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Abstract

Motivated by the increasing connections between information theory and high-energy
physics, particularly in the context of the AdS/CFT correspondence, we explore the in-
formation geometry associated to a variety of simple systems. By studying their Fisher
metrics, we derive some general lessons that may have important implications for the
application of information geometry in holography. We begin by demonstrating that the
symmetries of the physical theory under study play a strong role in the resulting ge-
ometry, and that the appearance of an AdS metric is a relatively general feature. We
then investigate what information the Fisher metric retains about the physics of the un-
derlying theory by studying the geometry for both the classical 2d Ising model and the
corresponding 1d free fermion theory, and find that the curvature diverges precisely at
the phase transition on both sides. We discuss the differences that result from placing
a metric on the space of theories vs. states, using the example of coherent free fermion
states. We compare the latter to the metric on the space of coherent free boson states and
show that in both cases the metric is determined by the symmetries of the correspond-
ing density matrix. We also clarify some misconceptions in the literature pertaining to
different notions of flatness associated to metric and non-metric connections, with im-
plications for how one interprets the curvature of the geometry. Our results indicate
that in general, caution is needed when connecting the AdS geometry arising from cer-
tain models with the AdS/CFT correspondence, and seek to provide a useful collection
of guidelines for future progress in this exciting area.
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1 Introduction

Recent progress in understanding the AdS/CFT correspondence has seen an explosion of effort
at the interface of information theory and both quantum field theory and gravity. For exam-
ple, ideas such as quantum error correction appear to play a key role in bulk reconstruction,
and tensor networks have become popular toy models for constructing bulk-boundary maps
in this language—see, e.g., [1–4], or [5] for a recent review. Additionally, key advances in
our understanding have relied crucially on entanglement-based probes of the bulk, such as
Ryu-Takayanagi / HRT surfaces and their quantum extensions [6–8], which represent a fun-
damental link between (quantum) information-theoretic quantities on the one hand, and bulk
geometric objects on the other. A further example is given by holographic distance measures
that were considered both for pure states [9] and mixed states [10].

In light of the wealth of developments arising from the application of concepts from infor-
mation theory to AdS/CFT, one may also go one step further, and attempt to use information
theory to understand how the duality itself may arise. That is, instead of taking gauge/gravity
duality as a fait accompli and then using information theory to fill out the holographic dictio-
nary, one may ask whether the dual gravity theory itself can be understood as the “information
space” naturally associated to the field theory. This is similar in spirit to the “It from Qubit”
initiative/paradigm, in which the gravitational theory is viewed as emerging from the entan-
glement structure of the boundary field theory. Here, the idea is slightly broader insofar as
we do not limit ourselves to entanglement-based probes, but instead ask whether there is any

2

https://scipost.org
https://scipost.org/SciPostPhys.8.5.073


SciPost Phys. 8, 073 (2020)

sense in which a geometric space can be naturally associated to the field theory based on the
information content therein. For similar efforts in the context of string theory, see [11].

In fact, the study of the geometry naturally associated with a space of probability distribu-
tions is an old subject that predates AdS/CFT by several decades. Known as information geom-
etry, it was primarily developed by statisticians, based on the pioneering work of Fisher [12].
The application of information geometry to statistical physics and thermodynamics was orig-
inally pushed by Ruppeiner [13] (see also [14]), but it enjoys a range of applications from
statistics to machine learning [15–20]. The canonical reference is [21]; see also [22, 23] for
some historical works, or [24] for an online review. The basic idea is to endow a statistical
model with the structure of Riemannian manifold, so that methods of differential geometry can
be applied to the study of probability theory and statistics. A central object in this study is the
Fisher information metric, which provides a metric on the space of distributions representing
the model or theory under consideration. In the interest of making this paper self-contained,
we start with a brief introduction to information geometry in section 2.

A number of works have sought to understand AdS/CFT in this context, which requires
parametrizing the theory in such a way that this statistical framework can be adapted to quan-
tum field theory. In one approach to this task, the bulk spacetime arises as the moduli space
of instantons endowed with the Fisher information metric. Building on earlier results that
showed Yang-Mills instantons to be good probes of the bulk geometry [25], Blau, Narain, and
Thompson [26] evaluated the information metric on the moduli space of SU(2) instantons and
showed that it corresponds to AdS5, even away from the large N limit for N = 4 as well as
N = 2 SU(N) super Yang-Mills theory. The instanton correction matches the first-order string
theory correction to the supergravity action. An approach to capturing the compact space, the
analogue of the S5 in the best-known example of AdS/CFT, was taken more recently in [27]
using the CPN nonlinear sigma model as a proxy; see also [28–31] for related works. Yet a dif-
ferent approach was used in [32] to construct a metric in real Euclidean space by considering
an RG gradient flow for large N φ4 theory in d dimensions. A (d+1)-dimensional asymptoti-
cally AdS metric was found both in the UV and in the IR, with different AdS radii. To date, it
is unclear how to capture the internal S5 in such an approach, but the appearance of an AdS
space has nonetheless generated some excitement.

However, a key ingredient in the above is the fact that in the large N saddle point approx-
imation, the classical supergravity action takes on a Gaussian form. Hence, while we do not
know the degrees of freedom in the strongly coupled N = 4 gauge theory, the duality




e
∫

dd xφ0(x)O(x)
�

CFT = e−SSUGRA

�

�

�

�

φ(0,x)=φ0(x)
, (1)

implies that they lead to a Gaussian probability distribution. But it has long been known in the
information geometry literature, even prior to AdS/CFT, that the information metric associated
with Gaussian distributions is hyperbolic space; see section 2 and [21, 33] for more details.
In fact, as we shall show in section 3, the AdS metric appears to be merely a reflection of
the symmetries of the underlying distribution. This may have important implications in light
of recent attempts to connect the appearance of an AdS geometry with holography [34–38].
Furthermore, the map between Gaussian distributions and a hyperbolic Fisher metric is not
bijective: other, quite different distributions may also lead to the same hyperbolic space; see
section 3 and [39], in which a construction procedure for obtaining probability distributions
from a fixed information metric was given.

Additionally, we demonstrate in section 7 that the fact that the information geometry met-
ric inherits the symmetries of the underlying probability distribution continues to hold in the
quantum case. We do this for the quantum analogue of the Fisher metric on a space of quan-
tum states. In this case, the probability distribution is replaced with the density matrix of the
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quantum states whose symmetries now take the form of conjugation by an appropriate unitary
matrix.

These two issues – symmetry and non-uniqueness – immediately raise two questions: first,
how much physics of the field theory is encoded in the information geometry? Second, can we
find other meaningful realizations of the information space associated to a given theory, and
perhaps even generalize gauge/gravity duality to an “information/geometry” duality applica-
ble to a wider class of theories? The purpose of this work is to present some initial explorations
into these questions, as well as to collect some facts about the Fisher metric which, while famil-
iar to experts in information geometry, do not appear to have survived the latter’s recruitment
into the quantum field theory community.

As mentioned above, we shall begin by reviewing the basic ingredients of information ge-
ometry in section 2, and show how AdS appears as the metric on the space of Gaussians as
an illustrative example. In section 3, we substantiate the aforementioned claim that the hy-
perbolic geometry is a reflection of the symmetries of the underlying theory, and discuss some
further issues with non-uniqueness in the putative information ↔ geometry map. This mo-
tivates us to consider which physical features are faithfully preserved under this relationship.
To that end, we present in section 4 an example of an unstable system – massless φ4 theory
in 3+1 dimensions with an inverted potential – and show that there is an ambiguity in the
Hitchin prescription [40] of taking the Lagrangian density evaluated on solutions to the equa-
tions of motion as the probability distribution on those solutions. We demonstrate how adding
a total derivative to the Lagrangian density, which contributes no boundary terms, allows us
to transform from a situation which is unstable from the information geometry standpoint to
a stable one.

We then turn to the study of curvature invariants. Insofar as these are fundamental fea-
tures of the geometry, it is natural to ask which information-theoretic aspects may be en-
coded therein. Motivated in part by earlier work in condensed matter systems [41–43] (see
also [44]), we shall examine the 2d classical Ising model in section 5, and show that the Ricci
scalar diverges along the critical line. Additionally, using the well-known map between the
2d classical Ising model and a 1d free fermion theory, this example provides us with the op-
portunity to examine the information geometry on both sides of an existing correspondence
between physical theories. We shall find that the geometry of the free fermion theory is one-
dimensional: the single component of the metric can be parametrized by the fermion mass,
and diverges precisely at the critical temperature in a way that matches the behaviour of the
2d theory. Thus, while the correspondence between the 2d classical Ising model and the 1d
free fermion theory is not a true duality, the salient geometrical features are captured on both
sides. To our knowledge, this is the first such application of information geometry to both
sides of an existing correspondence between different physical theories, and it would be very
interesting to consider other examples.

We note that an important difference arises when considering the Fisher metric on the
space of theories, spanned by its couplings and masses, as opposed to the metric on the space
of states. The former was considered for quantum field theories for instance in [45], where
the Zamolodchikov metric is used as an information metric, which then changes under RG
flow. The latter was considered for instance in the instanton approach of Blau, Narain, and
Thompson already discussed above [26], where the information metric is defined on the mod-
uli space of the gauge theory considered (see also [46]). Our treatment of the Ising model in
section 5 falls into the former class. To illustrate the difference however, we also discuss the
quantum analogue of the information metric on the space of coherent free fermion states in
section 6. We compare this with the case of free bosons in section 7 and further show that the
metrics are fully determined by the symmetries of the density matrices in each case.

There has been some confusion in the physics literature as to the curvature of the informa-
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tion space. For example, [42] asserts that the geometry of non-interacting models is flat, while
this is clearly false for even the simple Gaussian example mentioned above. We believe this is
a confusion of language, stemming from the fact that in information geometry, one typically
considers the 1-connection, rather than the 0-connection familiar to physicists; and the associ-
ated 1-curvature is indeed zero for a wide class of models, known as exponential families (see
sections 2.1). The reason for this stems from the fact that the 1-curvature is more naturally as-
sociated with information loss along a curve, as quantified by the Kullback-Leibler divergence
or relative entropy, whereas the information-theoretic interpretation of the 0-curvature is less
clear. A skim of the information geometry literature will hence turn up statements about flat
geometries, without making it immediately obvious that this is not flatness in the physicist’s
familiar sense. We elaborate on this point in section 8, where we also point out that vanishing
1-curvature corresponds to the trivial solution of the equation of motion arising from a Chern-
Simons action. This is reminiscent of the map between field theory and supergravity actions in
standard realizations of field theory/gravity dualities, at least insofar that there is an obvious
action providing the required dynamics on the gravity side.

Finally, we close in section 9 with a concise summary of the lessons learned from the exam-
ples herein, as well as some speculations on the relationship between information geometry
and holographic RG [45], and the potential for this approach to enable us to compute com-
plexity [47] in strongly coupled / interacting field theories.

2 Information geometry

To make this paper self-contained, let us begin with a brief introduction to information geom-
etry. We shall present only those ingredients required for subsequent sections, and refer the
interested reader to [21] for details.

We are interested in studying the properties of a statistical model S, which is essentially a
set of probability distribution functions p : X → R satisfying1

p(x)≥ 0 ∀x ∈ X , and

∫

dx p(x) = 1 , (2)

where X is the space of stochastic or physical variables (e.g., Rm, or some discrete set). Addi-
tionally, each p may be parametrized by ξ= (ξ1, . . . ,ξn) ∈ Rn, so that the model S is

S = {pξ = p(x;ξ)
�

�ξ ∈ Ξ} , (3)

where Ξ ⊂ Rn, and ξ 7→ pξ is injective and provides a map between the parameter space and
the points on the manifold. That is, we regard each point ξ as a different distribution within
our model, and take the map Ξ→ R provided by ξ to be in C∞ so that we may take derivatives
with respect to these parameters. Note that it is the parameters ξ – which represent points
on this statistical manifold – with respect to which we will be computing derivatives, not the
stochastic variables x . Accordingly, we denote ∂i ≡

∂
∂ ξi .

Now, given a model S, the Fisher information metric of S at a point ξ is the n× n matrix
G(ξ) = [gi j(ξ)], with elements

gi j(ξ)≡ 〈∂i`ξ∂ j`ξ〉ξ =
∫

dx ∂i`(x;ξ)∂ j`(x;ξ)p(x;ξ) , (4)

where
`ξ(x) = `(x;ξ)≡ ln p(x;ξ) , (5)

1More generally, this framework goes through provided the distributions are normalized to some finite value,
not necessarily 1.
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and the expectation 〈. . .〉ξ with respect to the distribution pξ is defined as

〈 f 〉ξ ≡
∫

dx f (x)p(x;ξ) . (6)

Note that G is symmetric and positive semi-definite by construction. It will prove convenient
to rewrite the metric as

gi j = 〈∂i`∂ j`〉=
∫

dx p ∂ilnp ∂ jlnp =

∫

dx ∂i p ∂ jlnp

=

∫

dx ∂i

�

p ∂ jlnp
�

−
∫

dx p ∂i∂ jlnp

=����∂i〈∂i`〉 − 〈∂i∂ j`〉 ,

(7)

where on the last line, the first term vanishes by the normalization constraint,
i.e., 〈∂i`〉= ∂i〈1〉= 0.

There are numerous equivalent definitions for the Fisher metric. For example, by direction
computation, we can show that the Fisher metric is also given by

gi j = 4

∫

dx ∂i
p

p ∂ j
p

p . (8)

This form of the Fisher metric will prove useful in section 6, where we discuss generalizations
to more complicated scenarios in which the probability distribution is no longer just a real-
valued function.

2.1 Exponential families

While the machinery of information geometry can be applied to any distribution which satisfies
the condition (2), we will be particularly interested in a class of models known as exponential
families. Suppose an n-dimensional model S = {pθ |θ ∈ Θ} can be expressed in terms of n+1
functions {C , F1, . . . , Fn} on X and a function ψ on Θ as

p(x;θ ) = exp
�

C(x) + θ i Fi(x)−ψ(θ )
�

, (9)

where Einstein’s summation convention is assumed. Then S is an exponential family, and θ
are the so-called canonical coordinates, not to be confused with the stochastic variable x . The
function ψ is known as the potential, which is fixed by the normalization to

ψ(θ ) = ln

∫

dx exp
�

C(x) + θ i Fi(x)
�

. (10)

Note that the parametrization θ 7→ pθ is 1:1 if and only if the functions {C , F1, . . . , Fn} are
linearly independent, which we shall assume to be the case.

Many important models fall into this class which, in addition to some interesting mathe-
matical properties (see sec. 8), have the technical nicety of admitting an expression for the
Fisher metric directly in terms of the potential. Observe that

∂ j`= F j(x)− ∂ jψ(θ ) =⇒ ∂i∂ j`= −∂i∂ jψ(θ ) , (11)

where the derivatives are taken with respect to the canonical coordinates, ∂i ≡
∂
∂ θ i . Therefore

the metric (7) may be written
gi j = ∂i∂ jψ(θ ) . (12)

We emphasize that while (7) is true for general models, the simple form (12) holds only for
exponential families. We will rely on this form of the metric extensively below. Another form
that is sometimes useful is the expression in terms of the covariance matrix of Fi ,

gi j =



(Fi − 〈Fi〉)(F j − 〈F j〉)
�

. (13)
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2.2 Simple example: AdS2 from a Gaussian

As a concrete example, let us show how hyperbolic space arises from the normal distribution

p(x;µ,σ) =
1

p
2πσ

e−
(x−µ)2

2σ2 = exp
�

−
1

2σ2

�

x2 − 2µx +µ2
�

− ln(
p

2πσ)
�

. (14)

This clearly falls within the class of exponential families (9), with the identifications:2

C(x) = 0 , F1(x) = x , F2(x) = x2 , θ1 =
µ

σ2
, θ2 = −

1
2σ2

,

ψ(µ,σ) =
µ2

2σ2
+ ln

�p
2πσ

�

.
(15)

To evaluate the metric (12), we invert these relations in order to express the distribution in
terms of the canonical coordinates:

µ= −
θ1

2θ2
, σ =

1
p

−2θ2

, ψ(θ ) = −
θ2

1

4θ2
+

1
2

ln
�

−
π

θ2

�

. (16)

Strictly speaking, the potential is all we need to compute the metric, but we can also write out
the distribution (14) as a quick check on the consistency of our identifications:

p(x;θ ) =

√

√

−
θ2

π
eθ2

�

x+ θ1
2θ2

�2

= exp

�

θ2 x2 + θ1 x +
θ2

1

4θ2
−

1
2

ln
�

−
π

σ2

�

�

. (17)

Substituting the potential ψ(θ ) in (16) into (12) then gives the metric in canonical coordi-
nates:

gi j = −
1

2θ2

 

−1 θ1
θ2

θ1
θ2

θ2−θ2
1

θ2
2

!

, (18)

and hence the squared line element is

ds2 = −
1

2θ2
dθ2

1 +
θ2 − θ2

1

2θ3
2

dθ2
2 +

θ1

θ2
2

dθ1dθ2 . (19)

The metric in terms of the original (physical) coordinates µ,σ is then obtained by performing
a simple change of basis via the identifications (15):

dθi =
∂ θi

∂ µ
dµ+

∂ θi

∂ σ
dσ =⇒

¨

dθ1 =
1
σ2 dµ− 2µ

σ3 dσ

dθ2 =
1
σ3 dσ .

(20)

whence we at last obtain

ds2 =
dµ2 + 2dσ2

σ2
, (21)

which is none other than Euclidean AdS2, with the standard deviation playing the role of the
radial coordinate. Note that the Fisher metric is always of Euclidean signature, or possibly
degenerate, since the Fisher metric is positive semi-definite. To get a metric of Lorentzian
or any other mixed signature requires Wick rotation a posteriori. We will henceforth take
this for granted and drop the “Euclidean” qualifier. Loosely speaking, the intuition is that a
large standard deviation implies a large overlap between different distributions. Operationally,
this means that they are harder to distinguish (e.g., requiring more measurements), and are
accordingly considered to be “close” in an information-theoretic sense.

2To avoid conflating indices with powers, we have lowered the indices on the parameters θ i = θi .
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Two immediate observations are worth remarking upon. First, we see that the geometry
corresponding to a free theory is clearly not flat, contrary to some claims in the literature that
non-interacting theories have vanishing Ricci scalar [42,48]; we shall return to this issue when
we discuss connections in section 8. Second, we note that the map between the Gaussian and
the hyperbolic Fisher metric is achieved without any reference to the dynamics leading to this
particular metric on the gravity side, and in this sense falls short of the original AdS/CFT
correspondence. We shall turn to this second issue in the next section, and investigate the
extent to which this geometry merely reflects the underlying symmetries of the distribution.

Before doing so however, let us mention a simple example of a distribution which is not
an exponential family and yet still yields an AdS2 metric, namely the Cauchy-Lorentz distribu-
tion. For other examples of distributions that yield AdS, as well as other geometries (e.g., the
sphere), see [33,39].

3 A hyperbolic red herring3

When we say that the information geometry merely reflects the underlying symmetries of the
distribution, we mean that a symmetry of the probability distribution will manifest itself as
a corresponding symmetry of the Fisher metric. Let us be precise about what is meant by a
symmetry of the probability distribution. Consider a map

ξ̃ : Ξ→ Ξ . (22)

Suppose that there exists a map
x̃ : X → X (23)

such that
p(x; ξ̃)dx = p( x̃;ξ)d x̃ . (24)

Then, the probability distribution p(x;ξ) is said to be symmetric under the transformation
ξ 7→ ξ̃(ξ). In other words, by a suitable redefinition of the stochastic variable x , we can
“undo” the transformation on ξ, thereby putting the transformed probability distribution back
into the form of the original probability distribution.

Let us take the Gaussian distribution written in terms of the mean µ and standard deviation
σ as an example. It is clear that the translation (µ,σ) 7→ (µ+c,σ), where c is any real constant,
can be “undone” by a translation x 7→ x + c. Therefore, we say that the Gaussian distribution
is symmetric or invariant under a translation of the mean. A more nontrivial transformation is
the scaling transformation (µ,σ) 7→ (λµ,λσ), for some real λ. The map x 7→ λx will undo this
scaling transformation. Unlike the translation, the scaling transformation does come with a
nontrivial Jacobian in x , but this Jacobian is precisely what is needed to maintain the relation
(24). Therefore, the Gaussian is invariant under translations of µ and simultaneous scaling
of µ and σ. The Fisher metric corresponding to the family of Gaussian distributions inherits
these symmetries. But the only metric which enjoys these symmetries is AdS2 and therefore
the Fisher metric could not have been anything else!

To reiterate, a symmetry of the probability distribution will also be a symmetry of the cor-
responding Fisher metric. The converse, however, is not necessarily true—the Fisher metric
can exhibit more symmetries than are present in any particular probability distribution from
which that metric may be derived. Note that we are careful to say “any particular probability
distribution” because, as demonstrated in [39], there are in fact infinitely many probability

3For those unfamiliar with this idiom, a red herring is a misleading or distracting clue that may cause one to
reach a false conclusion.
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distributions that give the same Fisher metric. For instance, example 4.8 of [39] derives Eu-
clidean AdS2 as the Fisher metric of the following three-dimensional probability distribution
(in this case, X = R3):

p(x1, x2, x3;µ,σ) =
3
∏

i=1

pi(x i − hi), (25)

where

p1(x) =
1
p

2π
e−

1
2 x2

, h1(µ,σ) =
cosµ
σ

,

p2(x) =
1
π

sech x , h2(µ,σ) =
sinµ
σ

, (26)

p3(x) =
1

π(1+ x2)
, h3(µ,σ) = ln

�

σ+
p

σ2 − 1
�

−
p
σ2 − 1
σ

.

It is clear that this probability distribution exhibits neither the translation invariance in µ nor
the scaling symmetry in µ and σ that is enjoyed by the corresponding Fisher metric, which is
Euclidean AdS2.

Given the above, we believe that care is needed when attempting to identify the appearance
of an AdS geometry with some intrinsic aspect of holography. This is not to say that the
hyperbolic geometry arising from some theories is unrelated to AdS/CFT, but it is clearly not
unique, and may represent a red herring or false conclusion in this context.

4 Unstable configurations

Here we turn to a simple example demonstrating how the fact that a system has an unstable
potential is encoded in the Fisher metric. Our example is constructed on the space of states,
in analogy with the stable examples for the Fisher metric of Yang-Mills instantons in [26]
and the Klein-Gordon field in [49]. Both of these make use of the proposal of Hitchin [40] to
identify the Lagrangian density, evaluated on a family of field configurations, as the probability
distribution on those states. The Fisher metric on the space of 4D Yang-Mills instantons turns
out to be Euclidean AdS5 [26]. In that case, the Lagrangian density F2 evaluated on the
instantons exhibits translation invariance in the center and scale invariance in both the center
and the width of the instantons.

Our example is similar to the Yang-Mills instanton, but with one crucial difference – that the
instantons themselves are in an unstable potential. Of course, the same symmetry argument
would make one conclude that the Fisher metric ought to still be AdS. However, we will see
how the machinery is smart enough to know when the field theory that one is considering is
unstable. The system is taken to be in four Euclidean dimensions with a real scalar field and
an action

S =

∫

d4 x
�

∂µφ ∂
µφ − g2φ4

�

. (27)

The equation of motion reads
∂µ∂

µφ + 2g2φ3 = 0. (28)

In Euclidean signature, the potential is V = −g2φ4, which is unbounded from below. There-
fore, at least classically, the theory is perturbatively unstable about the trivial solution φ = 0.
However, there do exist exact instanton solutions to the equation of motion, which are
parametrized by a four-dimensional center ξµ and a width ρ:

φinst(x;ξ,ρ) =
2ρ

g
�

(x − ξ)2 +ρ2
� . (29)
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Nevertheless, quadratic perturbations about these instanton solutions are still unstable in that
their squared mass, which is equal to −6g2φinst(x;ξ,ρ)2, is negative (and depends on x).4

The Lagrangian density evaluated on the instanton solution is taken to be the probability
distribution:

p(x;ξ,ρ) = ∂µφinst ∂
µφinst − g2φ4

inst =
16ρ2

g2
·
(x − ξ)2 −ρ2

�

(x − ξ)2 +ρ2
�4 . (30)

Note that this function is perfectly normalizable and is normalized by setting

g2 =
8π2

3
. (31)

However, this function is not positive semi-definite and is in fact negative for points x such
that |x − ξ| < ρ. Therefore, this is not a valid probability distribution and cannot be used to
define a Fisher metric.

Nevertheless, it is instructive to see exactly where the naive calculation of the Fisher metric
fails to give a well-defined result. If we naively proceed to calculate the Fisher metric from
(30), the resulting integrals that appear in the Fisher metric are technically ill-defined since
the integrands contain singularities. For example, the non-vanishing components of the Fisher
metric read

gρρ =
28

5ρ2
+

24
ρ2

∫ ∞

0

y dy
(y − 1)(y + 1)4

, (32a)

gξµξν =
�

28
5ρ2

+
6
ρ2

∫ ∞

0

y2dy
(y − 1)(y + 1)4

�

δµν, (32b)

where y is related to xµ by

y =
(x − ξ)2

ρ2
. (33)

The remaining integrals have a pole at y = 1 and thus the integrals themselves are ill-defined:
one must specify a contour of integration and thus a way of avoiding the pole. There are two
ways of doing this: either add or subtract iε to y and then take the ε → 0 limit at the end.
The results for the Fisher metric components are denoted with a superscript ± depending on
which sign ±iε prescription is used,

g±ρρ =
36∓ 15iπ

10
1
ρ2

, (34a)

g±ξµξν =
244∓ 15iπ

40

δµν

ρ2
. (34b)

Even though the 1
ρ2 factors in the metric component are expected for AdS, the coefficients

are not real numbers and the metric cannot be made purely real simply by multiplying by an
overall complex factor. Therefore, this metric cannot be considered real Euclidean AdS5. This
signals the instability present in the field-theory model, and indicates that the information
geometry retains knowledge of whether the original field theory is well-defined.

Incidentally, if we were to just integrate the original Lagrangian (27) by parts, we could
instead work with the action

S =

∫

d4 x
�

−φ ∂µ∂ µφ − g2φ4
�

. (35)

4We thank Alexander Krikun for useful discussions in this regard.
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Now, when the Lagrangian density is evaluated on the instanton solution we can use the equa-
tion of motion to simplify the result and we get a well-defined probability distribution

p(x;ξ,ρ) = −φinst∂µ∂
µφinst − g2φ4

inst = g2φ4
inst =

16
g2
·

ρ4

�

(x − ξ)2 +ρ2
�4 . (36)

This is normalized with the same value of g as in (31), but this time it is positive semi-definite.
By symmetry arguments we already know that the corresponding Fisher metric must be Eu-
clidean AdS5. Explicit calculation yields the line element

ds2 =
8
5
·

dξµdξµ + 2dρ2

ρ2
. (37)

This example drives home what ought to be an obvious fact: the Fisher metric depends
crucially on the choice of probability distribution. Furthermore, it is possible to arrive at a
function that is not positive semi-definite, and therefore not a well-defined probability distri-
bution, by starting from a perfectly well-defined probability distribution and adding a total
derivative whose integral vanishes. This is a crucial fact when implementing the Hitchin pre-
scription of taking the Lagrangian density evaluated on a solution to the equations of motion
as the probability distribution. Additionally, we have demonstrated how the ambiguity in the
choice of Lagrangian density allows us to transform from a situation which is unstable from
the information geometry standpoint to a stable one by adding suitable total-derivative terms.

5 Information geometry on theory space: the Ising model

Here we perform a further investigation of which aspects of the physical theory are captured by
the information geometry by considering the 2d Ising model. Studies of aspects of information
geometry for the Ising and related spin models have been performed before in the literature
(see, e.g., [42,44]). Here we focus on the 2d Ising model, which has the feature of admitting
a map to an ostensibly quite different physical theory, namely a 1d free fermion field theory. In
the first subsection, we shall examine the Fisher metric and its Ricci curvature for the 2d Ising
model on the theory space spanned by its two couplings, and show that the geometry correctly
captures the divergence along the critical line. We will then reproduce this behaviour in the
second subsection for the 1d free fermion theory.

5.1 2d classical Ising model

Let us consider the 2d classical Ising model on a square lattice of spins σi, j =±1, with van-
ishing external magnetic field. Denoting the horizontal and vertical couplings by J and K ,
respectively, the Hamiltonian for an N×N lattice may be written

H = −J
N
∑

i, j=1

σi, jσi+1, j − K
N
∑

i, j=1

σi, jσi, j+1 , (38)

where we have identified both directions to form a torus, i.e, σN+1, j = σ1, j and σi,N+1 = σi,1.
Note that the state (i.e., spin configuration) satisfies a Boltzmann distribution at inverse tem-
perature β , and thus we may write

p(σ) = Z−1e−βH(σ) , (39)
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where the partition function is

Z =
∏

i

∑

σi=±1

e−βH(σ) . (40)

Hence, by exponentiating this normalization factor, we may express the distribution in the
form of an exponential family:

p(σ;θ ) = exp







β



J
N
∑

i, j=1

σi, jσi+1, j + K
N
∑

i, j=1

σi, jσi, j+1



− ln Z







, (41)

cf. (9) where the canonical coordinates θ ∈ {βJ ,βK}. Note that for distributions in the form
(39), ln Z plays the role of the potential ψ, which means that in order to compute the metric
(12), all we need is an expression for the free energy. In particular, in the thermodynamic limit
N →∞, the reduced free energy per site f = − βN F = N−1 ln Z becomes

f =
1
2

ln2+
1

2π

∫ π

0

dφ ln
�

cosh(2βJ) cosh(2βK) +
1
κ

Æ

1+ κ2 − 2κ cos(2φ)
�

, (42)

where we have defined κ≡ csch(2βJ) csch(2βK), and φ is some auxiliary angular parameter.
This will play the role of the potential, i.e.,

gi j = ∂i∂ j f . (43)

The integral over the auxilliary parameter φ cannot be performed analytically, but we can
nonetheless proceed to determine the form of the metric, and then evaluate the curvature
numerically. To compute the derivatives in (43), we first re-express the free energy in terms
of the canonical coordinates. By inspection, we identify

C = 0 , F1 = σi, jσi+1, j , F2 = σi, jσi, j+1 , θ1 = βJ , θ2 = βK , ψ(θ ) = ln Z . (44)

Note that F1 and F2 are linearly independent, as required, since they correspond to couplings
along different axes. In practice, we will be interested in evaluating the curvature for a range
of couplings at fixed temperature, so we may equivalently absorb β into the couplings (i.e.,
β=1), whereupon the canonical and physical variables coincide.

The metric (43) is rather unwieldy, so we do not write out the full expression here. How-
ever, we can still proceed to compute curvature invariants – in particular the Ricci scalar – to
see which physical aspects of the 2d Ising model are reflected in the geometry. To evaluate
the Ricci scalar, it is convenient to use the following expression in terms of the reduced free
energy [42]:

R= −
1

2g2

�

�

�

�

�

�

∂ 2
i f ∂i∂ j f ∂ 2

j f
∂ 3

i f ∂ 2
i ∂ j f ∂i∂

2
j f

∂ 2
i ∂ j f ∂i∂

2
j f ∂ 3

j f

�

�

�

�

�

�

, (45)

where g = detgi j . This provides a (very lengthy) expression for the Ricci curvature, which can
be evaluated numerically for a range of couplings J , K . Results are shown in figure 1.

Of course, one of the most important features of the 2d Ising model is the presence of a
finite-temperature phase transition along the critical line

sinh(2βJ) sinh(2βK) = 1 , (46)

which manifests in the information geometry as the discontinuity in the curvature observed
in fig. 1. It is encouraging that this important physical feature is captured by this approach,
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Figure 1: Numerical evaluation of the Ricci scalar (45) for the 2d Ising model, using
a uniform grid of 141×141=19, 881 points between J , K ∈ {0.1,1.5} (with β = 1).
In the left figure, we have interpolated between points to better show the global fea-
tures of the curvature: it diverges as J , K →∞, has a discontinuity along the critical
line (46) (rendered as the jagged line of spikes by Mathematica’s interpolation at-
tempts), and is otherwise approximately flat. In the right figure, we have plotted the
data without interpolating, as well as restricted the vertical range to R ∈ {−100, 100},
to better show the discontinuity along the critical line (46). One sees clearly that the
curvature diverges in opposite directions depending on which side one approaches
from. We shall see below that this corresponds to the sign of the mass in the corre-
sponding free fermion theory on either side of the phase transition, cf. fig. 2.

though it remains an open question as to which other aspects of the geometry are faithful rep-
resentations of the original physics. For example, in the context of our earlier remark that non-
interacting theories do not necessarily imply R=0, here we have an example of the converse,
namely that the vanishing of the Ricci scalar away from the critical line (and the divergence
near infinity) clearly does not imply that the model ceases to be interacting. Thus, while the
curvature clearly does capture important physical features (e.g., critical points), a complete
mapping between the physics of the underlying model and the curvature of the geometry re-
quires a more careful study. Indeed, as we discuss in section 8, the notion of curvature studied
above is not necessarily the most appropriate for capturing certain information-theoretic no-
tions.

5.2 1d free fermion theory

It is a well-known fact that the 2d classical Ising model can be mapped to a theory of non-
interacting fermions in 1d. There are however many different ways of actually constructing the
resulting field theory which, while they reproduce the correct critical behaviour, give slightly
different expressions for the fermion mass in terms of the original 2d couplings; for a selection
of different results, see [50–53]. Since we are primarily interested in comparing the critical
behaviour, we shall proceed with [50], which – in the notation above – corresponds to setting
J = K = 1, i.e., we treat β as the coupling and examine the geometry along the line of J ↔ K
symmetry in fig. 1. Accordingly, we expect that the information geometry for the 1d free
fermion theory will diverge at the critical (inverse) temperature

βc =
1
2

ln
�p

2+ 1
�

≈ 0.440687 , (47)
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cf. (46) with J =K= 1 and β = βc . We shall now see that the information geometry indeed
reproduces this feature.

For the isotropic case with J=K absorbed into β , we shall write the partition function (40)
as

ZV (β) =
1

2V

∑

σi=±1

exp
�

β
∑

(i j)

σiσ j

�

. (48)

where the sum in the exponential is over nearest-neighbor pairs (i j) and where we have in-
cluded an explicit normalization by the total Hilbert space dimension 2V , where V = N2 is the
total number of sites, for consistency with [50]. In this notation, the corresponding reduced
free energy is5

f = lim
V→∞

1
V

ln ZV (β) . (49)

In this case, we have only a single parameter β , so the information metric is one-dimensional,
cf. (43) with i= j=β . The second derivative of the reduced free energy with respect to β is
essentially the specific heat, which is given in [50],

gββ =
d2 f
dβ2

'
8
p

2
π

ln
1

|β − βc|
+ regular part . (50)

The regular part consists of terms which are polynomial in β −βc and thus vanish as β → βc;
since we are interested in the dominant behaviour near criticality, we shall discard this piece
henceforth. We will also disregard the overall prefactor, since this does not alter the divergence
structure of the metric. Thus, for our purposes, we may summarize the result more compactly
as

gββ ≈ ln
1

|β − βc|
, (51)

which diverges to +∞ as β → βc .
We wish to express (50) in terms of the mass parameter m that appears in the correspond-

ing free Majorana fermion field theory. This model is also described in [50], with

m= 2
� tc

t
− 1

�

, (52)

where tc ≡
p

2−1 and t ≡ tanhβ (the lattice spacing has been set to 1, so m is dimensionless).
Solving this expression for β perturbatively around the critical point yields

β − βc ≈ −
m
4

, (53)

which we can then substitute into the metric component (51) to find

gββ ≈ ln
1
|m|

, (54)

where we have again dropped the regular piece and overall numerical prefactor. This result is
plotted in fig. 2.

We would now like to reproduce this result from a calculation in the low-energy effective
field theory whose action is given, in Euclidean signature, by

S =

∫

d2z
2π

�

ψ∂ψ+ψ∂ψ+ imψψ
�

. (55)

5Note that [50] writes this as F(β), as if this were the free energy. This is simply a matter of nomenclature.
However, the standard definition of the free energy is F = − 1

β ln Z , which explains why we put a relative factor of
−β between F and the reduced free energy f . At the end of the day, we want to take two derivatives of ln Z to get
the metric. Dividing by the volume before taking derivatives ensures a well-defined continuum limit V →∞.
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Figure 2: Left: Fisher information metric (50) for the 1d free fermion theory cor-
responding to the 2d classical Ising model. Note that the metric obtained via the
mapping in [50] is only valid near the critical point mc=0. Right: plot of the mass
(52) as a function of β = βJ = βK , from which we see that the free fermion mass
vanishes precisely at the critical temperature (47), corresponding to the phase tran-
sition in the 2d model where one expects to find a conformal field theory. The mass
also takes opposite signs on either side of the critical line in fig. 1 that matches the
direction of divergence in the 2d curvature, i.e., we find m>0 on the side nearer the
origin and m<0 on the side nearer βJ = βK →∞.

The lightcone coordinates (z, z̄) are related to the Cartesian coordinates (x , y) via

�

z
z̄

�

=

�

1 i
1 −i

�

�

x
y

�

,
�

x
y

�

=
1
2

�

1 1
−i i

�

�

z
z̄

�

, (56)

and the lightcone derivatives are defined as

∂ ≡ ∂z , ∂ ≡ ∂z̄ . (57)

To calculate the metric gmm for this theory, we first note that in the field theory analogue of the
probability distribution (39), one identifies the probability of a particular field configuration
with the integrand of the normalized path integral (in Euclidean signature) evaluated on that
field configuration. One can then show (cf. eqs. (11) and (12) in [54]) that the Fisher metric
is given by

gi j =
1
V

�

〈∂iS ∂ jS〉 − 〈∂iS〉〈∂ jS〉
�

, (58)

where the expectation values are taken with respect to the standard path integral, the deriva-
tives are taken with respect to the coupling constants of the theory, and the volume divergence
is explicitly divided out as usual. In the particular case when the coupling constant is a mass
parameter, the first expectation value above reduces to a four-point function and the second to
a product of two-point functions. In the special case of a free field theory, of which (55) is an
example, one can use Wick’s theorem to reduce the four-point function to sums (or differences)
of products of pairs of two-point functions. For the example at hand, one finds

gmm =

∫

d2 x
�

〈ψ(x)ψ(0)〉〈ψ(x)ψ(0)〉 − 〈ψ(x)ψ(0)〉〈ψ(x)ψ(0)〉
�

. (59)

The set of four possible two-point functions is given by [50]
 

〈ψ1ψ2〉
¬

ψ1ψ2

¶

¬

ψ1ψ2

¶ ¬

ψ1ψ2

¶

!

= −2π

�

2∂1 im
−im 2∂ 1

�∫

d2p
(2π)2

eip·(x1−x2)

p2 +m2
, (60)
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where the subscripts indicate the coordinate xi = (x i , yi) at which the field or derivative is
evaluated. Plugging these into the expression for gmm, and focusing just on the divergent
part, simplifies the result to

gmm =

∫ Λ

0

p dp
p2 +m2

, (61)

where we have introduced an ultraviolet cutoff because the integral is logarithmically diver-
gent. Assuming Λ� |m|, we get

gmm ≈ ln
�

Λ

|m|

�

. (62)

Renormalization will simply replace the cutoff with a renormalization scale, µ, which, in terms
of comparing with gββ in (50) and (54) is just part of the “regular part”. As far as the diver-
gence at criticality is concerned, we get the same behavior,

gmm ≈ ln
1
|m|

. (63)

Comparing this result with gββ in (54), we see that both sides of the mapping retain the
salient features, namely the location of the divergence (at m=0) and the type or degree of the
divergence (logarithmic).

6 Information geometry on state space: coherent fermions

In this section, we will discuss the information geometry metric on a space of states of a
quantum system. Our goal is to compute the information geometry metric on the space of
coherent states of a quantum field theory of two free Majorana fermions (cf. [55]). It turns
out that the definition of the Fisher metric with which we have been working so far does not
capture the fully quantum nature of these states. In this case, instead of working with real-
valued probability distributions, we must work with density matrices. We will introduce the
concept of a Bures distance between two density matrices which we will use to define the
Bures metric, the quantum analogue of the Fisher metric. Then, we will show that the Bures
metric on the space of fermionic coherent states is the metric of a 2-sphere.

So far, with regards to the 2d Ising model, we have been discussing the Fisher metric on
the space of theories parametrized by J and K , or β (in the isotropic case J = K = 1). For
the associated free fermion theory there is a single parameter, the fermion mass m, which may
be obtained as a function of J and K when performing the map. However, as we did for the
moduli space of scalar field instantons, inspired by the work in [26] on Yang-Mills instantons,
we can also consider the information metric on a space of states.

In the case of the Yang-Mills and scalar instantons, Hitchin’s proposal [40] of using the
Lagrangian density as the probability distribution was used, which places those examples
squarely within the scope of our introduction to information geometry and the Fisher informa-
tion metric. However, when we are talking about the states of a system, particularly a quantum
mechanical system, we are naturally led to generalize our definition of the Fisher metric. For
example, we would like to be able to deal with mixed as well as pure states, which requires us
to generalize the discussion of information geometry to include probability distributions that
are matrix-valued, rather than simply real-valued.

To this end, we first point out that the Fisher metric can alternatively be defined in terms of
so-called divergence functions. These divergence functions are actually bi-functionals D(p||q)
taking as their inputs two different probability distributions p and q. As explained in [21], one
can introduce a class of such distance-like measures called α-divergences parametrized by a
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real parameter α. We will not write down the general formula for the divergence as a function
of α here; cf. (103) for the expression when α 6= ±1. However, for example, when α = 1 one
obtains the familiar Kullback-Leibler divergence, i.e., the relative entropy,

D(p||q) =
∫

dx p(x) ln
p(x)
q(x)

. (64)

Due to the asymmetry between p and q, the divergence is not a true distance metric, but can
be seen to be intimately related to the Fisher metric by considering the divergence between
infinitesimally separated distributions p = p(x;θ ) and q = p(x;θ ′), where

p(x;θ ′) = p(x;θ ) +∆θ i∂i p(x;θ ) + . . . , (65)

where∆θ i =
�

θ ′ − θ
�i

is some infinitesimal change in the ith direction. The first∆θ i-dependent
term in the expression for relative entropy occurs at second order, and reads

D
�

p(θ ); p(θ ′)
�

=
1
2
∆θ i∆θ j gi j + . . . , (66)

where

gi j =
∂ 2

∂ θ ′i∂ θ ′ j
D
�

p(θ )||p(θ ′)
�

�

�

�

�

θ ′=θ
(67)

turns out to be the Fisher metric introduced previously.6 We stress that the Fisher metric can
be derived in this way from an α-divergence for any real value of α (see appendix A); the
Kullback-Leibler divergence is merely one example in this regard.

When it comes to generalizing the discussion of information geometry to include, for ex-
ample, matrix-valued probablity distributions, one standard starting point is a divergence of
some sort. The inputs of a divergence can be generalized from a standard real-valued proba-
bility distribution to a matrix-valued one. A matrix-valued probability distribution must still
be positive semi-definite, meaning that its eigenvalues must be real and non-negative. The
normalization condition of the probability distribution is replaced with a unit trace condition
on the matrix-valued probability distribution, where this trace includes both the matrix trace
as well as possible additional integrals (e.g., spacetime integrals). These properties precisely
describe a density matrix. Therefore, we simply replace p and q in the divergence with ρ and
ρ′, which are two different density matrices. One can also include fermionic statistics by in-
cluding Grassmann-valued probability distributions, or, as is often more convenient, defining
states using creation and annihilation operators which satisfy anti-commutation rather than
commutation relations.

For a general quantum field theory, the quantum analogue of the Fisher metric when work-
ing with density matrices is the Bures metric which is defined in the following way [55]. One
first defines the Bures distance7 between two density matrices ρ1 and ρ2,

DB(ρ1,ρ2) = 2
�

1−
�

�

�tr
r

ρ
1/2
1 ρ2ρ

1/2
1

�

�

�

�

, (68)

and then expands this Bures distance to lowest nontrivial order in dρ, where ρ2 = ρ1 + dρ.
The lowest order is second order, which then defines a line element and a metric, called the

6Note that our definition of D(p||q) is actually related to the one in [21] by switching the order of p and
q. This switch generates what is called a “duality”. See [21] for further discussion of this duality and so-called
dual connections. Suffice it to say that, had we not made this switch, then the Kullback-Leibler divergence would
correspond to α = −1, rather than α = 1. The duality between α and −α makes this point moot and largely an
aesthetic matter.

7Note that the definition in [55] does not have the absolute value signs. Also note that an alternative convention
has the Bures distance defined to be the square root of (68). This makes no practical difference in the subsequent
derivation of the Bures metric for free fermionic coherent states.
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Bures metric. For pure states ρ1 = |ψ1〉 〈ψ1| and ρ2 = |ψ2〉 〈ψ2|, the Bures metric reduces to
the Fisher metric8 (up to an overall factor) and is simply given by

DB

�

|ψ1〉 , |ψ2〉
�

= 2
�

1− |〈ψ1|ψ2〉|
�

. (69)

We now consider this metric on the space of coherent pure states. For a single spin, this was
calculated in [56]. Here, the spin is parametrized in terms of a normalized three-dimensional
vector (x1, x2, x3) = (sinθ cosφ, sinθ sinφ, cosθ ) as

|z〉=
1

(1+ |z|2)1/2

�

1
z

�

, (70)

where

z =
x1 + i x2

1+ x3
= eiφ tan

θ

2
, (71)

and the Fisher metric is found to be that of a two-dimensional sphere,

ds2 =
dz dz̄

(1+ |z|2)2
=

1
4
(dθ2 + sin2 θ dφ2) . (72)

An equivalent result is obtained for the Fisher metric of coherent pure states of two free Majo-
rana fermions [55]. Let a and b be the annihilation operators for the two Majorana fermions,
which satisfy anticommutation relations9

{a, a†}= 1, {b, b†}= 1, (73)

and where all other anticommutators vanish. The coherent state is given by

|ψλ〉=
√

√ 1
1+ |λ|2

e−λa† b†
|Ω〉 , (74)

where λ is a complex parameter and |Ω〉 is the unentangled IR state which is annihilated by a
and b,

a |Ω〉= 0, b |Ω〉= 0 . (75)

For the states (74), the Fisher metric is found to be that of a two-dimensional sphere as well,

ds2 =
dλdλ̄

(1+ |λ|2)2
. (76)

As an interesting fact we note that according to [33], within information geometry, so-called
categorical distributions, which are different from the exponential families discussed in section
2.1 above, lead to spherical Fisher metrics. In information theory, categorical distributions are
generalized Bernoulli distributions describing a discrete random variable with more than two
possible outcomes with fixed probability. However, as again discussed in detail in [39], the
map between probability distributions and metrics is not bijective, and also other distributions
may lead to spherical Fisher metrics.

8By the Fisher metric here, we mean the generalization of the definition of the Fisher metric in which the
real-valued probability distribution p is simply replaced with a density matrix ρ and the integral over the random
variable x is replaced with the matrix trace. The normalization condition of the probability distribution is clearly
replaced with the unit trace condition on the density matrix, trρ = 1. For example, performing this generalization
to the definition of the Fisher metric in (8) yields a result which is equivalent (up to an overall factor) to the Bures
metric when the states are pure states.

9If we wish to make contact with field theory, then we can make these creation and annihilation opera-
tors dependent on momentum and these relations are generalized in the obvious way. Namely, for example,
{a(k), a†(p)}= (2π)dδ(d)(k− p), where d is the number of spatial dimensions.
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7 Symmetries of the Bures metric

In the previous section, we found that the Bures metric on the space of coherent states of a
theory of two free Majorana fermions is the metric on a 2-sphere. In contrast, in the theory of
one free complex bosonic scalar field, the coherent state is given by

|ψλ〉=
Æ

1− |λ|2 e−λa† b†
|Ω〉 , (77)

where the anticommutation relations in (73) are replaced with commutation relations and the
Bures metric on these states turns out to be

ds2 =
dλdλ̄

(1− |λ|2)2
, (78)

which is the metric on a 2-dimensional hyperbolic space.
In fact, we can show that these results for the Bures metric for the free fermions and bosons

actually follow from the symmetries of their corresponding density matrices. This argument
is directly analogous to the discussion in section 3. There, we showed that if a transformation
on the parameters ξ of the probability distribution can be undone or compensated for by a
transformation on the random variable x (cf. eqn. (24)), then the Fisher metric must be
invariant under this transformation. In cases with a high degree of symmetry, such as for
Gaussian distributions, these symmetries are enough to pin down the Fisher metric without
any actual computation.

In the case when the family of real-valued probability distributions pξ is replaced with
a family of density matrices ρξ, the symmetries of these density matrices take the form of
conjugation by some special unitary matrix,

ρξ→ ρξ′ = UρξU†, UU† = U†U = I , det U = 1 , (79)

where I is the identity matrix. It is important to note that the converse of the above statement
does not hold in general: it is possible that a unitary transformation of ρξ takes us out of the
family of density matrices that we care about. That is, there can be unitary matrices U such
that UρξU† cannot be written as ρξ′ for some ξ′. In fact, this turns out to be the case for the
bosonic coherent states. Interestingly, however, the case of the fermionic coherent states is an
exception. This is because the fermionic coherent states are superpositions of just two states
|Ω〉 and a† b† |Ω〉. Taking these two states as the basis, the density matrix reads

ρλ =
1

1+ |λ|2

�

1 −λ̄
−λ |λ|2

�

=
1
2

�

I + n̂λ · ~σ
�

, (80)

where I is the 2× 2 identity matrix, ~σ is the vector of Pauli matrices

σ1 =

�

0 1
1 0

�

, σ2 =

�

0 −i
i 0

�

, σ3 =

�

1 0
0 −1

�

, (81)

and n̂λ is the unit vector defined as

n̂λ =
1

1+ |λ|2





−λ− λ̄
i(λ− λ̄)
1− |λ|2



 . (82)

Any 2×2 special unitary matrix can be written as U = eiθ n̂·~σ for some real number θ and some
unit vector n̂. One can show that conjugating ρλ by this U is equivalent to a rotation of n̂λ by
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an angle θ around the axis n̂. In other words, the symmetry group of ρλ can be equivalently
thought of as SU(2) or SO(3), which is enough to argue that the Bures metric must be the
metric on a 2-sphere. In fact, we can write the Bures metric in terms of n̂λ as

dλdλ̄
(1+ |λ|2)2

=
1
4

dn̂λ · dn̂λ , (83)

which makes the SO(3) symmetry manifest.
The bosonic case is more complicated because the coherent states are superpositions of

infinitely many states, namely 1
n!(a

† b†)n |Ω〉 for n = 0,1, 2, . . .. In this basis, the (m, n)-
component of the density matrix, which we denote by (ρλ)mn, is given by

(ρλ)mn = (−1)m+n(1− |λ|2)λmλ̄n . (84)

Clearly, a transformation of λwill, in general, transform all of these components and therefore
a unitary transformation that acts, for example, only on the first two rows and columns of ρλ
is not a symmetry of this family of density matrices because it cannot be written as ρλ′ for
some λ′. It turns out that only three unitary transformations form bona fide symmetries of
this family of density matrices and they form the symmetry group SO(2,1). We can describe
the action of these transformations on ρλ implicitly by defining their action on the vector

m̂λ =
i

1− |λ|2





−λ− λ̄
i(λ− λ̄)
1+ |λ|2



 , (85)

which is a unit vector with respect to the SO(2,1) inner product, namely the inner product
with signature (+,+,−). The SO(2,1) transformations of m̂λ are simply rotations in the (1,2)-
plane and boosts in the (1,3)- and (2,3)-planes. The corresponding transformations of ρλ
are somewhat more complicated, but one can nevertheless show that they are equivalent to
conjugation by appropriately defined unitary matrices.10 Therefore, the Bures metric must be
SO(2,1)-invariant and the only possibility is 2-dimensional hyperbolic space. In fact, we can
write the hyperbolic metric in terms of m̂λ as

dλdλ̄
(1− |λ|2)2

=
1
4

dm̂†
λ





1 0 0
0 1 0
0 0 −1



dm̂λ , (86)

which makes the SO(2,1) symmetry manifest.
To summarize, the Bures metric on the space of coherent states of two free Majorana

fermions is the 2-dimensional sphere, and for one complex bosonic scalar it is 2-dimensional
hyperbolic space. In this section, we have shown that these metrics are determined quite el-
egantly by the SO(3) and SO(2,1) symmetry of the respective density matrices. We therefore
observe that the fact that the information metric inherits the symmetries of the probability
distribution in the classical case continues to hold in the quantum case with the appropriate
quantum analogues.

10For example, a rotation in the (1,2)-plane by an angle θ simply multiplies λ by a phase eiθ and thus multiplies
(ρλ)mn by the phase ei(m−n)θ . This is equivalent to conjugating ρ by the unitary matrix whose (m, n)-component
is Umn = eimθδmn, which can therefore be undone simply by conjugating by U†. The unitary transformation that
undoes the effect of an infinitesimal boost with rapidity parameter ε� 1 in the (1,3)-plane to linear order in ε is
U = I + iε

2 u with umn = inδm+1,n − imδm,n+1 and for an infinitesimal boost in the (2,3)-plane the matrix u is given
by umn = nδm+1,n +mδm,n+1.
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8 Different notions of curvature

In this section, we begin by clarifying the various notions of curvature that appear in the lit-
erature; in particular, the statement that non-interacting theories are flat generally refers to
flatness with respect to the 1-curvature, not the 0-curvature leading to a metric connection.
The failure to appreciate this distinction seems to have lead to some erroneous and poten-
tially confusing claims. The following will draw primarily from [21]; see also [24] for a brief
introduction.

For maximum clarity, let us start by recalling some basic differential-geometric notions.
Recall that the covariant derivative ∇ may be expressed in local coordinates as

∇X Y = X i
�

∂iY
k + Y jΓ k

i j

�

∂k , (87)

where X = X i∂i , Y = Y i∂i are vectors in the tangent space TS. If these are basis vectors such
that X i = Y i = 1, then ∇∂i

∂ j = Γ k
i j ∂k. The vector Y is said to be parallel with respect to the

connection ∇ if ∇Y = 0, i.e., ∇X Y = 0 ∀X ∈ TS; equivalently, in local coordinates,

∂iY
k + Y jΓ k

i j = 0 . (88)

If all basis vectors are parallel with respect to a coordinate system [ξi], then the latter is an
affine coordinate system for ∇. A connection ∇ which admits such an affine parametrization is
called flat, i.e., the manifold S is flat with respect to ∇.

Now, with respect to a Riemannian metric g, one defines

Γi j,k = 〈∇∂i
∂ j ,∂k〉= Γ l

i j glk , (89)

which defines a symmetric connection, i.e., Γi j,k = Γ ji,k. If, in addition, ∇ satisfies

Z〈X , Y 〉= 〈∇Z X , Y 〉+ 〈X ,∇Z Y 〉 ∀X , Y, Z ∈ TS , (90)

or, equivalently,
∂k gi j = Γki, j + Γk j,i , (91)

where gi j = 〈∂i ,∂ j〉, then ∇ is a metric connection with respect to the Riemannian metric g.
Connections which are both metric and symmetric are Riemannian.

The above describes the familiar 0-connection, henceforth denoted ∇(0), with associated
connection coefficients Γ (0)i j,k. The significance of such connections in physics – and Riemannian
geometry more generally – is due to the fact that under a metric connection, parallel transport
of two vectors preserves the inner product. However, the natural connections on statistical
manifolds are generically non-metric, as we shall now explain.

If S = {pξ} is an n-dimensional model as above, we may define the n3 functions Γ (α)i j,k which
map each point in ξ to

�

Γ
(α)
i j,k

�

ξ
≡ Eξ

��

∂i∂ j`ξ +
1−α

2
∂i`ξ∂ j`ξ

�

�

∂k`ξ
�

�

, (92)

where α ∈ R. This defines an affine connection ∇(α) on S via

〈∇(α)
∂i
∂ j ,∂k〉= Γ

(α)
i j,k , (93)

where g = 〈·, ·〉 is the Fisher metric (4). ∇(α) is called the α-connection, and accordingly terms
like α-flat, α-affine, α-parallel, etc. denote the corresponding notions with respect to this
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connection. Note that when α = 0 we recover the familiar metric connection above. Indeed,
observe that

∂k gi j = ∂kEξ[∂i`ξ∂ j`ξ]

= Eξ[
�

∂k∂i`ξ
� �

∂ j`ξ
�

] + Eξ[
�

∂i`ξ
� �

∂k∂ j`ξ
�

] + Eξ[
�

∂i`ξ
� �

∂ j`ξ
� �

∂k`ξ
�

]

= Γ (0)ki, j + Γ
(0)
k j,i ,

(94)

cf. (91). Thus, while∇(α) is symmetric for any value ofα by definition (cf. (93) and (89)), only
the special case α= 0 defines a Riemannian connection∇(0) with respect to the Fisher metric.
In general, we note that Γ (α)i j,k can be obtained from the third-order term in the expansion of
the α-divergence; see appendix A.

Physically, the significance of the 1-connection lies in the fact that it is intimately related to
the Kullback-Leibler divergence or relative entropy. That is, one can obtain the Fisher metric
for any α (see appendix A), but in the case of α = ±1, it is the Kullback-Leibler divergence
which naturally induces the metric and the associated ±1-connections.11 Additionally, the 1-
connection is intimately associated with the exponential families introduced in section 2.1, in
that the canonical coordinates [θ i] provide a 1-affine coordinate system, with respect to which
S is 1-flat. To see this, observe that

∂i`(x;θ ) = Fi(x)− ∂iψ(θ ) =⇒ ∂i∂ j`(x;θ ) = −∂i∂ jψ(θ ) . (95)

This implies that
�

Γ
(1)
i j,k

�

θ
= Eθ [

�

∂i∂ j`θ
�

(∂k`θ )] = −∂i∂ jψ(θ )Eθ [∂k`θ ] = 0 , (96)

such that the curvature vanishes identically in this case. We stress that an α-family is not α-flat
in general; rather, this property is special to α= ±1 [21].

It is also simple to show that for the exponential family Γ (α)i j,k is proportional to the third-
order moments of Fi:

Γ
(α)
i j,k =

1−α
2




(Fi − 〈Fi〉)(F j − 〈F j〉)(Fk − 〈Fk〉)
�

, (97)

which indeed vanishes identically for α= 1.
As mentioned above, non-interacting theories are only flat in the sense of 1-flatness, cf. the

Gaussian example in section 2.2. But this same flatness holds for any model that can be
put in the form of an exponential family, including the Ising model on theory space spanned
by its couplings that we discussed above. It remains an open question as to precisely what
information about the underlying physical theory is encoded in the different curvatures. For
example, the divergence in the 0-curvature of the Ising model correctly captures the phase
transition; however, note that the 1-curvature remains zero even along this critical line, and is
therefore completely insensitive to the critical behaviour. An important question for the future
is thus to determine which physical behaviour is captured by the different curvatures.

As a noteworthy fact in view of establishing new field theory/gravity dualities, we point
out that for non-metric curvatures, in 2+1 dimensions a gravity action may be obtained from
the Chern-Simons action

S = 1
4π

tr

∫

�

Γ ∧ dΓ +
2
3
Γ ∧ Γ ∧ Γ

�

, (98)

11The fact that α = 1 and −1 are entwined in this way hints at the duality between ±α-families in general;
see [21] for details, or [57] for an online review.
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for which the equation of motion implies that the covariant derivative of the curvature van-
ishes,

dΓ + Γ ∧ Γ = 0 . (99)

Obviously, the case (96) in which the 1-curvature vanishes itself is a special solution to the
more general equation of motion (99). This suggests a possible duality between field theories
leading to an exponential family and gravity actions involving non-metric curvatures.

9 Discussion

In this paper, we have collected and discussed a number of general lessons that we feel are im-
portant in the application of information geometry to quantum field theory and to the AdS/CFT
correspondence. Our discussion was framed around some simple examples: exponential fami-
lies of probability distributions (of which the Gaussian is a representative member), scalar field
instantons, and the 2d classical Ising model on a square lattice and its mapping to the theory
of free massive Majorana fermions. For clarity, we enumerate these general lessons here:

1. Infinitely many different probability distributions give the same Fisher metric. The Fisher
metric inherits the symmetries of the probability distribution, but the probability distribu-
tion does not necessarily need to enjoy all the symmetries of the Fisher metric.

In many of the cases studied in the literature, the probability distribution enjoys pre-
cisely the translation and scaling symmetries that suffice to force the Fisher metric to
be AdS. In the light of our investigations, it is conceivable that there are other dualities
relating quantum field theories to geometries. However, the point raised above has to
be taken into account when studying these, and of course the most relevant question is
what determines the dynamics of the dual gravity theory.

Additionally, we demonstrated in section 7 that this fact continues to hold even in
the quantum case of the Bures metric on a space of quantum states. The examples we
studied were free fermionic and bosonic coherent states. In this case, the probability
distribution is replaced with a density matrix and its symmetries now take the form of
conjugation by an appropriate unitary matrix. The symmetry groups turned out to be
SO(3) for the fermions and SO(2,1) for the bosons, which implies that the Bures metric
must be the 2-sphere and 2-dimensional hyperbolic space for the fermionic and bosonic
cases, respectively.

2. There are two basic ways of applying information geometry to quantum field theories: one
can compute a metric on the space of theories parametrized by coupling constants or on the
space of states of a given theory with a fixed set of coupling constants.

For example, saying that the Fisher metric on a free real massive scalar field is AdS2
is ambiguous and potentially misleading. This happens to be the Fisher metric on a
particular set of coherent states parametrized by one complex coefficient [55], but is
unrelated to the Fisher metric on the space of such theories parametrized by the mass.
Which prescription one uses depends on what one wishes to study, and it is important
to keep the distinction in mind.

3. The Fisher metric on a set of states of a quantum field theory is sensitive to whether or not
the theory has a stable potential.

We demonstrated this phenomenon with the example of a massless real scalar field
in four Euclidean dimensions with an inverted φ4 potential. We considered the moduli
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space of instantons for this theory, parametrized by the center and width of the instanton.
Symmetry arguments along the lines of point 1 above imply that the Fisher metric ought
to be AdS5. However, there is an important ambiguity in the Hitchin prescription [40]
of taking the Lagrangian density evaluated on the solutions to the equation of motion
as the probability distribution on the space of those solutions. We showed two different
Lagrangian densities, which were related by a trivial total derivative, one of which gave
a well-defined probability distribution while the other did not.

4. There are many different connections one can define in information geometry, most of which
are not metric compatible with respect to the Fisher metric.

This technical distinction is obscured in some of the existing literature, both in recent
physics works and older works in statistics while the basics of information geometry
were still under development. It is relevant in light of claims that free theories lead to
flat geometries, and a finer appreciation of these various curvature notions may be im-
portant for determining precisely what information about the underlying physical theory
is encoded in the geometry.

With regard to the 2d Ising model, we note that the analysis presented here may be straight-
forwardly extended to the 3d Ising model as well. As in two dimensions, we expect the Fisher
metric to diverge at the critical point determined numerically, for instance in [58], or using
the conformal bootstrap as in [59]. The Fisher metric approach may also be of relevance for
interpreting the 3d Ising model as a string theory, as proposed by Polyakov [60] and recently
considered by Iqbal and McGreevy [61]. Here, the domain walls that separate up from down
spins are interpreted as string worldsheets. As argued in [61], the identification of the world
sheet target space with AdS4 does not lead to a conformally invariant worldsheet sigma model.
We expect that an interesting avenue to proceed in this context is to the determine the proba-
bility distribution of the domain wall worldsheet sigma model and to calculate the associated
Fisher metric.

Finally, let us remark on a couple interesting and potentially fruitful connections between
information geometry and holography, namely holographic RG and complexity:

Holographic RG

Intuitively, the flow along the RG can be thought of as a coarse-graining of degrees of freedom
from the UV to the IR. Consequently, if one considers two nearby theories in the UV, more
and more measurements will be necessary to distinguish them as one flows to the IR, cf. the
intuition below (21). That is, the inability to probe fine-grained correlators implies a loss of
distinguishability between nearby theories. In [45], this idea was made more precise by cal-
culating the distance between quantum field theories using the Zamolodchikov metric, which
is proportional to the Fisher metric studied here. In the context of the emergent spacetime or
“it from qubit” paradigm, in which one takes the boundary CFT as ontologically prior and at-
tempts to derive the bulk AdS along with its dynamics, this line of reasoning suggests that the
classical spacetime deep in the IR may result from a coarse-graining procedure over suitably-
parametrized UV theories. A related observation was made in [36]where it was suggested that
the expectation value in the Fisher metric may be thought of as a statistical average over quan-
tum fluctuations that gives rise to the classical spacetime. Thus, despite the cautionary lessons
above, we regard it as a very interesting open question as to whether the connection between
the information content of the field theory and the geometry resulting from the Fisher metric
(or its quantum analogues) can be utilized to shed further light on gauge/gravity duality, and
perhaps lead to “information/geometry” dualities in a wider context.
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Complexity

Another potential application is in generalizing holographic complexity [47] to interacting and
ultimately strongly coupled theories. While a great deal of exciting progress has been made in
free theories (see [62–69] and related work), and attempts have been made to go beyond this
restriction (see in particular [70], as well as [71–74]), a satisfying prescription for defining
and working with complexity in holographic CFTs remains elusive. However, the basic idea
underlying existing approaches is to geometrize the problem, and define complexity in terms
of the distance between quantum states. Insofar as information geometry already provides
what is in some sense the intrinsic geometry for a given distribution, it is therefore natural to
ask whether this framework can be used to define complexity in general theories, including
holographic CFTs.

In principle at least, one can already do this for any of the models considered above. For
example, we could use the results of section 5 to define complexity for the 2d Ising model as the
minimum geodesic distance between theories with different couplings. Practically however,
the metric is so unwieldy that we could only proceed with our curvature calculation numer-
ically, and even an approximate analytical expression for the geodesics seems beyond reach.
In the case of AdS/CFT, one again encounters the question of how to suitably parametrize the
boundary theory in order to apply this framework, which may largely determine the physi-
cal meaning of the results. One would also need to contend with the first lesson in the list
above, namely that very different distributions – and hence, states/theories – may yield the
same geometry, and hence the same complexity. Whether this is because the Fisher metric is
not a sufficiently refined means of probing these theories, or hints at some deep connection
between them, remains to be seen. Nonetheless, in light of the significant efforts to quantify
complexity seen in the past couple years, it seems worth investigating whether methods from
information geometry can be fruitfully applied to go beyond the limits of current approaches.
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A Derivation of the Fisher metric and connection coefficients for
all α

In this short appendix, we present derivations for two important quantities, namely the Fisher
metric and the α-Christoffel symbol, by expanding the α-divergence in a small perturbation
of the distribution. We stress that these expressions hold for all α, not just the special case of
α= ±1 considered in the main text.
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A.1 Fisher metric

One begins by defining `(α) as in (2.57) and (2.58) of [21]:

`(α) ≡ L(α)(p), L(α)(p)≡

¨

2
1−α p

1−α
2 , α 6= 1 ,

ln p, α= 1 .
(100)

While the definition of L(α)(p) appears discontinuous at α = 1, it is designed to yield a con-
tinuous expression for the derivative ∂i`

(α):

∂i`
(α) = p

1−α
2 ∂i` , (101)

where ` = ln p, as usual, and where this expression holds for any α. For convenience, we
collect the second and third derivatives of `(α) as well:

∂i∂ j`
(α) = p

1−α
2

�

∂i∂ j`+
1−α

2
∂i`∂ j`

�

, (102a)

∂i∂ j∂k`
(α) = p

1−α
2

�

∂i∂ j∂k`+
1−α

2

�

∂i∂ j`∂k`+ ∂i∂k`∂ j`
�

+
1−α

2
∂i`

�

∂ j∂k`+
1−α

2
∂ j`∂k`

��

= p
1−α

2

�

∂i∂ j∂k`+
1−α

2

�

∂i∂ j`∂k`+ ∂i∂k`∂ j`+ ∂ j∂k`∂i`
�

+
�

1−α
2

�2

∂i`∂ j`∂k`

�

. (102b)

Now, for α= 1, the expression for D(p||q) was given in the main text, cf. (64). For α 6= 1,
the general expression reads [21]12

D(α)(p||q) =
4

1−α2

�

1−
∫

dx p
1+α

2 q
1−α

2

�

=
4

1−α2
−

2
1+α

∫

dx p
1+α

2 `(α)q . (103)

Obviously, this is equal to 0 when q = p. If p = pθ and q = pθ ′ , and we Taylor expand around
θ ′ = θ , then the first-order term vanishes as well:

∂ D(α)(pθ ||pθ ′)
∂ θ ′i

�

�

�

�

θ ′=θ
= −

2
1+α

∫

dx p
1+α

2
θ

p
1−α

2
θ ′
∂ `θ ′

∂ θ ′i

�

�

�

�

θ ′=θ

= −
2

1+α

∫

dx p ∂i`

= −
2

1+α
∂i

∫

d x ∂i p

= 0 .

(104)

Meanwhile, the second-order term gives precisely the Fisher metric:

∂ 2D(α)(pθ ||pθ ′)
∂ θ ′i ∂ θ ′ j

�

�

�

�

θ ′=θ
= −

2
1+α

∫

dx p
1+α

2
θ

p
1−α

2
θ ′

�

∂ 2`θ ′

∂ θ ′i ∂ θ ′ j
+

1−α
2
∂ `θ ′

∂ θ ′i
∂ `θ ′

∂ θ ′ j

�

�

�

�

�

θ ′=θ

= −
2

1+α

∫

dx p
�

∂i∂ j`+
1−α

2
∂i`∂ j`

�

= −
2

1+α
∂i
��

�
��
�* 0∫

dx p ∂ j`+
2

1+α

�

1−
1−α

2

�

∫

dx p ∂i`∂ j`

=

∫

dx p ∂i`∂ j`= gi j .

(105)

12Our conventions are such that p↔ q relative to [21].
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A.2 Connection coefficients

Continuing, the α-Christoffel symbol is obtained from the third-order term in the expansion
of the α-divergence. Using (102b), we find

∂ 3D(α)(pθ ||pθ ′)
∂ θ ′i ∂ θ ′ j ∂ θ ′k

�

�

�

�

θ ′=θ
= −

2
1+α

∫

dx p
1+α

2
θ

p
1−α

2
θ ′

�

∂ 3`θ ′

∂ θ ′i ∂ θ ′ j ∂ θ ′k

+
1−α

2

�

∂ 2`θ ′

∂ θ ′i ∂ θ ′ j
∂ `θ ′

∂ θ ′k
+

∂ 2`θ ′
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cf. (92).
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