complex conjugation (-)* is defined such that
*(n|0*|m)" = ((n|Olm))", (18)

meaning that the vectorization mapping is linear (and not antilinear!) with respect to both,
the ket and the bra parts’.

For convenience we arrange the states |n) ® [m)* in % ® H in such a way that the time
evolution generated by UT ® U™ is “local in space". Specifically,

iy . iop) ® 1.+ Jor)* =iz j1) ® =+ lig jar) » (19)

where {|i);i=1,2,...,d} is a real, orthonormal basis of #,. In general, for any set of states
la),|b)--- € H,, we use a compact notation [ab...)=|a)®|b)®---.
The mapping defined in this way is directly represented by folding the circuit

(21

!We can always decide to choose a fixed canonical basis such that |n)* = |n).
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and we introduced the “double gate"

W:: = (22)

Note that the red gate is upside down, meaning that U is transposed (c.f. (U)* = U” on the
rh.s. of (17)). Finally, we also introduced the (normalised) local states associated to to the

identity operator
1 1
—_— | — — = =|9), (23)
= |—=U=4=p

and to the operator a
+ao—>U=lE|a>. (24)
a a

We stress that in this paper we always consider local operators that are Hilbert-Schmidt nor-
malised
trfaa’]=1. (25)

For non-normalised operators one should include the appropriate normalisation factors in (20)
and (24).
Finally, we remark that from the unitarity of U it follows

QN S

. B ’ N ’ (26b)

where we introduced

x: wt. (27)

3 Local Operator Entanglement

The entanglement of a time-evolving operator O(t) is defined as the entanglement of the
state |O(t)) corresponding to it under the state-to-operator mapping. Specifically, here we
are interested in the entanglement of a connected real space region A with respect to the rest
of the system. Since the state corresponding to a time-evolving operator is pure, this quantity
is conveniently measured by the Rényi entanglement entropies [61]

1

(n)
Sy(t) =
A (=1

logtrs[p,(t)], (28)

where p,(t) is the density matrix at time t reduced to the region A. Specifically, here we
consider the evolution of the entanglement of the ultralocal operator a,, and select half of the
chain A=1[0, L/2). Moreover, here and in the following we will always take a to be Hilbert-
Schmidt orthogonal to the identity operator, i.e. traceless, to project out its trivial component.
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With our choices of operator and subsystem the graphical representation for the reduced
density matrix reads as

pa(t,y;a) = trglla, (£)Xa, (t)|]1= (29)

In the representation (29) we took y < t < L. We considered the right inequality, because we
are interested in the thermodynamic limit and the results no longer depend on L for L > ¢,
while we take the left inequality, t > y, because in the opposite case the reduced density matrix
is pure and hence the entanglement vanishes. This is due to the fact that in quantum circuits
there is a strict lightcone for the propagation of information: nothing can propagate faster
than a given maximal velocity (this is stricter than the Lieb-Robinson bound which allows for
exponentially small corrections). In particular, in our units (see Eq. (20)) the maximal velocity
is 1. Finally, we assumed y to be an integer. The case of half-integer y can be recovered by
the reflection R of the chain around the bond between 0 and 1/2. This results in

la, (¢, U))a, (t,U)] = Rla,(t,U))a,(t,V)IR" = |ay /o, (t,SUS)Nay o, (t,SUST)|, (30)

where S is the “swap-gate”
S(a®b)S'=b®a, (31)

and we designate explicitly the dependence on the local gate. From now on we always take y
to be integer.

Using the representation (29) we see that the calculation of trs[p)(t, y;a)] is reduced to
that of a partition function of a vertex model (generically with complex weights). For instance,
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in the simplest nontrivial case n = 2 we have

tralp(t, y;a)] =

2t+2y
A

tralpi(t, y;a)] =

This expression can be rewritten as

>2t—2y,

. (32)

(33)

Al (t, y; 1= I(Hy [1D)* la 0 0a) [P = IV, [1] 'V, [allo---o) 7, (34)
2x_

2x,—2
where we introduced the “light-cone coordinates”
X+Et+.y’ X—Et_y;

and the row/column transfer matrices

Hx+[b]=b“+—+—'” —+—+—<>—¢>—

—

(35)

—<‘>—<‘>~b7 (36)

_/

~
2x,
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V. [b]= ”"<\>—<>_ _¢ ¢v+ +_ _+_t_.b»f. 37)
2x

Note that H, [b]is d*+x d*+ while V,_[b]is d*~x d**~ matrix.

Computing higher moments (i.e. higher Rényi orders) requires n > 2 replicas and involves
partition functions on more complicated surfaces. In order to represent them compactly it
is convenient to introduce the d?*~ x d?*+ “corner transfer matrix” [62, 63], defined by the
following matrix elements

(Il ...Ix_|C[a]|J1 .. 'JX+> =

where {|I); I =1,2,...,d?} is an orthonormal basis of H{; ® 7. Note that the corner transfer
matrix is related to the row transfer matrices H, [b] and V, _[b] as follows

(I ...I. Icla]’Cla] ;... )
(I;...1. |C[a] Cla]"|J;...J, )

(Iy ... Iy, o Ty |(Hy [1])Ja" 0+ 0a) , (39)
(. I L dy IOV (171, [adlo--o0) . (40)

In terms of C[a] we can easily express the Rényi entropies as follows

1

—n

Sy, )= logtr{(C[alC[a]")"]. (41)

" logur{(Clal'Cla])"] =
1—n 1
The problem of computing operator entanglement is then reduced to that of computing the
moments of C[a]"C[a] or of C[a]C[a]'.

Before concluding this section we note that under the gauge transformation (13) the traces
of the reduced transfer matrix transform as follows

tralpa(t, y;utaw)'] y €z, — %

" 42
tralpa(t,y;viav)'] y €z “2)

tralpalt, y;a)" ] — {
This means that the gauge transformation only causes a rotation in the space of ultralocal
operators.

4 Completely Chaotic Dual-Unitary Circuits

In this paper we consider dual-unitary circuits, i.e. local quantum circuits where the evolution
remains unitary upon switching space and time directions. This means that the local two-qudit
gate U remains unitary if we consider left pair of wires as incoming states and right pair of
wires as outgoing states. More formally, defining the “dual" (space) propagator U by means
of the relation

(ijlU kL) = (ik|U|j1), (43)

10


https://scipost.org
https://scipost.org/SciPostPhys.8.4.067

Scil Select SciPost Phys. 8, 067 (2020)

the circuit is dual-unitary, if both, U and U are unitary [56]. Dual unitarity can be expressed
explicitly as

D> (eqlUllkp) (jplUliq) =6¢;6k;, D, (qllUTIpk) (pjlUlqi) = 5,5,
p.q=12,..d p,q=1,2,....d

(44)
or diagrammatically as

= : = ' (45a)

Considering the double gate (27), these relations lead to

O —0
— , (46a)
O —0
=

Q o0—
d o—
= ’ (46b)
N

We have shown in [56] that the dual-unitarity condition is not as stringent as one might think.
For instance, in the case of qubits (d = 2) it only fixes two parameters of the sixteen specifying
a generic matrix in U € U(4) and allows for a rich variety of dynamical behaviours [56]. Here,
in particular, we focus on a specific class of dual-unitary circuits, which we term the completely
chaotic class. To define it, we consider the transfer matrices V,[1] and H,[1]. Since any such
transfer matrix is a contracting operator, i.e.

T, T =V[1]H,[1], (47)

their eigenvalues are contained in the unit circle of the complex plane (see Appendix A for
a proof of (47)). Using only the relations (46a) and (46b), we can find x + 1 independent
simultaneous eigenvectors of V. [1] and #,[1] associated with eigenvalue one. They read as

{leO> = LO--'O,)’ |€1> = Lo"'o,’;l\o"'o,): ceey Iex—1> = |°Fx—1 o)) |ex> = |f'x>}a (48)

2x x—1 x—1

where we introduced the “rainbow" states |r;) and their orthonormal counterparts |7;),

21
2
) = ll dZ \LIy... 0,0, ... L) = \&9_// (49)
d IlIz...Ilzl
_ d 1
|r1)=ﬁ(|rz)—g|°’”1—1°)), (50)

11
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satisfying (7|7;) = &y ;. Note that the hermitian conjugates of these vectors are always left
eigenvectors of V, [1] of H,[1] while (48) are right eigenvectors if the circuit is dual-unitary.
We are now in a position to introduce the following

Definition 4.1. “Completely chaotic" dual-unitary circuits are the dual-unitary circuits such that
(48) are the only eigenvectors of V,.[1] and H,.[1] associated to eigenvalues with unit magnitude.

We stress that (48) are in general only a subset of the eigenvectors of V,[1] and H,[1]
associated with eigenvalue one. For instance, integrable dual-unitary circuits (e.g. the one-
parameter dual-unitary line of the integrable trotterised XXZ model [64], or the self-dual
Kicked Ising model at the non-interacting point) have much more such eigenvectors (see Paper
II for additional examples of such circuits). A thorough numerical analysis, however, proves
that (i) the completely chaotic class exists; (ii) it is the generic case. In other words, generating
a dual-unitary gate at random one would find with probability 1 that there are no eigenvec-
tors of V,[1] and H,[1] with unit magnitude eigenvalues other than (48). The rest of the
spectrum is gapped within a circle of radius strictly smaller than one.

Before moving on to the calculation of the local operator entanglement dynamics, it is
interesting to investigate the relation between the definition 4.1 of completely chaotic circuits
and the intuitive definition of chaos based on absence of local conservation laws. We will show
that the class of completely chaotic dual-unitary circuits is in general more restrictive than that
of chaotic ones. Namely, if a dual-unitary circuit has some non-trivial local conservation law
V,[1] and H,[1] acquire some additional eigenvectors corresponding to the eigenvalue 1. In
our discussion we will focus on circuits admitting conservation laws with local density which
can be written either as

Q=4 (51)

X€EZy
or as
Qt= > qf, (52)

erL+%

where the local densities qj act non-trivially (have support) on r sites. More precisely, these
densities act non-trivially on the intervals [x, x+(r—1)/2]NZ; /2 and [x—(r—1)/2,x]NZ; /2
respectively. Moreover, we choose the densities such that trx[q:f] = 0 (here the trace is over
the local Hilbert space at the x-th site). Note that this can be done without loss of generality:
all charges can be written as combinations of Q* and Q.

Due to the two-site shift symmetry of the time evolution in the system we considered local
conservation laws obtained by summing only on a sub-lattice (say even sites). In order for Q*
to be conserved their local densities must satisfy continuity equations of the form

Ulq U=q; +J_,—J, (53)

U'fq:_%U = q;’_% M AR x €7 (54)

for some “currents"” J: supported on r + 1 sites (for concreteness in writing (53) and (54) we
assumed r odd). As shown in Appendix B in dual-unitary circuits the relations (53) and (54)
can be satisfied only if J_ =q, and J} =—q,, 1. This means that conserved-charge densities
in dual-unitary circuits satisfy either

U'q,U=gq,_;, (55)

or

IUTq;r_%U =q!,,, X€Z. (56)

NI

12
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Let us show that these relations imply that V,[1] and H,[1] have additional eigenvectors
corresponding to the eigenvalue 1. Focussing on the first and writing it in diagrammatic form
for r =5 we have

(57)

Tracing out the identities in the last three sites and repeatedly multiplying by the double gate
W we find

(58)

(59)

We then have that the vector

) (60)

[e]

is an eigenvector of (Vj °)2, where we introduced

v;°=0_<>_<>_ —<>—<>—o (61)

~"
X

Note that |v) cannot be zero. Indeed, if this were to be the case also the 1.h.s. of (58) would
vanish leading to an absurd: the rh.s. of that equation features the non-zero operator g,
conjugated by unitary matrices. To conclude or argument we note that

w) =) + V") (62)

13
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is an eigenvector of V° corresponding to the eigenvalue 1. Then, we can construct many
additional eigenvectors of V- .[1] corresponding to eigenvalue 1, for example

{IWO...O), lowo...0),...,|o...owo...0), |0...ow0...0)}. (63)
~—— ~—~— ——— N
2x—r 2x—r—1 x—r—1 x+1 x—r x
Finally we note that, if (55) holds, the charges
Q;;sl,...,sk = Z q;q;ﬂl o 'q;+sk’ k = 1’ tre ‘Sj < ZL’ (64)

X€EZy

are also conserved. Considering the densities of such charges and proceeding as before we can
construct exponentially many (in x) eigenvectors of V[ 1] with eigenvalue 1. An analogous
reasoning considering a conserved density g} would instead produce additional eigenvectors
of H,>,[1] corresponding to eigenvalue 1.

5 Dynamics of Local Operator Entanglement

It is generically very difficult to say much about the dynamics of local operator entanglement
in interacting systems (in fact, this quantity is generically out of reach even in the presence
of integrability). Here we show that in completely chaotic dual-unitary circuits one can make
some quantitative progress.

In the first part, we prove that in the two limits x, — oo the local operator entangle-
ment can be determined exactly. These two limits correspond to varying the initial position of
the operator in order to measure the entanglement generated at the edges of the light-cone
(x_ — oo gives the entanglement generated by the right edge and x, — oo that generated by
the left: see Fig. 1 for a pictorial representation). Note that, the operator “breaks" the left-right
symmetry of the problem and one should not expect the results of the two limits to coincide.
Indeed, we find that they are physically very different. In particular, while the entanglement
generated by the right edge has flat spectrum and grows at the maximal speed, the one gen-
erated by the left edge is much richer. First it has a non-trivial spectrum and second, while
the von Neumann entropy always grows at the maximal speed, higher Rényi entropies show a
phase transition in the speed of the entanglement growth when varying the parameters of the
gate. Specifically the growth depends on the largest eigenvalue A governing the decay of the
dynamical correlations (cf. [56]).

In the second part of the section we show that the “local operator n-purities"

e(l—n)S(")(y,t) — e(l—n)s(“)((x+—x_)/2,(x++x_)/2) — trA[PZ(t)] , (65)

for any x, and x_ are well described (even at short times) by summing the two limits x, — ©0,
namely
e SV0 oy Jim AMSV00 4 i SV s, (66)
X_—00 )C+—)OO
This indicates that in completely chaotic dual unitary circuits the bulk of the light-cone region
rapidly becomes highly entangled (and hence it does not contribute to the purities) and the
leading contributions to the purities arises from the edges. Interestingly, if the dynamical
correlations of a circuit decay fast enough we observe the local operator entanglement growing
at the maximal speed (log d?); otherwise the growth is slower and depends on A. In the latter
case the entanglement spectrum is non-trivial.
Finally we extend the above results to a class of chaotic but not completely chaotic dual
unitary circuits including the self dual Kicked Ising model. In particular, we compute exactly
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the operator entanglement in the two limits x, — oo and, by comparing with numerical
simulations, we show that the property (66) continues to hold far enough from integrable
points.

t+y=x,

|
|
|
|
|
|
-
A N g A
|
|
|
|
|
|

|
a \
|
y 0 ~ _

A

Figure 1: Pictorial illustration of the operatorial evolution, depicting the two limits
(72) and (75). The two limits are taken along the dashed arrows. The first limit
x_ — 00 has x constant, which means that as time increases we move the operator
to the left getting contribution from the red region. The second limit x, — oo has
Xx_ constant, meaning that, as time increase we move the operator to the right and
get contribution from the blue region.

5.1 The Two Limits

Let us start by considering the special limits described above, where one focusses on the en-
tanglement generated by the edge of the light-cone produced by the spreading operator a.

5.1.1 The Limit x_ — oo

Let us first consider the entanglement generated by the right light-cone edge, namely we con-
sider the limit x_ = t —y — oo while keeping x, =t + y fixed. In this limit it is convenient
to use the representation (39). We start by nothing that, since the operator a is traceless
(cf. Sec. 3), the only eigenvector of #,[1] with non-zero overlap with the “initial state”
la®,o,...,0,a) is lex,) = IFy,). This is because the scalar product (eX+|aT0---oa) is the only

.....

(e. la o oa)—L(r lat o Oa)_dl—x+tr[a"fa:|_ dl—+ &)
R -1 o~ ViZ—1  JE&E-1

Where we used that a is Hilbert-Schimdt normalised. Plugging in the definition of C[a]"C[a]
we then have
. ) d 1—x,
xli_r)nooC[a]“C[a] = (ey,la'0--r0a) My = —x=M, , (68)

ToWVdZz-1
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where we introduced the d®*+ x d?*+ matrix M. (k € {0,1,...,x,}) defined as

<Il"'1x+|Mk|J1"'Jx+) == <Il"'IX+JJX+ ...J1|6k> . (69)

M;. can be expressed in matrix form as

dl—k 1_‘Sk,O
M = (ﬁ) Pio... Py geo(1%% =Py _gi10(1—810)), (70)
where 1 denotes the identity element in End(#; ® H;) and

Po = 120"V @ o) (o] @ 19+, (71)

is a projector to the state o on site k. Plugging (68) into (41) we find that the end result for a
Rényi entropy of generic order n reads

1
1—n

2
logtrA[pZ(t,y;a)]=X+logd2—log( d ) (72)

. (n) .
x_ll—l;noos (3.0) _x_h—r>noo d2—1

where, to take the trace, we used

dl—k
Vd2—1

Eq. (72) gives linear growth of the operator entanglement entropy with the maximal slope,
and holds in the absence of “non-generic" eigenvectors of eigenvalue 1.

n—2
tr (M)" = ( ) k>0, tr(My)"=1. (73)

5.1.2 The Limit x, — o0

Let us now consider the limit x, =t + y — o0 while keeping x_ = t — y fixed. This limit can
be evaluated using (40) but we immediately see that it is more complicated than the previous
one: we need to deal with the operator-dependent transfer matrix V, [a] and all of x_ +1
eigenvectors. The calculation yields

X_
lim C[a] Cla]" = E My ex|Vy_[allo---0). (74)
X, —00 = \Z\X,_)
Therefore we obtain
x_ 2-2k n/2—1

1 d —0kpo

: (n) — %
Jim 50y, 6) = ——log ;)|<ek|vx[a]|o o>|"( T (75)

2x_

Once again, this result holds in the absence of additional eigenvectors of V, [1] with unit
magnitude, i.e. for completely chaotic dual-unitary circuits.

The missing information in (75) is the value of (e, |V, [a]|o--- o), which can be expressed
in terms of

(o...orjo...0|V, [a]l|o---0) =
2x_
e e R
2
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This expression can be evaluated by writing the elements of the sum using the single qudit
map introduced in [56] for calculating the dynamical correlation functions. The central part
of (76), which results from the contraction with the rainbow state |r;), simplifies due to the
unitarity of the gate, and produces a factor d . The rest of the expression can be written in
terms of the maps

(bIM, yla) = a bt and (bIM_yila) = a bt,  (77)
as
dl_l x =l x—I+1 x—=l+1
(el Ve I | ‘o) = \/_((al/\/l M ) = (d MM ) 1> 0, (78)
(eol Vs | o) = (a| ./\/l M U la) . (79)

The maps can be expressed using a d? x d? matrix and the expressions are then easily evalu-
ated numerically. Moreover, the maps M_ ;;+ and M, ;; have the same eigenvalues and their
respective eigenvectors |e_ ;;+) and |e, ;;) are connected via the relation [e, ;) = v ®v, |e_ )
(v, is part of the parametrisation of U cf. Appendix C).

The leading asymptotic behaviour is governed by the leading eigenvalue? A (JA| < 1) of
the map M, ;; and can be determined analytically by posing

(alME ML jla) = 121, (80)
in (78) and (79). Here ¢; is bounded in [, i.e.

limsupc¢; < 00. 81

[—>o0

Plugging in (75) we find the following asymptotic result

1-n
log d? Al <d™»
(n) — T ; (n) = ’
AS™ ]y x}@mxjgllws (v, t)/x_ {log|2|%, A< <1 (82)

The result is intriguing, we see a transition between maximal and a sub-maximal growth,
governed by the slowest decay of the two point dynamical correlation functions. Moreover,
we see that the entanglement spectrum is not flat in this limit, but the result encodes a non-
trivial n-dependence, see Fig. 2. This is very different from the limit x_ — oo, where all
entropies experience maximal growth. Furthermore, there is another interesting observation
to make. Performing an analytical continuation of the result in n and taking the limit n — 1%
we find that the the growth of von-Neumann entropy (n — 1%) is always maximal.

5.2 The Conjecture

Let us now consider the local operator entanglement for generic x_ and x,. To describe its
leading in time behaviour we propose the following conjecture

Conjecture 5.1. For chaotic dual-unitary local circuits, at long times the operator entanglement
entropies for n > 1 are well described by the sum of the two limits (72) and (75). Namely

S(n) ,t P~
(y,t) 1

2Excluding the trivial eigenvalue 1.

1 n n
log[ lim e(™mSW0i0 4 fim (=S¢ )(y’t)] n>1. (83)
—n

—00 X4 —00
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Figure 2: The asymptotic slope AS(™| asy,x, (82) as a function of the gate parameter J
(see Appendix C for details on the parametrisation) for different values of n (different
colors). The slope is n-independent in the maximal-growth region but both the size
of this region and the slope away from it depend on n.

tr W n: tr
e

r— T4

T

Figure 3: Pictorial illustration of the Conjecture 5.1. The entanglement of the spread-
ing operator at time t is written as a sum of two contributions where the left and right
boundary are respectively sent to infinity.

As pictorially represented in Fig. 3, the conjecture consists in replacing the trace of the n-th
power of the reduced density matrix of the “vectorised" spreading operator a, (t) with the sum
of two terms. These terms are the trace of n-th powers of density matrices corresponding to
operators obtained from a,(t) by sending to infinity respectively its left (—x_) or right (x,)
edges. Note that the conjecture cannot hold for the von-Neumann entropy, as the limitn — 1%
of the r.h.s. of (83) is singular (the argument of the logarithm goes to 2).

Conjecture 5.1 yields the following form for the entanglement entropies

SW(y, 6) = tASM(y, t) + pa(y, t), (84)

where the “slope" AS™(y, t) and the “offset" u,(y, t) are bounded in t. We evaluated Eq. (84)
using Eq. (72) and Eq. (75) and compared it to the results of exact short-time numerical
simulations — obtained by direct diagonalisation of the corner transfer matrix (see Appendix E
for details). The comparison, for n = 2 and y = 0, is reported in Fig 4. The figure presents
results for both the slope AS®®)(0,t) and the constant shift u(0, t), which is very sensitive
to small errors in the slope. The agreement observed is remarkable, even for the short times
accessible by the numerics. A similar level of agreement is observed also for n > 2.

The asymptotic value of the slopes in the limit t — oo with fixed “ray" { = y/t are given
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by

1-n

{max[(l—{)logdz,(1+C)logdz], Al <d ™

2n 1-n 85
max[(l—{)logl)tIﬁ,(l+§)logd2], dn < |Al<1 (85)

. (n) _
Am AST(y, 0)/t =
y/t=¢

Equation (85) predicts a “phase transition" between a region with slopes that are symmetric
in ¢ (as it happens for random unitary circuits, see Ref. [37]) and a region where instead they
show an interesting asymmetry in {, and, moreover, they become n-dependent. In particular,
we see that for { = 0 the slopes coincide with those given in (82) and the slope in the sym-
metric region is the maximal one (logd? is the maximal entanglement growth attainable in a
circuit with d-dimensional local Hilbert space). For comparison, we computed numerically the
dynamics of the local operator Rényi-2 entropy in Haar-random non-dual-unitary local qubit
circuits for { = 0. We considered two cases: (i) we chose the same (constant) gate for all
the space-time points (clean case); (ii) we took different i.i.d. U, , for each space-time point
in the circuit (noisy case). In both cases we obtained roughly half of the maximal slope of
the entanglement entropy growth, see Fig. 5. This is in accordance with the predictions of
Ref. [37] and proves that, in some parameter ranges, dual-unitary circuits are “more chaotic"
than the average.

The idea behind Conjecture 5.1 is most easily explained considering the purity e SP00),
Looking at the representation (33) we see that this quantity can be written as the partition
function of a statistical mechanical model (with complex weights) on a rectangle of dimensions
2x, and 2x_. The conjecture corresponds to restricting this partition function to the sum
over configurations spanning eigenvectors of eigenvalue 1 of both row and column transfer
matrices. The same idea applies to n-purities with n > 2. Physically, this corresponds to assume
that the bulk of the light-cone is highly scrambled (i.e. it gives a very small contribution to the
purity), while the regions at a finite distance from the light-cone edges present the minimal
scrambling (i.e. give the leading contribution to the purity). This is justified by noting that
close to the light-cone edge the operator retains the maximal amount of information on the
initial condition. We expect this picture to hold true for more general, non-dual unitary, chaotic
systems if one replaces the light cone spreading at the maximal speed (1 in our units) with
an effective one spreading at the “butterfly velocity" vz [6] of the system. Indeed, vy is by
definition the velocity at which the scrambled region spreads in time.

5.3 Self-Dual Kicked Ising Model (d = 2)

Conjecture 5.1 is assumed to describe the asymptotic dynamics of the local operator entangle-
ment in any chaotic dual-unitary circuit. In order for it to have any predictive power, however,
one must be able to compute the limits x, — oo. While in the previous subsections we
showed that this can be done for the completely chaotic subclass, here we show that the limits
can be computed exactly also in the paradigmatic example of dual-unitary circuits in d = 2:
the self-dual kicked Ising model [57,58]. This model is not completely chaotic according to
Definition 4.1 because it possesses additional structure. Specifically, its local gate fulfils

Ulla® DU=we®a, U'(l®a)U=a®w, (86)

where w, a are some hermitian and traceless matrices in SU(2)3. This condition leads to x
additional eigenvectors of the transfer matrices V,[1] and H,[1] with eigenvalue one. In
fact, as shown in Appendix D, all reflection symmetric dual-unitary circuits fulfilling (86) are
gauge equivalent to the self-dual kicked Ising.

3w, a can actually be any 2 x 2 complex matrices, from which we can derive analogous relations with traceless

hermitian matrices (cf. Lemma A.1. of Paper II).
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Figure 4: The slope AS@(y,t —1/2) = S®(y,t)—S@(y,t —1) and the constant
offset factor u5(y, t) (much more sensitive) versus the parameter J for a dual unitary
gate with r = 0.5, ¢ = 0.7, 6 = 0 (see Appendix C for the definition of the gate).
We show the results for operators a; = o5 (left panel) and a, = a,0;+ay0,+0a303
a fixed random operator with a; = 0.3289, a, = 0.0696, a; = 0.6221. The points
correspond to exact numerical results, and the lines are the predictions using the
conjecture (83). The operator is initialised at y = 0, and we set t = 7 for the right

panel.
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Figure 5: The slope of Rényi n = 2 entanglement entropy for the operator o5 evolv-
ing according to (non-dual-unitary) U(4) Haar-random gates. In the clean case we
average over 10 realisations, in the noisy case over 20 (100 for t < 6). The re-
sults suggest that the slope is close to log2, which is half of the maximal slope.
Note that this agrees well with large d result from [37], where we get the slope
2%(1/5— 1)log2 ~ 0.9941log2, if we use the parameters s;p,.0qq,Vp for d = 2 (cf.
Ref. [37] for a definition of these parameters).

We can use the gauge transformation (13) to set @ = o3, which holds in the standard
formulation of self-dual kicked Ising model. The additional eigenvectors with eigenvalue one

are then given by

{le/,;) =lo...0330...0), le/,,) =lo...037;30...0),...,le5 ) = |31, _13)}, (87)
x—=1 x—2

where 3 stands for the operator o3. To construct an orthonormal basis, we consider the fol-
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Figure 6: Prediction and numerical data for self-dual kicked Ising model. The points
correspond to exact results, and the lines are the predictions using the conjecture
(83). In the left panel we show the Rényi n = 2 entropy at times 6, 7,8 versus the
magnetic field parameter h. The deviations from the prediction observed away from
the central region are due to the vicinity of solvable points h = k7, k € Z, where
the model is a Clifford circuit. There the prediction fails, because the transfer matrix
has additional eigenvectors of eigenvalue 1. But as time increases, the region where
the prediction holds grows. In the right panel we show the more sensitive constant
offset factor u, versus the parameter h at t = 7. The operators a;, a, are the same
as those used in Fig. 4 and they are initialised in y = 0.

lowing linear combination

3, 1 .
|ex+i>=\E|ex+i>—E|ei> ie{l,...,x}. 89)

Having the eigenvectors, we evaluate the limits:

. n 1 2
Jim_ 500y, = G, ~ Dloga—1og 3 Il + lay P[> +1a1*) (89)

(ejl Vy [allo--- o), (90)
2x_

2x X
= ~3—90;
im s —_ : o2 =— Z e
Jim_s(y,6)=~log > Kej| V. [allo--- o) = ~log > ~—
j=0 o j=0
where we parametrised the initial local operator as
2 2 2_1
a=a;01+ta0;+as0s, lay | +laz|® + |as] =5 (oD

The last equality in Eq. (90) follows from (e;I Ve La]lo--- o) = 0. Therefore, the additional
eigenvectors change only the constant prefactors. Equations (89) and (90) show that, in the
long time limit, the offset constant u, is different with respect to the result in completely
chaotic dual-unitary circuits (cf. Eqs. (72) and (75)), but the slope is the same.

With the limits x, — oo at hand we are now in a position to compare the prediction of
Conjecture 5.1 with (short-time) numerics. A comparison is shown in Fig. 6. The figure shows
that, far enough from some special points in parameter space (see the caption), there is good
agreement even for numerically accessible times (¢t < 8).
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6 Conclusions

In this paper we studied the local operator entanglement growth in dual-unitary circuits. We
identified a completely chaotic class for which the local operator entanglement always grows
linearly in time. For this class we provided a quantitative description of the local-operator-
entanglement dynamics based on a simple conjecture, which is strongly supported by numer-
ical results. We postulated that, at late enough times, the local operator purities (traces of
powers of the reduced density matrix) can be determined by considering separately the en-
tanglement produced by the two edges of the spreading operator and then summing them
together. In other words, we wrote the exponentials of the operator entanglement entropies
as sums of two contributions, respectively obtained by sending the right edge of the spread-
ing operator to infinity and the left edge to minus infinity. Our conjecture, together with
the dual-unitarity property, allows to evaluate analytically the local operator entanglement of
generic operators initially localised on a single site. These results have been extended to the
self-dual kicked Ising model (which does not fall into the completely chaotic class). We ar-
gued that a modified form of our conjecture should hold in generic chaotic systems, i.e. for
non-dual-unitary circuits, however, without dual-unitarity it does not directly yield analytical
predictions.

Interestingly, our conjecture predicts that the slope of the local operator entanglement
displays an abrupt transition when varying the parameters of the circuits. Moreover, the point
in which the transition occurs depends on the Rényi index. On one side of the transition
the slope of growth is the maximal allowed by the geometry of the circuit (logd?), which is
approximately twice as large as that observed in Haar-random circuits [37]. This indicates
that a subset of our chaotic dual-unitary circuits can be regarded as minimal solvable models
for the maximally chaotic dynamics. On the contrary, on the other side of the transition the
slope is not maximal, depends on the Rényi index, and approaches 0 when the dual unitary
gate approaches the SWAP gate.

Our work raises a number of questions that can guide future research. First, our conjecture
seems to describe the numerics even at small times, suggesting that it holds up to very small
corrections. It would be interesting to investigate this aspect further and, possibly, rigorously
prove the conjecture. Second, the class of systems that we introduced here (see also [56]) can
be used to study exactly many aspects of non-equilibrium dynamics in chaotic systems, from
relaxation of local observables to the behaviour of out-of-time-ordered correlations.

Acknowledgements

We thank Lorenzo Piroli, Marko Medenjak, Vincenzo Alba, Jér6me Dubail, Andrea De Luca,
and Tibor Rakovszky for useful discussions. BB thanks LPTMS Orsay for hospitality during the
completion of this work.

Funding Information This work has been supported by the European Research Council un-
der the Advanced Grant No. 694544 — OMNES, and by the Slovenian Research Agency (ARRS)
under the Programme P1-0402.

A Row and Column Transfer Matrices are Contracting

In this appendix we show that the eigenvalues of row, #,[1], and column, V,[1], transfer
matrices (cf. (36) and (37) respectively) have absolute value bounded by 1. Let us show for
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one of them, say V,[1], as showing it for the other one is completely analogous. Considering

the expectation value of V,[1] on a generic state |1)) € (C?)®%* we have
| (Y IVi[11lg) | = [ {orplillypo) |, (92)
where { = W0,1/2 e Wx/Z—l/Z,x/ZW:/2,x/2+1/2 e W;—l/Z,x is a unitary matrix acting on
(C4)®@x*+1) (the “double gate" Wi , 41 /2 =W is defined in (27)). We then have
| (P IVi[111Y) [ = [{op|tUS|op) | < [(plep) |, (93)

where & is the periodic shift by one site in (C4)®***1) (& = P, oPy /5" Py_1/5.» Where P, ;
it the elementary transposition). In the last step we used that (o|o) = 1 and both & and 4l are
unitary.

B Local Conservation Laws in dual-unitary Circuits

In this appendix we study how the continuity equations (53) and (54) simplify in the case of
dual-unitary circuits, proving explicitly Egs. (55) and (56). Specifically, since the manipula-
tions are completely analogous, we only show how to go from (53) to (55). Tracing on the
first two sites (i.e. contracting with two bullets co from above) we have that the Lh.s. of (53)
is 0 by dual unitarity: we thus find

Jo=q, +J.", (94)
where we introduced
I = ] (95)
Tracing again on the first two sites of (94) we have
T =t o, (96)

This equation has, as unique solution

J'=1® -0l (97)

as can be proven by expanding in an Hilbert-Schmidt orthogonal basis

a’®---®a%, aj=1,...,d>, (98)
r—1

where a° = 1. Plugging (97) back into (94) we finally find

T +1®---®1
J.=q,+1®---®1, (99)

r+1

which gives directly (55).

C Definition of the Gate

Following Ref. [56], a general dual-unitary gate can be (up to a gauge transformation) parametrised
as

(T 7
U= exp[—l(zal ® 01+ZUZ ®O0,+Jo3® 03)] (v_®v,), (100)
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where ¢,J € R, v, € SU(2). In all numerical computations reported in this paper we take the
ultralocal unitaries equal and parametrise them as

rel®/2 —v/1=r2¢710/2
Vo=V, = T 3,i0/2 i) ) ref0,1], 0,¢ €[0,4]. (101)

D All Models Obeying Eq. (86) are Gauge Equivalent to the Self-
Dual Kicked Ising Model

Here we show that all circuits with local gates fulfilling (86) are gauge equivalent to self-dual
kicked Ising model. From the first condition in Egs. (86) it follows:

VIIT W aiu, @ DVI]=Wwe v, av), (102)

where w is some SU(2) matrix and we used the standard parametrisation of the gate used
in [56]. These conditions can only be satisfied for J € {%,0}.

Demanding w # 1 (the case w = 1 is treated in [60]) leads to the solution J = 0 and
V[0]'(oq ® 1)V[0] = 03 ® 0, or V[0] (0, ® 1)V[0] = —03 ® 0. Proceeding with the first
condition we have:

T,,T — — T
ulv,ooviug =07, Ay =V 0,v,. (103)

The analogue conditions for the unknowns with a minus sign are derived in the same man-
ner. Using gauge transformation (13), we may set ay = o3 in order to have the additional
eigenvectors of the form (87). The equation (103) is solved by:

. r iv/1—r12

which generate a two-parameter r.. family of models (the phase 1) .. is irrelevant). The reflec-
tion symmetric case r, = r_ = cosh is therefore gauge equivalent to the self-dual kicked Ising
model, with h being the magnetic field in the z direction. This is also seen in the eigenvalues
of the maps M. ;; (cf. (77)), which exactly match.

E Numerical methods

Calculating the operator entanglement entropy numerically is computationally expensive with
resources scaling exponentially with t. In our case, we iteratively constructed the corner trans-
fer matrix C[a], as defined in (38). First we construct the doubled gate W, from which we
build the first row of C[a]. Then we add additional precomputed rows via matrix computa-
tions until we end up with the final corner transfer matrix. In the last and by far the most
expensive step we calculate d2*+**-) matrix elements, with each costing d%*+ operations. At
y =0, d = 2 the total cost scales as 2°¢, which is still much better than using the row/column
transfer matrices H,[a] and V,[a], where the cost scales as 28¢.
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