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Abstract

We present a novel approach for the integration of scattering cross sections and the
generation of partonic event samples in high-energy physics. We propose an importance
sampling technique capable of overcoming typical deficiencies of existing approaches
by incorporating neural networks. The method guarantees full phase space coverage
and the exact reproduction of the desired target distribution, in our case given by the
squared transition matrix element. We study the performance of the algorithm for a few
representative examples, including top-quark pair production and gluon scattering into
three- and four-gluon final states.
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1 Introduction

An important deliverable in high-energy particle physics are quantitative predictions for the
outcome of collider experiments. This includes total and differential production rates in the
framework of the Standard Model or hypothetical New Physics scenarios. To allow for a di-
rect comparison with experimental data, multi-purpose event generators such as PYTHIA [1],
HERWIG [2] or SHERPA [3, 4] proved to be vital tools. Starting from the evaluation of partonic
hard-scattering cross sections they accomplish a fully differential and exclusive simulation of
individual scattering events by invoking parton shower simulations, particle decays, models
for the parton-to-hadron transition and, in case of composite colliding entities such as protons,
multiple interactions per collision. See [5] for a recent review of Monte Carlo event generators.

In contemporary Standard Model analyses as well as searches for New Physics, hard-
scattering processes featuring a rather high multiplicity of final-state particles are of enor-
mous phenomenological relevance. This includes in particular signatures with multiple hard
jets or a number of intermediate resonances that decay further on. Illustrative examples are
the production of V+ jets final states or top-quark pair production in association with a boson
V = γ, H,Z0, W± in proton-proton collisions at the LHC. Such cutting-edge channels require
the efficient evaluation of the corresponding partonic scattering matrix elements, featuring up
to 8 final-state particles, with easily thousands of Feynman diagrams contributing. This clearly
goes well beyond the traditional realm of multi-purpose generators, such that specialised tools
for this computationally very intense task have emerged over time, known as matrix element
generators or parton-level event generators. These tools largely automate the generation and
evaluation of almost arbitrary scattering matrix elements. At tree-level this includes tools such
as AMEGIC [6], COMIX [7], MADGRAPH [8, 9] or WHIZARD [10]. For one-loop matrix elements
widely-used examples are MADGRAPH5_AMC@NLO [9], OPENLOOPS [11], POWHEGBOX [12] or
RECOLA [13, 14]. Equipped with a phase space generator these tools can be used to compile
partonic cross section evaluations, to calculate decay widths and to probabilistically gener-
ate partonic events. When incorporated into or interfaced to a multi-purpose event generator
they provide the momentum-space partonic scattering events that seed the evolution to fully
exclusive particle-level final states.

State-of-the-art matrix element generators use adaptive Monte Carlo techniques for gen-
erating phase space points with a distribution that reasonably approximates the target distri-
bution, such that event weight fluctuations are reduced. Samples of unit-weight events can
then be generated with a distribution given by the actual target function by applying a simple
hit-or-miss algorithm. However, nowadays matrix element generators are often limited by the
performance of their phase space sampler. An insufficient mapping of the target distribution
results in significant fluctuations of the event weights and correspondingly a large number of
target-function evaluations are needed when generating unit-weight events.

Typically the sampling performance deteriorates significantly with the phase space dimen-
sionality, i.e. particle multiplicity [15], and the complexity of the integrand. In particular the
appearance of intermediate resonances, regularised singularities or quantum-interference ef-
fects complicate the situation. Further limitations arise from non-trivial kinematical cuts that
the integrator can not address, i.e. adapt to.

Compared to the efforts that went into the development of improved scattering-amplitude
construction algorithms, the field of phase space sampling has seen rather little conceptual
developments. For some recent works see [16–21]. Besides the matrix element generator
implementations, there are public libraries like CUBA [22] (implementing the VEGAS, DIVONNE,
SUAVE, CUHRE algorithms) or FOAM [23,24] that are widely used. There have been some efforts
to employ Markov Chain techniques for phase space sampling, cf. [25, 26]. However, very
recently there has been significant interest to employ modern machine-learning techniques
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to the problem of phase space sampling in particle physics, cf. [27–31]. The tremendous
advances in the field of machine learning, driven from very different applications such as
image generation or light-transport simulation, also fuel the work we present here.

The paper is organised as follows. In Sec. 2 we review the basics of Monte Carlo integration
and phase space sampling techniques as used in high-energy event generators, and discuss
potential pitfalls when extending or replacing these methods using neural networks. In Sec. 3
we present our novel sampler that inherits all the properties of an importance sampler, but with
the phase space mapping optimised through bijective maps, so-called coupling layers [32].
These are adjusted by training neural networks, which has originally been proposed in [32].
Our work is in principle an application of ‘Neural Importance Sampling’ [33] as we employ
the ‘polynomial coupling layers’ introduced therein, although we want to point out that the
usage of coupling layers for importance sampling has also been studied in [34]. In Sec. 4 we
discuss benchmark applications of our method from high-energy physics, including top-quark
pair production and gluon scattering into three- and four-gluon final states. Conclusions and
a brief outlook are presented in Sec. 5.

An independent study of applying Neural Importance Sampling to high-dimensional in-
tegration problems is simultaneously presented in [35], and a follow-up application of this
approach to HEP processes appeared in [36].

2 Phase space sampling: existing approaches

To set the scene we start out with a brief review of the basics of Monte Carlo integration and
event sampling. For ease of having a clean nomenclature we consider a simple positive-definite
target distribution f : Ω ⊂Rd → [0,∞) defined over the unit hypercube, i.e. Ω = [0, 1]d . In
our use case hypercube points ui ∈ Ω are mapped onto a set of final-state four-momenta {pi},
the corresponding Jacobian is considered part of the integrand f (ui). The phase space dimen-
sionality d is set by the number of final-state particles n, i.e. d = 3n−4. We thereby implement
on-shell constraints for all external particles and total four-momentum conservation. There
are two standard tasks that we wish to address in what follows, the probabilistic generation of
phase space points according to the target distribution f and the evaluation of integrals over
f .

The Monte Carlo estimate of the integral over the unit hypercube

I =

∫

Ω

f (u′)du′ (1)

is given by

I ≈ EN =
1
N

N
∑

i=1

f (ui) = 〈 f 〉 , (2)

where we assumed uniformly distributed random variables ui ∈ Ω. The corresponding stan-
dard deviation, when assuming large N , is given by

σN ( f ) =

√

√VN ( f )
N

=

√

√〈 f 2〉 − 〈 f 〉2

N
, (3)

with VN the corresponding variance.
Interpreting the random points ui as individual events, we call f (ui) the corresponding

event weight wi , such that the integral is estimated by the average event weight 〈w〉N . When
asked to generate N unit-weight events according to the distribution f (u), a simple hit-or-miss
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algorithm can be employed to convert a sample of weighted events into a set of unweighted
events. The corresponding unweighting efficiency is given by

εuw :=
〈w〉N
wmax

, (4)

with wmax the (numerically pre-determined) maximal event weight in the integration region.
An efficient integrator, i.e. sampler, foremost aims for a reduction of the variance VN that will
typically result in an increased unweighting efficiency εuw. Even though these two figures of
merit are interrelated, they provide complementary means for the optimisation of a sampler,
i.e. reducing the variance does not necessarily yield an improved unweighting efficiency. In
the next section we will discuss established methods that achieve a variance reduction.

We close this introductory section by specifying requirements we impose on our improved
cross section integration and parton-level event generation algorithm:

(i) The samples produced by the algorithm should converge to the true target distribution
everywhere in phase space.1

(ii) We demand that the full physical phase space is to be covered for the limit N →∞. This
should be guaranteed, even if potential training samples only feature finite statistics and
thus provide no full coverage of the available phase space volume.

(iii) The method should be general, lending itself to automation. By that we wish the algo-
rithm to be self-adaptive to new integrands, without the need of manual intervention.

(iv) The method should be capable of producing samples of uncorrelated events.2

As discussed in the following, these conditions are naturally fulfilled by traditional sam-
pling algorithms used in high-energy physics, such as importance and stratified sampling.
However, this is not necessarily true for some of the recently proposed samplers based on
neural networks as discussed in Sec. 2.3. In Sec. 3 we will present our novel algorithm em-
ploying neural-network techniques, that indeed fulfils all the above criteria.

2.1 Importance Sampling

As can be seen from Eq. (3) the standard deviation of a Monte Carlo integral estimate scales as
1/
p

N , independent of the dimensionality of the problem. However, besides the sample size,
the variance of the integrand over the integration region determines the quality of the integral
estimate and in turn the unweighting efficiency εuw. In particular for strongly structured,
possibly multi-modal target distributions it is therefore vital to introduce specific variance-
reduction techniques to obtain more accurate integral estimates for a given sample size.

To this end a suitable variable transformation can be utilised, i.e. producing phase space
points with a positive definite non-uniform distribution function G(u) : Ω 7→ Ω, such that

I =

∫

Ω

f (u′)
g(u′)

g(u′)du′ =

∫

Ω

f (u′)
g(u′)

dG(u′) =

�

f
g

�

, (5)

with g(u) : Ω 7→ R. The relevant variance is thus V ( f /g). Hence it can be significantly
reduced by picking g(u) similar in shape to f (u). Obviously, the optimal choice would be

G(u) =

∫

Ω

f (u′)du′ , i.e. g(u) = f (u) . (6)

1On the same basis, in [37] it has been cautioned against the usage of Generative Adversarial Networks to
extrapolate from finite-statistics training data to large-scale event samples for physics analyses.

2This limits the use of algorithms based on Markov Chain samplers, cf. [26].
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However, this presupposes the solution of the actual integration problem.
We often have to deal with multimodal targets. In that case it can be very hard to find

a density that allows for efficient importance sampling. To simplify the task, we can use a
mixture distribution

g(x) =
Nc
∑

j=1

α j g j(x) , (7)

where the g j are distributions and
∑Nc

j=1α j = 1. Using a mixture distribution for importance
sampling is known as multi-channel importance sampling. The corresponding integral estimate
is given by

I ≈ EN =
1
N

N
∑

i=1

f (x i)
g(x i)

=
1
N

N
∑

i=1

f (x i)
∑Nc

j=1α j g j(x i)
, (8)

where the x i are non-uniform random numbers drawn from g(x).
It is easy to sample from the multi-channel distribution: for each point one channel is

chosen at random according to the α j and then sampled from using the inverse-transform
method. It is possible to approximate a multimodal target function by using one channel per
peak. The channel weights α j can be optimised automatically [38].

The performance of the multi-channel method is intimately connected with the choice of
channels. In practice, information about the physics problem at hand is used to choose a
suitable distribution g. When integrating squared transition matrix elements in high-energy
physics, the propagator and spin structures of a given process are known and this knowledge
can be used to construct appropriate channels [39], a procedure that is fully automated in
matrix-element generators.

2.2 VEGAS algorithm

It can be very time consuming to find a sampling distribution that results in an efficient sam-
pler for a given target. Because of this, adaptive importance sampling algorithms have been
developed. These are able to adapt automatically to a target distribution. In the following we
describe the VEGAS algorithm [40]. It uses a product density

q(x) =
d
∏

j=1

q j(x j) , (9)

where each q j is a piecewise-constant function. The idea is to split the range [0, 1) into N j
bins I j,l = [x j,l−1, x j,l), where we have defined the break points between the constant pieces
as 0 = x j,0 < x j,1 < · · · < x j,N j

= 1. The corresponding bin widths are ∆ j,l = x j,l − x j,l−1 for
1≤ l ≤ N j . The functions q j are then defined by

q j(x) =
1

N j∆ j,l
for x j,l−1 ≤ x ≤ x j,l . (10)

The width of the bins can vary but per component j they all have the same probability content
1/N j . This means that if we approximate a function with VEGAS we use many thin bins for
narrow peaks and few wide bins for flat regions.

Sampling and evaluating the Jacobian for the density q is straightforward. The important
part is the update of the bin widths. This happens through an iterative procedure, where
in each iteration we sample a number of points with the current q, calculate the importance
weights with respect to the target f and determine the new bin widths by minimising the
variance for this sample. More details can be found in [40].
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VEGAS is very effective for unimodal targets but has difficulties with multimodal functions
if the peaks are not aligned with the coordinate axes. The density then features ‘ghost peaks’
which are not present in the target distribution and which can decrease the efficiency signifi-
cantly.

In the simplest case, we use VEGAS to approximate a target directly in order to use the
resulting density in an importance sampling scheme. However, it can be even more effective
if we use it to remap the input variables (i.e. uniform random numbers) of another density,
e.g. a single channel of a multi-channel distribution [41]. This amounts to adding variable
transforms φ j : Ω→ Ω to Eq. (7) (corresponding to the VEGAS densities q j) as follows:

g =
Nc
∑

j=1

α j(g j ◦φ−1
j )

�

�

�

�

�

�

∂ φ−1
j

∂ u

�

�

�

�

�

�

, (11)

with densities g j : Ω→ [0,∞) and hence g : Ω→ [0,∞). As above we assume that the α j
sum to 1. To sample a point from this distribution we

1. randomly choose a channel according to the channel weights α j ,

2. generate a uniform random number u ∈ Ω,

3. use the channel-specific map φ j to map u to a non-uniform number v and

4. use the inverse transform method to transform v to a point x according to the distribution
g j .

The Monte Carlo estimate of the integral is then still given by Eq. (8) but the Jacobians
�

�

∂ φ−1
j

∂ u

�

�

of the different channels have to be taken into account.

2.3 Existing proposals for neural-network based sampling and possible pitfalls

A multi-layer feedforward fully connected artificial neural network (NN in the following) con-
sists of artificial neurons arranged in several layers which are stacked on top of each other.
Every neuron in a layer is connected to every neuron in the preceding layer. We distinguish
the input layer, the output layer and the hidden layers in between. A single artificial neuron
produces the weighted sum of its inputs and optionally adds a scalar bias. The output of the
neuron is then transformed by a non-linear activation function. This means that the output
z[l]i of the i-th neuron in the l-th layer is given by

z[l]i = ~w
[l]T
i · ~a[l−1] + b[l]i , (12)

where ~w[l]i denotes the vector of input weights of the neuron, b[l]i the respective bias and
~a[l−1] the output of the activation function of the preceding layer. After applying the activation
function σ[l] the output is given by

a[l]i = σ
[l]
�

z[l]i

�

. (13)

We assume that all hidden layers use the same activation function. The choice of output
activation function is limited by the particular application. In our case it has to be a function
that maps to the unit hypercube. The input layer does not use an activation function as it only
passes the input variables to the neurons of the first hidden layer.

Two previous studies use this kind of NN to improve phase space sampling [27, 28]. The
number of input and output neurons is there chosen equal to the number of phase space
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dimensions d. Hence the neural network gives effectively an importance sampling mapping g
in the language of Sec. 2.1. The output value of the ith output layer neuron then gives the ith
component of g(u). Both studies described in [27, 28] use output functions that map R into
(0, 1), such that g(u) ∈ (0,1)d . As the hidden-layer activation function, either the hyperbolic
sine, the exponential linear unit (ELU) [28] or a hyperbolic tangent [27] is used. Note that
ELUs map R into (−1,∞) and tanh maps R into (−1, 1), whereas sinh maps R into itself.
The input space is Rd (sampled from a Gaussian distribution) in [27], and (0,1)d in [28].
Both studies then set up different training procedures for the NN based on minimising the
Kullback–Leibler (KL) divergence [42] between the NN output and the real target distribution.
The details of these procedures are not important here.

What we want to point out in regards of the requirements set up in Sec. 2 is that restricting
the input space to a subspace of R with an upper and/or lower bound will in general have the
consequence that the NN map g is not guaranteed to be surjective any more. The same is true
if an activation function of the hidden layer maps onto a subspace of R with an upper and/or
lower bound, such as the ELU or the tanh function. In both cases, such finite boundaries will
be transformed several times, but in the end this will yield finite boundaries for the target-
space coordinates, such that the support of the target distribution will be a proper subspace
of the desired target space (0, 1)d . Although a sufficiently long training will guarantee that
the bulk of the target distribution will be within this subspace (the NN will adapt its weights
to extend this subspace as required), the phase space coverage might never reach 100 %. A
sample generated with such a NN will hence suffer from artificial phase space boundaries
far away from the peaks of the distribution and will thus not be distributed according to the
desired target distribution. Instead, it will be suppressed in the tails and enhanced in the peaks.
Moreover, the artificial phase space boundaries will also yield wrong integration results. The
NN structure in [28] is affected by this problem, whereas the structure in [27] is not, since it
uses surjective functions throughout and the input points are given by a Gaussian distribution
without a cut-off, such that the input space is given by Rd .

To illustrate this issue, we study a simple distribution given by a 2d Gaussian centred in
(0, 1)2, i.e. at (x , y) = (0.5, 0.5). The width of the Gaussian is set to 1/10 of the length of
the phase space edges, hence, close to the phase space boundaries the target-function values
are much smaller than around the peak. We test different combinations of activation and
input functions for a fully-connected NN architecture with 5 hidden layers and 64 nodes per
hidden layer, always with a bounded input space of (0,1)2, as in [28]. We train the networks
using the ADAM optimiser [43] with the learning rate set to 10−2. With a training data set of
Ntrain = 500k events, this setup yields a very poor phase space coverage for the NN regardless
of the activation/output functions, namely around 25 % only:

Input space Activation function Output function Coverage (asymptote)

(0, 1)2 Sinh Sigmoid 0.235 ± 0.027
(0, 1)2 ELU Soft Clipping 0.269 ± 0.037
(0, 1)2 Sigmoid Sigmoid 0.234 ± 0.050

The coverage is estimated by the convex hull of the respective event samples, as introduced
in [44]. Note that the first two rows follow the two choices discussed in [28]. The error of the
asymptotic coverage is given by an average over 10 independently trained NN with different
random initial weights. In Fig. 1a, we show the obtained phase space coverage as a function
of the sample size N for such a NN with sigmoid activation and output functions. This is
compared to unweighted event samples generated from a uniform distribution and through
VEGAS. In addition, the phase space coverage is also shown for a NN with surjective functions
only, and with input points given by an unbounded Gaussian distribution, as in [27]. This
surjective NN is guaranteed to sample the entire phase space and indeed its coverage increases
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with the sample size N in the same way as the uniform and VEGAS samples do, whereas the
non-surjective NN shows an asymptotic behaviour in terms of the coverage. We illustrate
this with three non-surjective NN setups, which are trained using Ntrain = 250k, 1M and 5M
events, respectively. We choose these Ntrain to have similar successive ratios between them, to
illustrate that increasing the size of the training data successively leads to a diminishing return
of investment in terms of the achieved asymptotic phase space coverage.

We study the consequence of an incomplete phase space coverage in Fig. 1b. The target
distribution is averaged over bins with x+ y = const. (resulting in one-dimensional Gaussians)
and compared with the distributions averaged in the same way given by the NN (here with
Ntrain = 500k), by an unweighted uniform sample, by an unweighted VEGAS sample and by
the averaged distribution given by the strictly surjective NN. The uniform and VEGAS samples
and the one from the strictly surjective NN agree very well with the target, whereas the non-
surjective NN undershoots the tails and puts too many events in the peak. We have also studied
the distribution of phase space points in the two-dimensional plane, where we find that the
NN is mapping the input space (0, 1)2 to a slightly deformed rectangular region around the
peak, which is strictly smaller than the target space.

3 Neural-Network assisted Importance Sampling

With the requirements stated in Sec. 2 in mind, we present our NN based approach to impor-
tance sampling. In order to be usable for multi-channel sampling, our adaptive model needs to
be invertible. For this reason, we adopt the “Neural Importance Sampling” algorithm of [33].
The method of using a trainable mapping to redistribute the random numbers going into the
generation of a sample is similar to how VEGAS is often used in practice. We begin this section
by discussing this remapping of a distribution.

Consider a mapping h : X → Y, x 7→ y , where x is distributed as pX (x). If we know pX (x)
and the Jacobian determinant of h(x), we can compute the PDF of y using the change of
variable formula:

pY (y) = pX (x)

�

�

�

�

�

det

�

∂ h(x)
∂ x T

�

�

�

�

�

�

−1

. (14)

Using lower-upper decomposition, the cost of computing the determinant for arbitrary matri-
ces grows as the cube of the number of dimensions and can therefore be obstructive. However,
it is possible to design mappings for which the computation of the Jacobian determinant is
cheap.

In [32], Dinh et al. introduce coupling layers which have a triangular Jacobian. As the de-
terminant of a triangular matrix is given by the product of its diagonal terms, the computation
scales linearly with the number of dimensions only. In the following, we describe the basic
idea of coupling layers.

3.1 Coupling Layers

A coupling layer takes a d-dimensional input x ∈ Rd . It uses a partition {A, B} of the input
dimensions x i such that x = (xA, xB). The output y = (yA, yB) of the coupling layer is defined
as

yA = xA ,

yB = C(xB; m(xA)) ,
(15)
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events N . The error bars indicate the spread over 10 statistically independent samples. For the NN,
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(b) The two-dimensional distribution of sampling points averaged over bins with x + y = const., com-
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Figure 1: The phase space coverage and the distribution averaged over diagonals of
the two-dimensional plane for different sampling techniques, with the target distri-
bution being a two-dimensional Gaussian centred in (0,1)2. The Gaussian width is
σ = 0.1. Besides the Uniform and the VEGAS samples we also show NN-generated
samples. The NN architecture is described in the main text, it uses sigmoids as acti-
vation and output functions, and Ntrain = 500k. The input space is given by (0, 1)2.
The “surjective” NN on the other hand only uses surjective functions and the input
space is unbounded.
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where the coupling transform C is a map that is invertible and separable, where the latter
means that

C(xB; m(xA)) =
�

C1(x
B
1 ; m(xA)), . . . , C|B|(x

B
|B|; m(xA))

�T
. (16)

By |B| we denote the cardinality of the set B.
According to Eq. (15) only the subset B is transformed by the coupling layer, while the

subset A is left unchanged. Because of this, ∂ yA/∂ (xB)T = 0 and the Jacobian determinant
simplifies to

det

�

∂ y(x)
∂ x T

�

=
|B|
∏

i=1

∂ Ci(xB; m(xA))
∂ (xB)T

. (17)

To see this, we assume that without loss of generality we split the input dimensions in two
consecutive blocks A= [1, n] and B = [n+ 1, d]. In this case, the Jacobian matrix is of block
form

∂ y(x)
∂ x T

=

�

In 0
∂ C(xB;m(xA))
∂ (xA)T

∂ C(xB;m(xA))
∂ (xB)T

�

, (18)

with the determinant given by Eq. (17). As the determinant does not involve the derivative
∂ m(xA)
∂ xA , the function m can be arbitrarily complex. Following [33], we represent m through a

NN.
A single coupling layer transforms only part of the input. To ensure that all components

can be transformed, we use a layered mapping h= hL ◦· · ·◦h2◦h1, where each hi is a coupling
layer. Between two layers, we exchange the roles of A and B. For the functions mi , we use one
NN per layer. If d > 3, we need at least 3 coupling layers if we want each input component to
be able to influence every output component.

Different choices for the coupling transform C are possible. Additive coupling layers re-
sult in a NICE model [32], while affine coupling layers result in a Real NVP model [45]. In
the following, we restrict ourselves to piecewise quadratic coupling layers, which have been
proposed in [33].

3.2 Piecewise Quadratic Coupling Layers

We assume that our variables live in a unit hypercube: x , y ∈ Ω = [0,1]d . This allows us to
interpret each component Ci of the coupling transform as a cumulative distribution function
(CDF) in a straightforward manner. The idea is to use the output of a NN to construct un-
normalised distributions q̂i and get Ci by integration. We normalise the distributions to get
the PDF qi and model them with piecewise linear functions which have K bins and K + 1 ver-
tices (bin edges) each. The parameters of these functions can be stored in two matrices: The
|B|× (K +1) matrix V contains the height (vertical coordinate) of the functions at each vertex
and the |B| × K matrix W contains the bin widths (which are adaptive).

A NN outputs the unnormalised matrices V̂ and Ŵ . The bin widths should sum to 1, so we
normalise the rows of the matrix Ŵ using the softmax function σ and define

Wi = σ(Ŵi) . (19)

We want the piecewise linear function qi to be a PDF, and therefore normalise the rows of V̂
according to:

Vi, j =
exp(V̂i, j)

K
∑

k=1

1
2(exp(V̂i,k) + exp(V̂i,k+1))Wi,k

. (20)

10

https://scipost.org
https://scipost.org/SciPostPhys.8.4.069


SciPost Phys. 8, 069 (2020)

Finally, we use linear interpolation to define our PDFs as

qi(x
B
i ) = Vi,b +α(Vi,b+1 − Vi,b) , (21)

where b is the bin that contains the point xB
i and α = (xB

i −
∑b−1

k=1 Wi,k)/Wi,b is the relative
position within that bin. By integration we get the piecewise quadratic coupling transform:

Ci(x
B
i ) =

∫ xB
i

0

qi(t)dt =
α2

2
(Vi,b+1 − Vi,b)Wi,b +αVi,bWi,b +

b−1
∑

k=1

Vi,k + Vi,k+1

2
Wi,k . (22)

The corresponding Jacobian determinant is given by

det

�

∂ C(xB; m(xA))
∂ (xB)T

�

=
|B|
∏

i=1

qi(x
B
i ) . (23)

3.3 Importance Sampling with Coupling Layers

Having defined the coupling layers, their application for importance sampling is straightfor-
ward as they can be used in the same way VEGAS is already applied in existing event generators.
The algorithm for a single phase space map, i.e. channel, proceeds as follows.

For each event, we generate a suitable number of uniformly distributed random numbers
x ∈ Ω. These get mapped to non-uniform numbers y ∈ Ω using a layered mapping consisting
of several coupling layers, as described above. These numbers then serve as input variables
for a channel mapping that generates a point z in the target domain. The weight w associated
with an event depends on the value of the target function and the Jacobians involved, namely
the ones from the coupling layers and the channel mapping itself:

w=

�

�

�

�

�

det

�

∂ y(x)
∂ x T

�

�

�

�

�

�

�

�

�

�

�

det

�

∂ z(y)
∂ y T

�

�

�

�

�

�

f (z) . (24)

Note that we do not use the NN model to generate points in the target domain directly as
this could be highly inefficient. For example, if we wanted to generate four-momenta the NN
would have to learn four-momentum conservation and on-shell conditions exactly. Using a
channel mapping we can implement four-momentum conservation and mass shell conditions
directly, lowering the dimensionality of the problem significantly, and also map out known
peak structures that might be difficult to infer otherwise.

As for VEGAS we need a mechanism to train our model in order to actually improve the
efficiency of the sampler. For this purpose, we define a loss function which gets minimised it-
eratively using gradient descent. As a loss function we use the Pearson χ2-divergence between
the target function f and the sample distribution g in a minibatch that consists of n sampling
points:

Dχ2 =
1
n

n
∑

i=1

( f (zi)− g(zi))2

g(zi)
, (25)

with points zi in the target domain, generated from a uniform distribution and transformed
by a channel mapping.

Minimising Dχ2 will minimise the variance of a Monte Carlo estimator, as recognised in
[33]. Empirically we find that for our applications the mean squared error distance performs
better in terms of variance reduction and unweighting-efficiency increase than the Kullback–
Leibler divergence.

Our method can be used in a multi-channel approach in the same way as described for
VEGAS in Sec. 2.2. It has the additional advantage that we are able to train all mappings for
the different channels simultaneously. The channel mappings are aware of each other and do
not try to adapt to the same features.
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4 Results

We have implemented the NN architecture described in the previous section using
TENSORFLOW [46]. The NN training is guided using the ADAM optimiser [43]. The default
learning rate we use is 10−4, and gradients calculated for the training are clipped at a value
of 100 to avoid instabilities in the training.

We apply our NN-assisted sampling to three standard applications in high-energy physics:
the three-body decay of a top quark which features a single importance sampling channel mod-
elling the Breit–Wigner distribution of the intermediate W boson; top-quark pair production in
e+e− annihilation with the subsequent decay of both top quarks (which also can be modelled
by a single importance sampling channel by using the same mapping for both decays); and
finally QCD multi-gluon production, with two gluons in the initial state colliding at a fixed
centre-of-mass energy and 3 or 4 final-state gluons. For the latter, a multi-channel algorithm
as described in the previous section is used, with one NN per independent channel.3 The re-
quired multi-gluon tree-level matrix elements are obtained from SHERPA through its dedicated
PYTHON interface [47].

In all cases we compare the performance of the novel NN-assisted importance sampling
algorithm with the VEGAS-assisted one which serves as benchmark. We checked that the per-
formance of the VEGAS grids used were not limited by the number of bins or by the number of
optimisation steps used.

4.1 Top quarks

Top quarks decay predominantly to a W boson and a bottom quark. In turn, the W decays either
leptonically or hadronically. This induces an s-channel resonance for the W propagator, which
is usually described in a phase space sampler by a strongly-peaked Breit–Wigner channel, i.e.

g(u) =
1

�

s(u)−M2
W

�2
+M2

WΓ
2
W

, with s(u) = MWΓW tan(u) +M2
W . (26)

This channel captures the behaviour of the denominator of the corresponding squared matrix
element, but assumes a constant numerator, which renders the channel imperfect for the actual
integrand. In the following we study for single top-quark decays and top-quark pair production
with subsequent decays how our NN optimisation compares with VEGAS optimisation to remedy
such imperfections.

The NN architecture for both top-quark examples consists of 6 piecewise-quadratic cou-
pling layers and 150 bins. The trainings conclude after 6000 optimisation steps, where each
step uses a minibatch of 200 phase space points to guide the optimisation.

Top-quark decays: We simulate the decay sequence of a top quark, i.e. t→W+b→ e+νeb.
With three on-shell final-state particles we have 5 dimensions for the kinematics (the top quark
is considered at rest and on-shell). However, we integrate out all dimensions except for the
invariant mass of the W-boson decay products and the angle between them. The number
of phase space dimensions is therefore d = 2. The s-channel propagator of the W boson is
modelled by a Breit–Wigner distribution in the importance sampling, reducing the variance
caused by sampling the strongly-peaked invariant-mass distribution of the lepton-neutrino
pair.

The results of a run with N = 106 events are compared in Tab. 1 with an unoptimised
(“Uniform”) sampling and a VEGAS-optimised sampling. The Monte Carlo integration result,

3Here and in the following, “one NN” refers to a connected set of coupling layers, not to the “sub-NN” used
within each single coupling layer.
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Table 1: Results for sampling the partial top-quark decay width and the total cross
section of top-pair production, i.e. the Monte Carlo integral EN is an estimator for
Γt→be+νe

and σ for e+e− → γ → t[be+νe]̄t[b̄e−ν̄e] at
p

s = 500GeV, respectively.
Besides EN and its MC error, we also show the unweighting efficiency εuw of the
sample, comparing VEGAS optimisation, NN-based optimisation and an unoptimised
(“Uniform”) distribution. All samples consist of N = 106 (weighted) points.

top decays top-pair production

Sample εuw EN [GeV] εuw EN [fb]

Uniform 59 % 0.1679(2) 35 % 1.5254(8)
VEGAS 50 % 0.16782(4) 40 % 1.5251(1)
NN 84 % 0.167865(5) 78 % 1.52531(2)

i.e. the partial decay width EN given by the estimator for Γt→be+νe
, is given as a consistency

check and to compare its statistical deviation when generating the same number of points
N with the alternative sampling methods. The standard deviation obtained with VEGAS is 5
times smaller than for the Uniform sample. Improving on that, the NN sampling has a stan-
dard deviation which is 8 times smaller than the VEGAS one. As another figure of merit the
unweighting efficiencies εuw are compared. Again, the NN has the best (i.e. largest) efficiency,
with a value of 0.84 compared to 0.50 for the VEGAS and 0.59 for the Uniform sampling. So
while for VEGAS the integral variance is indeed reduced, the unweighting efficiency is some-
what reduced in comparison to the Uniform sampling. This originates from rare outliers in the
event weight distribution.

This is illustrated in Fig. 2a, where the distributions of event weights, cf. Eq. (24), for the
three samples are shown. The optimal sampler would result in events with identical weights,
what leads to a vanishing variance of the integral estimate and an unweighting efficiency of
one, cf. Eq. (4). The NN sample features the sharpest peak here and a steeply falling tail to-
wards larger weights, which corresponds to the significantly improved unweighting efficiency.
Although the VEGAS sample is also more peaked than the Uniform one, it features large-weight
outliers causing the reduced unweighting efficiency.

Leptonic top-quark pair production: As a second application, we study the leptonic pro-
duction of a top–anti-top pair via a virtual photon, and their subsequent leptonic decay, i.e.
e+e− → γ→ t[be+νe]̄t[b̄e−ν̄e], at

p
s = 500 GeV. This gives us effectively two copies of the

top-quark decay chain considered in the previous example, plus the scattering angle between
the incoming lepton and the outgoing top quark. This yields a phase space dimensionality of
d = 5.

Both s-channel propagators of the W bosons are modelled by Breit–Wigner distributions,
using a single importance sampling channel. Again, a NN sample with N = 106 points is
generated. It is compared in Tab. 1 with an unoptimised and a VEGAS sample of same sizes.
The standard deviation of the VEGAS sample is 8 times smaller than the one of the unoptimised
sample. The NN sample has the smallest standard deviation, being yet 5 times smaller than the
one of the VEGAS sample. The unoptimised and the VEGAS sample have a similar unweighting
efficiency of 35 % and 40 %, respectively. The NN one’s is about two times better, at 78 %.

Figure 2b depicts the event weight distributions of the three samples. As for the top-decay
samples, the NN-optimised sample for top–anti-top production is most strongly peaked, which
is in accordance with the small standard deviation and the good unweighting efficiency. The
other two samples are significantly broader and have long tails towards large weights.

Overall, the results for top decays and top–anti-top production are similar, which is ex-
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(b) σe+e−→γ→t[be+νe ]̄t[b̄e−ν̄e]

Figure 2: Event weight distributions for sampling the partial decay width Γt→be+νe

and the total cross section σ for e+e− → γ → t[be+νe]̄t[b̄e−ν̄e] at
p

s = 500GeV,
each with N = 106 points, comparing VEGAS optimisation, NN-based optimisation
and an unoptimised (“Uniform”) distribution.

pected because the main difference is that the Breit–Wigner peak appears in one additional
dimension for the top–anti-top production, with all other dimensions in phase space not featur-
ing any (strongly) peaked structures. Hence we see a similar shape in the weight distributions,
only the unoptimised sample is significantly broader now due to yet another peak it can not
adapt to. Compared to the single top decay setup, there is a moderate degradation of the
Monte Carlo integration/sampling. The unweighting efficiency is reduced by 7 (20) % for the
NN (VEGAS) samples. The unoptimised sample’s efficiency is reduced by 40 %.

Finally, we want to study for the case of top–anti-top production how the overall reduction
in the width of the weight distributions shown in Fig. 2b translates to more differential observ-
ables. We show in Fig. 3 the differential cross section for two observables, the invariant mass of
the electron-positron pair mee and the angle between the electron and the anti-bottom quark
θe−b̄. Note that the invariant mass mee depends on the lepton momenta of both top-quark
decay sequences, whereas the angle θe−b̄ is an observable that depends on the momenta of
only the anti-top quark decay sequence. Comparing the results for VEGAS and NN optimisation
(again using the samples with equal sizes, N = 106), we find that both distributions agree and
feature nearly equal MC errors across the whole range of the observable. However, the two
samples behave differently when we consider the mean weights per bin in the lower panels.
With the weights given by the ratio between the integrand and the sampling distribution, cf.
Eq. (8), the plots illustrate how close the sampling distribution approximates the actual target.
In the perfect case a constant line at 1 would be seen. Any distortion away from 1 directly
translates into a broader global weight distribution. For mee, we find that VEGAS samples both
tails too often to the expense of the intermediate region between 100 and 250 GeV, whereas
the NN sample is nearly constant in comparison. Both samples feature distortions for low θe−b̄,
although in different directions. As for both VEGAS and the NN most of the weights are very
close to 1, which is also reflected in the weight distribution shown in Fig. 2b, the distortions
only have a minor impact on the relative MC errors shown in the middle panels.
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Figure 3: The invariant mass of the electron-positron pair (left) and the angle be-
tween the electron and the anti-bottom quark in top-pair production (right). For
each observable, we compare the nominal distributions for a VEGAS-optimised and
a NN-optimised phase space sampling (upper panes). In the middle panes, Monte
Carlo errors for both samples are compared. The lower panes show the mean event
weights per bin, highlighting regions of the observables where the sampling distri-
butions over- or undershoot the target.

4.2 Gluon-induced multi-jet production

Finally, we test our approach for gg → n gluons with n = 3 and n = 4, at a fixed centre-of-
mass energy

p
s = 1TeV. For this application, the basic importance sampling density follows

the QCD antenna radiation pattern realised by the HAAG algorithm [48,49], with a number of
channels that depends on the number of final-state particles. For n = 3, HAAG constructs 24
channels, but after mapping channels that differ in the permutation of the momenta only, this
boils down to 2 independent channels. For n = 4, there are 120 HAAG channels that can be
mapped onto 3 independent channels. Therefore, in contrast to the top-quark applications,
a multi-channel algorithm is employed, with one independent NN (or VEGAS) per channel.
During the training, the NN are all optimised simultaneously, cf. Sec. 3.3.

Another difference with respect to the top-quark examples is the presence of phase space
cuts, used to regularise the n-gluon cross sections. Hence, the optimisation has to deal with
“dead” regions in phase space and therefore with non-continuous integrands.

For regularisation, HAAG uses a cut-off parameter which we set to s0 = 900 GeV2. On the
final state we employ a cut on the invariant masses of all parton pairs, i.e. mi j > 30 GeV, and
on the transverse momenta of all particles, p⊥,i > 30GeV. To select the jets, we use the anti-kt
algorithm [50] with R= 0.4. The renormalisation scale is given by µR =

p
s. Each NN consists

of 5 coupling layers and 32 bins. The trainings conclude after a maximum of 104 optimisation
steps, where at each step we train the NN on a minibatch of at least 2048 non-zero phase space
points.

In Tab. 2, we show the results of sampling the cross section without optimisation (“Uni-
form”), with VEGAS optimisation and with our NN optimisation. The unweighting efficiencies
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Table 2: Results for sampling the total cross section for gluonic jet production atp
s = 1TeV, i.e. the Monte Carlo integral EN is an estimator for σgg→n jets. Besides EN

and its MC error, we also show the unweighting efficiency εuw of the sample, com-
paring VEGAS optimisation, NN-based optimisation and an unoptimised (“Uniform”)
distribution. All samples consist of N = 106 points with non-zero weights. The table
also lists the acceptance rate Pacc.

3 jets 4 jets

Sample εuw EN [pb] Pacc εuw EN [pb] Pacc

Uniform 3.0 % 24806(55) 89 % 2.7 % 9869(20) 57 %
VEGAS 27.7 % 24813(23) 32 % 31.8 % 9868(10) 17 %
NN 64.3 % 24847(21) 34 % 33.6 % 9859(10) 16 %

εuw for n = 3,4 are about 3 % for the unoptimised sampling, and increase to about 30 % by
VEGAS optimisation. The NN optimisation achieves to surpass VEGAS for n = 3 by a factor of
two, whereas for n = 4 we find no significant improvement over VEGAS. Both VEGAS and NN
optimisation gives similar improvements for the estimate of the standard deviation for n = 3
and n= 4. We also quote in Tab. 2 the acceptance rate Pacc = N/Ntrials, i.e. the probability that
a proposed point passes the phase space cuts and hence provides a finite contribution to the
integral result. In our gluon production setup, the cuts regularise the matrix elements, and
therefore the matrix element value is expected to be larger close to these cuts than elsewhere.
It is therefore unsurprising that both VEGAS and NN optimisation lead to a decrease in Pacc, as
they enhance the sampling rate close to the cuts, with the side effect of proposing points also
outside of the cuts (since the bin edges of both methods will not perfectly coincide with the
cuts).

The event weight distributions for the samples are compared with each other in Fig. 4.
For 3-jet production, we find that the NN optimisation gives the most strongly peaked weight
distribution. The situation is more ambiguous for 4-jet production. Both the VEGAS and NN
optimisation significantly sharpen the weight distribution, in fact providing quite similar out-
comes. However, while the NN optimisation results in a slightly more pronounced peak com-
pared to VEGAS and a slightly faster fall-off towards large weights, it depletes less quickly
towards small weights. In particular for the 3-jet case it might be surprising that we find a
comparable estimate for the standard deviation for NN and VEGAS optimisation, although the
weight distribution is narrower in the NN case. This apparent discrepancy originates from the
higher fraction of zero-weight events for the optimised samples, i.e. events that fall outside
the physical phase space volume and are thus not accepted. The standard deviation of the
integral estimate is in such a case largely determined by the corresponding acceptance rate,
since the weight distribution will then actually contain two peaks: the one at a finite value
and one at w= 0. A further improvement in the sampling accuracy would therefore require a
modification of the optimisation to reduce the number of discarded phase space points. The
unweighting efficiency is not affected by Pacc < 1, since it takes into account non-zero weights
only.

In Fig. 5 we depict the transverse momentum distributions for the jet with the smallest
transverse momentum p⊥ in three- and four-jet production, i.e. the third and the fourth jet,
respectively, again comparing the NN-optimised sample with a VEGAS-optimised one. In the
comparisons of the mean weight per bin distributions (lower panels) we find a different be-
haviour for the two optimisation methods. For three-jet production, Fig. 5a, the NN weights
stay very close to one for pT ® 240GeV, whereas VEGAS samples the lower-most two p⊥ bins
with weights smaller than unity, which is compensated by weights larger than unity already
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Figure 4: Event weight distributions for sampling the total cross section for gg→n
jets for

p
s = 1TeV with N = 106 points, comparing VEGAS optimisation, NN-based

optimisation and an unoptimised (“Uniform”) distribution. Note that we now use a
logarithmic scale for the x axis. The inset plot in (b) shows the peak region in more
detail and using a linear scale.
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Figure 5: The transverse momentum of the smallest-p⊥ jet in three-gluon production
(left) and in four-gluon production (right). For both observables, we compare the
nominal distributions for a VEGAS-optimised and a NN-optimised phase space sam-
pling (upper panes). In the middle panes, Monte Carlo errors for both samples are
compared. The lower panes show the mean event weights per bin.
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above 50 GeV. For four-jet production, Fig. 5b, the NN sample differs from unity for p⊥ values
larger than 80 GeV. Then the weights become increasingly smaller, which corresponds to the
long tail of the weight distribution towards smaller weights in Fig. 4b. For VEGAS, weights
again begin to differ from unity above 50 GeV. However, there is a turning point and therefore
the weights remain closer to unity compared to the ones of the NN sample above 100 GeV.
Hence, judging the sample quality is less straightforward in the four-jet case, whereas the NN
sample is clearly better in the three-jet case. This is in agreement with the very similar global
sample performance given in Tab. 2.

Considering the relative MC errors in the middle panel of Fig. 5b we observe that although
the NN distribution differs from the integrand more than the VEGAS distribution in the high-
p⊥ bins, it still leads to smaller relative errors. This is, however, just a consequence of the
statistics: the NN sample features smaller weights in this region as it oversamples the target.
Therefore, it generates more events per bin than VEGAS which results in a smaller variance.

5 Conclusions

We have conducted a proof-of-principle study for applying Neural Importance Sampling with
piecewise-quadratic coupling layers to optimise phase space sampling in Monte Carlo inte-
gration problems in high-energy physics. The approach fulfils the requirements needed to
guarantee a faithful sampling of the target distribution. In particular, full phase space cover-
age is guaranteed. We have investigated the performance of the approach by employing it as a
drop-in replacement of the widely used VEGAS optimiser, which we use for comparison bench-
marks. Specifically, we have studied the efficiency of the approach both for the integration
result and for the generation of weighted and unweighted event samples for the decay width
of a top quark, for the cross section of leptonic production of a top-quark pair with subsequent
decays; and for the cross sections of gluonic 3-jet and 4-jet production.

We find a significantly improved sampling performance for the simpler examples with a
phase space dimensionality up to d = 5, namely top decays, top pair production and 3-jet
production. For the more complex example of 4-jet production with d = 8 and an increased
number of importance sampling channels, we have not been able to outperform VEGAS, e.g. the
gain factor in the unweighting efficiency dropped from 2.3 for 3-jet production to 1.1 for 4-jet
production. Since the complexity of the NN architecture and the number of events per training
batch was limited by our computing resources, we expect that the result for the 4-jet case can be
improved by using more powerful hardware and/or optimising the implementation. Though,
even then the computational challenge would emerge again for 5-jet production, and it is left
to further studies to improve the scaling behaviour of the ansatz. Our findings are consistent
with those in another study [36], where increasing the final-state multiplicity (and hence the
number of channels) in V+ jets production also leads to a rapid reduction in the gain factor.

However, the results for the top quarks and the 3-jet production are promising and indi-
cate that conventional optimisers such as VEGAS can potentially be outperformed by NN-based
approaches also for more complex problems in the future. To this end the computational
challenges outlined above need to be addressed. In future research we will therefore aim
to extend the range in final-state multiplicity while keeping the training costs at an accept-
able level, and—if successful—to implement the new sampling techniques within the SHERPA

general-purpose event generator framework. A starting point should be the further study and
comparison of alternative ways to integrate our NN approach within multi-channel sampling,
beginning with our ansatz and the one proposed in [36], to find out if the scaling behaviour
can be optimised. On the purely NN side, the exploration of possible extensions or alternatives
to piecewise-quadratic coupling layers is promising, such as [51]. Also adversarial training has
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the potential to reduce training times significantly. The limitation of the statistical accuracy by
a large number of zero-weight events found in the jet-production examples furthermore sug-
gests that it is worthwhile to investigate the construction of optimised importance sampling
maps that better respect common phase space cuts, or alternatively to modify the optimisation
procedure to further reduce the generation of points outside the fiducial phase space volume.
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A Auxiliary jet p⊥ distributions in multi-jet production

In this appendix we compile additional plots of the jet p⊥ distributions in 3- and 4-gluon
production from gluon annihilation at

p
s = 1 TeV. Details on the calculational setup are

given in Sec. 4.2.
The leading and second-leading jet p⊥ distribution in 3-gluon production are depicted in

Fig. 6a. The leading, second- and third-leading jet p⊥ distributions in 4-gluon production are
shown in Fig. 6b.
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Figure 6: Distributions of the transverse momentum p⊥ of the leading and second-
leading jets in three-gluon production (a) and for the leading, second- and third-
leading jets in four-gluon production (b). For each observable, we compare the nom-
inal distributions for a VEGAS-optimised and a NN-optimised phase space sampling
(upper panes). In the middle panes of each plot, Monte Carlo errors for both samples
are compared. The lower panes show the mean event weights per bin.
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