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Abstract

We provide exact results for the dynamics of local-operator entanglement in quantum
circuits with two-dimensional wires featuring ultralocal solitons, i.e. single-site opera-
tors which, up to a phase, are simply shifted by the time evolution. We classify all circuits
allowing for ultralocal solitons and show that only dual-unitary circuits can feature mov-
ing ultralocal solitons. Then, we rigorously prove that if a circuit has an ultralocal soliton
moving to the left (right), the entanglement of local operators initially supported on even
(odd) sites saturates to a constant value and its dynamics can be computed exactly. Im-
portantly, this does not bound the growth of complexity in chiral circuits, where solitons
move only in one direction, say to the left. Indeed, in this case we observe numerically
that operators on the odd sublattice have unbounded entanglement. Finally, we present
a closed-form expression for the local-operator entanglement entropies in circuits with
ultralocal solitons moving in both directions. Our results hold irrespectively of integra-
bility.
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1 Introduction

This is the second of two papers on the dynamics of local-operator entanglement in local quan-
tum circuits. In the first part of our work [1], which in the following we will refer to as “Paper
I”, we focussed on the dynamics of operator entanglement in chaotic dual unitary circuits [2].
Here, instead, we do not assume dual-unitarity and we focus on circuits admitting solitons:
operators that are simply shifted by the time evolution (see below for a precise definition).
Specifically, we consider periodically driven spin-(d−1)/2 chains with Floquet operator given
by

U= UoUe = T2LU⊗LT†
2LU⊗L =

0

1

1
2

1
2

3
2

5
2− 1

2 0 1 2−1· · · · · ·

.

· · · · · ·

(1)

Following the (diagrammatic) notation of Paper I,

U = (2)

denotes the unitary “local gate” in End(Cd⊗Cd) and T
`

the `−periodic translation by one site.
Details of notation exactly follow Paper I. In this framework we call “soliton" a traceless local
operator ã (in general acting non-trivially on r sites) that, up to a phase, is simply shifted by a
number of sites x when conjugated with the Floquet operator (one period of time evolution)

U†ãyU= eiφ ãy+x , φ ∈ [0, 2π], x , y ∈
1
2
Z2L , (3)

where, for any b ∈ End(Cd r
), we define by ∈ End(Cd L

) by

by ≡ 1⊗ · · · ⊗1
︸ ︷︷ ︸

L−1+2y

⊗b⊗1⊗ · · · ⊗1
︸ ︷︷ ︸

L−2y−r−1

. (4)

Due to the strict light-cone structure of the quantum circuit, only a restricted set of values of x
are allowed in (3). Specifically x ∈ {−1/2, 0,1/2,1} if y is integer and x ∈ {−1,−1/2, 0,1/2}
if y is half-odd-integer. Note that the condition of vanishing trace ensures that ã is orthogonal
to the identity operator and hence non-trivial.

In this paper we analyse the consequences of the presence of solitons on the dynamics of
the local-operator entanglement. For the sake of simplicity, we here consider spin-1/2 chains,
i.e. circuits where the local Hilbert space is two-dimensional (d = 2), featuring “ultralocal"
solitons, i.e. solitons acting non-trivially only on a single site (r = 1 in Eq. (4)). Specifically,
the rest of this paper is laid out as follows. In Section 2 we present a detailed classification of
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circuits with ultralocal solitons and two-dimensional local Hilbert space. In Section 3 we recall
the definition of the local-operator-entanglement entropies in local quantum circuits and their
expression in terms of partition functions on appropriate space-time surfaces. In Section 4
we determine the dynamics of local-operator-entanglement in circuits with solitons present-
ing closed-form expressions for the entanglement entropies. Finally, Section 5 contains our
conclusions. The most technical aspects of our analysis are relegated to the two appendices.

2 Classification

Given the definition (3), a natural question is to find all possible quantum circuits, i.e. all pos-
sible local gates U , admitting solitons. For ultralocal solitons in spin-1/2 chains, this task is
explicitly carried out in Appendix A while here we discuss the results. Interestingly, we find that
(3) does not have solutions for all allowed values of x: only x = 0 and
x = 1− 2mod(2y, 2) ∈ {±1} lead to a consistent solution. In other words solitons can ei-
ther stay still or move at the maximal speed: if they were initially on integer sites they move
to the right and to the left otherwise. The three kinds of allowed solitons impose the following
conditions on the local gate

U†ãyU= eiφ ãy ⇔

¨

U†(a⊗1)U = ±(b⊗1)
U†(1⊗ b)U = ±(1⊗ a)

, (5a)

U†ãyU= eiφ ãy+1 and y ∈ ZL ⇔ U†(a⊗1)U = ±(1⊗ a), (5b)

U†ãyU= eiφ ãy−1 and y −
1
2
∈ ZL ⇔ U†(1⊗ a)U = ±(a⊗1), (5c)

where a and b are some hermitian traceless operators in End(C2) that can be taken Hilbert-
Schmidt normalised

1
2

tr[aa†] = 1,
1
2

tr[bb†] = 1. (6)

The relations (5) highly constrain the dynamics of the circuit. In particular, they generate an
exponentially large number of local conservation laws1 of the form

∑

y∈Z

∏

xk

ãxk+y , (7)

where {xk} are either all integer (if (5b)), all half-integer (if (5c)), or mixed (if (5a)). Gener-
ically, however, these conservation laws do not follow the Yang-Baxter structure observed in
integrable quantum circuits [4]. Indeed, while for integrable circuits the gate can be written as
U = Ř(λ0)— where Ř(λ) is a solution of the Yang-Bater equation and λ0 a fixed parameter —
this is not the case for all gates satisfying (5). This situation is somehow reminiscent to what
happens in kinetically constrained models, such as the so called PXP model [5,6]. In both cases
there is an ergodicity breaking (known as scarring in the latter case) in certain subsectors of
the Hilbert space. However, it is currently not clear whether the existence of exponentially
many conserved operators is sufficient to enforce an effective reduction of Hilbert space like in
the case of PXP model. Other similar cases are soliton gases in reversible cellular automata like
the so-called Rule 54 [7–14] or the model of hard core classical particles studied in [15,16].

In the following subsections we find all possible local gates solving the relations (5a-5c)
and use them to determine the constrains imposed by the presence of solitons on the dynamics
of ultralocal operators.

1Note that the expectation values of these “charges" generically oscillate in time with frequency φ. Similar
persistent oscillatory quantities have been recently considered in [3].
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2.1 Still Solitons

Let us start considering circuits with motionless ultralocal solitons, namely with local gates U
fulfilling (5a). The first step is to simplify the latter condition. To this aim we note that, since
a and b are hermitian, they can be written as

a = e−i ~α1 ~σσ3 ei ~α1 ~σ, b = e−i ~α2 ~σσ3 ei ~α2 ~σ, (8)

where ~σ = (σ1,σ2,σ3) is a vector of Pauli matrices and ~α1, ~α2 vectors of angles. This means
that the gauge transformation (see (63))

U 7→
�

ei ~α1 ~σ ⊗ ei ~α2 ~σ
�

U
�

e−i ~α2 ~σ ⊗ e−i ~α1 ~σ
�

, (9)

brings (5a) in the following form

¨

U†(σ3 ⊗1)U = (−1)s1(σ3 ⊗1)
U†(1⊗σ3)U = (−1)s2(1⊗σ3)

s1, s2 ∈ {0,1}. (10)

Using the Pauli algebra, it is easy to see that the most general U ∈ U(4) solving these relations
can be written as (see Appendix B)

U = eiφ((σ1)
s1⊗(σ1)

s2)(e−iησ3⊗e−iµσ3)·e−iJσ3⊗σ3 φ,η,µ ∈ [0,2π], J ∈ [0,π/2]. (11)

To find the implications of (10) on the dynamics of other ultralocal operators, we consider

U†(σβ ⊗1)U , U†(1⊗σβ)U , β ∈ {1, 2}. (12)

Simple calculations lead to

U†(σ1 ⊗1)U = cos2J (ei2ησ3σ1)⊗1− sin2J (ei2ησ3σ2)⊗σ3 (13a)

(−1)s1 U†(σ2 ⊗1)U = cos2J (ei2ησ3σ2)⊗1+ sin2J (ei2ησ3σ1)⊗σ3 (13b)

U†(1⊗σ1)U = cos2J 1⊗ (ei2µσ3σ1)− sin 2J σ3 ⊗ (ei2µσ3σ2) (13c)

(−1)s2 U†(1⊗σ2)U = cos2J 1⊗ (ei2µσ3σ2) + sin 2J σ3 ⊗ (ei2µσ3σ1). (13d)

In essence, these relations mean that nothing can move in such a circuit. All ultralocal opera-
tors remain at their initial positions and the time evolution causes, at most, a rotation in the
Pauli basis and the appearance of still solitons on their sides. An alternative way to pinpoint
this “localisation” is to note that the Floquet operator U built using the gates (11) is essentially
the matrix exponential of the classical Ising Hamiltonian. This is just a trivial instance of the
“l-bit” Hamiltonian used for the phenomenological modelling of systems in the many-body
localised regime [17].

2.2 Chiral Solitons

Let us now consider circuits with a single moving soliton, namely local gates U fulfilling either
(5b) or (5c). We shall call such solitons chiral solitons, as they move in a fixed direction at
the speed of light. Since the treatment is very similar in the two cases, we consider only one
of them, say the second one. In other words we focus on left-moving solitons. As before, we
start by simplifying the problem using a gauge transformation. It is easy to see that, with the
transformation

U 7→
�

1⊗ ei ~α1 ~σ
�

U
�

e−i ~α1 ~σ ⊗1
�

, (14)
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the relation (5c) becomes

U†(1⊗σ3)U = (−1)s(σ3 ⊗1), s ∈ {0, 1}, (15)

where we again represented a as in (8). As shown in Appendix B, all possible U ∈ U(4) fulfill-
ing (15) are parametrised as follows

U = eiφ(u+ ⊗ (σ1)
se−i(η−/2)σ3) · V [J] · (e−i(µ−/2)σ3 ⊗ v+), (16)

where φ,η−,µ− ∈ [0,2π], J ∈ [0,π/2], u+, v+ ∈ SU(2) and we introduced

V [J] = e−i π4σ1⊗σ1 e−i π4σ2⊗σ2 e−iJσ3⊗σ3 . (17)

Equation (16) is remarkable: it shows that all gates allowing for chiral solitons are dual-
unitary [2]. Namely, in addition to being unitary they fulfil

∑

p,q=1,2

〈`q|U†|k p〉 〈 j p|U |i q〉= δ`,iδk, j ,
∑

p,q=1,2

〈q `|U†|p k〉 〈p j|U |q i〉= δ`,iδk, j , (18)

where {|i〉 ; i = 1,2} is a real, orthonormal basis of C2.
As before, to find the implications of (15) on the dynamics of other ultralocal operators

we consider

U†(σα ⊗1)U , U†(1⊗σβ)U , α ∈ {1,2, 3}, β ∈ {1,2}. (19)

Let us start with the first group. Expanding in the Pauli basis we have

U†(σγ ⊗1)U =
∑

α,β∈{0,1,2,3}

Rγ
αβ
σα⊗σβ γ ∈ {1,2, 3}, (20)

where we used the convention σ0 = 1. Since U†(σγ ⊗ 1)U are hermitian, traceless, and
orthonormal we have

Rγ
αβ
∈ R, Rγ00 = 0,

∑

α,β∈{0,1,2,3}

Rγ
′

αβ
Rγ
′′

αβ
= δγ′γ′′ . (21)

Therefore (20) in principle contains 14 free real parameters for each fixed γ. The number of
these parameters, however, is reduced by the conditions (15). Indeed, they imply

(σ3 ⊗1) · U†(σγ ⊗1)U · (σ3 ⊗1) = U†(σγ ⊗1)U , γ ∈ {1, 2,3}, (22)

meaning that the only non-zero coefficients can be

{Rγ0β , Rγ3β}β ,γ=1,2,3. (23)

Note that Rγ30 = 0 because of the dual-unitarity property (18). These coefficients can be ex-
pressed in terms of the parameters of the local gate as per Eq. (16), however, the final ex-
pressions are cumbersome and not particularly instructive, so we decided not to report them.
Expanding in the Pauli basis the second group of operators in (19) we have

U†(1⊗σγ)U =
∑

α,β∈{0,1,2,3}

Lγ
αβ
σα⊗σβ , γ ∈ {1,2}, (24)

where, as above

Lγ
αβ
∈ R, Lγ00 = 0,

∑

α,β∈{0,1,2,3}

Lγ
′

αβ
Lγ
′′

αβ
= δγ′γ′′ . (25)
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In this case the constraint is

(σ3 ⊗1) · U†(1⊗σγ)U · (σ3 ⊗1) = −U†(1⊗σγ)U , γ= 1,2, (26)

implying that the only non-zero coefficients are

{Lγ1α, Lγ2α}
γ=1,2
α=0,1,2,3, (27)

once again, even though it is in principle possible, we do not express the coefficients in terms
of the parameters of Eq. (16).

The constrains (23) and (27) are relevant for ultralocal operators respectively initialised
on integer and half-odd-integer sites. To see this let us consider the schematic representation
of the evolution of a ultralocal operator initially on an integer site y (hence following (23))
for a full time step

# 
y
##

∆t=1/2
7−→ ##

y
 #+# z©

y
 #

∆t=1/2
7−→ ##

y
# + z©#

y
# +##

y
z© + z©#

y
z© ,

where  represents a generic ultralocal operator, # represents the identity and z© represents
σz . In the subsequent evolution the soliton z©will propagate to the left, while will continue
to propagate to the right (both at the maximal speed). In this case the operator  can be
thought of as a sort of wave-front moving to the right, which, during each time step, can
“shoot” backwards a maximum of two solitons. The dynamic originated by (27), when y
is half-odd-integer, is instead completely different. In this case a schematic picture of the
evolution looks like

## 
y
#
∆t=1/2
7−→ #  

y
#
∆t=1/2
7−→   #

y
 +  z©

y
 ,

therefore the evolution can be understood in terms of a “left moving front” ( ), which shoots
generic operators propagating to the right.

2.3 Solitons in Both Directions

Let us now consider local gates fulfilling both the conditions (5b) and (5c). Namely, we con-
sider circuits that have solitons propagating in both directions

¨

U†(1⊗ a)U = (−1)s2(a⊗1)
U†(b⊗1)U = (−1)s1(1⊗ b)

s1, s2 ∈ {0,1}. (28)

Representing again a and b as in (8), we have that the gauge transformation

U 7→
�

ei ~α2 ~σ ⊗ ei ~α1 ~σ
�

U
�

e−i ~α1 ~σ ⊗ e−i ~α2 ~σ
�

, (29)

brings (28) to the form

¨

U†(σ3 ⊗1)U = (−1)s1(1⊗σ3)
U†(1⊗σ3)U = (−1)s2(σ3 ⊗1)

s1, s2 ∈ {0, 1}. (30)

As shown in Appendix B, all possible U ∈ U(4) fulfilling these relations are parametrised as
follows

U = eiφ((σ1)
s1 e−i(η+/2)σ3 ⊗ (σ1)

s2 e−i(η−/2)σ3) · V [J] · (e−i(µ−/2)σ3 ⊗ e−i(µ+/2)σ3), (31)
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where φ,η±,µ±, J ∈ [0, 2π] and V [J] is defined in (17). Clearly, being a special case of (16),
(31) is also dual-unitary. Examples of such gates are the dual-unitary parameter line of the
trotterized XXZ chain [2,4,18]

UX X Z = V [J], (32)

and the self-dual kicked Ising model [19–21] at the non-interacting point2

USDKI = ei π4σ3 ⊗ ei π4σ3 · V [0]. (33)

The form (31) of the gate implies that in the expansions (20) and (24) the only non-vanishing
coefficients are

{Rγ
αβ
}γ=1,2
α=0,3;β=1,2, {Lγ

αβ
}γ=1,2
α=1,2;β=0,3. (34)

In particular, expressing them in terms of the parameters of the gate we find

U†(σ1 ⊗1)U = sin 2J 1⊗ (ei(η++µ+)σ3σ1) + cos2J σ3⊗ (ei(η++µ+)σ3σ2), (35a)

(−1)s1 U†(σ2 ⊗1)U = sin 2J 1⊗ (ei(η++µ+)σ3σ2)− cos2J σ3⊗ (ei(η++µ+)σ3σ1). (35b)

Proceeding analogously we have

U†(1⊗σ1)U = sin2J (ei(η−+µ−)σ3σ1)⊗1+ cos 2J (ei(η−+µ−)σ3σ2)⊗σ3, (36a)

(−1)s2 U†(1⊗σ2)U = sin2J (ei(η−+µ−)σ3σ2)⊗1− cos 2J (ei(η−+µ−)σ3σ1)⊗σ3. (36b)

As expected, the “front picture" described above for the spreading of operators on integer
sites, now holds also for those on half-odd-integer sites, i.e. operators on integer (half-odd-
integer) sites create a front moving to the right (left) at the maximal speed and shooting
solitons backward.

2.4 Coexistent Still and Moving Solitons: No Go

One could in principle envisage circuits featuring coexistent motionless and propagating soli-
tons. Here we show that this is, however, impossible. We proceed by reductio ad absurdum
and assume that a still and at least one of the moving solitons are both present, specifically

U†(a⊗1)U = ±(b⊗1), (37)

U†(1⊗ b)U = ±(1⊗ a), (38)

U†(1⊗ c)U = ±(c ⊗1), (39)

with a, b, c ∈ End(C2) hermitian and traceless. Considering the commutator of U†(1 ⊗ b)U
and U†(1⊗ c)U and using the last two relations we have

U†(1⊗ [b, c])U = 0 ⇒ [b, c] = 0. (40)

Using that b and c are traceless, hermitian operators in End(C2) we find

b = ±c. (41)

This, however, implies that (38) and (39) are compatible only if c = ±1, which contradicts the
tracelessness condition.

2this form of the gate is equivalent to that reported in Ref. [2] up to a gauge transformation.
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3 Local-Operator Entanglement

The entanglement of a time-evolving operator is defined as the entanglement of the state
corresponding to it under a state-to-operator mapping [14,22,24–30]. In particular, here we
use the “folding mapping” defined in Section 2.1 of Paper I and we consider the entanglement
of the (normalised to one) pure state

|ay(t)〉 , (42)

corresponding to the operator ay(t) via the mapping. In the graphical representation of Paper
I this is depicted as

|ay(t)〉=

a

,

y

t (43)

where each wire carries a local Hilbert space C2 ⊗C2

= (44)

and we introduced the “double gate"

=W = . (45)

Here

U† = , (46)

and the upside down red gate means that U is transposed. Finally

≡ |◦〉, ≡ |a〉,
a

(47)

where |◦〉 corresponds to the identity operator and |a〉 to a generic ultra-local operator a (both
states are normalised to one). Note that in (43) open wires at the sides should be contracted
via periodic boundary conditions, while vertical open ends at the top represent a state vector
(ket) in C42L

.
From the unitarity of U it follows

= , = . (48a)

= , = ,
(48b)
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where we introduced

=W †. (49)

Using the first of (48a) we see that |ay(t)〉 can be simplified out of a lightcone spreading from
y at speed 1.

As it is customary, we measure the entanglement of the connected real space region
A= [−L, 0] with respect to the rest using the entanglement entropies

S(n)(y, t) =
1

1− n
log trA

�

ρA(t, y; a)n
�

, n= 1, 2, . . . , (50)

where we introduced the reduced density matrix

ρA(t, y; a) = trĀ[|ay(t)〉〈ay(t)|]= a
a†
a
a†
a
a†
a
a†
a
a† . (51)

Here we took y < t ≤ L. As discussed in Paper I, the entanglement vanishes when the first
inequality is violated, while the second inequality is chosen to be in the thermodynamic-limit
configuration.

The Renyi entropies (50) are conveniently rewritten in terms of a “corner transfer ma-
trix" [31,32] C[a] by noting (see Paper I)

trA

�

ρA(t, y; a)n
�

= tr
�

(C[a]†C[a])n
�

. (52)

For integer y , the matrix elements of the corner transfer matrix read as

〈α1 . . .αx− |C[a]|β1 . . .βx+〉= ,

a

αx−

...

α1

βx+
. . . β1

α j ,β j ∈ {0, . . . , 3}, (53)

9
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where {|α〉 ,α= 0, . . . , 3} is the basis of C2 ⊗C2 with

|0〉= |◦〉 , |1〉= |σ1〉 , |2〉= |σ2〉 , |3〉= |σ3〉 , (54)

and we introduced the “lightcone" coordinates

x+ ≡ t + y, x− ≡ t − y. (55)

The hermitian matrices C[a]†C[a] and C[a]C[a]† are represented in terms of the two “row
transfer matrices"

Hx+[b] = b† b· · · · · ·

2x+

, (56)

Vx−[b] = b b†· · · · · ·

2x−

, (57)

as follows

〈α1 . . .αx+ |C
†[a]C[a]|β1 . . .βx+〉= 〈α1 . . .αx+ ,βx+ . . .β1|(Hx+[1])

x− |a†◦ · · · ◦ a〉 , (58)

〈α1 . . .αx− |C[a]C
†[a]|β1 . . .βx−〉= 〈α1 . . .αx− ,βx− . . .β1|(Vx−[1])

x+−1Vx−[a]| ◦ · · · ◦〉 . (59)

The case of y half-odd-integer is recovered from the above formulae by means of the substi-
tutions

y 7→
1
2
− y, Hx[a] 7→ Vx[a], Vx[a] 7→Hx[a]. (60)

In Paper I we identified a class of completely chaotic dual-unitary circuits by requiring Hx[1]
and Vx[1] to have only x +1 eigenvectors of eigenvalue 1. Circuits with solitons are certainly
not included in this class, indeed, as discussed in Paper I, the presence of solitons implies that
Hx[1] and Vx[1] have exponentially many (in x) eigenvectors of with eigenvalue 1.

Note that the corner transfer matrix fulfils

tr[C[a]†C[a]] = 2x+ 〈rx+ |(Hx+[1])
x− |a†◦ · · · ◦ a〉= 2x+ 〈rx+ |a

†◦ · · · ◦ a〉= 1, (61)

where, as explained in Paper I, the “rainbow" state

〈rx |=
1
2x

3
∑

α1 α2...αx=0

〈α1α2 . . .αx αx . . .α2α1|= ... ...
︸ ︷︷ ︸

2x

, (62)

is a common eigenstate of Vx[a] and Hx[a] with eigenvalue 1. Equation (61) is nothing but
a statement on the normalisation of the reduced density matrix (cf. (52)). Since C[a]†C[a] is
positive semi-definite, the relation (61) implies that its spectrum is contained in [0,1].

Finally we remark that under the gauge transformation

U 7→ (u⊗ v)U(v† ⊗ u†), u, v ∈ U(2), (63)

the traces of the reduced transfer matrix transform as follows

trA[ρA(t, y; a)n] 7→

¨

trA[ρA(t, y; u†au)n] y ∈ ZL −
1
2

trA[ρA(t, y; v†av)n] y ∈ ZL .
(64)

This means that the gauge transformation only causes a rotation in the space of ultralocal
operators.
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4 Dynamics of the Operator Entanglement

We are now in a position to study the dynamics of local-operator entanglement in circuits
with ultralocal solitons, namely for gates fulfilling (10), (15), or (30) after taking appropriate
gauge transformations, e.g. (9). Let us consider the operator entanglement of the normalised
operator

a = a1σ1 + a2σ2 + a3σ3, |a1|2 + |a2|2 + |a3|2 =
1
2

. (65)

4.1 Still Solitons

We begin by briefly addressing the trivial case of circuits with motionless solitons, i.e. local
gates of the form (11). In this case, after t time steps, (65) reads as

ay(t) = e2iJ t[σ3,y−1σ3,y+σ3,yσ3,y+1]ei(η+µ)tσ3,y
�

a1σ1,y + a2σ2,y

�

+ a3σ3,y . (66)

We see that the range of the time evolving operator does not exceed 3, i.e. the operator
entanglement is always 0 for y /∈ {−1/2, 0,1/2} and its value is bounded by log4.

4.2 Chiral Solitons

Let us now consider the more interesting cases where the circuit features moving ultralocal
solitons. As we proved in Sec. 2 (and Appendix A), the latter can not coexist with still solitons.
Focussing first on the case of chiral left-moving solitons, we invoke the following property.

Property 4.1. The vector space generated by
¦

|Vαβx 〉 ≡ |α ◦ · · · ◦ β
︸ ︷︷ ︸

2x

〉 , α,β = {1,2, 3}
©

, (67)

is closed under the action of Hx[1].

This is easily verified applying the matrix Hx[1] (cf. (56)) on the state |Vαβx 〉. Indeed,
repeated use of (20) with the constrains (23) gives

Hx[1] |Vαβx 〉=
3
∑

α1,β1=1

〈α,β |H|α1,β1〉 |Vα1β1
x 〉 , (68)

where we introduced the 9-by-9 matrix H with elements

〈α,β |H|γ,δ〉 ≡
�

Rα0γR
β

0δ + Rα3γR
β

3δ

�

. (69)

For integer y ∈ ZL this property has remarkable consequences on the structure of C[a]†C[a]: it
implies that all the elements of C[a]†C[a] are zero except for a single non-trivial 3-by-3 block,
which we denote by B[a]. Namely

〈α1 . . .αx+ |C[a]
†C[a]|β1 . . .βx+〉= 〈α1 . . .αx+ ,βx+ . . .β1|(Hx+[1])

x− |a†◦ · · · ◦ a〉

=

 

2
3
∑

α,β=1

〈α1,β1|(H)x− |α,β〉 a∗αaβ

!

x+
∏

j=2

δα j ,0δβ j ,0

≡ 〈α1|B[a]|β1〉
x+
∏

j=2

δα j ,0δβ j ,0. (70)
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Diagonalising the block we have

tr[(C[a]†C[a])α] = tr[(B[a])α] = eα1 + eα2 + eα3 , α ∈ R, (71)

where e j ∈ [0,1] are the non-trivial eigenvalues of C[a]†C[a], subject to the constraint (cf.
Eq. (61))

tr[C[a]†C[a]] = tr[Ba] = e1 + e2 + e3 = 1. (72)

This means that, although the eigenvalues depend on t and y , they can never all be simulta-
neously zero and the entanglement is always bounded. In particular we have

1≥ tr[(C[a]†C[a])α]≥ 31−α, ∀y ∈ ZL , ∀α≥ 1, ∀t. (73)

This immediately implies
S(n)(y, t)≤ log3. (74)

Repeating the same reasoning for a right-moving soliton we arrive at the following property

Property 4.2. In circuits with two-dimensional local Hilbert space featuring left-moving (right-
moving) solitons, the entanglement of ultra-local operators initially supported on integer (half-
odd-integer) sites is bounded from above by log3.

Importantly, this property constrains only operators on the appropriate sublattice: in cir-
cuits with only left-moving solitons the operator entanglement of local operators on half-odd
integer sites (and with no overlap with the soliton) is generically unbounded, see Fig. 1 for a
representative example. In particular, as demonstrated in Fig. 2 and Tab. 1, the numerical data
is consistent with a logarithmic growth. Such a logarithmic growth of local-operator entan-
glement was observed before in integrable models [23–25, 29] and for the quantum Rule 54
reversible cellular automaton [14], and should be contrasted with the linear growth observed
in chaotic circuits [1,30].

To produce the blue data points in Fig. 1 we explicitly constructed B[a] by powering the
reduced horizontal transfer matrix H. In particular, the limiting value of the entropy can be
understood by noting that

|r̄1〉 ≡
1
p

3
(2 |r1〉 − |◦◦〉) =

1
p

3

3
∑

α=1

|αα〉 , (75)

is always an eigenstate of H with eigenvalue 1 (this can be seen directly by using the relations
(25)). Assuming that, in the absence of additional symmetries, all other eigenvalues ofH have
magnitude strictly smaller than one we have

lim
t→∞

(H)x+ = |r̄1〉 〈r̄1| ⇒ lim
t→∞
B[a] =

1
3
13, (76)

where 13 is the 3-by-3 identity. This gives

lim
t→∞

S(n)(y, t) = log3, ∀y ∈ ZL , ∀n. (77)

Table 1: Number of non-zero Schmidt coefficients for local operators on half-odd in-
teger sites in circuits with only left-moving solitons. Note that the number of Schmidt
coefficients appears unbounded and the last three entries have values (t − 1)2, con-
sistent with a logarithmic growth of S(0)(0, t)≈ 2 log(t − 1).

t 1 2 3 4 5 6 7 8

# 2 4 8 16 31 49 64 81
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Figure 1: Renyi-2 operator entanglement entropy of σ1 at site y = 0 versus time for
circuits featuring only left-moving (blue) or only right-moving (green) solitons. In
the first case the entropy saturates, while in the the second it does not. The limiting
value log 3 is depicted with a thin grey line. We used a local gate U = V [J](1⊗ v)
(U = V [J](v ⊗ 1) ) for blue (green) data points with J = −0.3 and v parametrised
by r = 0.7 and θ = φ = −0.7 (see the Supplemental Material of [2] for details on
the parametrisation of v).

Figure 2: The instantaneous slope of Renyi-2 operator entanglement entropy of σ1
at site y = 0, ∆S(2)(0, t − 1/2) ≡ S(2)(0, t) − S(2)(0, t − 1), versus 1/t for circuits
featuring only right-moving solitons. The decrease in the slope is consistent with a
logarithmic growth of S(2)(0, t), which would give∆S(2)(0, t)∼ 1/t. We used a local
gate U = V [J](v⊗1)with J = −0.3 and v parametrised by r = 0.7 and θ = φ = −0.7
(see the Supplemental Material of [2] for details on the parametrisation of v).
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4.3 Solitons in Both Directions

Property 4.2 also implies that in circuits featuring ultralocal solitons moving in both directions
the operator entanglement of all local operators is bounded. We remark that this bound is
more stringent than the one recently found in Ref. [14] for the quantum Rule 54 reversible
cellular automaton. While there a polynomial growth of the complexity is still possible, in
qubits circuits with ultralocal solitons in both directions the complexity is strictly bounded by
a constant.

Focussing on this case, we explicitly computeB[a] as a function of time, initial position, and
parameters of the gate (cf. Eqs. (31)) up to similarity transformations. The final expression can
be used to determine all operator entanglement entropies. Note that this can be in principle
done also in the generic case of a single chiral soliton but it produces unwieldy expressions.

For circuits with local gate (31) the reduced horizontal transfer matrix H reads as

H= R3[θ+]⊗R3[θ+] · H̃, θ+ ≡ η+ +µ+. (78)

Here R3[θ] is a rotation by an angle θ ∈ R around the axis 3 in the three dimensional space

R3[θ]R3[θ]
T = R3[θ]R3[−θ] = 1, (79)

while H̃ reads as

H̃=
9
∑

j=1

µ j |µ j〉 〈µ j| , (80)

where

|µ1〉= |33〉 , |µ2〉=
1
p

2
(|11〉+ |22〉) , |µ3〉=

1
p

2
(|12〉 − |21〉) , (81)

|µ4〉=
1
p

2
(|11〉 − |22〉) , |µ5〉=

1
p

2
(|12〉+ |21〉) , |µ6〉=

1
p

2
(|13〉 − |31〉) , (82)

|µ7〉=
1
p

2
(|23〉 − |32〉) , |µ8〉=

1
p

2
(|31〉+ |13〉) , |µ9〉=

1
p

2
(|23〉+ |32〉) , (83)

and

µ1 = µ2 = (−)s1µ3 = 1, µ4 = (−)s1µ5 = − cos(4J)

(−)s1µ6 = µ7 = (−)s1µ8 = µ9 = sin(2J). (84)

Importantly
R3[θ]⊗R3[θ] · H̃= H̃ ·R3[(−)s1θ]⊗R3[(−)s1θ]. (85)

This means that
〈α|B[a]|β〉= 〈α,β |(R3[ξ]⊗R3[ξ]) · H̃x+ |a†a〉 , (86)

where ξ depends on s1 and x+. The matrix R3[ξ] ⊗ R3[ξ], however, does not affect the
spectrum of B[a]. Indeed, it only generates a similarity transformation. Explicitly, we have

B[a] = R3[ξ]eB[a]R3[ξ]
T , (87)

where we set

〈α|eB[a]|β〉=
3
∑

α1,β1=1

2 〈α,β |H̃x+ |α1,β1〉 a∗α1
aβ1

=
9
∑

j=1

3
∑

α1,β1=1

2µx−
j a∗α1

aβ1
〈α,β |µ j〉 〈µ j|α1,β1〉 . (88)
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In matrix form it reads as3

eB[a] =
1
p

6
λ0 + 2Re[a1a∗2](− cos(4J))x+ λ1 + 2Im[a1a∗2]λ2

+
�

|a1|2 − |a2|2
�

(− cos(4J))x+ λ3 + 2Re[a1a∗3](sin(2J))x+ λ4

+ 2Im[a1a∗3](sin(2J))x+ λ5 + 2Re[a2a∗3](sin(2J))x+ λ6

+ 2Im[a2a∗3](sin(2J))x+ λ7 +

�

|a1|2 + |a2|2 − 2|a3|2p
3

�

λ8, (89)

where {λ j} are the Gell-Mann matrices (λ0 =
q

2
313). The traces

tr[(B[a])α] = tr[(eB[a])α], (90)

can then be computed using
tr[λaλb] = 2δab, (91)

and the Gell-Mann algebra
[λa,λb] = i f abcλc , (92)

where the only non-zero structure constants are

f 123 = 2, f 147 = f 246 = f 257 = f 345 = 1, (93)

f 156 = f 367 = −1, f 458 = f 678 =
p

3, (94)

and all other elements obtained by permutation of the indices ( f abc is completely antisymmet-
ric). In particular, we have

S(2)(y, t) = − log tr[(eB[a])2] =− log
�1

3
+

2
3

�

|a1|2 + |a2|2 − 2|a3|2
�2
+ 8Im[a1a∗2]

2

+ 2
�

�

|a1|2 − |a2|2
�2
+ 4Re[a1a∗2]

2
�

(cos(4J))2x+

+ 8|a3|2(|a1|2 + |a2|2)(sin(2J))2x+
�

. (95)

Note that eB[a] and hence the operator-entanglement entropies depend only on the parameter
J . This means that in all circuits with solitons in both directions the operator entanglement is
the same as in, e.g., the dual-unitary trotterised XXZ (cf. (32)). In particular, the free self-dual
kicked Ising model (cf. (33)) has J = 0 and the operator entanglement is constant.

5 Conclusions

We have used the operator entanglement to characterise the complexity of operator dynamics
in local quantum circuits on chains of qubits, i.e. quantum circuits with two-dimensional local
Hilbert space. Specifically, we have provided a complete classification of circuits possessing
ultralocal solitons — operators with unit range that are simply translated by the time evolution
— and we have shown that the entanglement of a given operator depends on its “initial light-
ray”, i.e. the line connecting its initial position to the centre of the nearest local gate. For
operators with initial light-rays crossed by moving solitons the entanglement is bounded from
above by log 3 for all times. Instead, in the opposite case the entanglement appears to grow
indefinitely as for generic circuits (if the initial operator has no overlap with the conserved

3we absorbed some factors (−1)s1 x+ in a redefinition of the Gell-mann matrices that preserves the algebra.
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mode). For qubit chains, circuits with solitons (integrable or not) seem to be the only case
where the operator complexity does not grow.

Remarkably, we have also proven that the presence of moving solitons immediately implies
that the circuit has to be dual-unitary [2] (while the converse is not true: generic dual-unitary
circuits do not exhibit solitons and have exponentially growing complexity [1]).

An interesting question for further research is to provide a similar classification for solitons
of higher range or for local circuits with larger local Hilbert space. Such circuits can be thought
of as toy “coarse grained” versions of integrable models, with the solitons playing the role of
quasiparticles, and can be used to explain the generic slow growth of complexity observed in
integrable models [14].
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A Constrains From Solitons on Local Gates

In this appendix we show how to obtain the conditions (5) from (3). We start by considering
(3) and take the scalar product with ãy+x , which is represented as

x

ã

ã

= eiφ . (96)

Where we have chosen y integer (y half-odd-integer is treated in a totally analogous way)
and we followed the notation of Paper I. Depending on x this condition can be written as

1
2

tr[MC
+(M

C
+(ã))ã

†] = eiφ x = 1, (97a)

1
2

tr[MS
+(M

C
+(ã))ã

†] = eiφ x = 1/2, (97b)

1
2

tr[MS
−(M

S
+(ã))ã

†] = eiφ x = 0, (97c)

1
2

tr[MC
−(M

S
+(ã))ã

†] = eiφ x = −1/2, (97d)

where we introduced the following unistochastic single-wire maps (see also Ref. [2])

MC
+(ã) =

ã
, MC

−(ã) =
ã

, MS
+(ã) =

ã
, MS

−(ã) =
ã

. (98)

Since these maps are all contracting, namely

‖MC/S
± (ã)‖1 ≤ ‖ã‖1, (99)
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where ‖A‖1 = tr[
p

AA†] is the trace norm, we can rewrite (97) as
¨

MC
+(ã) = eiφ1 b̃

MC
+(b̃) = ei(φ−φ1)ã

x = 1, (100)

¨

MC
+(ã) = eiφ1 b̃

MS
+(b̃) = ei(φ−φ1)ã

x = 1/2, (101)

¨

MS
+(ã) = eiφ1 b̃

MS
−(b̃) = ei(φ−φ1)ã

x = 0, (102)

¨

MS
+(ã) = eiφ1 b̃

MC
−(b̃) = ei(φ−φ1)ã

x = −1/2, (103)

where b̃ is a traceless operator in End(C2). Or, equivalently
¨

U†(ã⊗1)U = eiφ1(1⊗ b̃)
U†(b̃⊗1)U = ei(φ−φ1)1⊗ ã

x = 1, (104a)

¨

U†(ã⊗1)U = eiφ11⊗ b̃

U†(b̃⊗1)U = ei(φ−φ1)ã⊗1
x = 1/2, (104b)

¨

U†(ã⊗1)U = eiφ1 b̃⊗1
U†(1⊗ b̃)U = ei(φ−φ1)1⊗ ã

x = 0, (104c)

¨

U†(ã⊗1)U = eiφ1 b̃⊗1
U†(1⊗ b̃)U = ei(φ−φ1)ã⊗1

x = −1/2. (104d)

First we note that these relations can be simplified by means of the following lemma.

Lemma A.1. The relation

U†S l(ã⊗1)S l U = eiφSm b̃⊗1Sm, (105)

with ã, b̃ ∈ End(C2) traceless, is equivalent either to

U†S l(a⊗1)S l U = +Sm b⊗1Sm, (106)

or to
U†S l(a⊗1)S l U = −Sm b⊗1Sm, (107)

where l, m ∈ {0,1}, a, b ∈ End(C2) hermitian and traceless and S is the “swap-gate"

S(a⊗ b)S† = b⊗ a. (108)

An explicit expression of the swap gate is S = V [π/4] (cf. Eq. (17)).

Proof. Let us consider the Hermitian operators

h= ãã† −1 k = b̃ b̃† −1. (109)

It is immediate to see that h and k are traceless and fulfill (106) for a = h and b = k. Therefore,
if none of h and k is the null operator we can set a = h, b = k and the proof is concluded. If,
instead, h = 0, from (105) follows that also k = 0. Therefore the traceless operators ã and b̃
are also unitary. This means

ã = eiθ1uσ3u†, b̃ = eiθ2 vσ3v†, (110)
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where θ1,θ2 ∈ R and u, v ∈ SU(2). This means that the hermitian operators a = e−iθ1 ã and
b = e−iθ2 b̃ fulfil (105) with φ→ φ − θ1 + θ2. However, since a and b are hermitian we have

ei(φ−θ1+θ2)Sk(1⊗ b)Sk = U†Sh(a⊗1)ShU =
�

U†Sh(a⊗1)ShU
�†
=

= e−i(φ−θ1+θ2)Sk(1⊗ b)Sk, (111)

meaning that eiφ−θ1+θ2 = ±1. This concludes the proof.

Using Lemma A.1 we can rewrite (104) as follows
¨

U†(a⊗1)U = ±1⊗ b

U†(b⊗1)U = ±1⊗ a
x = 1, (112a)

¨

U†(a⊗1)U = ±1⊗ b

U†(b⊗1)U = ±a⊗1
x = 1/2, (112b)

¨

U†(a⊗1)U = ±b⊗1
U†(1⊗ b)U = ±1⊗ a

x = 0, (112c)

¨

U†(a⊗1)U = ±b⊗1
U†(1⊗ b)U = ±a⊗1

x = −1/2. (112d)

Let us now show that (112b) and (112d) cannot be fulfilled. Since the reasoning is very similar
in the two cases we consider only (112b). We proceed by reductio ad absurdum. Assuming the
two conditions (112b), we take the commutator of the two and find

U†([a, b]⊗1)U = 0, (113)

meaning
[a, b] = 0. (114)

Since a, b ∈ End(C2) are Hermitian and traceless we conclude

b = ±a. (115)

This implies
a⊗1= ±1⊗ a, (116)

which is possible only if a = 1, which is not traceless. This leads to a contradiction.
Let us now consider (112a) and show that the two conditions are equivalent to

U†(a⊗1)U = ±1⊗ a, (117)

with a hermitian and traceless. To prove this we distinguish two cases

(i) [a, b] = 0

(ii) [a, b] 6= 0.

In the first case we have a = ±b so that (117) is fulfilled. In the second case we see that (117)
is fulfilled by [a, b]. This concludes our analysis.
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B Classification of all Local Gates with Solitons

Here we prove the following property

Property B.1. The most general gate U ∈ U(4) fulfilling

U†(σ3 ⊗1)U = (−1)s(σ3 ⊗1), s ∈ {0, 1} (118)

is given by
U = eiφ((σ1)

se−i(η−/2)σ3 ⊗ u+) · e−iJσ3⊗σ3 · (e−i(µ−/2)σ3 ⊗ v+), (119)

where φ,η−,µ− ∈ [0,2π], J ∈ [0,π/2] and u+, v+ ∈ SU(2).

Note that, solving this problem we also find the most general gate fulfilling

W †(1⊗σ3)W = (−1)s(σ3 ⊗1), (120)

by posing W = SU where S = V [π/4] is the swap-gate (108). This gives

W = eiφ(u+ ⊗ (σ1)
se−i(η−/2)σ3) · V [J −π/4] · (e−i(µ−/2)σ3 ⊗ v+). (121)

In the proof we make often use of the following Lemma

Lemma B.1. The most general matrix u ∈ SU(2) such that

tr[σ3uσ3u†] = 2(−1)s (122)

can be written as
u= (σ1)

seiθσ3 , θ ∈ [0,2π]. (123)

The proof is immediately obtained by representing σs
1u as ei ~α·~σ: for the sake of brevity we

omit the details.
To prove property B.1 we consider a generic matrix in U ∈ U(4), which, according to

Refs. [33,34], is written as

U = eiφ(u− ⊗ u+)V [J1, J2, J3](v− ⊗ v+), (124)

where φ ∈ [0,2π], J1, J2, J3 ∈ [0,π/2], u±, v± ∈ SU(2) and we defined

V [J1, J2, J3] = exp[−i(J1σ1 ⊗σ1 + J2σ2 ⊗σ2 + J3σ3 ⊗σ3)]. (125)

Plugging (124) into (118) we have

V [J1, J2, J3] = (−1)s(u†
−σ3u− ⊗1)V [J1, J2, J3](v−σ3v†

− ⊗1) (126)

and we immediately see that (118) does not impose any constraint on the matrices
u+, v+ ∈ SU(2) and on the phase φ. Then, using that

V [J1, J2, J3] =
3
∑

β=0

Vβ(J1, J2, J3)σβ ⊗σβ , (127)

with

V0(J1, J2, J3) = cos(J1) cos(J2) cos(J3)− i sin(J1) sin(J2) sin(J3), (128)

Vβ(J1, J2, J3) = cos(Jβ)
∏

α6=β

sin(Jα)− i sin(Jβ)
∏

α6=β

cos(Jα), β ∈ {1,2, 3}, (129)

19

https://scipost.org
https://scipost.org/SciPostPhys.8.4.068


Select SciPost Phys. 8, 068 (2020)

we express the condition (126) in components (in the basis {σα ⊗σβ} ) as follows

Vβ(J1, J2, J3)tr[u
†
−σ3u−σβ v−σ3v†

−σα] = 2(−1)sδα,βVβ(J1, J2, J3). (130)

We now show that if all Vβ(J1, J2, J3) are non-zero these conditions cannot be all simultane-
ously satisfied. To prove it we start considering the case α = β = 0. Since all the coefficients
are non zero we have

tr[σ3u−v−σ3v†
−u†
−] = 2(−1)s, (131)

which, using Lemma B.1, implies

u−v− = (σ1)
seiθσ3 . (132)

This also solves all conditions (130) where one amongα and β is 0. Considering nowα= β = 3
we have

tr[σ3u−σ3u†
−σ3u−σ3u†

−] = 2 (133)

implying
u−σ3u†

− = ±σ3. (134)

Considering then α= β = 1 we have

−2= tr[σ3σ1σ3σ1] = 2, (135)

which is a contradiction. Therefore, at least one of the coefficients has to vanish. We distin-
guish two cases

(i) V0(J1, J2, J3) = 0

(ii) Vᾱ(J1, J2, J3) = 0, ᾱ ∈ {1,2, 3}.

Let us start from the case (i): in this case we should have Jᾱ = 0 and Jβ̄ = π/2 for
ᾱ, β̄ ∈ {1, 2,3}. This means that the only non trivial relations (130) are

cos(Jγ)tr[u
†
−σ3u−σβ̄ v−σ3v†

−σα] = 2(−1)sδα,β̄ cos(Jγ), (136)

sin(Jγ)tr[u
†
−σ3u−σᾱv−σ3v†

−σα] = 2(−1)sδα,ᾱ sin(Jγ), (137)

with γ 6= ᾱ, β̄ . First we note that, if Jγ = 0 the relations simplify to

tr[u†
−σ3u−σβ̄ v−σ3v†

−σα] = 2(−1)sδα,β̄ . (138)

Considering α= β̄ using the Lemma B.1 we then conclude

u−σβ̄ v− = (σ1)
seiθσ3 . (139)

This also fulfils all other relations (138). Plugging back into (124) we find

U = ieiφ(σ1)
seiθσ3 ⊗ u−σβ v−, (140)

which is of the form (119). Analogous considerations hold for Jγ = π/2. If Jγ 6= 0,π/2 the
first relations are still solved by (139), while the second become

tr[σ3u−σᾱσβ̄u†
−σ3u−σασβ̄u†

−] = 2δα,ᾱ. (141)

Using Lemma B.1 we then conclude

u−σᾱσβ̄u†
− = ±iu−σγu

†
− = eiθσ3 , (142)
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which implies
u−σγu

†
− = ±σ3. (143)

Plugging back into (124) again produces a gate of the form (119). Let us now move to the
case (ii): this case implies (Jᾱ, Jβ̄) = (0,0), (π/2,π/2) for ᾱ, β̄ ∈ {1,2, 3}. We consider the
first option, as the second can be recovered from the first one by noting

V [π/2,π/2, J3] = −iV [0, 0,π/2+ J3]. (144)

If Jᾱ = Jβ̄ = 0 the conditions (130) become

cos(Jγ)tr[u
†
−σ3u−v−σ3v†

−σα] = 2(−1)sδα,0 cos(Jγ), (145)

sin(Jγ)tr[u
†
−σ3u−σγv−σ3v†

−σα] = 2(−1)sδα,γ sin(Jγ), γ 6= ᾱ, β̄ . (146)

If Jγ = 0 the only remaining relation is the first and we have

u−v− = (σ1)
seiθσ3 , (147)

which, plugging back into (124) gives a gate of the form (119). An analogous reasoning
applies for Jγ = π/2. Finally, if Jγ 6= 0,π/2 we have that (145) are still solved by (147) while
the second relations give

u−σγu
†
− = ±σ3. (148)

This again produces a gate of the form (119) and concludes the proof. �
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