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Abstract

The transition between the broken and unbroken phases of massive gauge theories,
namely the rearrangement of longitudinal and Goldstone degrees of freedom that oc-
curs at high energy, is not manifestly smooth in the standard formalism. The lack of
smoothness concretely shows up as an anomalous growth with energy of the longitudinal
polarization vectors, as they emerge in Feynman rules both for real on-shell external par-
ticles and for virtual particles from the decomposition of the gauge field propagator. This
makes the characterization of Feynman amplitudes in the high-energy limit quite cum-
bersome, which in turn poses peculiar challenges in the study of Electroweak processes at
energies much above the Electroweak scale. We develop a Lorentz-covariant formalism
where polarization vectors are well-behaved and, consequently, energy power-counting
is manifest at the level of individual Feynman diagrams. This allows us to prove the valid-
ity of the Effective W Approximation and, more generally, the factorization of collinear
emissions and to compute the corresponding splitting functions at the tree-level order.
Our formalism applies at all orders in perturbation theory, for arbitrary gauge groups
and generic linear gauge-fixing functionals. It can be used to simplify Standard Model
loop calculations by performing the high-energy expansion directly on the Feynman dia-
grams. This is illustrated by computing the radiative corrections to the decay of the top
quark.
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1 Introduction

Studying Electroweak physics in reactions where the available center of mass energy E is much
larger than the Electroweak scale m∼ mW,Z is of both practical and theoretical interest.

The practical relevance stems from the fact that the LHC and its high-luminosity successor
will allow us to take a first glance at this new energy regime, which furthermore is a promis-
ing one for the search of new physics. Indirect new physics searches by precise measurement
of high-energy Electroweak processes deserve a special mention in this context because they
require accurate Standard Model (SM) predictions. Radiative Electroweak corrections are
enhanced at high energy [1–4], due to peculiar non-canceling IR effects that produce single
or double (Sudakov) logarithms of E2/m2. Therefore, even if the accuracy of Electroweak
LHC measurements above the TeV scale cannot go below few percent because of the limited
statistics, including state-of-the-art calculations (at one-loop order) for such corrections is com-
pulsory and going beyond the state-of-the-art would be desirable. The need for refined Elec-
troweak calculations will dramatically increase at future colliders probing even higher energy
scales. A particularly striking case can be made for a hypothetical tens-of-TeV muon collider,
where the QCD corrections have limited impact and the final accuracy of our predictions will
be driven by our ability to deal with Electroweak physics.

High-energy Electroweak interactions are also relevant theoretically, in connection with the
general problem of IR physics in Quantum Field Theory (QFT). In the presence of a large scale
separation E � m, it must be possible to visualise the reaction in terms of a hard scattering
process dressed by soft radiation from the initial and from the final states. The hard scattering
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is the component of the process that genuinely takes place at energy E and therefore it probes
physics at the shortest accessible distance 1/E. The radiation emerges instead from energies
ranging from some upper scale much below E down to the IR scale m. It is insensitive to the
details of the hard scattering process and to short-distance physics, and it takes a universal
form. Conversely, the hard scattering should be nearly insensitive to the long-distance IR
physics at the scale m, which should appear in that component of the process as a tiny power-
like m/E correction. The factorized picture above is supported by a number of results in
QED and QCD, and by decades of QFT practice. Therefore is must undoubtably hold true for
Electroweak physics as well. However it is not easy to substantiate the picture in the case of
Electroweak interactions and to materialise it in a recipe for concrete calculations. The most
challenging aspect of the problem is arguably the non-applicability [5] of the KLN theorem 1

to Electroweak interactions, because in “normal” QFT’s this fundamental result is the starting
point for the definition and the physical interpretation of the hard IR-insensitive component of
the reaction. The IR problem for Electroweak physics is, in this respect, even more challenging
than for QCD. But on the other hand it must be much simpler because Electroweak interactions
stay perturbative at the IR scale m. Therefore it should be possible to address the problem
in fully rigorous terms and to end up with accurate first-principle predictions without the
need of extra phenomenological input unlike in QCD. High-energy Electroweak physics is an
interesting corner of QFT and its many aspects continuously stimulate theoretical work (see
e.g. [9–22]). Further interest and results are expected in the future.

In this paper we extensively and conclusively study one peculiar technical aspect of high-
energy Electroweak physics, related to the characterization of the energy behavior of the Feyn-
man amplitudes. Namely we ask ourselves whether and how this behavior can be systemat-
ically captured by a simple power-counting rule. Power-counting would not only inform us
on the leading high-energy behavior of each process by inspecting its Feynman diagrams. It
would also allow us to isolate the diagrams that give the leading contribution and to treat
the others as perturbations in a well-organized m/E expansion. Furthermore, controlling the
energy behavior is essential in order to separate the short and long distance components of
Feynman amplitudes. This in turn is a prerequisite to prove even the simplest (tree-level) ver-
sion of any factorization theorem. Notice that in order to be useful, especially for the latter
type of applications, power-counting should also hold for diagrams whose external legs are
not exactly on the mass-shell of a physical particle.

Making power-counting manifest for the Electroweak theory requires us to depart slightly
from the standard formalism for massive gauge theories. Indeed power-counting is notoriously
hidden in standard massive gauge theory diagrams because of the anomalous E/m behavior
of the wave-functions associated to longitudinally polarized spin-one particles. The problem
shows up already in the simplest textbook example of a high-energy Electroweak process, such
as the scattering of longitudinal (i.e. helicity h = 0) vectors V0V0 → V0V0, at the tree-level
order. Longitudinal polarization vectors grow with energy as εh=0

µ ' kµ/m ∼ E/m and since
four of them are involved the diagrams containing gauge self-interaction vertices grow with
energy as E4. Diagrams with the Higgs have two inverse powers of energy from the propagator
and grow like E2. The energy growth cancels when all diagrams are summed up and the final
physical amplitude scales like E2 in the energy range (which of course would have existed only
if the Higgs was heavy) from m to the Higgs mass, and as E0 afterwards. Similar cancellations
take place in almost all high-energy processes involving longitudinal vectors.

Power-counting-violating cancellations are problematic. First of all, they prevent us from
neglecting masses in the amplitude calculation, even if we were interested in the deep high-

1The theorem ensures the cancellation of IR divergences (or of IR enhancements, when a physical IR cutoff is
present) in observables that are inclusive on the radiation [6, 7]. A weaker result, specific to soft singularities, is
known as the Bloch-Nordsieck theorem [8] and it is also not applicable in Electroweak physics.
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energy regime where they are expected to be (and eventually are) negligible in the final result.
Of course modern tree-level calculation technologies easily allow us to make computations
with finite masses, however at higher loop orders dealing with massless rather than massive
integrals could be a crucial simplification. Second, cancellations of E/m spurious enhance-
ments are problematic because they only occur if the vector bosons momenta are on-shell, i.e.
when their virtuality Q2 = k2 −m2 vanishes. But the vector bosons are never exactly on-shell
in the sub-diagrams that we would like to interpret as describing the hard scattering in fac-
torization problems. In that case Q is of order or much larger than m, while still much below
the hard scale E. The expansion parameter that should ensure factorization as the product
of a soft splitting of virtuality Q2 times the hard short-distance reaction with on-shell vector
bosons is indeed Q2/E2 � 1, which does not require Q � m.2 Because of the cancellation,
subleading terms in the Q2/E2 expansion of the off-shell amplitude can actually be of order
E2/m2 ·Q2/E2 =Q2/m2 relative to the on-shell amplitude, i.e. not small at all. The latter terms
do eventually get canceled in the total amplitude by seemingly unrelated diagrams where no
low-virtuality vector boson is propagating in the internal lines, so that factorization holds. An
explicit example of this behavior was discussed in Ref. [23] to illustrate the difficulty of proving
the validity of the Effective W Approximation (EWA) in the standard covariant formulation.

Having elaborated at length on the potential virtues of a formalism where longitudinal
polarization vectors do not grow with energy, we discuss now how to get one by “Goldstone
Equivalence”. Goldstone Equivalence is the idea that at high energy the longitudinal degree of
freedom of a massive vector gets transferred to the scalar degree of freedom associated with
the excitations of the corresponding Goldstone field. This idea is supported by the famous
Goldstone Boson Equivalence Theorem [24]. The aim of the present work is to turn Goldstone
Equivalence into a rigorous exact reformulation of Feynman rules for massive gauge theories in
which the polarization vectors are well-behaved and power-counting is manifest. Notice that
ours is not quite a “different” formalism. It employs the exact same gauge-fixed Lagrangian as
the standard one so that the Feynman rules for the vertices are standard, and all the standard
calculation technologies straightforwardly apply. Only the longitudinal polarization vector is
modified and acquires, as we will see, a component in the direction of the Goldstone field. Dia-
grams with external Goldstone legs are thus included in the calculation and their contribution
is typically (but not always) leading at high-energy compatibly with the Equivalence Theo-
rem. The standard longitudinal polarization vectors need to be replaced with well-behaved
ones also in off-shell amplitudes because we need power-counting also for the latter diagrams
in order to approach factorization problems, as we discussed. Moreover the SM vector bosons
are unstable and therefore they are never exactly on-shell. The polarization vectors for off-
shell and for unstable bosons are technically defined by the decomposition of propagator lines
that connect two otherwise disconnected diagrams. An integral part of our formalism is thus
the decomposition of such propagators in terms of well-behaved polarization vectors.

It is rather intuitive why Goldstone Equivalence allows us to get rid of the energy-growing
polarization vectors. The wave-function factor for scalars is a constant, therefore by replacing
the longitudinal bosons with the Goldstone scalars we should be able to turn the E/m behavior
into a constant one. In Ref. [25] one of us elaborated on this idea showing that energy growth is
avoided by a suitable definition of the state that describes longitudinal vectors in the enlarged
Fock space of the gauge-fixed theory. This differs from the standard one by a BRS-exact state
so that it belongs to the same element of the BRS cohomology and consequently it possesses
identical physical properties. The additional BRS-exact state contains one quantum of the
Goldstone field, which gives rise to the previously-mentioned Goldstone component of the
longitudinal state wave function. The BRS-exact state also contains a scalar excitation of
the massive vector. Its wave function, proportional to kµ/m, combines with the one of the

2Q is much smaller than m only for decay processes.
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ordinary longitudinal state and cancels the energy growth. Here we proceed in a slightly
different way. We employ the standard representative states for the physical particles in the
Fock space and we get rid of kµ/m at a later stage of the scattering amplitude calculation.
We do so by exploiting the generalized Ward identity that relates amputated amplitudes for
the gauge field, contracted with the external momentum kµ, to Goldstone bosons amplitudes.
Our approach might sound less appealing than the one of Ref. [25], but it is not. Indeed while
adding a Goldstone component to the longitudinal states is in line with the intuitive picture of
Goldstone Equivalence, it should be kept in mind that the specific representative of the BRS-
cohomology element we decide to employ is deprived of any physical meaning. The present
approach brings several advantages. It allows us to deal with a general gauge theory and in
particular with the SM, while Ref. [25] only studied a toy model. It also allows us to deal with
unstable particles, such as the physical W and Z , and with off-shell vector bosons. Finally, the
approach of Ref. [25] requires a specific choice of the gauge-fixing parameters, unlike ours.

The rest of the paper is organized as follows. In Section 2 we work out our Goldstone
Equivalence formalism for a simple toy model. This will allow us to present the various steps
of the derivation avoiding at first the extra algebraic and notational complications required
to deal with a general spontaneously broken gauge theory, which we study in Section 3. The
result essentially consists of an expression for the longitudinal (zero helicity) polarization vec-
tor E0

M [k], with components M = µ along the gauge fields and a component M = π along
the Goldstone scalars. The gauge component E0

µ[k] does not grow with energy anymore, but
rather it vanishes as m/E. Furthermore it takes a universal theory-independent form. The
scalar component E0

π[k] = E0
π(k

2) only depends on k2 and thus it is constant in energy at fixed
vector boson virtuality. It is given by a certain combination of vacuum polarization amplitudes,
to be computed in each theory and for each external vector boson. One-loop explicit expres-
sions for E0

π(k
2) for the SM vector bosons are computed and reported in Section 4. Section 4.4

and 5 are devoted to applications. In Section 4.4 we apply our formalism to tree-level longi-
tudinal vector bosons scattering and to the calculation of radiative corrections to the t → b W
top quark decay. This has the purpose of illustrating the formalism and outlining the advan-
tages of a manifest power-counting rule, and also of verifying in non-trivial examples that our
approach produces results that are exactly identical to the standard ones. In Section 5 we
instead use our formalism to derive the simplest possible “factorization theorem”. Namely we
show that collinear emissions factorize at tree-level into universal splitting amplitudes times
the hard process amplitude. We saw above that proving this seemingly trivial fact, of which
the EWA is a particular case, requires a formalism like ours where power-counting is manifest.
Finally, we report our conclusions in Section 6.

2 Warm-up: The Higgs–Kibble Model

We begin discussing Goldstone Equivalence within the so-called Higgs–Kibble model (see e.g.,
[26, 27]), namely a SU(2) gauge theory fully broken by the vacuum expectation value (VEV)
of a scalar doublet H. This will allow us to illustrate the logic of our derivation and to explain
the result in a simple context, in preparation for the general discussion of Section 3. Before
gauge-fixing, the Lagrangian simply reads

L0 = −
1
2

Tr
�

WµνW
µν
�

+ (DµH)†DµH −λ
�

|H|2 −
µ2

2λ

�2

, (2.1)
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where Wµ = Wµ
a σ

a/2 (a = 1,2, 3) are the gauge fields and the Higgs doublet is represented
as 3

H =
1
p

2

�

−i(π1 − iπ2)
v + h+ iπ3

�

. (2.2)

The parameter v is the Higgs VEV, h is the physical Higgs scalar and πa the “eaten” Goldstone
bosons. Notice that in the present section we consider bare fields, Lagrangians and parameters.
The scalar fields h andπa are defined to have zero VEV, therefore v is not equal toµ/

p
λ beyond

tree-level. The spectrum of the theory consists of 3 massive vectors and the Higgs scalar, with
tree-level masses m2

0 = g2v2/4 and m2
h,0 = 2λv2.

The standard Faddeev–Popov method allows us to turn the Lagrangian L0 into a concrete
recipe for perturbative calculations. One introduces a ghost ωa and an anti-ghost field ωa for
each gauge vector, and a gauge-fixing term Lg.f., producing a Lagrangian

L= L0 +Lg.f. +Lghosts , (2.3)

which is now suited to be studied in perturbation theory. The gauge-fixing term is given by

Lg.f. = −
1
2

∑

a

Fa(x)Fa(x) , (2.4)

where Fa are three real gauge-fixing functionals, one for each local symmetry generator. The
ghost Lagrangian is Lghosts = −ω̄aδωFa, where δω represents an infinitesimal gauge transfor-
mation with ghost parameters. The explicit form of Lghosts will not be relevant in the following.

Throughout this work we restrict our attention to gauge-fixing functionals that are linear
combination of the 4-divergence of the vector fields and of the scalars in the theory. In Sec-
tion 3 we will deal with the most general gauge-fixing in this class, however for the illustrative
purposes of the present section we consider the particular case

Fa = ∂µWµ
a /
p

ξ−
p

ξ emπa , (2.5)

where ξ > 0 and em are free parameters. In particular, em is not necessarily related to the mass
of the vector bosons. The convenience of this gauge-fixing choice stems from the fact that the
Lagrangian L0 in eq. (2.1) enjoys an exact global custodial SU(2)c symmetry under which Wµ

a
and πa transforms as triplets, while h is a singlet. The gauge-fixing functional in eq. (2.5)
preserves custodial symmetry, making its implications manifest in the gauge-fixed theory.

2.1 Useful Identities

Spontaneously broken (or exact) gauge theories are among the most studied subjects in theo-
retical physics. Of this huge body of literature we review here only the results that are directly
relevant for our discussion, starting from the Slavnov-Taylor identities that control the matrix
elements of the gauge-fixing functional operators. We next study the implications of these
identities on the amputated Feynman amplitudes, deriving “generalized Ward identities” that
are the analog of the familiar QED Ward identities kµAµ = 0. The latter identities will be used
in Sections 2.2 and 2.3 to get rid of the growing-with-energy longitudinal polarization vectors.
The Slavnov-Taylor identities are presented for an arbitrary gauge theory, while their implica-
tions are discussed in the particular case of the Higgs–Kibble model. However the derivations
are presented with a logic that allows for a relatively straightforward generalization.

3We also defined Wµν = ∂µWν − ∂νWµ − i g
�

Wµ, Wν

�

and DµH = ∂µH − i gWµH.

6

https://scipost.org
https://scipost.org/SciPostPhys.8.5.078


SciPost Phys. 8, 078 (2020)

Slavnov-Taylor Identities

The starting point of our derivation is the set of identities [28]

〈β |T
�

Fa1
(x1) · · ·Fan

(xn)O
	

|α〉 ∝
∏

δ(4)(x i − x j) , (2.6)

where |α〉, |β〉 are arbitrary physical in and out states, O is any gauge-invariant operator and
Fa are the gauge-fixing functionals. These are given by eq. (2.5) in the particular case of
the Higgs–Kibble model, but the equation above is of fully general validity. The r.h.s. of
the equation consists of contact terms that do not contribute to connected components of
the correlators in Fourier space. Therefore the equation ensures the cancellation of connected
diagrams with any number n≥ 1 of gauge-fixing operatorFa, for arbitrary physical particles on
the external legs and possibly the insertion of a generic gauge-invariant operator. A particular
case of eq. (2.6), for which we will need to know the pre-factor, is

〈0|T {Fa(x)Fb(y)} |0〉= −iδabδ
(4)(x − y) . (2.7)

We will see later the implication of the above relation for the bosonic 2-point correlators.
The identities (2.6) are so important for our work that it is worth justifying their validity

here, on top of relying on the proof in Ref. [28]. Following Ref. [29], we recall that the
Faddeev-Popov method establishes the independence of the path integral of gauge-invariant
operators on the choice of the gauge-fixing functionals. In particular we can consider a shift
Fa→ Fa+Ja, with Ja(x) a field-independent local source. Because Ja is field-independent the
ghost action is not affected, so the only change in eq. (2.3) appears in the gauge-fixing term.
Independence of Ja thus implies that any number of functional derivatives of

∫

D(fields) O ei
∫

d4x[L0+Lghosts−
1
2 (Fa+Ja)2] , (2.8)

with respect to Ja vanishes. It is now a trivial exercise to reproduce eq. (2.7). The more
general form of the identity in eq. (2.6) follows from the non-trivial fact (see e.g., [30]) that
any physical particle can be excited from the vacuum by a gauge-invariant operator.

Generalized Ward Identities

The Slavnov-Taylor identities hold for connected amplitudes. Turning them into relations for
the amputated Feynman amplitudes is conceptually straightforward, since the amputated am-
plitudes are simply obtained from the connected ones by factoring out the propagators on the
external legs. However taking this step requires us to get some control on the structure of
the propagator (or, more precisely, of the all-orders two-point function), and to establish some
notation.

In a general theory, all the scalar fields can mix with the gauge vectors and the two-point
function we are seeking is a (4 NV+NS)-dimensional matrix, where NS and NV are, respectively,
the total number of scalar and of vector fields that are present in the theory. Clearly Lorentz
invariance implies a number of simplifications on the structure of the matrix, still leaving
however a rather complicated structure we will have to deal with in the next section. The
situation is much simpler in the Higgs–Kibble model. The custodial SU(2)c symmetry implies
that the singlet h does not mix with the W a

µ and πa triplets, and furthermore the two-point
functions in the W/π sector are proportional to the identity in the custodial indices space.
This allows us to treat separately each of the 3 gauge fields together with its corresponding
Goldstone and to suppress the custodial indices altogether. The fields are collected in a 5-
components vector

ΦM =
�

Wµ, π
�

, (2.9)
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where M = {µ,π} runs over the four Lorentz indices µ and on a fifth (Goldstone) com-
ponent M = π. Vectors with upper 5D indices are defined by acting with a 5D metric
ηMN = diag(ηµν, 1). With this notation the two-point function matrix in momentum space
is defined as 4

i GMN [k]≡
∫

d4 x eikµxµ〈0|T {ΦM (x)ΦN (0)} |0〉 . (2.10)

Notice that from Bose statistics and translation invariance follows that

GMN [−k] = GN M [k] . (2.11)

For a given 4-momentum vector kµ, we introduce in the 5D space a transverse projector
P⊥[k] and two longitudinal vectors Pi[k]. Taking the index i to run over two values i = V, S
denoting “vector” and “scalar”, we define

P⊥MN =

 

ηµν −
kµkν
k2

04×1

01×4 0

!

, (2.12)

P V M =

�

−i
kµ
k

, 0

�

,

P S M =
�

01×4, 1
�

,

where k =
p

k2. We have defined P⊥ to be a projector, namely P⊥ L
M P⊥LN = P⊥MN , that

annihilates the longitudinal vectors Pi M . The latter are normalized to Pi M [k]PM
j [−k] = δi j ,

furthermore we have that P⊥[−k] = P⊥[k]. The completeness relation

P⊥MN [k] +
∑

i= S, V

Pi M [k]Pi N [−k] = ηMN , (2.13)

also holds. In terms of these objects, exploiting Lorentz invariance, we can parametrize the
two-point function as

GMN [k] = G⊥(k
2)P⊥MN [k] +Pi M [k]

�

GL(k
2)
�

i j P j N [−k] , (2.14)

where the sum over i, j = V, S is understood. In eq. (2.14), G⊥(k2) is a scalar form-factor that
parametrizes the transverse component of the propagator, while GL(k2) is a 2 × 2 matrix of
form-factors associated to the two “longitudinal” (in a 5D sense) modes V and S. Notice that
GL is a symmetric matrix because of eq. (2.11).

The notation also allows us to express the Slavnov-Taylor identity in a compact form. We
first write down the gauge-fixing (2.5) in momentum space

F[k] = −
∑

i= V, S

fi PM
i [−k]ΦM [k] , (2.15)

where f is a 2-vector in the V-S space

fi(k
2) = (k/

p

ξ,
p

ξ em) . (2.16)

The general Slavnov-Taylor identity in eq. (2.6) reads (with O = 1)
�

∑

i1

fi1 P
M1
i1
[−k1]

�

· · ·
�

∑

in

fin P
Mn
in
[−kn]

�

〈β |ΦM1
[k1] · · ·ΦMn

[kn]|α〉c = 0 , (2.17)

4In order to avoid confusion we employ square brackets, e.g., “[k]”, to indicate dependence on the full 4-
momentum kµ, as opposed to its norm k =

p
k2.
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with an obvious notation for the connected matrix elements in Fourier space (divided by (2π)4

times the Dirac delta of momentum conservation).
We now turn to amputated amplitudes. We denote them as A{Φ, · · · ,Φ} suppressing for

shortness the labels α and β for the external states. The connected amplitudes are equal to
the amputated ones times the propagators on the external legs. In particular for one external
leg we have

〈β |ΦM [−k]|α〉c = i GMN [−k]A{ΦN [k]} . (2.18)

Notice that with this definition the momentum “k” is incoming in the amputated amplitude.
By applying eq. (2.17) for n= 1 we obtain

�

∑

i, j

fi[GL]i jP j M [k]
�

A{ΦM [k]}= 0 . (2.19)

The equation states that the connected amplitude vanishes if contracted with a certain k-
dependent 5D vector constructed from the gauge-fixing parameters (through f ) and involving
the longitudinal propagator matrix. For future applications it is convenient to rescale this
vector to have minus one component along PV . Namely, we define

KM [k]≡ −PV M [k]−
∑

i fi[GL]i S
∑

i fi[GL]i V
PS M [k] =

�

i kµ/k, Kπ
�

, (2.20)

where Kπ(k2) is the PS component of K. The n=1 Ward identity now reads

KM [k]A{ΦM [k]}= 0 ⇔ i kµA{Wµ[k]}= −kKπ(k2)A{π[k]} , (2.21)

while for generic n we simply have

KM1
[k1] · · ·KMn

[kn]A{ΦM1[k1], · · · ,ΦMn[kn]}= 0 . (2.22)

Eq. (2.22) is all we need. Unsurprisingly it is the same fundamental identity that underlies
the proof of the Equivalence Theorem developed in Ref.s [24,31–36] (see [37] for a review).
It is called “generalized Ward identity” because it is the closest generalization we can get in a
massive gauge theory of the QED Ward identity. In the analogy with QED, the 5D vector KM
could be interpreted (up to proportionality factors) as the generalization of the 4-momentum
kµ or, more usefully in this context, as the generalization of the polarization vector for the
“scalar” component of the photon. We will see in Section 2.3 that the generalized Ward identity
implies that the scalar polarization does not propagate, in close analogy with the standard QED
result.

By looking at the n=1 case in eq. (2.21) we can easily understand how the Ward identi-
ties will allow us to get rid of the growing-with-energy polarization vectors for zero-helicity
(longitudinal) vectors. The energy growth is associated to a component of the standard lon-
gitudinal polarization vectors that is proportional to kµ. Once contracted with the amputated
amplitude the energy-growing term thus takes the form of the l.h.s. of eq. (2.21), which we
can replace with r.h.s. that manifestly does not grow with energy. We will implement this
mechanism systematically by subtracting the scalar polarization vector KM from the standard
longitudinal polarization. Notice that here we are taking for granted that the high-energy limit
is taken at fixed k =

p
k2, such that Kπ is constant because it only depends on k2 by Lorentz

symmetry. This is the only limit worth discussing, and the only one in which the longitudinal
polarization diverges. In concrete applications k2 will be either m2 for on-shell particles or
k2 =Q2 +m2� E2 for virtual ones.
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The Scalar Polarization Vector

The definition of K in eq. (2.20) is rather cumbersome. Before moving forward to the study
of the implications of the generalized Ward identity it is thus worth showing how it can be
expressed in simpler terms, and eventually computed in perturbation theory.

The central object here is the inverse of the two-point function G in eq. (2.14), which we
parametrize for convenience as

G−1
MN = G−1

⊥ P⊥MN [k] +Pi M [k][G
−1
L ]i jP j N [−k]

≡ Γ⊥P⊥MN [k] +Pi M [k][eΓ − F]i jP j N [−k] , (2.23)

where F is a 2× 2 matrix constructed out of the gauge-fixing 2-vector f

Fi j = fi f j =

�

k2/ξ k em
k em em2ξ

�

. (2.24)

This seemingly obscure definition requires some explanation. The two-point function is the
inverse of the quadratic effective action, namely it is the inverse of the Hessian of the effective
action Γ around the vacuum. When studying gauge theories it is often convenient to introduce
a “tilded” effective action Γ −

∫

d x Lg.f. by subtracting and isolating the tree-level contribution
from the gauge-fixing term. This is what we did above, namely we isolated in the matrix F
the contribution from Lg.f. in eq. (2.4), computed using eq. (2.15). The contribution from the
“tilded” effective action appears instead in eΓ for the longitudinal, and in Γ⊥ for the transverse
part of the propagator.

We now recall that the two-point function obeys the Slavnov–Taylor identity (2.7), that
gives

~f t GL
~f = −1 , ⇒ ~f t GL F = − ~f t , (2.25)

with an obvious vector notation for the gauge-fixing 2-vector ~f = ( fV fS)t . Using that
G−1

L = eΓ − F , this is also equivalent to

~f t GLeΓ = ~f
t GL(G

−1
L + F) = ~f t − ~f t = ~0 t . (2.26)

The above equation has two components, both of which can be used to simplify the expression
for Kπ in eq. (2.20). Writing them down explicitly we find

Kπ = −
∑

i fi(GL)i S
∑

i fi(GL)i V
=
eΓV S

eΓSS

=
eΓV V

eΓV S

, (2.27)

where we exploited the fact that eΓ is symmetric. The second equality entails one relation
among the three elements of eΓ , namely

eΓ 2
V S = eΓSSeΓV V . (2.28)

This is equivalent to the “B2=AC” relation among the longitudinal form-factors derived in [27].
Having expressed Kπ in terms of the inverse propagator we can easily set up its calculation

in perturbation theory. Working for instance in bare perturbation theory one would write the
inverse propagator in the form

G−1
MN =∆

−1
MN +ΠMN , (2.29)

where ∆ is the bare tree-level propagator (times −i) and Π is the vacuum polarization ampli-
tude

∆−1 =

�

�

m2
0 − k2

�

�

ηµν −
kµkν
k2

�

+
�

m2
0 −

k2

ξ

� kµkν
k2 −i kµ (m0 − em)

i kν (m0 − em) k2 − em2ξ

�

,

Π=

�

ΠT
WW (k

2)
�

ηµν −
kµkν
k2

�

+ΠL
WW (k

2)
kµkν
k2 −i kµΠWπ(k2)

i kνΠWπ(k2) Πππ(k2)

�

. (2.30)
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By comparing with eq. (2.23) we obtain G−1
⊥ = Γ⊥ = m2

0 − k2 +ΠT
WW and

eΓ =

�

eΓV V eΓV S
eΓV S eΓSS

�

=

�

m2
0 +Π

L
WW k[m0 +ΠWπ]

k[m0 +ΠWπ] k2 +Πππ

�

. (2.31)

We thus express Kπ in terms of vacuum polarization amplitudes as

Kπ(k2) =

√

√

√m2 +ΠL
WW (k2)

k2 +Πππ(k2)
, (2.32)

or in any of the other equivalent forms that can be obtained using eq. (2.28).
Eq. (2.32) could be now used to compute Kπ in perturbation theory, giving operative

meaning to eq. (2.22). The explicit result is not of interest in the toy Higgs–Kibble model. In
the case of the SM we will compute Kπ at one loop using eq. (2.32), or more precisely using
its generalization derived in Section 3.2. A remarkable fact about eq. (2.32) is that it does not
show explicit dependence on the gauge-fixing parameters em and ξ, in spite of the fact that
it descends from the Slavnov–Taylor identities (2.6) where these parameters do appear. Yet,
Kπ implicitly depends on em and ξ through the vacuum polarization amplitudes. However at
tree-level Π= 0 and Kπ is indeed gauge-independent and equal to m/k.

2.2 On-Shell Stable Vectors

The generalized Ward identities straightforwardly allow us to define a well-behaved longitudi-
nal polarization vector that is fully equivalent to the ordinary one, in the sense that it gives the
exact same results for all physical quantities. We consider here the case in which the massive
vectors are stable external particles and show that the amplitudes computed using our modi-
fied polarization vectors as wave-functions for the external legs are identical to the standard
ones.

We have seen that the Ward identities are conveniently derived and stated with a notation
where the Wµ and the π fields are collected in a single 5-components field ΦM , M = (µ, π),
as in eq. (2.9). We can incorporate this notation in Feynman diagrams by a graphical repre-
sentation of ΦM lines on the external legs. Since ΦM contains both vector and scalar lines it is
natural to represent it with a double line as in Figure 1. The double line carries a 5D index M ,
to be contracted with polarization vectors EM that also live in the 5D space. One might have
decided to express in terms of ΦM all the Feynman rules of the theory, including the propagator
(whose 5D form was written down in the previous section) and the vertices, in which case only
double lines would appear in any internal or external line of the diagram and all calculations
could in principle be carried on directly in the 5D notation. However the standard Feynman
rules are expressed separately for gauge and Goldstone legs, therefore in order to apply them
we must break down the double lines on the external legs as shown in the figure. This entails
that we need to compute 2 different amputated amplitudes for each external particle, one with
a gauge and one with a Goldstone external leg, and sum them up with coefficients given by the
polarization vector. The total number of amplitudes to be evaluated thus increases by a factor
of two for each external longitudinal vector boson relative to the one that is needed in the
standard formalism. Explicit applications will be shown later in Section 4.4. The usefulness
of the double line notation has been first noticed in Ref. [38] for tree-level applications of the
Equivalence Theorem and emphasized in Ref. [25].

The standard formalism is recovered in this notation by 5D polarization vectors with van-
ishing M = π component. For incoming and outgoing particles with 4-momentum kµ we have,
respectively

(Eh
st.)M [k]≡ (ε

h
µ[k], 0) ,

(Eh
st.)M [k]≡ (ε

h
µ[k], 0) , (2.33)
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E0
M [k] ⇥

M, k

= E0
µ[k] ⇥

µ, k

+ E0
⇡[k] ⇥

k

M, k

⇥ E0

M [k] =

µ, k

⇥ E0

µ[k] +
k

⇥ E0

⇡[k]

<latexit sha1_base64="kRDe0HVLgwEVt6o/XQ3RSXyHf6s="></latexit>

Figure 1: Feynman rules for incoming (top) and outgoing (bottom) external longitudinal
states.

where h = ±, 0 is the helicity and εh
µ denote the standard 4D polarization vectors, reported

in Appendix A. The transverse (h = ±) polarizations do not display an anomalous energy
behavior. The longitudinal (h= 0) one is instead

ε0
µ[k] = ε

0
µ[k] =

�

|~k|
k

,−
k0

k

~k

|~k|

� k0/k→∞∼
q

k2
0

k0

§

k0

k
,−

1
k
~k
ª

=

q

k2
0

k0

kµ
k

, (2.34)

with |~k| =
q

k2
0 − k2. Note that we keep k generic in preparation for the next section where

we will consider off-shell vectors, possibly with complex momentum. Clearly k =
p

k2 = m in
the case at hand, and k0 > 0 so that

q

k2
0/k0 = 1. In high-energy reactions where the particle

energy k0 ∼ E is much larger than k = m, ε0
µ diverges and approaches kµ/k. It is therefore

convenient to define

e0
µ[k]≡ ε

0
µ[k]−

kµ
k

ifℜ(k0)>0
= −

k

k0 + |~k|

§

1,
~k

|~k|

ª

. (2.35)

Also in this definition we consider generic complex momentum. We thus specified that k0 must
have positive real part (so that

q

k2
0 = k0) for e0

µ[k] to have the simple form on the right of the

equation and a non-singular high energy limit. If it is so, e0
µ[k] ∼ k/k0, i.e., m/E for on-shell

momentum.
Thanks to the Ward identities in eq. (2.22) we are allowed to shift E0

st.[k] and E0
st.[k] by any

vector proportional to K[k]. The shift will indeed cancel out when the polarization vector is
contracted with the amputated amplitude. More precisely, since the external legs of amputated
amplitudes are labeled by incoming 4-momenta, the polarization vectors for outgoing states
should be shifted by K[−k] because they will have to be contracted to an amplitude with
external leg ΦM [−k]. We see in eq. (2.20) that Kµ[k] = −Kµ[−k] = i kµ/k. We should thus
manage to get rid of the anomalous energy growth by defining

E0
M [k]≡ (E0

st.)M [k] + iKM [+k] =
�

e0
µ[k], +iKπ(k2)

�

,

E0
M [k]≡ (E

0
st.)M [k]− iKM [−k] =

�

e0
µ[k], −iKπ(k2)

�

, (2.36)

to be our new polarization vectors.
It is immediate to verify that indeed, when contracted with the appropriate amputated am-

plitudes and evaluated on the mass-shell, eq. (2.36) produces the exact same physical scatter-
ing matrix element as the standard polarization vectors. Consider a generic scattering process
with “n” external longitudinal vectors and an arbitrary set α and β of non-longitudinal incom-
ing and outgoing particles. The matrix element computed with our on-shell polarizations is
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=
N k M

GMN[k]
AC + non

k�res.

<latexit sha1_base64="evs6LKQwxEpKacIbmp4Q4hZuz9A="></latexit>

Figure 2: The decomposition of a generic scattering amplitude into resonant and non-
resonant diagrams, for a given intermediate vector boson line with momentum k. Remember
that (as, e.g., for Dirac fields) the momentum flows from the second towards the first index
of the propagators.

equal to that evaluated with the standard ones

iM= Zn/2
W

�

(E0
st.)M1

[k1]± iKM1
[±k1]

�

· · ·
�

(E0
st.)Mn

[kn]± iKMn
[±kn]

�

A{ΦM1[±k1], · · · ,ΦMn[±kn]}

= Zn/2
W (E0

st.)M1
[k1] · · · (E0

st.)Mn
[kn]A{ΦM1[±k1], · · · ,ΦMn[±kn]} . (2.37)

In the equation, ZW denotes the wave-function renormalization factor and the + or − sign is
for incoming or outgoing particles as previously explained. The equality comes from expand-
ing the product and noticing that in each monomial the amputated amplitude is contracted
with r = 0, · · · , n powers of K, while the remaining n − r external legs are contracted with
the standard polarization vectors. The latter contractions produce additional particles in the
external states α and β , but this is immaterial because the Ward identity in equation eq. (2.22)
holds for arbitrary (possibly longitudinal) physical states. All terms thus cancel by the Ward
identity for “r” legs, apart obviously from the first term with r = 0 that gives us back the
standard matrix element.

Our new polarization vectors (2.36) do not grow with energy. Their Goldstone component
Eπ stays constant while the gauge component Eµ = e0

µ scales as m/k0 ∼ m/E and vanishes
in the high-energy limit. This produces a suppression factor of the gauge contribution to the
amplitude relative to the Goldstone one, which is nothing but the technical statement of the
Goldstone Equivalence Theorem. Notice however that one should not superficially interpret
this result as the dominance of Goldstone diagrams over the gauge ones. Whether or not
the Goldstones dominate depends on the high-energy behavior of the Goldstone amplitudes
relative to the gauge ones in the specific process at hand. Namely, the m/E suppression of e0

µ

is only one of the elements of the power-counting rule. Other m/E factors might well emerge
from the vertices that appear in the Goldstone amplitudes and compensate the wave-function
suppression factor of the gauge diagrams. Explicit examples are discussed in Section 4.4.1.

Finally, we briefly comment on the relation with Ref. [25], where the modified polarization
vectors (2.36) were defined and employed to make power-counting manifest like we do here.
Our result is identical, but more general in that we proved that the modified polarization vec-
tors are equivalent to the standard ones for an arbitrary choice of the gauge-fixing parameters
ξ and em. In the approach of Ref. [25] instead the gauge-fixing parameters are set by requiring
two conditions (mass-degeneracy and dipole cancellation) on the gauge-fixed theory. This in
turn was needed for the extended Fock space of the theory, including unphysical states, to have
a structure compatible with the sought redefinition of the longitudinal state.

2.3 Unstable or Off-Shell Vectors

Our results up to now are of limited practical interest because the SM massive vectors are not
stable asymptotic states. Hence their scattering matrix elements, and in turn their polarization
vectors, cannot be defined through the LSZ reduction formula as we implicitly did in eq. (2.37).
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Furthermore in order to study factorization problems we will have to deal with diagrams where
the external vector bosons are off-shell. Namely in that kind of problems the virtual vector
boson k2 is much smaller than the hard scale E2� m2, but in general not close to m2.

In order to deal with unstable or with off-shell vectors one needs to start from the complete
scattering amplitude involving only true asymptotic particles on the external legs. Among the
diagrams that contribute to the complete amplitude one isolates the “resonant” ones contain-
ing a vector boson propagator that connects two otherwise disconnected components of the
diagram as in Figure 2. The momentum “k” flowing into the propagator should be interpreted
as the momentum of a virtual boson, which is created and annihilated in the left (“creation”,
C) and right (“annihilation”, A) components of the resonant diagram. Therefore we orient k
to have positive energy component, or positive real part of the energy, for complex kinematics

ℜ(k0)> 0 . (2.38)

The creation subprocess corresponds to the production of the virtual vector in association with
other particles, either originating from the two initial particles or from a single one in the case
of an initial state splitting. The annihilation subprocess represents either the decay of the
vector boson or the scattering of the vector boson with a particle in the initial state. In all
cases the virtual vector boson can be uniquely associated to a partition of the external states
into the two sets involved in the production and in the decay. Notice that diagrams with scalar–
scalar and with mixed vector–scalar propagators are included in the resonant component of
the scattering amplitude, therefore the propagator is denoted with a double line in the figure.
The line represents the complete all-orders two-point function GMN as in eq. (2.14).

The on-shell matrix elements for unstable particles are defined in a perfectly gauge-
invariant fashion in terms of the residue of the complete amplitude at the complex pole
k2 = m2 ∈ C. Clearly this requires studying the amplitude with complex kinematics, a fact
which however does not raise any particular issue because the generalized Ward identities
hold in the entire complex plane by the analyticity properties of the Feynman amplitudes. The
pole originates exclusively from the resonant diagrams, and the residue of the complete ampli-
tude equals the one of the propagator multiplied by the creation and annihilation amplitudes
evaluated at complex k2 = m2. The Feynman rules for on-shell unstable particles creation and
annihilation thus emerge from the decomposition of the propagator at the complex mass pole,
as we will readily see. Notice that defining gauge-invariant on-shell matrix elements for unsta-
ble particles is concretely useful because it allows to simplify the calculation of the complete
scattering amplitude (including the decay) with real kinematics by expanding in the number
of resonant poles as in Ref.s [39–42]. The reason for focusing on the resonant diagrams in
the off-shell case stems from the fact that in a formalism like ours, where power-counting is
manifest, the resonant diagrams are enhanced by E2/k2 relative to the non-resonant ones and
thus dominate in the factorization limit k2/E2 � 1. The propagator decomposition we are
about to work out is thus essential for the proof of collinear factorization in Section 5.

In order to extend our discussion to off-shell and to unstable vectors we should further
study the 2-point function which, using eq. (2.23), reads

GMN [k] = Γ
−1
⊥ P⊥MN [k] +Pi M [k]

�

GL

�

i jP j,N [−k] , (2.39)

where GL = (eΓ − F)−1. We first notice that the familiar completeness relation for the 4D
polarization vectors allows us to decompose P⊥MN [k], for arbitrary (complex, in general) kµ in
terms of the 5D standard polarization vectors defined in eq. (2.33). We can thus write

GMN [k] = −Γ−1
⊥

∑

h=±
Eh

M [k]E
h
N [k]− Γ

−1
⊥ (E0

st.)M [k](E
0
st.)N [k] +Pi M [k]

�

GL

�

i jP j,N [−k] , (2.40)
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where we suppressed the “st.” subscript from the transverse polarization vectors because they
are well-behaved with energy and thus they do not need to be redefined.

From the propagator decomposition in eq. (2.40) one could immediately recover the stan-
dard definition of the polarization vectors for unstable particles. Indeed in this case one is
exclusively interested in the first two terms of the decomposition because they have a pole
at the physical (complex) mass m. Actually the mass is defined precisely as the point in the
complex plane where Γ⊥ vanishes, i.e. by the relation

Γ⊥(m
2) = m2

0 −m2 +ΠT
WW (m

2) = 0 . (2.41)

Instead the longitudinal part of the propagator, namely the third term in eq. (2.40), will not
have in general a pole at the same location and it can be ignored in the calculation of the
residue. We thus express the residue as a sum over helicities, and interpret each term as the
product of the polarization vectors to be contracted with the amplitudes at the two endpoints
of the propagator line. The one on the left leg, with index “N”, corresponds to the creation of
a particle, the one on the right, with index “M”, to annihilation. This leads to the definition
of on-shell amplitudes for unstable vectors, as extensively discussed in the literature (see e.g.
Ref. [43]).

The standard longitudinal polarization vectors display the usual anomalous energy behav-
ior (2.34). However we can trade them for the well-behaved objects defined in eq. (2.36) and
write the h= 0 term of the decomposition (2.40) as

(E0
st.)M [k] (E

0
st.)N [k] =

�

E0[k]
�

M

�

E0
[k]
�

N (2.42)

+
�

i E0[k] +
1
2
K[k]

�

MKN [−k] +KM [k]
�

− i E0
[k] +

1
2
K[−k]

�

N .

Importantly, the signs in front of the iK terms in eq. (2.36) ensure that no high-energy growth
is present in the modified polarization vectors, as in the on-shell case, because we chose
ℜ(k0) > 0 such that eq. (2.35) applies. Furthermore, having employed K[+k] in the defi-
nition of EM and K[−k] in that of EN ensures that the terms in the second line of eq. (2.42)
are proportional to K[+k]M and K[−k]N . Because the index M is contracted with the annihi-
lation sub-amplitude (see Figure 2) where the k momentum is incoming while N is contracted
with the creation one where k is outgoing, these terms do not contribute to the complete am-
plitude by the Ward identity in eq. (2.22). We will prove that this is indeed the case at the end
of this section.

Taking for granted that the second line can be dropped, eq. (2.42) is all we need in order to
deal with unstable on-shell vectors. It allows us to express the residue at the propagator pole,
and in turn to define the gauge invariant on-shell matrix elements, in terms of two transverse
and one longitudinal polarization vectors that are well-behaved with energy. In particular the
longitudinal polarization vectors for an unstable on-shell particle are those in eq. (2.36) for
k = m. They are identical to those for a stable particle up to the fact that the mass m now is
complex. The situation is more complicated for off-shell vectors because also the longitudinal
(in the 5D sense) component of eq. (2.40) now matters. Indeed in the off-shell case we are
interested in propagators where k2 − m2 does not vanish exactly, so not only the residue of
the pole is relevant. Rather we are interested in configurations where k =

p
k2 is either of

order or much larger than m, but much smaller than the virtual vector energy and momentum
kµ ∼ E. The longitudinal component of the propagator, in the current form, does not possess
a smooth high energy limit because it contains up to two powers of kµ from the P V vector (see
eq. (2.12)). One extra step is thus needed in order to express the propagator in a form that is
suited to deal with factorization problems.
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First, we get rid of any occurrence of P V in the longitudinal propagator by rewriting it as

PV,M [k] = −KM [k] +
eΓV S

eΓSS

PS,M [k] , (2.43)

in light of eq.s (2.20) and (2.27). After a straightforward calculation one can check that the
result can be expressed as

Pi,M [k]
�

GL

�

i jP j,N [−k] = eΓ−2
SS PS,M [k]

�

eΓ · GL ·eΓ
�

SSPS,N [−k] (2.44)

−V[k]MK[−k]N −K[k]MV[−k]N ,

in terms of some vector V . The explicit form of V need not be reported because the second line
of the previous equation will cancel out by the same considerations we made below eq. (2.42).
Finally, we notice that eq. (2.26) implies that FGLeΓ = 0, so that

eΓ · GL ·eΓ =
�

eΓ − F
�

· GL ·eΓ = eΓ , (2.45)

as GL = [eΓ −F]−1. Summing up eq. (2.44) and eq. (2.42), we rewrite the complete propagator
as

GMN [k] = Geq
MN [k]−KM [k]VN [−k]−VM [k]KN [−k] , (2.46)

where we reabsorbed into “V” the terms on the second line of eq. (2.42) and the “equivalent”
propagator Geq is defined to be

Geq
MN [k]≡ −Γ

−1
⊥

∑

h=±,0

Eh
M [k]E

h
N [k] +eΓ

−1
SS PS,M [k]PS,N [−k] . (2.47)

We will prove below that this is “equivalent” to G, namely that it can be used in place of G
in resonant propagators. Taken this for granted, Geq possesses all the required properties.
Namely it contains no energy growth neither in the h = ±, 0 nor in the scalar part, so that it
will allow us to take the k2/E2 � 1 limit smoothly when studying factorization in Section 5.
On the physical mass complex pole it straightforwardly leads us to the definition of the on-shell
polarization vectors for unstable particles as previously explained.

We now prove that Geq defined as in eq. (2.47) is indeed “equivalent” to the complete
propagator G thanks to the Ward identity (2.22). More precisely, the statement is that in a
generic scattering amplitude with stable asymptotic particles on the external legs it is possi-
ble to replace resonant propagators G[k] with Geq[k] in all the Feynman diagrams without
affecting the result. In turn, this will imply that the same is true if the external particles are
unstable but on their complex mass-shell. The resonant propagators are those that connect
two otherwise disconnected components of the diagram, propagators involved in closed loops
are thus excluded and cannot be replaced with Geq. Also notice that the equivalence holds only
provided any occurrence of G[k], for a given intermediate boson momentum k, is replaced in
all diagrams. Substituting G[k] with Geq[k] in some diagram and not in others would be in-
consistent. On the other hand, we are not obliged to replace all propagators at once. Namely
one can choose an arbitrary set of intermediate bosons momenta ki , i = 1, . . . , m, each cor-
responding to a given creation/annihilation subprocess and in turn to the signed sum of a
given subset of external particles momenta, and perform the replacement G[ki] → Geq[ki]
only for the corresponding propagators. In particular high-virtuality internal lines, for which
the decomposition (2.47) of Geq is of no help, need not be replaced.

It is trivial to establish the equivalence when only one propagator has to be replaced. It
suffices to combine Figure 2 with eq. (2.46) and to notice that the shift induced by the re-
placement produces two terms with K[−k] and K[+k] contracted with the creation and an-
nihilation amplitudes, respectively. The latter amplitudes have physical external states so that
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. . .
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Figure 3: The relation by which the equivalence of the Geq propagator is established.

they vanish when contracted with K by using eq. (2.22) for n = 1. In order to deal with the
general case we have to employ the diagrammatic relation in Figure 3. In the figure we con-
sider a generic scattering amplitude with a generic number n ≥ 0 of additional gauge/scalar
external legs, contracted with the 5D scalar polarization vector K. Each scalar polarization
is of course evaluated on the (outgoing) momentum of the corresponding external leg. The
replacement operation G[ki] → Geq[ki] has been performed for a generic number m ≥ 1 of
propagators and it is indicated as Gi → Geq

i for shortness in the figure. The replacement of the
last propagator affects only the component of the amplitude that is resonant with respect to
the km momentum, producing two terms in which K[−km] is contracted with the creation sub-
amplitude and K[+km] is contracted with the annihilation one. By recombining the resonant
and non-resonant components we reconstruct the original amplitude with one less propagator
replaced, plus additional terms proportional to the sub-amplitudes with at least one external
leg contracted with K as in the second line of the figure. The sub-amplitudes do not contain
G[km] propagators by definition, therefore also in the latter ones only the propagators from
G[k1] to G[km−1] have been replaced. Notice that we cannot trivially conclude that the latter
sub-amplitudes vanish because the Ward identity (2.22) only holds a priori for “normal” prop-
agators in the internal lines. However they do vanish as indicated in the figure because we can
further apply the diagrammatic relation to each of them, focusing this time on the G[km−1]
propagator, obtaining the same amplitude with m − 2 replaced propagators plus additional
amplitudes with one more external K and, once again, only m− 2 replaced propagators. By
repeating the operation one can eliminate all the replacements and eventually apply the Ward
identity (2.22). The terms on the last line of the figure thus vanish and we conclude that the
original amplitude is equal to the one with one less propagator replaced. By applying this
equality to the physical scattering amplitude with no external K insertions (i.e., n = 0) and
“m” propagators replaced one finally concludes that it is identical to the one with “m − 1”
replacements and eventually to the one with no replacement at all, as it had to be proven.

3 General Gauge Theory

We now turn our attention to a generic theory with arbitrary gauge group (G) and field con-
tent. We denote the gauge fields as V a

µ , a = 1, . . . , NV = dim(G), while φã are the NS scalars,
which we take real without loss of generality. The presence of fermionic fields is irrelevant
for the discussion that follows. The gauge-invariant Lagrangian prior to gauge-fixing is also
arbitrary and not necessarily renormalizable. An arbitrary symmetry breaking pattern G→H,
giving mass to some of the vectors and leaving some of the scalars as physical Higgs bosons,
is allowed. We quantize the theory with the standard Faddeev–Popov method as described in
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Section 2 for the Higgs–Kibble model obtaining a Lagrangian as in eq. (2.3). The NV gauge-
fixing functionals are chosen to be linear in the fields, i.e.

Fa =
∑

b

Ξab∂µVµb −
∑

b̃

eµab̃(φb̃ − 〈φb̃〉) , (3.1)

where 〈φb̃〉 denotes the VEV of the scalar fields. The derivation of the Slavnov–Taylor identi-
ties discussed in Section 2.1 is completely general, therefore eq.s (2.6) and (2.7) straightfor-
wardly apply to the present case as well. Notice in particular that the Slavnov–Taylor identity
obtained by setting n = 1 in eq. (2.6) is the reason why we subtracted the scalar fields VEV
in the definition (3.1) of the gauge-fixing functional. This identity reads 〈Fa(x)〉 = 0, which
is consistent with 〈Aµ〉 = 0 only provided the scalars appearing in the gauge-fixing functional
have vanishing VEV. If we had not subtracted the scalars VEV, the theory would have developed
a non-Poincaré invariant VEV in order to satisfy the identity, and manifest Poincaré symmetry
would have been lost.

The general discussion of Goldstone Equivalence is conceptually identical to the one we
presented in the previous section for the Higgs–Kibble model. It merely requires a slightly
more heavy notation, which we establish in Section 3.1. We then move (in Section 3.2) to
the derivation of the generalized Ward identities and finally present (in Section 3.3) our well-
behaved longitudinal polarization vectors and propagator.

3.1 Notation

We begin by collecting all the bosonic fields of the theory in a single vector ΦM with 4NV +NS
real components. The capital index M ranges both over the 4NV Lorentz-times-gauge pairs
(i.e., M = {µ, a}) that label the vector fields and over the NS indices of the scalars (i.e., M = ã).
Actually it is more convenient to shift the scalars by their VEVs and to define

ΦM =

�

Vµ a for M = {µ, a}
φã − 〈φã〉 for M = ã

�

. (3.2)

The “M” indices are raised by a metric ηMN acting like the 4D Lorentz metric on the vector
components M = {µ, a} and as the identity on the scalar ones M = ã. The need of collecting
all the bosonic fields in a single object stems from the fact that in general there is no way to
associate a particular scalar field combination to each V a

µ vector. Namely there is no useful
notion of the “Goldstone field” associated to the vector. Concretely, the point is that all scalars
in the theory mix a priori with all vectors, hence all bosonic fields have to be treated together
in order to deal with the two-point function and in turn to derive the Ward identities. In the
Higgs–Kibble model it was possible to identify the Goldstones, and thus to work with a small
(5D) ΦM multiplet, merely because of the presence of an exact custodial symmetry. The only
exact symmetry that is necessarily present in the general case is the one associated with the
unbroken gauge group H, which however in general is insufficient to identify the Goldstones
uniquely. We thus work with the large ΦM multiplet and ignore the possible presence of exact
symmetries in the theory. In the presence of symmetries it is possible to collect the fields in
separate subspaces that do not mix with each other, as we will do in the SM by imposing charge
and CP conservation. All the results that follow apply to each sector separately, provided we
identify ΦM with the short multiplet of each subspace.

We introduce, as in Section 2.1, a number of objects PaM [k], PãM [k] and P⊥; ab
MN [k], de-

pending on the Lorentz 4-momentum kµ. The former are vectors in the (4NV+NS)-dimensional

18

https://scipost.org
https://scipost.org/SciPostPhys.8.5.078


SciPost Phys. 8, 078 (2020)

space

PaM [k] =

 

−i
kµ
k
δaa′ for M = {µ, a′}

0 for M = ã′

!

, PãM [k] =

�

0 for M = {µ, a′}
δãã′ for M = ã′

�

,

(3.3)
that correspond to the NV+NS fields in the theory that are orthogonal to the transverse gauge
fields. We refer to them collectively as “longitudinal”, notice however that they consist both of
the “longitudinal vectors” in the 4D sense and of the scalar components ofΦM . The longitudinal
vectors are further collected into a single object P İ M [k] by introducing a dotted capital index
“ İ” ranging over the NV vector indices a and over the NS scalar ones ã. The capital dotted
index “ İ” ranges over the NV + NS longitudinal fields, and it should not be confused with the
undotted index “M” that labels all the 4NV+NS bosonic fields. We also define a set of transverse
“projectors”

P⊥; ab
MN [k] =

 

(ηµν −
kµkν
k2
)δaa′δbb′ for M = {µ, a′} and N = {ν, b′}

0 otherwise

!

. (3.4)

Notice that the P⊥’s are not projectors in the strict mathematical sense, still they obey the
relation

P⊥; ab L
M P⊥; cd

LN = δbcP⊥; ad
MN . (3.5)

Other useful properties of the P ’s include

P⊥; ab L
M P İ L = 0 , P İ M [k]PM

J̇
[−k] = δ İ J̇ , (3.6)

and the completeness relation
∑

a

P⊥; aa
MN [k] +

∑

İ

P İ M [k]P İN [−k] = ηMN . (3.7)

Finally, we also have

P⊥; ab
MN [−k] = P⊥; ab

MN [k] , P⊥; ab
N M [k] = P⊥; ba

MN [k] . (3.8)

The above relations are implicitly used below, in particular in order to invert the propagator
and to impose Bose symmetry.

We now use our notation to express in compact form the basic objects we will need in
the next section, starting from the gauge-fixing. The Fourier space expression of eq. (3.1) is,
similarly to eq. (2.15) for the Higgs–Kibble model

Fa[k] = −
∑

İ

faİ P M
İ
[−k]ΦM [k] , (3.9)

in terms of an NV × (NV + NS) matrix f with components

faİ = (kΞaa′ , eµaã′) , (3.10)

for İ = a′ and İ = ã′, respectively. The parameters Ξ and eµ are generic real tensors, subject
however to a consistency condition associated with the fact that the gauge-fixing functional
Fa ’s should be sufficient to fix the gauge completely. Namely there should not exist a family
of local gauge transformations that leave all the Fa ’s invariant. It is relatively easy to show
that this implies that the matrix f has maximal rank NV up to isolated singularities in the k2

space. The same condition can also be obtained by imposing that the ghost kinetic term is
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non-singular up to isolated poles in k2, that correspond to the ghost tree-level masses. Taking
the matrix Ξ to be invertible is one way to fulfill the condition. For future convenience we
introduce, as in eq. (2.24), the symmetric rank-NV matrix

F İ J̇ (k
2) =

∑

a

faİ(k
2) faJ̇ (k

2) = ( f t f ) İ J̇ . (3.11)

We now turn to the propagator, defined as in eq. (2.10). Similarly to what we did in
eq. (2.23) for the Higgs–Kibble model, we write its inverse as

G−1
MN [k] = [Γ⊥(k

2)]abP⊥; ab
MN [k] +P İ M [k][eΓ (k

2)− F(k2)] İ J̇PJ̇N [−k] , (3.12)

where the sums over a, b, İ and J̇ are understood. The main difference compared to eq. (2.23)
is that the transverse component Γ−1

⊥ is now a NV×NV matrix rather than a single form-factor
and the longitudinal component eΓ − F , which was 2× 2, is now (NV + NS)× (NV + NS). Bose
symmetry implies GMN [−k] = GN M [k], hence Γ⊥ and eΓ are symmetric matrices. By inverting,
we find

GMN [k] = [Γ
−1
⊥ ]abP⊥; ab

MN [k] +P İ M [k][(eΓ − F)−1] İ J̇PJ̇N [−k] . (3.13)

We will often denote GL ≡ (eΓ − F)−1 in what follows.

3.2 Generalized Ward Identities

The derivation follows closely the one for the Higgs–Kibble model. However for brevity we
present it in a slightly different order than the one we followed in Section 2.1. Namely we
start by first working out the implications of the Slavnov–Taylor identities on the propagator
and next we apply the result to the proof of the Ward identity.

The Slavnov–Taylor identity in eq. (2.7) gives, similarly to eq. (2.25)

( f GL f t)ab = −δab , ⇒ f GL F = − f . (3.14)

From here we immediately derive the analog of eq. (2.26):

( f GLeΓ )aİ = 0 . (3.15)

The above equation has NV + NS components for each “a”, labeled by a capital dotted index İ
spanning vector ( İ = b) and scalar ( İ = ã) indices. We now write down its vector and scalar
components separately by expressing eΓ in the block form

eΓ =

�

eΓVV eΓVS
eΓ t

VS
eΓSS

�

, (3.16)

where eΓVV is a NV × NV symmetric matrix, eΓSS is symmetric and NS × NS, and eΓVS is a NV × NS
matrix with components [eΓVS]aã. We obtain

∑

b

( f GV)a b[eΓVV]b c = −
∑

ã

( f GS)a ã[eΓVS]c ã ,

∑

ã

( f GS)a ã [eΓSS]ã b̃ = −
∑

b

( f GV)a b[eΓVS]b b̃ , (3.17)

where we introduced a compact notation ( f GL)aİ = {( f GV)ab, ( f GS)aã} for the vector and
the scalar components of f GL .

We now notice that the matrix f GL has rank NV like f , because GL is invertible up to
isolated poles. The matrix eΓSS is also invertible up to isolated poles, from which we can easily
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conclude by eq. (3.17) that ( f GV) has maximal rank NV. Indeed if
∑

a wa( f GV)ab = 0 for
some non-vanishing wa, we could contract w with the second line of eq. (3.17) and prove
that also

∑

a wa( f GS)a ã = 0, given that eΓSS is invertible. Hence
∑

a wa( f GL)aİ would vanish,
which cannot be since f GL has maximal rank. Exploiting that ( f GV) has maximal rank and it
is invertible, as well as eΓSS, eq. (3.17) can be turned into the generalization of eq. (2.28)

eΓVV = eΓVSeΓ
−1
SS
eΓ t

VS , (3.18)

plus a relation analog to the second equality in eq. (2.27)

( f GV)
−1( f GS) = −eΓVSeΓ

−1
SS . (3.19)

The reason for considering this particular combination of ( f GV) and ( f GS) will become clear
in the following paragraph.

We next derive the generalized Ward identities exactly like we did in Section 2.1 for the
Higgs–Kibble model. Being A{ΦN [k]} the amputated connected amplitude as in eq. (2.18),
by applying the Slavnov–Taylor identity (2.17) for n= 1 we find

�

∑

İ ,J̇

faİ[GL] İ J̇PJ̇ M [k]
�

A{ΦM [k]}= 0 . (3.20)

We then define a set of vectors

KaM [k] ≡ −
∑

b

[( f GV)
−1]ab

�

∑

İ ,J̇

fbİ[GL] İ J̇PJ̇ M [k]
�

(3.21)

= −PaM [k] + [eΓVSeΓ
−1
SS ]aãPãM [k],

and write the Ward identity as

KaM [k]A{ΦM [k]}= 0 , ∀ a . (3.22)

The generalization to an arbitrary number of external Φ legs is straightforward

Ka1M1
[k1] · · ·KanMn

[kn]A{ΦM1[k1], · · · ,ΦMn[kn]}= 0 , ∀ a1, . . . , an . (3.23)

Clearly the Ka ’s (one for each gauge fields) correspond to the scalar polarization vector we
encountered in the Higgs–Kibble model. The difference is that each of them is now a vector
in the (4 NV + NS)-dimensional space spanned by M , namely

KaM [k] =

 

i
kµ
k
δa a′ for M = {µ, a′}

[Kπ(k2)]a ã′ ≡ [eΓVSeΓ
−1
SS ]a ã′ for M = ã′

!

. (3.24)

Notice that Kπ(k2) is now a NV ×NS matrix of form-factors, but it plays here the same role as
in the Higgs–Kibble model. In particular the Ward identity (3.22) can be written as

i kµA{Vµa [k]}= −k
∑

ã

[Kπ(k2)]aãA{(φ − 〈φ〉)ã[k]} , (3.25)

showing how Kπ connects the high-energy limit of amplitudes involving longitudinal vectors
(whose polarization vector approaches kµ) to amplitudes involving scalars.

Before moving forward and showing how the Ward identities lead to the definition of well-
behaved longitudinal polarization vectors and propagators, it is interesting to outline some
particular aspects of the general results of this section. We first consider a gauge theory with-
out scalar fields such as QED or QCD. In our formalism we can recover this case in the limit
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where some scalars are actually present in the theory, such that eΓSS is non-vanishing and invert-
ible, but they are decoupled. This means in particular that eΓVS vanishes and correspondingly
Kπ = eΓVSeΓ

−1
SS = 0. Therefore the Ward identities reduce to the familiar kµAµ = 0 relations.

Moreover in this limit eq. (3.18) becomes eΓVV = 0. Recall that eΓVV parametrizes (see eq. (3.13)
and (3.16)) the contributions to the longitudinal vector-vector inverse propagator that emerge
from radiative corrections on top of those (equal to −k2Ξ) of the gauge-fixing term. The con-
dition eΓVV = 0 thus means that the longitudinal propagator equals −Ξ−1/k2 to all orders in
perturbation theory, which matches the standard formula where Ξ = ξ−1. Also notice that
eΓVV is connected with the transverse inverse propagator matrix Γ⊥ at zero momentum. This is
because the inverse propagator is regular, therefore the −kµkν/k2 singularity of the transverse
projector in eq. (3.13) must be compensated by the kµkν/k2 singularity in the vector–vector
part of the PaMPbN term. Therefore

Γ⊥(k
2) = eΓVV(0) + k2 Γ ′⊥(0) +O(k4) . (3.26)

Since eΓVV vanishes, we have proven that all components of the transverse propagator Γ−1
⊥ have

a pole at k2 = 0 and all the vectors are massless at all orders, as they should in an unbroken
theory.

In a general gauge theory, eq. (3.26) should be supplemented with another regularity
condition (note that here ′ indicates d/dk, rather than d/dk2)

eΓVS(k) = k [eΓ ′VS(0) +O(k2)] , (3.27)

as it follows from the need of canceling the singularity in the vector-scalar propagator that
emerges from the kµ/k term in PaM . Eq. (3.18) thus implies that eΓVV(0) can be non-vanishing,
and in turn Γ⊥(0) 6= 0 so that some of the vectors can acquire a mass, only provided eΓ−1

SS has
a massless pole. More precisely we see that the rank of Γ⊥(0), i.e. the number of massive
vectors, is smaller or equal than the rank of k2

eΓ−1
SS at k2 = 0, which is nothing but the standard

Higgs mechanism.

3.3 Equivalent Propagator and Longitudinal Vectors

The discussion of the present section follows very closely the one in Section 2.3 for the Higgs–
Kibble model. Actually several derivations are identical and will not be repeated here. The
goal is to define longitudinal polarization vectors that are well behaved in energy and derive
an equivalent form of the propagator, which decomposes in terms of these vectors and is thus
also well-behaved. We start by defining the polarization vectors as an obvious generalization
of eq. (2.36)

(E0
a [k])M ≡ (E0

st.,a[k] + iKa[+k])M
ifℜ(k0)>0
=

�

e0
µ[k]δa a′ for M ={µ, a′}
+i [Kπ(k2)]a ã′ for M = ã′

�

,

(E0
a[k])M ≡ (E

0
st.,a[k]− iKa[−k])M

ifℜ(k0)>0
=

�

e0
µ[k]δa a′ for M={µ, a′}
−i [Kπ(k2)]a ã′ for M=ã′

�

, (3.28)

where e0
µ[k]was introduced in eq. (2.35). The standard longitudinal polarization vectors E0

st.,a

and E0
st.,a that appear in the equation above, and the transverse ones that will appear later, are

simply equal to the 4D vectors εh
µ (see e.g. eq. (2.34)) times δa a′ for M = {µ, a′} and they

vanish for M = ã. The polarization vectors will be evaluated on virtual particle momentum
kµ whose energy component has positive real part as in Section 2.3.

It is straightforward to decompose the propagator in terms of the new polarization vectors.
By the standard 4D completeness relation we have

P⊥; ab
MN [k] = −

∑

h=±,0

(Eh
st.,a[k])M (E

h
st.,b[k])N , (3.29)
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which allows us to decompose the transverse part of the propagator (3.13). We further rewrite
the longitudinal term similarly to eq. (2.42), obtaining

GMN [k] = −
∑

h=±,0

Eh
aM [k][Γ

−1
⊥ ]abE

h
bN [k] +P İ M [k][(eΓ − F)−1] İ J̇PJ̇N [−k] (3.30)

−
�

i E0
a [k] +

1
2
Ka[k]

�

M [Γ
−1
⊥ ]ab(Kb[−k])N − (Ka[k])M [Γ

−1
⊥ ]ab

�

− i E0
b[k] +

1
2
Kb[−k]

�

N .

Finally we get rid of the residual anomalous energy growth by eliminating the gauge (i.e.,
İ = a) P İ M ’s vectors in favor of the KaM ’s and we follow the exact same steps that led us to
eq. (2.47) in the Higgs–Kibble model. We obtain (the sum over repeated indices is understood)

GMN [k] = Geq
MN [k]−KaM [k]VaN [−k]−VaM [k]KaN [−k] , (3.31)

in terms of some vectors Va and with

Geq
MN [k]≡ −

∑

h=±,0

Eh
aM [k][Γ

−1
⊥ ]abE

h
bN [k] +PãM [k][eΓ

−1
SS ]ã b̃Pb̃N [−k] . (3.32)

Notice that eq. (2.45), which is readily seen to apply also for a general gauge theory, needs
to be used in order to obtain this result. The final step consists in proving that Geq can be
used in place of G in resonant processes. The proof relies on the generalized Ward identities
in eq. (3.23) and is completely identical to the one presented at the end of Section 2.3 for the
Higgs–Kibble model.

On-Shell Vectors

In preparation for the study of the SM in the next section, we now discuss the structure of
the propagator around its poles k2 = M2

V associated to spin-one particles and derive the cor-
responding Feynman rules. The mass MV is complex for an unstable particle, but on-shell
scattering amplitudes and the associated Feynman rules can still be defined in terms of the
pole residue as explained in Section 2.3.

We start from massive vectors, MV 6= 0. Barring the peculiar situation where a scalar
resonance happens to have the exact same mass, the scalar part of the propagator in eq. (3.32)
does not contribute to the pole, which entirely emerges from Γ−1

⊥ . Assuming furthermore for
notational simplicity that no vectors are degenerate in mass,5 we have

lim
k2→M2

V

(k2 −M2
V )(Γ

−1
⊥ )ab = −

p

ZVa
p

ZV b , (3.33)

namely the residue of Γ−1
⊥ has unit rank and can be expressed as the matrix product of a

wave-function vector
p

ZVa. We thus arrive at

lim
k2→M2

V

�

(k2 −M2
V )G

eq
MN [k]

	

=
∑

h=±,0

p

ZVaEh
aM [k]

�

�

k2=M2
V

p

ZV b E
h
bN [k]

�

�

�

k2=M2
V

, (3.34)

where the sum over “a” and “b” is understood. We can now define the amplitude for the
creation/annihilation of a massive vector resonance with on-shell momentum k (i.e., k2 = M2

V ,
ℜ(k0)> 0), and helicity h= ±, 0, as

iM(α→ β + Vh[k]) ≡
∑

a

p

ZVa E
h
aM [k]A

�

ΦM [−k]
	

, (3.35)

iM(α+ Vh[k]→ β) ≡
∑

a

p

ZVa A
�

ΦM [k]
	

Eh
aM [k] , (3.36)

5Degeneracies due to symmetry can be easily dealt with like in the Higgs–Kibble model.
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where A denotes the amputated amplitude. If the vectors are stable asymptotic particles, the
above Feynman rules can also be derived by the LSZ reduction formula.

Notice that the vector index “a” is summed over in eq.s (3.35) and (3.36). This is a con-
sequence of the fact that the resonance is in general interpolated by several fields as in the
standard formalism. What is different in our formalism is that the polarization vectors (3.28)
have components M = ã along the scalar fields and that these components are not univer-
sal and theory-independent but rather they are theory-specific since they are proportional to
[Kπ]a ã evaluated at k2 = M2

V . In the standard formalism one can work in the “pole scheme”,
namely reabsorb

p

ZVa in a redefinition of the vector fields such that a single one interpolates
for the resonance and no summation over “a” appears in the Feynman rules. We may do the
same in our formalism by reabsorbing also

p

ZV ·Kπ(M2
V ) in the scalar fields, however taking

this step would bring no practical advantage in the applications that follow.
For massless vectors, MV = 0, the Feynman rules are the standard ones. We could establish

this fact by just working with the standard “G” propagator, never use eq. (3.31) to turn it
into Geq, and going through the standard textbook discussion. It is however an interesting
consistency cross-check to verify the result by starting directly from eq. (3.32). We work for
simplicity under the assumption that all the scalars involved in eq. (3.32) are associated to
massless would-be Goldstone bosons, eaten by the massive vectors. More precisely we assume
that

eΓSS(k
2) = k2

eΓ ′SS(0)[1+O(k2)] , (3.37)

and that eΓVV(0) has rank NS (that implies NS ≤ NV). Since eΓVV(0) = Γ⊥(0) is the vector bosons
mass-matrix (see eq. (3.26)), this is just the statement that the theory has NS massive and
NV − NS massless vectors. The above assumption is realized in the SM.

The transverse “h= ±1” terms in eq. (3.32) possess a pole at k2 = 0 that is identical to the
one of the standard propagator and thus produces the standard Feynman rules for massless
vectors. We simply have to check that the “rest” of the propagator

RMN [k]≡ −E0
aM [k][Γ

−1
⊥ ]abE

0
bN [k] +PãM [k][eΓ

−1
SS ]ã b̃Pb̃N [−k] , (3.38)

is regular at k2 = 0. Recalling the explicit expression of E0
aM [k] given in eq. (3.28) we see

that R contains a vector–vector component e0Γ−1
⊥ e0, a vector–scalar component −ie0(Γ−1

⊥ )Kπ
and a scalar–scalar component RSS = eΓ−1

SS −Kπ tΓ−1
⊥ Kπ. The vector–vector part is manifestly

regular because e0 ∝ k and Γ−1
⊥ ® k−2. In order to deal with the other terms we recall the

k2→ 0 behavior of the form-factor matrices in eq.s (3.26), (3.27) and (3.37) and that

eΓVV(0) + k2Γ ′⊥(0) = [eΓ
′
VS(0)][eΓ

′
SS(0)]

−1[eΓ ′VS(0)]
t + k2Γ ′⊥(0) , (3.39)

by eq. (3.18). The relation above implies in particular that under our hypotheses (that eΓVV(0)
and eΓ ′SS(0) have rank NS) the mixing matrix eΓ ′VS(0) has rank NS, therefore it can be written as

eΓ ′VS(0) = Θ

�

0(NV−NS)×NS

Γ
′
VS

�

, (3.40)

by a suited orthogonal NV×NV matrix Θ, where Γ
′
VS is invertible and NS×NS. Physically, the

rotation Θ brings the vector fields into a basis in which the first NV−NS vectors do not mix with
the scalars and therefore they interpolate for the massless particles. It is not unique because
rotations of the massless modes would leave that relation unchanged, but this ambiguity has
no effect in our discussion. By employing eq.s (3.26) and (3.39) we see that, in the new basis,
Γ⊥ is proportional to k2 in the upper left (NV−NS)–dimensional block while it is finite in the
others, leading to

Γ−1
⊥ (k) = Θ

�O(k−2) O(1)
O(1) [Γ

′ t
VS]
−1[eΓ ′SS(0)][Γ

′
VS]
−1 +O(k2)

�

Θt . (3.41)
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Finally from the definition of Kπ in eq. (3.24) we find

Kπ(k) = k−1
eΓ ′VS(0)[eΓ

′
SS(0)]

−1 +O(k) = Θ
�

0(NV−NS)×NS
+O(k)

k−1 Γ
′
VS
eΓ ′SS(0) +O(k)

�

, (3.42)

and we can straightforwardly conclude that also the vector–scalar and scalar-scalar compo-
nents of R are of order k0. This is because the vector–scalar term is proportional to e0, of
O(k), times Γ−1

⊥ ·Kπ, which does not pick up the O(k−2) pole in Γ−1
⊥ and is of O(k−1). The

scalar–scalar component RSS = eΓ−1
SS −Kπ tΓ−1

⊥ Kπ is also seen to be finite by direct substitution.

3.4 Renormalization Scheme (In-)Dependence

Nowhere in the present section we had to specify whether we have been working with bare
or renormalized fields and parameters. All that matters for our derivations to apply is that the
gauge-fixing functionals Fa, as they are written down in eq. (3.1), are the “bare” gauge-fixing
functionals by which the Faddeev-Popov quantization is carried on. Otherwise the Slavnov-
Taylor identities and in particular eq. (2.7) would not hold true. Therefore if the fields Vµ
and φ are bare, the gauge-fixing parameters Ξ and eµ are the bare ones, while if the fields are
renormalized, the gauge-fixing parameters have to be renormalized accordingly to preserve
eq. (3.1). More precisely the point is that the gauge-fixing parameters Ξ and eµ appearing
(through the matrix F) in the definition (3.13) of eΓ for renormalized fields are necessarily the
ones renormalized with the above prescription. If this is the case all the results of the previous
section hold in any field basis, in particular the polarization vectors are given by eq. (3.28)
with

Kπ = eΓVSeΓ
−1
SS , (3.43)

provided of course the form-factors are correctly interpreted as those of the corresponding
fields. Any other gauge-fixing renormalization prescription can of course be adopted, but the
definition of eΓ in eq. (3.13) must be modified accordingly.

It is easy to relate the Kπ matrices in two different field bases. For instance if the relation
between bare “ (b)” and renormalized “ (r)” fields takes the form

V (b)aµ = [ZVV]abV (r)bµ , (3.44)

φ
(b)
ã = [ZSS]ã b̃φ

(r)
b̃

,

the renormalized K(r)π , to be employed in our polarization vectors for renormalized fields con-
nected amplitudes, is related to the bare one as

K(r)π = Z t
VVK(b)π (Z t

SS)
−1 . (3.45)

In particular this implies, since K(b)π is independent of the scale “µ” employed for renormal-
ization, the Callan-Symanzik equation

µ
∂

∂ µ
K(r)π +

∑

C (r)
βC (r)

∂

∂ C (r)
K(r)π − γt

VVK(r)π +K(r)π γt
SS = 0 , (3.46)

where by C (r) we denote all renormalized parameters of the theory (and βC (r) ≡ (µ d/dµ)C (r)),
and γVV, SS are the anomalous dimension matrices

µ
d

dµ
ZVV = ZVV γVV , (3.47)

µ
d

dµ
ZSS = ZSS γSS .
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Eq. (3.46) may be practically relevant when performing precise calculations of high energy
processes, where the resummation of large logs lnµ2/M2

V due to RG running might become
necessary. Clearly for a successful resummation one should also run the wave-function “

p
Z”

factors in front of the scattering amplitude in eq.s (3.35) and (3.36). The corresponding
Callan-Symanzik equations are the standard ones and need not be discussed here.

4 The Standard Model

We are now ready to discuss Goldstone Equivalence in the Standard Model (SM) theory. We
start, in Section 4.1, by setting up our notation and specifying the renormalization scheme.
We next (in Section 4.2) specialize the general results of the previous section to the SM and
express the relevant form-factor matrices in terms of 1PI vacuum polarization amplitudes
for the charged and neutral SM bosonic fields. The Kπ form-factors are computed explic-
itly at one-loop order in Section 4.3. Finally, we apply our formalism to the calculation of
W+W− → W+W− at tree-level (Section 4.4.1) and of the O(y2

t ) radiative corrections to the
t →W b decay (Section 4.4.2). These simple processes are selected with the purpose of illus-
trating how concrete calculations are performed in our formalism and to provide a cross-check
that the latter correctly reproduces standard results.

4.1 Setup

We work in renormalized perturbation theory, with a gauge-fixed Lagrangian

L= L0 +Lg.f. +Lghosts +Lc.t. , (4.1)

where Lc.t. contains the divergent counterterms.
The bosonic part of L0 reads 6

Lbos.
0 = −

1
2

Tr
�

WµνW
µν
�

−
1
4

BµνBµν + (DµH)†DµH −λ
�

|H|2 −
v2

2

�2

, (4.2)

where Wµ = W a
µσ

a/2 and Bµ denote the renormalized SU(2)L×U(1) gauge fields. The as-
sociated field strength tensors are defined in the standard way, as well as the charge- and
mass-eigenstates

W±µ =
�

W 1
µ ∓ iW 2

µ

�

/
p

2 ,

Zµ = cwW 3
µ − swBµ ,

Aµ = swW 3
µ + cwBµ . (4.3)

The fields W±, Z and A diagonalize the mass-matrix of the renormalized Lagrangian L0, with
“tree-level” masses m2

W = g2v2/4 and m2
Z = m2

W/c
2
w. The sine and the cosine of the Weak

angle, sw and cw, are defined as sw/cw = g ′/g in terms of the renormalized gauge couplings g
and g ′. The actual complex masses of the W and Z bosons will be denoted with capital letter,
i.e. M2

W,Z ∈ C.
The Higgs is a doublet with Hypercharge +1/2, which we parameterize as

H =
1
p

2

�

−i
p

2π+
v + h+ iπ0

�

, (4.4)

6Matter fermions and QCD interactions, included in L0, need not be discussed explicitly.
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in terms of the physical Higgs h and of the Goldstone bosons π0 and π+ = π†
−. This

parametrization (see eq. (2.2)) makes the implications of the custodial SU(2)c approximate
symmetry more transparent resulting in simpler tree-level formulas. Under the CP symmetry,
π0 is odd like the Z and the photon, while π+→−π− similarly to the W ’s. The physical Higgs
field h is CP-even and its “tree-level” mass is m2

H = 2λv2.
The gauge-fixing Lagrangian is taken to preserve Lorentz, charge and CP symmetry, namely

Lg.f. = −F+F− −
1
2
F2

A −
1
2
F2

Z , (4.5)

with linear gauge-fixings functionals of the form

F− = ∂µWµ
− /
p

ξ−
p

ξ emWπ− = F†
+ ,

FA = (∂µAµ + θZ∂µZµ)/
p
α−
p
α emAπZ ,

FZ = (∂µZµ + θA∂µAµ)/
p
η−pη emZπZ . (4.6)

The associated ghost Lagrangian is Lghosts=−ωAδωFA−ωZδωFZ−ω+δωF−−ω−δωF+, where δω
is an infinitesimal gauge transformation with ghost parameters. Its explicit form need not be
reported here. The results of Section 4.2 will hold for any gauge-fixing in this class. Explicit
calculations will be performed in the Feynman—t’ Hooft gauge ξ=α=η=1, emW/Z=mW/Z and
θA,Z=0.

The counterterms are obtained from the bare version of the Lagrangian by introducing mul-
tiplicative renormalization constants for the bare parameters g0, g ′0, λ0 and v0 ≡ µ0/

p

λ0, plus
wave-function renormalizations for the W0, B0 and H0 fields and an independent shift for the
bare physical Higgs field h0. The ghosts and the matter fermion fields are also renormalized,
as well as the Yukawa couplings. The bare gauge-fixing parameters are renormalized in order
to compensate for the wave-function renormalization of the fields, such as to ensure that the
renormalized F ’s in eq. (4.6) are equal to the bare F ’s through which Faddeev–Popov quan-
tization is carried on. This is important because the eΓ form-factors are defined in eq. (3.12)
by subtracting the contribution of the complete bare gauge-fixing Lagrangian to the inverse
propagator (see also Section 3.4).

Loops are evaluated in Dimensional Regularization and the counterterms are fixed with
the MS prescription. A conceptually and practically convenient alternative (e.g. [44]) is to
require complete cancellation of the Higgs field tadpole, including its finite part.7 Or, which
is the same, to require that the renormalized h field has exactly zero VEV. Both options will be
considered in what follows.

4.2 The Goldstone-Equivalent Standard Model

We now apply to the SM the general results of Section 3. The bosonic fields consist of 4
vectors and 4 scalars, however thanks to symmetries we do not need to study all of them si-
multaneously. Charge conservation forbids mixings between the charged (W± and π±) and
the neutral (Z , A, π0 and h) fields, allowing us to treat the charged and the neutral sectors
separately. One further simplification emerges in the neutral sector because of the CP symme-
try. CP is broken in the SM, but CP-breaking h mixings with Z , A or π0 are suppressed by the
Jarlskog invariant, of order 10−5, and furthermore first emerge at 3 loops. Since the effect is
very small we can safely neglect it in all practical purposes, and consider a restricted neutral
sector consisting of the Z , A and π0 fields. Notice however that our general formalism would
allow to take h mixing into account, and that this might be relevant in extensions of the SM

7Specifically, we add a counterterm proportional to the Higgs doublet mass-term, |H|2, with a finite coefficient
set by requiring tadpole cancellation.
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Figure 4: Diagrammatic definition of the 1PI amplitudes. The arrow denotes momentum
flow.

with larger CP-breaking effects. Also note that here we are exploiting the implications of sym-
metries on gauge-dependent quantities such as the 2-point functions. It is thus essential that
the gauge-fixing respects the symmetries as we assumed in eq. (4.6).

Charged Sector

The relevant degrees of freedom are encoded in one complex vector with NS = NV = 1

ΦM
± =

�

Wµ
±
π±

�

. (4.7)

In Section 3 we parametrized all the degrees of freedom in terms of real fields, however it is
straightforward to adapt the results to the complex notation by regarding the real and imagi-
nary parts of Φ± as a doublet of the electromagnetic U(1) symmetry. The CP symmetry, which
is an excellent approximation in the present context as discussed above, also needs to be em-
ployed for the results that follow. In particular it ensures that the eΓ matrix is symmetric as in
eq. (4.9).

The form factors Γ⊥ and eΓ are defined in eq. (3.12) and consist of a tree-level contribution
plus vacuum polarization terms “Π(k2)” due to radiative corrections. The Π’s parametrize the
amputated 1PI 2-point functions as shown in Figure 4. With this notation the transverse form
factor Γ⊥ reads

Γ⊥ = m2
W − k2 +ΠT

WW , (4.8)

whereas the longitudinal form factor matrix eΓ is given by

eΓ =

�

eΓVV eΓVS
eΓVS eΓSS

�

=

�

m2
W k mW

k mW k2

�

+

�

ΠL
WW kΠWπ

kΠWπ Πππ

�

. (4.9)

Notice that the tree-level contribution of the gauge-fixing term, encapsulated in the “F” matrix
in eq. (3.12), has been duly subtracted from the definition of eΓ . The constraint in eq. (3.18)
among the longitudinal form factors, as dictated by the Slavnov–Taylor identity, translates into
the relation

deteΓ = [m2
W +Π

L
WW ][k

2 +Πππ]− k2[mW +ΠWπ]
2 = 0 , (4.10)

among the longitudinal Π’s.
The expressions of the form-factor in terms of the 1PI amplitudes, to be computed at each

order in perturbation theory, give operative meaning to the results of Section 3. Namely we
could now evaluate explicitly the equivalent W propagator in eq. (3.32) and the well-behaved
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longitudinal polarization vectors in eq. (3.28). For this we need the Kπ matrix defined in
eq. (3.24), which in the charged sector reduces to a single form factor

[Kπ]Wπ =
k[mW +ΠWπ]

k2 +Πππ
=

√

√

√m2
W +Π

L
WW

k2 +Πππ
=

mW

k
+O(loop) , (4.11)

which we wrote in two different but equivalent forms by the constraint in eq. (4.10). Finally,
the Equivalent Feynman rules for longitudinal W bosons external states are obtained as a
straightforward application of eq.s (3.35) and (3.36)

iM(α→ β +W±
h=0(k)) =

p

ZWW

�

E0
W±M [k]A

�

ΦM
± [−k]

	

�

k2=M2
W

=
p

ZWW

�

e0
µ[k]A

�

Wµ
± [−k]

	

− i[Kπ]WπA {π±[−k]}
�

k2=M2
W

,

iM(α+W±
h=0(k)→ β) =

p

ZWW

�

E0
W±M [k]A

�

ΦM
± [k]

	�

k2=M2
W

=
p

ZWW

�

e0
µ[k]A

�

Wµ
± [k]

	

+ i[Kπ]WπA {π±[k]}
�

k2=M2
W

.(4.12)

As in the standard Feynman rules, M2
W is defined by the condition Γ⊥(M2

W ) = 0 and ZWW is
the wave-function factor ZWW

−1 = limk2→M2
W
[(M2

W −k2) Γ⊥]. Not surprisingly, all these results
are identical in form to the ones we obtained for the Higgs–Kibble model in Section 2.

Neutral Sector

The neutral sector fields form a real multiplet

ΦM
0 =





Aµ

Zµ

π0



 , (4.13)

with NV = 2, NS = 1. Notice that CP invariance enforces 〈π0〉 = 0. This allows π0 to appear
in the gauge-fixing functionals as in eq. (4.6) and makes our definition of ΦM

0 comply with
eq. (3.2). By parametrizing the 1PI neutral 2-point functions in terms of tree-level contribution
plus vacuum polarization terms, the Γ⊥ and eΓ form-factor matrix are immediately obtained by
comparing with the general definition in eq. (3.12) to Figure 4. The transverse Γ⊥ is a 2× 2
matrix

Γ⊥ =

�

ΠT
AA− k2 ΠT

ZA
ΠT

ZA m2
Z − k2 +ΠT

Z Z

�

, (4.14)

that includes the mixing between Z and A due to radiative corrections. The longitudinal eΓ
reads

eΓ =

�

eΓVV eΓVS
eΓ t

VS
eΓSS

�

=





0 0 0
0 m2

Z k mZ
0 k mZ k2



+





ΠL
AA ΠL

ZA kΠAπ
ΠL

ZA ΠL
Z Z kΠZπ

kΠAπ kΠZπ Πππ



 . (4.15)

The matrices eΓVV, eΓVS, and eΓSS are defined in general in eq. (3.16). In the particular case at
hand they are 2 × 2, 2 × 1 and 1 × 1 (i.e., a single number), respectively. The constraint in
eq. (3.18) translates into three independent relations among the six Π’s

ΠL
AA[k

2 +Πππ] = k2Π2
Aπ ,

[m2
Z +Π

L
Z Z][k

2 +Πππ] = k2[mZ +ΠZπ]
2 ,

ΠL
ZA[k

2 +Πππ] = k2[mZ +ΠZπ]ΠAπ . (4.16)
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From eq. (3.24) we obtain Kπ, which is a 2-vector

 

[Kπ]Aπ
[Kπ]Zπ

!

=









kΠAπ

k2 +Πππ
k[mZ +ΠZπ]

k2 +Πππ









=





0+O(loop)

mZ

k
+O(loop)



 . (4.17)

Eq.s (3.35) and (3.36) gives us the longitudinal Z boson Feynman rule

iM(α→ β + Zh=0(k)) =
�

p

ZZA E0
AM [k]A

�

ΦM [−k]
	

+
p

ZZ Z E0
Z M [k]A

�

ΦM [−k]
	

�

k2=M2
Z

=
�

p

ZZA e0
µ[k]A {Aµ[−k]}+

p

ZZ Z e0
µ[k]A {Zµ[−k]}

− i
�p

ZZA [Kπ]Aπ +
p

ZZ Z [Kπ]Zπ
�

A {π0[−k]}
�

k2=M2
Z

,

iM(α+ Zh=0(k)→ β) =
�p

ZZA E0
A M [k]A

�

ΦM [k]
	

+
p

ZZ Z E0
Z M [k]A

�

ΦM [k]
	�

k2=M2
Z

=
�

p

ZZA e0
µ[k]A {Aµ[k]}+

p

ZZ Z e0
µ[k]A {Zµ[k]}

+ i
�p

ZZA [Kπ]Aπ +
p

ZZ Z [Kπ]Zπ
�

A {π0[k]}
�

k2=M2
Z

. (4.18)

The wave function factors
p

ZZ Z ,
p

ZZA are obtained from the decomposition of the propaga-
tor residue at the pole as in eq. (3.33). These are the same wave functions factors that appear
in the standard Feynman rules. Feynman rules for transversely polarized Z particles are the
standard ones also in our formalism.

The Feynman rules for the photon are also standard, as we extensively discussed in Sec-
tion 3.3. It is nevertheless interesting to show explicitly that the general results derived there
hold in the context of the SM. We notice that eq. (4.16) implies

deteΓVV = Π
L
AA[m

2
Z +Π

L
Z Z]− (Π

L
ZA)

2 = 0 . (4.19)

Since eΓVV(0) = Γ⊥(0), this means that the transverse propagator possesses an exactly massless
photon pole at all orders in perturbation theory. The existence of such pole was one of the
conditions we relied on in the study of massless vectors presented in Section 3.3. The second
condition we used there (see eq. (3.37)) was that eΓSS = k2+Πππ vanishes as k2. This is ensured
by the second line of eq. (4.16). We thus confirm that the result of Section 3.3 applies.

4.3 Kπ at One Loop

We evaluated, using the FeynArts/FormCalc package [45], the one-loop expressions of the
vacuum polarization amplitudes described in the previous section and we cross-checked the
Slavnov–Taylor relations in eq.s (4.10) and (4.16). Notice in particular that the first line of
eq. (4.16) implies that ΠL

AA vanishes at one-loop, compatibly with what we find. From the
Π’s we computed the form factors [Kπ]Wπ, [Kπ]Zπ and [Kπ]Aπ which appear in the Feynman
rules in eq.s (4.12) and (4.18).8 In the Feynman-t’Hooft gauge and in the MS scheme they are
given by

[Kπ]Wπ
�

k2
�

=
mW

k

�

1+
g2

32π2
(δW +δ)

�

,

[Kπ]Zπ
�

k2
�

=
mZ

k

�

1+
g2

32π2
(δZ +δ)

�

,

[Kπ]Aπ
�

k2
�

=
mZ

k

�

0+
g2

32π2
δA

�

, (4.20)

8Actually only [Kπ]Aπ contributes at the two-loops order in eq. (4.18) because it is multiplied by
p

ZZA.
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where

δW = 2(1− c2
w)B0

�

k2, 0, m2
W

�

+
4c4

w + 3c2
w − 1

2c2
w

B0

�

k2, m2
W , m2

Z

�

−
1
2

B0

�

k2, m2
h, m2

W

�

,

δZ =
�

4c2
w − 1

�

B0

�

k2, m2
W , m2

W

�

−
1

2c2
w

B0

�

k2, m2
h, m2

Z

�

, (4.21)

δA = −4swcwB0

�

k2, m2
W , m2

W

�

,

δ =
1
2

�

1− log
m2

W

µ2

�

+
1

4c2
w

�

1− log
m2

Z

µ2

�

+
3m2

h

4m2
W

�

1− log
m2

h

µ2

�

+
m2

W

m2
h

�

3

�

1− log
m2

W

µ2

�

+
3

2c4
w

�

1− log
m2

Z

µ2

�

− 2
∑

f

m4
f

m4
W

�

1− log
m2

f

µ2

�

−
1+ 2c4

w

c4
w

�

.

In the above equations, µ is the renormalization scale,
∑

f =
∑

l +Nc
∑

q denotes the sum over
all SM leptons (l) and quarks (q, with Nc = 3), and B0 stands for the scalar two-point integral

B0

�

k2, m2
1, m2

2

�

= −
∫ 1

0

d x log

�

−x(1− x)k2 + (1− x)m2
1 + xm2

2

µ2

�

. (4.22)

We note that the most involved term in eqs. (4.20), δ, emerges from the Higgs tadpole
diagrams, which do not cancel out in the pure MS scheme. In the modified MS scheme where
the Higgs tadpole is canceled, δ = 0 and the expressions for the Kπ’s are simpler.

4.4 Applications

In this section we apply the Goldstone Equivalence formalism to two simple calculations. The
first one, tree-level WW scattering, illustrates the concrete advantages of manifest power-
counting. The second one, the O(y2

t ) radiative corrections to top decay, provides a cross-check
of our results beyond the tree-level approximation.

4.4.1 Power-Counting in WW Scattering

Consider the tree-level amplitude M(W+
0 W−

0 →W+
0 W−

0 ) for the scattering of four longitudinal
W bosons in the center of mass frame. We are interested in the fully hard kinematical regime
where the transverse momentum kT of the final particles is large, much above the Electroweak
scale m ∼ 100 GeV. This is the configuration where the W bosons energy E=

p
s/2 is much

larger than m and the scattering angle θ is central so that kT ∼ E � m. In this regime the
amplitude M is well approximated by a power series in m2/E2.9 To the second non-trivial
order

M=M0 +M1 +O
�

m4

E4

�

, (4.23)

where the amplitude coefficients M0 and M1 are of O(1) and O(m2/E2), respectively.
Computing M0 and M1 is not straightforward in the standard formalism because the lon-

gitudinal polarization vector (2.34) grows with the vector boson energy as ε0
µ ∼ E/mW ∼ E/m.

As a consequence, individual non-gauge invariant Feynman diagrams display an unphysical
growth with energy that cancels out only when summing them together. In particular the pure
gauge diagrams scale as (E/m)4 individually, see Fig. 5. However when the contact diagrams
are summed to those with a virtual vector one finds a remarkable cancellation and a milder
behavior with the energy Mgauge∼(E/m)2. Similarly, diagrams with Higgs exchange grow as

9No odd powers of m/E can appear because of a spurionic symmetry discussed below.
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Figure 5: Coupling and energy power-counting of the vertices relevant to tree level WW
scattering. Factors of sines and cosines of the weak angle are treated as numbers of order
unity for simplicity. They could be straightforwardly included allowing us, for instance, to
exploit the mild hierarchy between g and g ′.

MHiggs∼ (E/m)2. It is only after combining them with the gauge contribution that the final
result M=Mgauge+MHiggs scales like (E/m)0 as it must since no power-like growth with
energy is possible in a renormalizable theory such as the SM. These cancellations would make
computing M0 and M1 from the expansion of Feynman diagrams a painful exercise. Since 2
powers of (E/m)2 will cancel, the gauge diagrams should be Laurent-expanded in (m/E)2 up
to the third order (and the Higgs one up to the second order) just to get the leading term M0.
One more order would be needed for M1. This is as involved as first computing the exact
amplitude and subsequently expanding it, obtaining

M0 = −4λ+ g2 1
4c2

w

�

3+ c2
θ

1− cθ

�

,

M1 =
λ

2

m2
H

E2

�

1+ cθ
1− cθ

�

+ 2λ
m2

W

E2

�

1+ cθ
1− cθ

�

+ g2 m2
W

E2

1+ cθ
(1− cθ )2

�

−9+ 10cθ − 5c2
θ

4
+

3− cθ
2c2

w
+
−6+ 3cθ − c2

θ

16c4
w

�

, (4.24)

where cθ = cosθ . The final result also displays another shortcoming of the standard formalism.
The spurious E/mW factors from the polarization vectors hide the dependence of the final
result not only on the energy, but also on the couplings. For example, the term of order λ in
M0 does not emerge from any of the vertices involved in the calculation (see Fig. 5). Rather it
appears, from a term of order g2m2

H/m
2
W , as a reminder of the cancellation between gauge and

Higgs diagrams expanding the Higgs propagator for E � mH . More generally, the problem
is that the negative powers of mW ∝ g v from the polarization vectors can cancel positive
powers of g from the vertices and modify the dependence of the final result on the couplings.

The situation is radically different in our Goldstone-Equivalent formalism. The external
longitudinal W bosons are represented with double lines as in Figure 1, indicating that ampli-
tudes both with an external vector and with an external Goldstone line should be included for
each external W particle. The precise recipe by which these amplitudes have to be combined
is provided by eq. (4.12). Goldstone amplitudes are multiplied, since we are at tree-level and
the W ’s are on-shell, by ±i [Kπ]Wπ = ±i, which is constant in energy. Vector amplitudes are
multiplied by e0

µ[k] (see eq. (2.35)), with k2 = m2
W , that scales like m/E. Clearly our formal-

ism does not bring any advantage if the aim is to compute the exact amplitude M,10 but it
greatly simplifies the calculation in the high-energy limit. Because there are no unphysical
energy growths of the polarization vectors, in this formalism one can straightforwardly isolate
which contributions are needed at any given order in m/E. Furthermore, the dependence on
the couplings of each Feynman diagram directly translates into the one of the final result. As

10But it allows to do so. We cross-checked that it produces the same result as the standard formalism.
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Figure 6: Summary of the leading contributions to M(W0W0 → W0W0) and their scal-
ing with m/E and g2, λ. The column O(m/E) is empty according to the selection rule in
eq. (4.25).

seen in Fig. 5, trilinear vertices with one vector and two scalars, or with three vectors, scale like
g E. Vertices with two vectors and a physical Higgs are of order g mW while quartics involv-
ing vectors and scalars are of order g2. Quartics with only scalars are instead of order λ and
scalar trilinears scale like λ v. Finally, the scalar and vector propagators scale like 1/E2. No-
tice that we are working in the Feynman–’t Hooft gauge where there is no mixed scalar/vector
propagator.

These simple power-counting rules allow us to identify the diagrams contributing to M0
and M1, as schematically reported in Figure 6. Because each e0

µ carries a ∼ mW/E suppres-
sion, the dominant contribution comes from diagrams with only Goldstones on the external
legs, evaluated with massless vector bosons momenta and massless propagators. These con-
sistently match M0 in eq. (4.24). The terms of order g2 and λ directly emerge from the
Goldstone-vector vertices and from the Goldstone quartic coupling, respectively. Computing
the next order term M1 is also straightforward. The first term in M1 comes from the diagrams
with two scalar trilinear vertices, of order (λv)2/E2 ∼ λm2

H/E
2. The second one originates

from diagrams with one vector (which comes with one mW/E factor from e0
µ) and tree Gold-

stone external lines, one scalar trilinear and one Goldstone-vector vertex, which is of order
mW ·λ v · g/E2 ∼ λm2

W/E
2. The last one, of order g2m2

W/E
2, comes from diagrams with two

external vectors and two external Goldstones, plus the contribution of the leading order dia-
grams with one insertion of the vector boson mass term (denoted by ⊗ in the figure) from the
expansion of the propagator.

The above discussion also illustrates the connection between our Goldstone-Equivalent for-
malism and the standard Equivalence Theorem. The Equivalence Theorem, in our formalism,
is merely the statement that diagrams with vector external legs are suppressed by e0

µ ∼ m/E
relative to the Goldstone ones, as in Figure 1. This in itself does not mean that scattering
amplitudes for external longitudinal bosons are dominated by Goldstone diagrams, as a naive
formulation of the Equivalence Theorem would suggest. Indeed we saw that the suppres-
sion from e0

µ is only one of the elements of the power-counting rule, to be combined with
all the other factors from the vertices and the propagators. These factors were such that the
naive Equivalence Theorem holds in our example, therefore M0 could have also been guessed
naively. Clearly there would be no way to obtain M1 without our formalism. In fact we saw
that M1 emerges also from diagrams with vector external legs. Yet, a naive application of the
Equivalence Theorem can produce wrong results even at the leading order in the m/E expan-
sion. Consider for instance the process W+

±W−
± →W+

±W−
0 . It so happens (see below) that the

amputated Feynman diagrams with one external Goldstone and three vector legs are of order
g2mW/E. The diagrams with four vector legs are instead of order g2. Taking into account
the polarization vectors and their energy scaling, both classes of diagrams contribute to the
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leading order scattering amplitude and should be retained.
When studying the high-energy limit of SM scattering amplitudes it is useful to keep

in mind the following spurionic symmetry. Consider the Z2 transformation H → −H and
ψL →−ψL , that changes sign to the Higgs and to the fermion doublets. This operation is part
of the SU(2)L gauge group and thus it is a symmetry of the Lagrangian before gauge-fixing.
The symmetry acts as h→−h and π→−π on the physical Higgs and on the Goldstones, plus
the parameter transformation v → −v. The Higgs VEV v is interpreted as a spurion of the
Z2 symmetry. The gauge-fixings in eq. (4.6) further break the symmetry and introduces three
more spurions emW,A,Z → −emW,A,Z . If we collectively denote as “m” the gauge-fixing masses
and the masses of all the (bosonic and fermionic) fields in the theory, and we trade “v” for one
of these masses, the Z2 symmetry acts as

(h, π, Vµ, ψL , ψR, m)→ (−h, −π, Vµ, −ψL , ψR, −m) . (4.25)

By this symmetry we can understand better the energy dependence of the WW scattering am-
plitudes discussed above. The amputated Feynman amplitude with 3 vectors and 1 Goldstone
leg involves an odd number of external scalars. Therefore it is Z2-odd and must scale like
(m/E)2n+1 (with n ≥ 0, since the theory is renormalizable). In the absence of accidental can-
cellations the leading term is of order (m/E)1, and this is what is found. Amplitudes with 4
vector legs are instead even and they scale as (m/E)0 barring cancellations. It is also straight-
forward to draw the implications of the Z2 symmetry directly on the scattering amplitudes, in
spite of the fact that our formalism mixes up amputated amplitudes with external vector and
Goldstone fields (see Figure 6), which have opposite Z2 parity. Indeed, e0

µ is manifestly odd and
compensates for the different parities. In particular we can conclude that M(W0W0→W0W0)
is even, therefore its high-energy expansion can only contain even powers of m/E as antici-
pated above eq. (4.23).

4.4.2 Radiative Corrections to Top Decay

At the leading order in the mW/mt � 1 expansion the dominant decay mode of the top is
t →W+

0 b, with longitudinally polarized W . This well-known result is immediately recovered
in our formalism (or using the standard Equivalence Theorem) by noticing that the charged
Goldstone couples to t and b with strength yt , where yt =

p
2mt/v is the top Yukawa coupling.

The coupling with the charged vector is instead the gauge coupling g. Since yt � g in the
heavy-top limit, the decay to longitudinal W is enhanced relative to the one to transverse
by the diagram with the Goldstone on the external leg. In this section we consider radiative
corrections to the M(t →W+

0 b) decay amplitude, focusing in particular on the leading ones,
of order y2

t /16π2 (and y4
t /λ/16π2, see below) relative to the tree-level. The calculation will

be performed in our Goldstone-Equivalent formalism and compared with standard results (see
e.g. [46–49]).

Before proceeding, few technical remarks are in order. We compute the proper gauge-
invariant decay amplitude, with the momentum of the external top on the complex mass-shell
k2

t = M2
t ∈ C. This is conceptually important because our formalism is equivalent to the

standard one only for gauge-invariant (hence physical) quantities. We should proceed in the
same way for the final-state W , however the W is stable (i.e., MW ∈ R) at the order we are
interested in. The b quark is taken massless and stable. We work in the Feynman-’t Hooft gauge
and in the MS scheme, but we also show the result in the modified MS scheme discussed at
the end of Section 4.1. The anomalously large O(y4

t /λ) corrections are an artifact of MS due
to the Higgs tadpole contribution and they disappear in the modified MS scheme as noticed in
Ref. [44]. Calculations are performed with the Mathematica package FeynArts/FormCalc
[45].
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Figure 7: One-loop corrections to the top wave-functions to O(y2
t ).

Let us first summarize the standard calculation. The tree-level diagram, evaluated with
all-orders kinematics k2

t,W = M2
t,W , and taking in to account the wave-function factors, gives

q

Z L
t Z L

b ZW
g
p

2
(ubγ

µPLut)ε
0
µ =

q

Z L
t Z L

b ZW
g
p

2

Mt

MW
ubPRut , ⇒ M(tree) = ytubPRut , (4.26)

with the standard longitudinal polarization vector ε0 as given in eq. (2.34). In the above
equation we exploited momentum conservation and the Dirac equation (with mb = 0) for
the spinors. Notice that we did not exploit the mW/mt � 1 condition. Namely eq. (4.26),
and in particular the resulting tree-level result M(tree), is exact at all orders in mW/mt . The
one-loop correction to the amplitude, M(1), receives three kinds of contributions. First we
have the corrections to the wave-function factors in the tree diagram, Z L

t,b = 1 + δZ L
t,b and

ZW = 1+δZW . To order O(y2
t , y4

t /λ) we have δZW = 0 so the latter will be ignored. Second
we have corrections to the masses M2

W = m2
W + δM2

W and M2
t = m2

t + δM2
t . Finally, we have

the genuine one-loop vertex corrections to the amputated amplitude which emerges at this
order from Goldstone and Higgs loops. The final result reads

M(1) =M(0)

�

1+δvert +
1
2

�

δZ L
b +δZ L

t

�

+
1
2

δM2
t

m2
t
−

1
2

δM2
W

m2
W

�

, (4.27)

where the vertex correction δvert is

δvert =
g2m2

t

64π2m2
W

�

2B0(m
2
t , 0, m2

t ) + log
m2

t

µ2
− 1

�

, (4.28)

with B0 as in eq. (4.22). Notice that the W and the Higgs mass have been neglected compared
to mt in the vertex correction. This is legitimate at O(y2

t ).
Let us now compute M(1) with our formalism. A quick inspection of the vertex correction

diagrams immediately reveals that there is none contributing to our order. The one with the
Goldstone on the external leg and the Goldstone/Higgs trilinear vertex is of order λ relative
to the tree-level, the one with the Goldstone/Goldstone/vector vertex is of order g2 and the
others are even smaller. Diagrams with a vector external leg, such as the one contributing in the
standard formalism, are suppressed by the polarization vector factor e0

µ ∼ mW/E ∼ mW/mt .
Therefore in the Goldstone-Equivalent formalism there are no vertex corrections and the result
entirely comes from the tree-level decay diagrams. Furthermore it so happens that the tree-
level diagram with external vector exactly vanishes and we are left with only the Goldstone
leg, that gives

Kπ
Ç

ZR
t Z L

b ZW ytubPRut , (4.29)

with Kπ = [Kπ]Wπ = 1+ δKπ as in eq. (4.20). The standard formalism result for the tree-
level amplitude M0 is immediately recovered. The full one-loop amplitude in the Goldstone
Equivalent formalism reads

M(1)
GE =M(0)

§

1+
1
2

�

δZ L
b +δZR

t

�

+δKπ
ª

, (4.30)
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which looks different from eq. (4.27) in several respects. We do not have vertex corrections,
nor corrections due to the masses. Instead, we have the correction δKπ from the Goldstone
component of the longitudinal polarization vector. Moreover, we have wave-function δZR

t cor-
rections to the right-handed top quark field rather than to the left-handed one as in eq. (4.27).
This is because the gauge coupling involves the left-handed top, while the Goldstone coupling
which is relevant in our formalism involves the right-handed field. We get M(1)

GE =M(1) only
provided

1
2

δM2
t

m2
t

?
= −δvert +

1
2

�

δZR
t −δZ L

t

�

+

�

1
2

δM2
W

m2
W

+δKπ
�

. (4.31)

In order to check eq. (4.31) we use eq. (4.20), duly evaluated at k2
W = M2

W , obtaining

δKπ =
mW

MW

�

1+
g2

32π2
(δW +δ)

�

− 1

' −
1
2

δM2
W

m2
W

+

�

−6
g2

32π2

m4
t

m2
W m2

h

�

1− log
m2

t

µ2

��

, (4.32)

where in the last line we retained only terms up to O(y4
t /λ, y2

t ). Those come entirely from δ,
which in turn originates from the tadpole contribution. The term in brackets on the second
line of eq. (4.32) would thus be absent in the modified MS scheme. We also compute explicitly
the diagrams in Figure 7, obtaining

δZR
t = δZ L

t −
g2m2

t

64π2m2
W

B0

�

m2
t , 0, 0

�

, (4.33)

at O(y4
t /λ, y2

t ). Plugging into eq. (4.31), using also eq.s (4.32) and (4.28), we obtain that

M(1)
GE is equal to M(1) if

1
2

δM2
t

m2
t

?
= −

g2m2
t

64π2m2
W

�

2B0(m
2
t , 0, m2
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1
2

B0

�

m2
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�

log
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t
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�

+

�

−6
g2

32π2

m4
t

m2
W m2

h

�

1− log
m2

t

µ2

��

. (4.34)

This is precisely the relation between the pole and MS top masses at O(y2
t , y4

t /λ), given for
instance in Ref. [50]. The term in parentheses on the second line, of O(y4

t /λ), is absent in
the modified MS scheme and consistently disappears from the top mass formula as shown in
Ref. [44]. Notice that O(y4

t /λ) corrections also disappear from the decay amplitude in the
modified MS scheme. This is because no such term is present (in any scheme) in the wave-
function corrections and the one in eq. (4.32) drops.

We have thus confirmed that M(1)
GE = M(1) at the order of interest. This constitutes a

non-trivial check of our formalism and of the one-loop calculation of Kπ in Section 4.3.

5 Collinear Factorization and Splitting Functions

We saw that manifest power-counting makes the Goldstone Equivalent formalism simpler and
more transparent for explicit calculations of specific processes in the high energy limit. For
the sake of proving general properties of the high-energy amplitudes, where manifest power-
counting is essential, our formalism is instead not only a simplification, but an absolute need.
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Figure 8: Pictorial representation of the leading contributions in the factorizable AX → BY
and X → BCY processes. The dashed blob represents the hard reaction.

This point is illustrated in the present Section, where we prove the factorization of collinear
splittings at the tree-level order and compute the splitting functions in the SM.

Let us first state collinear factorization for the SM, in the form we will prove it. We start
from initial-state splitting topologies depicted on the left panel of Figure 8. Consider a scat-
tering process of the type AX → BY , with A, B two arbitrary particles and X , Y unspecified
(multi-particle, in the case of Y ) states. Assume that there exist a virtual particle C∗ that can
be emitted from A by the A → BC∗ splitting, and absorbed by X producing Y through the
C∗X → Y reaction. If the hardness “E” of the C∗X → Y process is much larger than the Elec-
troweak scale m = 100 GeV and if the A→ BC∗ splitting is collinear, up to small corrections
“δ” the amplitude factorizes

iM(AX → BY ) =
∑

C

iMhard(CX → Y )
i

Q2
iMsplit(A→ BC∗) [1+O(δ)] , (5.1)

as the product of the matrix element for the “hard” CX → Y process (with on-shell C particle)
times a “splitting amplitude” Msplit.

The kinematical regime where eq. (5.1) holds and the size of the corrections will be dis-
cussed in detail in the rest of this section (see also Ref. [23]). The corrections are controlled
by the expansion parameters δm ≡ m/E � 1 and δ⊥ ≡ |k⊥|/E � 1, where k⊥ denotes the
momentum of B transverse to the direction of A. The former condition ensures that the char-
acteristic scale of the hard process is indeed much above the Electroweak scale. Adding the
latter guarantees that k2 = (kA− kB)2� E2 is small, such that the A→ BC∗ splitting is instead
a low-scale process.11 Since mC ® m, for any SM particle C , the two conditions also imply that
the virtuality of C∗ , i.e. Q2 ≡ k2 −m2

C that appears in the denominator of eq. (5.1), is much
smaller than E2. Notice that δm and δ⊥ are independent expansion parameters and their rel-
ative magnitude is arbitrary, a priori. We will see that the most interesting configurations are
δm ∼ δ⊥ and δm � δ⊥. In the first case the virtuality Q2 is of the order of the Electroweak
scale m. In the second one, Q2� m2 and the splitting is itself a high-energy process relative to
the Electroweak scale. The relative corrections to the factorized expression for the amplitude
in eq. (5.1) are of order δ = Max[δ⊥,δm] or smaller. The regime where δm � δ⊥ will be
discussed later.

Similar considerations hold for final-state splittings, as on the right panel of Figure 8.
The process is X → BCY , with X a two-particle and Y a single or multi-particle state. The
factorization formula reads

iM(X → BCY ) =
∑

A

iMhard(X → AY )
i

Q2
iMsplit(A∗→ BC) [1+O(δ)] , (5.2)

11We further need to ensure that the splitting is collinear and not soft. This is achieved by taking the momentum
fraction “x” (see eq. (5.16)) away from the extremes.
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and the expansion parameters are again δm ≡ m/E and δ⊥ ≡ |k⊥|/E, where k⊥ still denotes
the momentum of B transverse to A. For final-state splittings, unlike the previous case, kine-
matical configurations exist where Q2 ≡ k2−m2

A = (kB+ kC)2−m2
A is much smaller than |k⊥|2

and m2. For instance if A is unstable and BC are its decay products, one might consider the
exactly resonant configuration where Q2 = 0. For such resonant configurations, which we
exclude from our discussion, the corrections to the factorized approximation are smaller.

The applicability and the implications of the factorization formulas in eq.s (5.1) and (5.2)
need to be further clarified. We stated factorization assuming that neither the hard nor the
splitting amplitudes are power-like suppressed with energy. Or, better said, that this holds for
at least one of the virtual particles C∗ and A∗ (with given helicities) in the sums. For the hard
reaction, the assumption means

Mhard ∼ E4−L , (5.3)

where “L” is the number of external legs so that 4−L is the energy dimension of the amplitude.
Power suppressions in m/E, due for instance to the mass-parity symmetry in eq. (4.25), are
excluded. The splitting amplitudes, of energy dimension 1, are instead assumed to scale as E0

and be either of order |k⊥| or of order m. This is the maximum allowed energy scaling, as it is
easy to show by exploiting Lorentz invariance. Which one of the two options Msplit∼ |k⊥| or
Msplit∼ m is realized is determined by selection rules and confirmed by explicit calculations
on a case-by-case basis. Similarly one can show that Msplit may be further suppressed by
powers of m/E or |k⊥|/E in some splitting configurations, which we are excluding with our
assumptions. If the assumptions hold, and if we momentarily restrict to the δm ∼ δ⊥ regime
for simplicity, Msplit∼ δm,⊥E and the factorized contributions to the amplitudes in eq.s (5.1)
and (5.2) scale like

M∼
1
δm,⊥

E3−L . (5.4)

The complete scattering process has one external leg more than the hard reaction, therefore
its amplitude has energy dimension 3 − L and would scale naively as E3−L . The factorized
contribution is enhanced by an IR effect (i.e., the collinear splitting) and is larger by a factor
of 1/δm,⊥.

If instead the hard or the splitting amplitudes are power-like suppressed in m/E or |k⊥|/E,
eq.s (5.1) and (5.2) should be interpreted with care. They still correctly estimate, as we will
see, the magnitude of the contribution of the resonant diagrams to the complete amplitude,
allowing us to conclude that no 1/δm,⊥ IR enhancement is present. On the other hand they
cannot be used to compute the complete scattering amplitude since non-resonant contribu-
tions can be equally important. In short, the factorization formulas in eq.s (5.1) and (5.2)
only capture the 1/δm,⊥ IR-enhanced contribution to the amplitude, when present. Similar
considerations obviously apply if the hard or the splitting amplitudes are suppressed not by
m/E, but by small coupling constants. The factorization formulas would not give a good ap-
proximation if the complete reaction can be mediated also by different topologies that do not
involve splittings but benefit from much larger couplings.

The rest of this section is organized as follows. In Section 5.1 we show how the factoriza-
tion of the amplitude as in eq.s (5.1) and (5.2) is straightforwardly proved in the Goldstone
Equivalent formalism. Manifest power-counting is a key element of the derivation, but the
equivalent propagator introduced in Sections 2.3 and 3.3 also plays a major role. In partic-
ular it will allow us to deal with splittings involving off-shell massive vectors. In Section 5.2
we describe the calculation of the splitting amplitudes (listed in Appendix B) and of the split-
ting probabilities. We also apply our results concretely to the emission of a collinear vector
V = W, Z ,γ from the initial state, proving the validity of the so-called “Effective Vector Ap-
proximation” (EVA) [51–54].
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5.1 Amplitude Factorization

Collinear factorization is a statement about contributions to scattering amplitudes that are en-
hanced, relative to the naive scaling with energy, in the collinear limit. In a formalism like
ours where power-counting is manifest at the level of individual Feynman diagrams it is obvi-
ous that such enhancements can only emerge from “resonant” diagrams where the real parti-
cles involved in the splitting are connected to the rest of the diagram by a single propagator.
Namely we can interpret the pictorial representation in Figure 8 of the virtual particles emis-
sion/absorption as a quantitative representation of the dominant Feynman diagrams.12 This is
so because enhancements can only emerge from low-virtuality propagators, while in diagrams
that are not of the resonant type all the internal lines have high virtuality. The scaling with
energy of the non-resonant diagrams contribution to the process (AX → BY or X C → BCY ,
for initial or final state splitting) is thus the naive one or less

Mn.r. ® E3−L , (5.5)

where L is the number of legs of the hard scattering subprocess as previously defined. Eq. (5.5)
provides an upper bound on the non-resonant contribution, additional suppressions can
emerge from the mass-parity selection rule. We will return to this point below.

In order to prove factorization we can thus focus on the resonant Feynman amplitudes and
expand them for δm = m/E � 1 and δ⊥ = |k⊥|/E � 1. We will work out the expansion
explicitly only in the case of vector resonant propagator, which we denote with the habitual
double line as in Figure 8. The discussion is fully analogous, but simpler, if the resonant
propagator is a fermion or a Higgs propagator. The additional complication in the case of
a vector stems from the fact that the standard propagator is not well-behaved in the limit
where its 4-momentum components kµ are large compared to k. This problem was solved in
Sections 2.3 and 3.3 by introducing the equivalent propagator Geq, which is well-behaved, and
by showing that it can be used in place of the standard propagator in the resonant lines. We
showed that the standard propagator can be replaced by Geq also in multiple resonant lines
that arise in the same process. Hence the discussion that follows straightforwardly generalizes
to multiple splittings.

We focus for definiteness on the case of a single vector W of mass m and a single Gold-
stone scalar π, which we embed as usual in the ΦM = (Wµ, π) multiplet. Strictly speaking
this only covers the charged vector sector of the SM, however adapting the derivation to the
neutral sector poses no additional challenges. The only difference is that the final result for
the amplitude will contain a coherent sum over Z , photon and (possibly) Higgs intermediate
states, producing interference effects to be duly taken into account in the amplitude squared
as we will see in Section 5.2.

In the single-vector case, eq. (3.32) (supplemented by the tree-level expression for the
form factors in Section 4.2) allows us to write the resonant contribution to the amplitude as

Mres = AA
�

ΦM [k]
	

Geq
MN [k]AC

�

ΦN [−k]
	

,

= AA
�

ΦM [k]
	





1
Q2

∑

h=0,±
Eh

M [k]E
h
N [k] +

1
k2

PSMPSN



AC
�

ΦN [−k]
	

. (5.6)

The propagator momentum kµ is oriented to have positive energy component, hence it can be
interpreted as the momentum of the virtual vector. The annihilation and creation amplitudes

12Notice that the dominance of the resonant topology diagrams does not hold for massive gauge theories in the
standard covariant formalism, due to the lack of manifest power-counting, as discussed in detail in Ref. [23]. This
is the reason why collinear factorization in the SM has been studied until now [21, 23, 55] only in non-covariant
(axial) gauges.
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AA
�

ΦM [k]
	

and AC
�

ΦM [−k]
	

correspond to the portions of the resonant Feynman diagrams
where the virtual vector is annihilated and created, respectively, as in Figure 2. For the initial-
state splitting, AA is the amputated amplitude of the hard process X C → Y (with C the vector)
and AC corresponds to the A → BC∗ splitting. The interpretation is reversed for final-state
splitting. The polarization vectors, at tree-level, are simply

E0
M [k] =

�

e0
µ[k], +i

m
k

�

,

E0
M [k] =

�

e0
µ[k], −i

m
k

�

, (5.7)

with e0
µ as in eq. (2.35).

In the kinematical configuration we are interested in the virtual vector 3-momentum ~k is
large, |~k| ∼ E, while its virtuality Q2 is small, either of order |k⊥|2 or of order m2 depending
on which one of the two is larger (see eq. (5.20)). We can thus approximate kµ by an on-
shell momentum kµon, with k2

on = m2. The precise definition of kµon is ambiguous within the
uncertainties introduced by the factorized approximation. We momentarily take kµon to have
the exact same 3-momentum component as kµ, and the energy component dictated by the
on-shell condition. With this choice

E±M [k] = E±M [kon] ,

E0
M [k] =

�

k/m
�

1+O(δ2
m,⊥)

�

δνµ 04×1

01×4 m/k

� N

M

E0
N [kon] , (5.8)

and similarly for the outgoing polarizations. The resonant amplitude thus becomes

Mres =M(pole)
res

�

1+O(δ2
m,⊥)

�

+M(local)
res

�

1+O(δ2
m,⊥)

�

, (5.9)

where M(pole)
res and M(local)

res are

M(pole)
res = AA

�

ΦM [k]
	





1
Q2

∑

h=0,±
Eh

M [kon]E
h
N [kon]



AC
�

ΦN [−k]
	

, (5.10)

M(local)
res = AA {Wµ[k]}

�

1
m2

e0
µ[kon]e

0
ν[kon]

�

AC {Wν[−k]} . (5.11)

The “pole” term M(pole)
res is readily seen to produce the factorized expressions in eq.s (5.1)

and (5.2) by taking the on-shell limit kµ→ kµon in the amputated amplitude that corresponds
to the hard process. This is AA in the case of initial-state and AC in the case of final-state
splitting

¨

iMhard(XWh→ Y ) =AA
�

ΦM [kon]
	

Eh
M [kon] for initial−state splitting,

iMhard(X → Y Wh) = Eh
M [kon]AC

�

ΦM [−kon]
	

for final−state splitting.
(5.12)

The amplitude that corresponds to the splitting process is instead
¨

iMsplit(A→ BW ∗
h ) = Eh

N [kon]AC
�

ΦN [−k]
	

for initial−state splitting,

iMsplit(W ∗
h → BC) =AA

�

ΦN [k]
	

Eh
N [kon] for final−state splitting.

(5.13)

The corrections introduced by the on-shell approximation kµ → kµon in the hard amplitude,
as well as the ones in eq. (5.9), are quadratic in the expansion parameters δm and δ⊥.13

13When sending kµ → kµon, the other external momenta of the hard process must also be readjusted to ensure
energy conservation. This can be done without introducing linear corrections.
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They can be safely ignored since comparable or larger (linear) corrections will emerge from
other sources. Also notice that the on-shell hard amplitudes are physical gauge-independent
quantities and do not necessarily need to be computed in the Goldstone Equivalent formalism.
The splitting amplitudes are also gauge-independent, because of the gauge-independence of
the complete scattering amplitude. However they are defined and should be computed in our
formalism.

Let us now turn to the estimate of the corrections to the factorized formula. They emerge
from the non-resonant diagrams contribution Mn.r. and from the “local” term M(local)

res in
eq. (5.11). The second one happens to be either of the same order or smaller than the first
one. In order to see this, we start by giving a slightly more refined estimate of Mn.r., by ex-
ploiting the mass-parity symmetry in eq. (4.25). The complete scattering process AX → BY
or X → BCY can be even or odd. In the latter case, the symmetry implies that all diagrams
contributing to the process, and in particular the resonant ones, are proportional to at least
one power of m. The non-resonant amplitude thus scales as

M+
n.r. ∼ E3−L , M−

n.r. ∼ mE2−L , (5.14)

for even and odd amplitudes, respectively. The mass-parity symmetry also tells us about the
two amputated amplitudes that appear in the local term M(local)

res . If the complete process is
even, the two amplitudes must have the same parity. When they are both even we obtain
M(local)

res ∼ E3−L precisely like the non-resonant amplitude M+
n.r., since the two powers of m in

the denominator of eq. (5.11) cancel the “m” factors in e0
µ[kon] (see eq. (2.35)). On the other

hand, if both amplitudes are odd, M(local)
res is further suppressed compared to M+

n.r.. In the case
the complete scattering amplitude is odd under the mass-parity symmetry, the creation and
annihilation amplitudes in eq. (5.11) must instead have opposite parity. One of the two brings
one power of m, therefore M(local)

res ∼ m E2−L , again like the non-resonant amplitude M−
n.r..

We conclude that Mn.r. provides a conservative estimate of the corrections to factorization,
including the effect of the local term.

The corrections are controlled by two separate expansion parameters, δm and δ⊥, and
hierarchies are possible between them. We discuss the various options in turn.

I) δm ∼ δ⊥
As already anticipated in eq. (5.4), the factorized component of the amplitude scales like
E3−L/δm,⊥ in this case. This follows from our assumption that power-like energy suppressions
are absent in both the hard amplitude, that scales as in eq. (5.3), and in the splitting one, that
is of order Msplit∼δm,⊥E. The factorized term is thus larger than Mn.r. by a factor of 1/δm,⊥ if
the amplitude is even, and by a factor 1/δ2

m,⊥ if it is odd. The relative correction in eq.s (5.1)

and (5.2) are thus of order δ = δm,⊥ for an even process, δ = δ2
m,⊥ for an odd one.

II) δm � δ⊥
In order to deal with this case one has to notice that the hard scattering amplitude must
be even under mass-parity not to experience an energy suppression. This implies that the
splitting amplitude has the same parity as the complete scattering process and consequently
it is Msplit∼m if the process is odd and Msplit∼ |k⊥| if it is even. The virtuality Q2 in the
denominators of eq.s (5.1) and (5.2) is of order |k⊥|2, therefore the factorized amplitude is of
order E3−L/δ⊥ if the amplitude is even and of order m E2−L/δ2

⊥ if it is odd. The corrections to
factorizations therefore are δ = δ⊥ or δ = δ2

⊥ if the amplitude is even or odd, respectively.

III) δm � δ⊥
The virtuality is Q2 ∼ m2, therefore for odd amplitudes the resonant component scales like
E3−L/δm and the corrections to factorization are δ = δ2

m. The situation is different if the
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amplitude is even. The splitting amplitude is of order |k⊥| and thus the resonant component
scales as E3−Lδ⊥/δ

2
m. The corrections are δ = δ2

m/δ⊥.

We thus conclude that for any hierarchy between δm and δ⊥, the corrections in eq.s (5.1)
and (5.2) are always quadratic, namely δ = Max[δ2

m, δ2
⊥], if the amplitude is odd. For even

amplitudes the final estimate for δ is instead less favorable and reads

δ =Max[δm, δ⊥, δ2
m/δ⊥] , (5.15)

compatibly with what was found in Ref. [23]. The result implies in particular that even if δm
and δ⊥ are small, factorization does not hold when the hierarchy between them is such that
δ2

m/δ⊥ ¦ 1. This is not surprising. Factorization has to capture IR-enhanced contributions to
the amplitude, and we just saw that there is no enhancement in this configuration. Notice that
this peculiar violation of factorization has limited practical relevance because the kinematical
regime where |k⊥| is much smaller than m (such that δ⊥/δm → 0) is a small region of the
phase space where the amplitude is not enhanced.

In the previous discussion we had in mind splittings with a virtual massive vector boson.
However our considerations and results hold for an arbitrary splitting, barring the case in
which all the particles involved are much lighter than the Electroweak scale m. If for instance
they are exactly massless, we have that Q2 ∼ |k⊥|2 independently of m. The corrections due
to the on-shell approximation kµ → kµon, which only depend on Q2, are also independent of
m and of order δ2

⊥. The corrections to factorization are thus δ = δ⊥ or δ = δ2
⊥ for even and

odd amplitudes respectively, regardless of the hierarchy between δ⊥ and δm. Factorization for
massless splittings holds also in the E ® m regime that we are excluding from our analysis.
The standard treatment of factorization for photons, gluons and light quarks and leptons, in
QED and QCD, applies in that case.

5.2 Splitting Amplitudes and Splitting Functions

The splitting amplitudes may now be evaluated as a straightforward application of eq. (5.13),
plus the obvious generalization for the splitting of a virtual fermion or scalar. However few
more manipulations and approximations are needed in order to cast the result in a simple and
synthetic format. In particular, since factorization only holds in the collinear limit δm,⊥ � 1,
we are allowed to expand eq. (5.13) in δm,⊥ and retain only the leading term. We start by
considering the splitting of a particle “A” moving along the z axis in the positive direction. The
3-momenta of the particles involved in the splitting are parameterized as

~kA =
�

0, 0, |~kA|
�

,
~kB =

�

|k⊥| cosφ, |k⊥| sinφ, (1− x)|~kA|
�

,
~kC =

�

−|k⊥| cosφ, −|k⊥| sinφ, x |~kA|
�

, (5.16)

where |~kA| is large, of order E, and |k⊥| � E. Since we are interested in collinear splittings, and
not in soft ones, the longitudinal momentum fraction x ranges from 0 to 1 and it is far from
the extremes.14 Both for initial-state (A→ BC∗) and final-state (A∗ → BC) splittings, Msplit

in eq. (5.13) is given by the 3-point amputated tree-level amplitude of the fields that inter-
polate for the A, B, C particles, times the corresponding polarization vectors (or spinor wave-
functions) evaluated with on-shell 4-momenta. Notice that the virtual particle momentum kµ

is carried on-shell (sending kµ→ kµon in the polarization vector as discussed above eq. (5.9))
by preserving its 3-momentum. Therefore if we adopt the same 3-momenta parametrization

14Namely, x and 1− x should not be much smaller than one. This was implicitly assumed in the estimates of
Section 5.1.
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in eq. (5.16) for the A→ BC∗ and for the A∗ → BC splittings, the on-shell momenta of the
three particles is the same both for initial- and for final-state splitting amplitudes. The dif-
ference between initial- and final-state only emerges from the amputated amplitude, which is
evaluated with on-shell kµA,B and off-shell kµC = (kA− kB)µ, or with on-shell kµB,C and off-shell
kµA = (kB+kC)µ, respectively. However it is not difficult to prove (or to verify by direct calcula-
tion) that the result is the same at the leading order in δm,⊥ and that differences only appear in
the second order of the splitting amplitude expansion, i.e. at O(δ2

m,⊥). Order δ2
m,⊥ corrections

to the factorization formulas (5.1) and (5.2) are present in any case. Therefore we can employ
leading-order splitting amplitudes Msplit(A→ BC), that take the same form for initial-state
and for final-state splittings, without degrading the accuracy of the approximation.

The complete list of SM splitting amplitudes is reported in Appendix B. Depending on the
amount of helicity violation (∆h= hB+hC−hA) that occurs in the splitting, they take the form

Msplit(A→ BC) =











∑

p mp f (p)ABC(x) for ∆h= 0 ,

e∓iφ |k⊥| fABC(x) for ∆h= ±1 ,

®O(|k⊥|δ⊥) for |∆h| ≥ 2 ,

(5.17)

where the sum on the first line runs over the particles p = A, B, C involved in the splitting.
Splitting amplitudes with ∆h = 0 are independent of φ and of k⊥. They are proportional
to the masses mA,B,C and they vanish in the massless case. Splittings of this type, dubbed
“ultra-collinear” in Ref. [21], are peculiar of the SM. They give rise to interesting phenomena
such as the emission of a longitudinal vector boson from a massless fermion. Notice that the
∆h= 0 splittings, since their amplitude is proportional to the masses, are odd under the mass-
parity symmetry. For ∆h= ±1 we recover instead the structure of the standard massless QED
and QCD splittings. The dependence of the splitting amplitudes on φ and on k⊥ is dictated by
rotational symmetry, as we will briefly review in Appendix B. In particular rotational symmetry
implies that |∆h| ≥ 2 amplitudes are proportional to at least two powers of k⊥, hence they
are at most of O(|k⊥|δ⊥). They are suppressed with energy and thus can be ignored as we
discussed.

We now turn to the generic configuration where the particle “A” moves in an arbitrary
direction. Denoting as Θ ∈ [0,π] and Φ ∈ [0,2π) the polar and azimuthal angles of ~kA (as in
eq. (A.1)), we can define a standard “Jacob–Wick” rotation

RJW(Θ,Φ)≡ REul.(Φ,Θ,−Φ) = e−iΦJz e−iΘJy e+iΦJz , (5.18)

where REul.(α,β ,γ) denotes the generic Euler rotation. The inverse of RJW brings ~kA along
the positive z axis, therefore we can parametrize the momenta as the RJW rotation acting on
eq. (5.16). Namely, we define the variables φ, |k⊥|, and x that characterize the splitting as

~kA = RJW(Θ,Φ) ·
�

0,0, |~kA|
�

,
~kB = RJW(Θ,Φ) ·

�

|k⊥| cosφ, |k⊥| sinφ, (1− x)|~kA|
�

, (5.19)
~kC = RJW(Θ,Φ) ·

�

−|k⊥| cosφ,−|k⊥| sinφ, x |~kA|
�

.

Geometrically, φ − Φ is the angle between the oriented plane formed by the z axis and ~kA,
and the plane of the splitting oriented from ~kA to ~kB. Of course |k⊥| and x are nothing but
the transverse momentum and the longitudinal momentum fraction of ~kC relative to ~kA, re-
spectively. With these definitions the splitting amplitudes are identical in form to the ones
(previously discussed and reported in Appendix B) obtained for the kinematical configuration
in eq. (5.16) only up to phase factors. However we will show in the Appendix that these phases
do not play any role and can be safely ignored in the discussion that follows.
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It is important to remark that unlike the ordinary splitting functions, the explicit form of
the splitting amplitudes does depend on the conventions adopted for the polarization vectors
and the spinor wave-functions. Once one convention is chosen for the splitting amplitudes, the
exact same one must be employed in the evaluation of the hard scattering amplitude in order
for eq.s (5.1) and (5.2) to apply. Our conventions follow from the original Jacob–Wick [56]
definition of helicity eigenstates and are reported in Appendix A.

Splitting Functions

The factorization formulas for the amplitudes in eq.s (5.1) and (5.2) contain all the information
about the complete scattering processes AX → BY or X → BCY in the collinear limit. By
employing the approximate (to O(δ2

⊥,m)) expressions 15

Q2 =











(kA− kB)
2 −m2

C = −
1

1− x
ek2
⊥ for initial−state splitting (A→ BC∗) ,

(kB + kC)
2 −m2

A = +
1

x(1− x)
ek2
⊥ for final−state splitting (A∗→ BC) ,

(5.20)

for the virtuality Q2, by squaring the amplitude and multiplying it by the appropriate phase-
space factors, one easily derives factorized expressions for the fully-differential scattering
cross-sections. The factorised amplitude is in general the sum of the contribution of several
virtual particles with different helicities. The resulting factorized cross-section thus contains
interference terms and must be expressed (see e.g. [57–59]) in the language of density matri-
ces as

dσ = Tr[dρsplit · dρhard] , (5.21)

where the trace runs over the possible virtual intermediate particles species and helicities. The
splitting density matrix dρsplit, differential in the variables φ, |k⊥| and x that characterise the
splitting is the generalization, to include interference effects, of the ordinary splitting func-
tions. The differential information on the hard process is encapsulated in the hard density
matrix dρhard. Explicitly, for the initial-state splitting process AX → BY we find

dρsplit
Ch C ′

h′
=

x(1− x)
16π2

Msplit(A→ BCh)[Msplit(A→ BC ′h′)]
∗

ek2
⊥(mA, mB, mC) ek2

⊥(mA, mB, mC ′)
d x d|k⊥|2

dφ
2π

,

dρhard
Ch C ′

h′
=

Mhard(ChX → Y )[Mhard(C ′h′X → Y )]∗

4EX EC |vC − vX |
dΦY , (5.22)

where dΦY is the phase-space factor of the hard final state Y , including (2π)4 times the energy-
momentum conservation delta function. For final-state splitting processes X → BCY , instead

dρsplit
Ah A′

h′
=

x(1− x)
16π2

Msplit(Ah→ BC)[Msplit(A′h′ → BC)]∗

ek2
⊥(mA, mB, mC) ek2

⊥(mA′ , mB, mC)
d x d|k⊥|2

dφ
2π

,

dρhard
Ah A′

h′
=

Mhard(X → AhY )[Mhard(X → A′h′Y )]
∗

4EX1
EX2
|vX1
− vX2

|
dΦAY . (5.23)

The derivations that lead to eq.s (5.22) and (5.23) are straightforward and need not be re-
ported here. The only aspect that requires clarification is related with the on-shell momentum
kon for the “C” particle in the initial-state splitting A→ BC∗. In Section 5.1 we took the on-
shell limit by preserving the virtual particle 3-momentum. Namely the spatial components of

15We define ek2
⊥(mA, mB , mC ) = |k⊥|2 − x(1− x)m2

A+ xm2
B + (1− x)m2

C .
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the momentum kon the hard amplitude is evaluated on (see eq. (5.12)) should match the exact
splitting kinematics in eq. (5.19). Since ~kC depends on φ and |k⊥| in our parametrisation, this
introduces an inconvenient dependence of the hard amplitude on the details of the splitting
kinematics. However we saw that amplitude factorisation only holds up O(δ⊥) corrections,
barring special circumstances where the corrections are smaller. Up to corrections of the same
order we can further approximate kC ,on by taking the collinear limit 16

kµC ,on → kµC ,coll =
nÇ

x2|~kA|2 +m2
C , RJW(Θ,Φ) ·

�

0, 0, x |~kA|
�

o

. (5.24)

The hard amplitude evaluated on kC ,coll, and in turn dρsplit in eq. (5.22), is now independent
of φ and |k⊥| and it only depends on the momentum fraction x of the particle that participates
to the hard scattering. For final state splittings instead, dρsplit is completely independent of
the splitting variables in our parametrization.

Since the hard component of eq. (5.21) is independent of φ and |k⊥|, the factorized cross-
section inclusive on these variables can be expressed in terms of an integrated splitting density
matrix. It is customary to integrate at least overφ because the azimuthal structure of the radia-
tion is often of limited phenomenological importance and because the density matrix becomes
diagonal in the helicity after the φ integration. This latter property, namely the cancellation of
the interference between the contributions of intermediate particles of different helicity upon
φ integration, follows from the dependence of the splitting amplitudes on φ as in eq. (5.17).
In QED (and in QCD, after summing over color), the splitting density matrix collapses to a
single number (one for each intermediate particle helicity) after φ integration because no in-
terference is possible between particles of different species. One can thus abandon the density
matrix formalism and state the result in terms of ordinary splitting functions, to be interpreted
as splitting probabilities or as parton distribution functions. In the SM instead, for neutral
vector bosons splittings, the interference between the Z and the photon persists and the den-
sity matrix formalism is needed even after the integral over φ. In some cases, e.g. for the
emission of a collinear top-anti-top pair, interference with the Higgs boson exchange should
also be taken into account.

A curious fact about φ-integrated collinear splittings is that the corrections to factorization
are smaller than for the fully-differential cross-section. In the latter, corrections of O(δ⊥,m) are
generically present. However it can be shown that the linear O(δ⊥,m) corrections are canceled
by the integration, and one is left with O(δ2

⊥,m). This fact was pointed out in Ref. [23] in the
context of the Effective W Approximation, but the result is of general validity and applies to
arbitrary splitting configurations.

Application: Effective Vector Approximation

Before concluding, we apply our general results to the proof of the validity of the Effective
Vector Approximation (EVA) formula [23,54,55], namely the collinear approximation for the
emission of a charged or neutral collinear vector boson from a massless fermion in the initial
state. The relevant splitting amplitudes are found in Appendix B and read

Msplit( fL/R→ f ′L/RVh) = CV( fL/R)×S(h)L/R , (5.25)

16Initial-state splitting often emerge from an incoming particle A moving along the z axis, for which the azimuthal
angle φ is conventionally set to zero. The Jacob–Wick rotation RJW in the equation that follows is then equal to
plus or minus the identity when A is parallel or anti-parallel to z, respectively.
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where L and R denote the fermion helicity and we defined

S(h)L =



























+
p

2|k⊥|e−iφ
p

1− x
x

for h= + ,

−
p

2|k⊥|e+iφ 1

x
p

1− x
for h= − ,

−2mV

p
1− x
x

for h= 0 ,

S(h)R =



























+
p

2|k⊥|e+iφ 1

x
p

1− x
for h= + ,

−
p

2|k⊥|e−iφ
p

1− x
x

for h= − ,

−2mV

p
1− x
x

for h= 0 .

(5.26)
The splitting amplitude is proportional to the vector-fermion gauge coupling CV

CV ( fL) =



















g

2
p

2
Vf f ′ for V =W± ,

q f e for V = γ ,

g
cw

�

T3
f − s2

wq f

�

for V = Z ,

CV ( fR) =























0 for V =W± ,

q f e for V = γ ,

−g
s2
w

cw
q f for V = Z ,

(5.27)

where q f and T3
f denote, respectively, the electric charge and the value of the third SU(2)L

generator for the fermion. The appropriate element of the CKM matrix, in the case of splitting
from quarks, is denoted as Vf f ′ .

When the splitting is charged, i.e. f 6= f ′, only the charged V = W± vector boson can
mediate the reaction. After integrating over φ the density matrix thus reduces to the splitting
functions

dρsplit
h=±1,0

d x d|k⊥|2
= C2

W

�

�

�S(h)L

�

�

�

2 x(1− x)

16π2k̃4
⊥

, (5.28)

where k̃2
⊥ = k2

⊥+(1− x)m2
W . Upon integrating over |k⊥|, these expressions can be interpreted

as the probability to find a W of a given helicity and energy fraction inside the fermion. When
the splitting is neutral, i.e. f = f ′, both V = Z and V = γ can be exchanged. We thus obtain a
non-diagonal density matrix (here, k̃2

⊥ = k2
⊥ + (1− x)m2

Z)

dρsplit
h=±1

d x d|k⊥|2
=











C2
γ CγCZ

|k⊥|2

k̃2
⊥

CZ Cγ
|k⊥|2

k̃2
⊥

C2
Z
|k⊥|4

k̃4
⊥











�

�

�S(h)L/R

�

�

�

2 x(1− x)
16π2|k⊥|4

, (5.29)

when the intermediate vector boson helicity has h = ±1. If the intermediate vector boson is
longitudinal, only the Z contributes and we obtain

dρsplit
h=0

d x d|k⊥|2
= C2

Z

�

�

�S(0)L/R

�

�

�

2 x(1− x)

16π2k̃4
⊥

. (5.30)

6 Conclusions and Outlook

In this paper we formalized the notion of “Goldstone Equivalence” and we started exploring
its implications in the study of high-energy Electroweak physics. Namely we upgraded the
Goldstone Boson Equivalence Theorem to a formalism in which energy and couplings power-
counting is manifest at the level of individual Feynman diagrams, and we outlined its possible
applications in two distinct directions. The first direction, more pragmatic, is to simplify ex-
plicit calculations in the high-energy regime. The second direction, more conceptual, is to
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establish general properties of the high-energy cross-sections related with factorization. Let
us discuss them in turn.

Manifest power-counting allows to isolate the (manifestly gauge-invariant) combination of
Feynman diagrams that is relevant at a given order in the energy and in the couplings expan-
sion. This was illustrated in Section 4.4.1, for tree-level WW scattering, and in Section 4.4.2,
where we computed O(y2

t /16π2) corrections to the top decay amplitude. Notice that energy
and couplings (i.e., in particular, loop) expansions can be carried out independently in our for-
malism. Indeed in our example we could include the exact tree-level amplitude, to all orders
in the mW/mt expansion, while only retaining the first order in the one-loop contribution.
Another advantage of our formalism is that the relevant diagrams can be computed, at the
leading order in the energy expansion, with massless internal line propagators. Higher order
terms can be included by treating the mass as a perturbation. Since massless integrals are
often easier to compute than massive ones, this could be a crucial advantage for calculations
at very high order. One caveat in this program is that the massless limit should be taken with
care in diagrams affected by IR divergences (or enhancements, if the divergence is regulated
by the finite mass of the vector bosons). One must first isolate and subtract the IR singularities
and next take the massless limit. Subtracting IR singularities is a standard problem in QED and
QCD calculations, therefore we expect that the issue could be addressed by the powerful tech-
niques developed in those contexts. However the more general structure of the Electroweak
vertices compared with the ones of QED and QCD might pose additional challenges.

Manifest energy power-counting is essential to understand the structure of Feynman dia-
grams in the presence of multiple largely separated energy scales. Our formalism thus finds
a natural application to the study of the Electroweak IR problem. We outlined this aspect in
Section 5, where we proved collinear factorization at the tree-level order. While the study
of tree-level factorization (which includes in particular the Effective Vector Approximation) is
of practical interest, it is definitely of limited scope in the context of the general IR problem.
However the two key aspects that appear in the derivation are general properties of our for-
malism that could be useful also in more ambitious problems. The first one is once again that
manifest power-counting allows to isolate the relevant diagram topologies. In the collinear
limit those are the splitting topologies enhanced by a low-virtuality “nearly-resonant” prop-
agator. The second aspect is that the resonant propagator can be cast in an equivalent form
which is well-behaved in the limit of high energy and finite virtuality. One can thus identify
the nearly on-shell degrees of freedom and take the on-shell limit smoothly. Manifest power-
counting and well-behaved propagators are all-order properties of our formalism, which could
be used to extend the study of factorization beyond the tree-level. A reasonable first step in
this direction would probably be to include the soft region and the one-loop corrections to de-
rive fixed-order α log and α log2 results. It remains to be seen whether and how our formalism
can contribute addressing the problem of IR logs resummation.
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A Single-Particle States and Wave Functions

We define particles in the helicity basis following Ref. [56]. One-particle states of mass m,
helicity h, and 3-momentum

~k =
�

kx , ky , ky

�

= |~k| (sinΘ cosΦ, sinΘ sinΦ, cosΘ) , (A.1)

are obtained acting on a reference state |~kref, h〉 (to be specified below) with the standard
Lorentz transformation Λ~k = RJW(Θ,Φ) e+iηKz

|~k, h〉 ≡ U(Λ~k)|~kref, h〉 , (A.2)

where RJW(Θ,Φ) is defined in eq. (5.18), and Kz is the generator of boosts along the z axis.
The reference state |~kref, h〉 and the value of the rapidity η in eq. (A.2) depend on whether
the associated particle is massless or massive. If m = 0 the reference state has 3-momentum
~kref = +|~kref|~z along the positive z direction and definite helicity h= Jz . The standard Lorentz
transformation Λ~k must be such that kµ = [Λ~kkref]µ, which requires lnη = |~k|/|~kref|. When
m 6= 0 the reference state |~kref, h〉 has vanishing 3-momentum, kµref = (m, ~0), and again h= Jz .

In the massive case one finds tanhη = |~k|/
p

~k2 +m2. Eq. (A.2) uniquely defines all states
within the domain Θ ∈ [0,π) and Φ ∈ [0,2π). However, particles moving along the negative z
axis, i.e. those withΘ = π, are only defined up to a phase because their azimuthal angle Φ (ap-
pearing in the standard rotation in eq. (A.2)) is not uniquely determined. We conventionally
set Φ= 0 at Θ = π, which is equivalent to define the state as

|−|~k|~z, h〉 ≡ U(RJW(π, 0) e+iηKz )|~kref, h〉 (A.3)

= U(RJW(π, 0))|+|~k|~z, h〉 .

From the above definitions we can determine the polarization vectors for spin-1 particles
and the spinor wave functions completely, up to an irrelevant constant phase. Consider a spin-

1 particle of mass m, helicity h, 3-momentum as in eq. (A.1) and energy k0 =
p

~k2 +m2. The
polarization vectors for h= +1,−1,0 read

ε+µ [k] =
1
p

2

1

|~k|(|~k|+ kz)









0
|~k|(|~k|+ kz)− kx(kx + iky)
i|~k|(|~k|+ kz)− ky(kx + iky)
−(|~k|+ kz)(kx + iky)









= −
eiΦ

p
2







0
− cosΘ cosΦ+ i sinΦ
−i cosΦ− cosΘ sinΦ

sinΘ






,

ε−µ [k] =
1
p

2

1

|~k|(|~k|+ kz)









0
−|~k|(|~k|+ kz) + kx(kx − iky)
i|~k|(|~k|+ kz) + ky(kx − iky)
(|~k|+ kz)(kx − iky)









=
e−iΦ

p
2







0
− cosΘ cosΦ− i sinΦ
i cosΦ− cosΘ sinΦ

sinΘ






,

ε0
µ[k] =

k0

m













|~k|
k0

− kx

|~k|

− ky

|~k|
− kz

|~k|













=
k0

m









|~k|
k0

− sinΘ cosΦ
− sinΘ sinΦ
− cosΘ









. (A.4)

As dictated by eq. (A.3), the polarization vectors for particles in the backward limit
~k→ (0,0,−|~k|) are defined taking kx → 0+ with ky/kx → 0, and of course kz →−|~k|. With this
prescription the expressions of the polarization vectors εh

µ[k] are regular and single-valued.
While the polarization vectors are defined for physical particles with real momentum, the
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above definitions of εh
µ[k] can be extended to complex k momentum by analytic continuation

(taking |~k|=
p

~k2).
It is useful to introduce the “conjugate” polarizations εh

µ[k], which appear in the matrix
elements with final-state external vectors as well as the completeness relation (3.29). For
arbitrary (complex) momenta they are defined as

εh
µ[k]≡ (−1)hε−h

µ [k] . (A.5)

Note that for real momenta ε is the complex conjugate of ε.
Dirac spinors for particles or anti-particles of helicity h= ±1/2 are given by

uh[k] =

�

ω−h[k]χh(~k)
ωh[k]χh(~k)

�

, vh[k] =

�

2hωh[k]χ−h(~k)
−2hω−h[k]χ−h(~k)

�

, (A.6)

where ωh[k] =
q

k0 + 2h|~k| and

χ1/2(~k) =
1

�

2|~k|
�

|~k|+ kz

��1/2

�

|~k|+ kz
kx + iky

�

=

�

cosΘ/2
eiΦ sinΘ/2

�

, (A.7)

χ−1/2(~k) =
1

�

2|~k|
�

|~k|+ kz

��1/2

�

−kx + iky

|~k|+ kz

�

=

�

−e−iΦ sinΘ/2
cosΘ/2

�

. (A.8)

Similarly to the polarizations for vector particles, the wavefunction for an h= ±1/2 state with
|~k|+ kz → 0+ is unambiguously obtained taking the limit kx → 0+ with ky/kx → 0.

The “conjugate” spinors are defined as

uh[k] = v t
h[k](iγ

0γ2) (A.9)

vh[k] = ut
h[k](iγ

0γ2) ,

where the γµ matrices are understood to be in the Weyl representation. The completeness
are the standard ones, namely

∑

h uh[k]uh[k] = /k +
p

k2 and
∑

h vh[k]vh[k] = /k −
p

k2, for
arbitrary complex kµ. Notice that for real momentum the “conjugate” spinors in eq. (A.9)
reduce to the standard uh = u†

hγ
0 and vh = v†

hγ
0.

B Splitting in the Standard Model

In this appendix we derive explicit expressions for the splitting amplitudes defined in eq. (5.13).
These depend on the definition of single particle states, which themselves determine the form
of the polarization vectors and spinor wave functions as in Appendix A. We also discuss a few
key properties of the splitting amplitudes and derive the identities (B.1) and (B.2) that may
be used by the reader to calculate the splitting amplitudes we do not report explicitly.

Properties of the Splitting Amplitudes

We begin discussing the collinear splitting amplitudes Msplit(A→ BC) defined in eq. (5.13)
for the standard 3-kinematics specified in eq. (5.16), where A moves exactly in the positive di-
rection of the z axis. Despite not being S-matrix elements, Msplit(A→ BC) transform under all
symmetries as physical amplitudes. Their structure is in fact determined by dimensional anal-
ysis and angular momentum considerations. From Lorentz invariance follows that these quan-
tities must be proportional to the soft scales |k⊥|, mA,B,C , up to negligible corrections O(δ2

m,⊥).
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Conservation of the angular momentum further fixes the dependence on the azimuthal angle
φ introduced in eq. (5.16). Indeed, in the helicity basis defined in eq. (A.2) one finds that
under rotations Rz(φ′) = exp[−iφ′Jz] around the z axis the 1-particle states transform with a
simple phase factor

U(Rz(φ
′))|~k, h〉= e−iφ′h|Rz(φ

′)~k, h〉 ,

for arbitrary momentum ~k. Invariance under rotations then implies

Msplit(Rz(φ
′)k⊥) = e−iφ′∆hMsplit(k⊥) ,

with ∆h= hB + hC − hA the total change in helicity. The latter condition is solved considering
the projections of k⊥ onto the eigenvectors of Jz , namely k1

⊥ ± ik2
⊥ = e±iφ |k⊥|. Under Rz(φ′),

e±iφ |k⊥| → e±i(φ+φ′)|k⊥|, and since Msplit is analytic in k⊥ we conclude that it must have the
structure

Msplit(A→ BC)∝ |k⊥||∆h|e−iφ∆h ,

as shown in eq. (5.17). For ∆h = 0 there is no dependence on |k⊥| and the amplitude is
proportional to the masses by dimensional analysis.

The Msplit’s satisfy two additional useful relations. First, from eq. (5.16) it follows that

Msplit(AhA
→ ChC

BhB
) =Msplit(AhA

→ BhB
ChC
)
�

�

φ→φ+π, x→1−x , mB→mC , mC→mB
. (B.1)

Moreover, the accidental CP invariance of the tree-level amplitudes introduces another im-
portant constraint. Actually, rather than using parity (P) itself, defined as the inversion of
the 3 spacial coordinates, it is more convenient to consider the reflection with respect to
the xz plane, i.e. the inversion of the y coordinate only. This operation corresponds to
the combined action of P and a π-rotation along the y-axis, i.e. Py = RJW(π, 0) · P. The
CPy operator acts on a state |~k, h, A〉 describing a particle A of momentum ~k and helicity
h as CPy |~k, h, A〉 = (−1) j−h η̄ |Py

~k,−h, A〉 whereas as CPy |~k, h, A〉 = (−1) j−h η̄∗ |Py
~k,−h, A〉

on anti-particles, where η̄ are phases (or unitary matrices when different particle species
can mix) appearing in the field transformations. 17 In the SM the Higgs and the fermionic
phases may be absorbed in the Yukawa couplings using chiral rotations and hyper-charge
transformations so that we can set η̄φ = η̄ψ = 1. Also, for the vectors η̄V = 1. Since
Py
~k = |~k| (sinΘ cosΦ,− sinΘ sinΦ, cosΘ) is equivalent to an inversion of the azimuthal an-

gle, we obtain

Msplit(A−hA
→ B−hB

C−hC
) =

∏

k=A,B,C

(−1) jk−hk Msplit(AhA
→ BhB

ChC
)
�

�

φ→−φ . (B.2)

Splitting in an arbitrary direction

In this subsection we demonstrate that the very same Msplit(A→ BC) obtained with the stan-
dard 3-momentum given in eq. (5.16) can be employed for the calculation of the factor-
ized amplitudes in eq.s (5.1) and (5.2)) even if A moves along an arbitrary direction. We
parametrize the general splitting kinematic configuration by rotating the standard ~kstd

A,B,C in
eq. (5.16) with a common matrix

~kA,B,C = RJW(ΘA,ΦA)~k
std
A,B,C , (B.3)

17The scalar φ(x), Dirac fermion ψ(x), and vector Vµ(x) = V a
µ
(x)T a transform respectively as

(CP y)φ(x)(CP y)† = η̄∗φφ
†(x ′), (CP y)ψ(x)(CP y)† = η̄∗

ψ
γ5ψ†(x ′), (CP y)Vµ(x)(CP y)† = −(Py)νµV ∗

ν
(x ′), with

x ′ = Py x and Py = diag(1,1,−1, 1).
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as in eq. (5.19). The action of a Jacob-Wick rotation on one-particle states reads

U(RJW(ΘA,ΦA))|~kstd
A , hA〉 = |~kA, hA〉 ,

U(RJW(ΘA,ΦA))|~kstd
B , hB〉 = eiΨB |~kB, hB〉 ,

U(RJW(ΘA,ΦA))|~kstd
C , hC〉 = eiΨC |~kC , hC〉 . (B.4)

There is no phase associated to A because, according to the definition in eq. (A.2), the
RJW(ΘA,ΦA) rotation acting on a state A moving in the positive z direction precisely gener-
ates a state with rotated 3-momentum. The phases show up in the splitting amplitudes, which
are related to those evaluated with the standard momenta (5.16) by

Msplit(A~kA
→ B~kB

C~kC
) = ei(ΨB+ΨC )Msplit(A~kstd

A
→ B~kstd

B
C~kstd

C
) . (B.5)

The phases in eq. (B.5) that are associated to exactly on-shell particles are obviously un-
physical because they disappear from the squared amplitude. Only the phase of the virtual
state can potentially be relevant in the calculation of the factorized amplitude. In the case of
splitting in the final state A∗→ BC the only relevant phase would thus be the one associated to
A, but this vanishes by construction. As a result, in the analysis of an arbitrary (single and mul-
tiple) final state splitting we can safely use in eq. (5.2) the splitting functions Msplit(A→ BC)
calculated with the standard 3-kinematics specified in eq. (5.16).

Consider next an initial-state splitting A→ BC∗. Here B is on-shell, and so eiΨB is again
unphysical, but eiΨC can play a role. The case of a single splitting in the initial state, when
A moves exactly along the positive z axis, corresponds to the reference kinematics. However
if multiple splittings occur, some of the initial state particles are slightly tilted from the z
axis. These are thus associated to initial state splittings in which the corresponding A state
is rotated by a small ΘA, far from ΘA = π. An explicit computation shows that ΨC = O(δ⊥)
in such a situation. This guarantees that, when considering multiple splittings from an initial
state moving along the positive z axis, the phase in eq. (B.5) at most affects the subleading
term in eq. (5.1).

Because of the ambiguity in the definition of backward-moving particles (see the discussion
around eq. (A.3)), the situation is a bit more involved when the initial state splitting takes
place from an original particle A moving opposite to the z axis. Here we consider a ~kA that
is nearly but not exactly parallel to the negative z axis (i.e., π − ΘA ® O(δ⊥)). However
the discussion also covers the case ΘA = π (for which ΦA = 0 by convention). The phase
eiΨC in eq. (B.5) becomes of order in unity in this case, and superficially might invalidate our
claim. Fortunately, though, the O(1) contribution to ΨC gets compensated by an analogous
and opposite phase showing up in the hard process when taking the collinear limit, leaving in
the end a negligible correction of O(δ⊥) to the factorized amplitude, similarly to the previous
case. To see this recall that in eq. (5.1) the splitting amplitude is multiplied by the hard matrix
element Mhard(CX → Y ) calculated for an on-shell C moving along ~kC = RJW(ΘA,ΦA)~kstd

C ,
which is not exactly parallel to ~kA. Even if ~kC gets parallel to ~kA in the collinear limit (i.e.,
~kC → ~kC ,coll = ~kA |~kC |/|~kA| as in eq. (5.24)), the state that describes the C particle approaches
the backward-moving state defined in eq. (A.3) only up to a phase. Correspondingly the C-
particle wave function and in turn the hard matrix element approaches the one computed for
exactly collinear C only up to a phase.

In order to show that the latter phase cancels the eiΨC factor in the splitting amplitude, let
us reabsorb the eiΨC phase into the definition of a non-standard state

|~kC , hC〉Ψ ≡ eiΨC |~kC , hC〉= U(RJW(ΘA,ΦA))|~kstd
C , hC〉 , (B.6)

using eq. (B.4). For this state, obviously, the largeΨC phase appears in the hard matrix element

Mhard(CΨ~kC
X → Y ) = eiΨCMhard(C~kC

X → Y ) . (B.7)

51

https://scipost.org
https://scipost.org/SciPostPhys.8.5.078


SciPost Phys. 8, 078 (2020)

It turns out the non-standard state |~kC , hC〉Ψ smoothly approaches the conventional Jacob–
Wick state for collinear momentum ~kC ,coll in the limit δ⊥ → 0. Indeed, the standard state
|~kstd

C , hC〉 approaches ||~kC |ẑ, hC〉 without phases and thus

lim
δ⊥→0

|~kC , hC〉Ψ = U(RJW(ΘA,ΦA))||~kC |~z, hC〉= |~kC ,coll, hC〉 . (B.8)

Correspondingly, the wave function and in turn the hard amplitude (B.7) for the non-standard
state smoothly approaches the one evaluated with collinear C without extra phases.

Splitting Amplitudes for a General Gauge Theory

We now present the Feynman rules relevant for the evaluation of the splitting functions in the
tree approximation, namely those associated to 3-particle vertices. We parametrize the cou-
plings in terms of generic functions CABC so that our results can be straightforwardly applied
to general renormalizable gauge theories. An explicit expression for CABC is presented in the
case of the SM. We subsequently collect all the independent splitting amplitudes arising from
the Feynman rules. The unlisted amplitudes can be obtained from (B.1) and (B.2).

Relevant Feynman Rules

• Fermionic Vertices

The interaction vertices between two fermions f a, f b of masses ma,b and a vector V or
a scalar h are defined below in terms of general couplings CL,R, y f , and PL = (1− γ5)/2,
PR = (1+ γ5)/2 denoting the chirality projectors.

In the SM the Yukawa coupling y f is diagonal in fermion flavor and related to the fermion
mass m f = ma = mb through the Higgs VEV as y f =

p
2m f /v, whereas the parameters CL,R

are collected in this table

V W− ( f a = d, f b = u) Z ( f a = f b) γ ( f a = f b) G ( f a = f b)
CL

gVudp
2

g
cw
(T3 − s2

wq f ) eq f gs t
α
ib ia

CR 0 g
cw
(−s2

wq f ) eq f gs t
α
ib ia

Here Vud is an element of the CKM matrix, TA are the weak SU(2) and tα the color SU(3)
generators in the fundamental representation, e = gsw (gs) is the QED (QCD) coupling and
finally q f is the electric charge.

The Feynman rule for the coupling between two fermions and a Goldstone boson π, when
present, may be derived from the f a f bV vertex using the tree-level version of the generalized
Ward identity in eq. (3.23), ikµA

�

Vµ[k]
	

= −mVA {π[k]}, and the Dirac equation. Note that
mV is the mass of the vector associated to the Goldstone boson.
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• Bosonic Scalar Vertices

We now move to purely bosonic vertices involving at least one scalar particle. The Feynman
rule for the cubic scalar coupling is defined as−i6λv. In the SM λ is the quartic Higgs coupling
and v its VEV. In the case of general scalar theories one just replaces 6λv with the appropriate
trilinear. Vertices with two scalars and one Goldstone are forbidden. On the other hand,
vertices of the type hπaπb are related to the hV aV b vertex via (3.23).

Renormalizable hV aV b vertices, with a scalar boson and two massive vectors, are
parametrized in general in terms of a dimensionful coupling C

p

mVa
mVb

. In the Standard
model this is given by:

V aV b W−W+ Z Z γγ GG
C
p

mamb gmW
g
cw

mZ 0 0

Similarly to the fermionic couplings to Goldstone bosons and hπaπb, the vertex hπaV b written
below can be shown to be related to hV aV b via the generalized Ward identity.

A vertex with two scalars and a transverse vector should also be included in general, though
it is absent in the SM. Without loss of generality we assume the very same Feynman rule as
hπaV b, and the associated splitting amplitudes are shown at the very end of our list with
π→ h′.
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• Vector and Goldstone Vertices

Finally, we present the Feynman rules for three vector and Goldstone bosons. The most
general (renormalizable) vertex involving three vectors depends on a coupling Cabc fully an-
tisymmetric in the three indices a, b, c. In the SM

V aV bV c W−W+γ W−W+Z GαGβGγ

Cabc e gcw −i gs fαβγ

with fαβγ denoting the SU(3) structure constants. The corresponding vertices with one or two
Goldstone bosons, when present, are related to the three-vector vertex via the generalized
Ward identity in eq. (3.23). No three-Goldstone vertex can arise from spontaneous breaking.
This can also be explicitly confirmed using eq. (3.23).
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Splitting Amplitudes

• Fermions and Vectors

→ f b
−1/2 + V1 f b

−1/2 + V−1

f a
−1/2

p
2CL

p
1−x
x |k⊥|e

−iφ −
p

2CL|k⊥|
eiφ

x
p

1−x

f a
1/2

p
2CR

mbp
1−x
−
p

2CLma
p

1− x 0

→ f b
1/2 + V1 f b

1/2 + V−1

f a
−1/2 0

p
2CL

mbp
1−x
−
p

2CRma
p

1− x

f a
1/2

p
2CR|k⊥|

e−iφ

x
p

1−x
−
p

2CR

p
1−x
x |k⊥|e

iφ

→ f̄ b
−1/2 + f a

−1/2 f̄ b
1/2 + f a

−1/2 f̄ b
−1/2 + f a

1/2 f̄ b
1/2 + f a

1/2

V1 0 −
p

2CL

q

1−x
x |k⊥|e

iφ p
2CR

Æ

x
1−x |k⊥|e

iφ −
p

2
�

CLma

q

1−x
x + CRmb

Æ

x
1−x

�
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→ f b
−1/2 + V0 f b

1/2 + V0

f a
−1/2 CL

h

m2
a(1−x)−m2

b

mV
p

1−x
− 2mV

p
1−x

x

i

+ CR
mamb x

mV
p

1−x

�

ma
mV

CR −
mb
mV

CL

�

|k⊥|
e−iφ
p

1−x

f a
1/2

�

mb
mV

CR −
ma
mV

CL

�

|k⊥|
eiφ
p

1−x
CR

h

m2
a(1−x)−m2

b

mV
p

1−x
− 2mV

p
1−x

x

i

+ CL
mamb x

mV
p

1−x

→ f̄ b
−1/2 + f a

−1/2 f̄ b
1/2 + f a

−1/2

V0

�

ma
mV

CR −
mb
mV

CL

�

|k⊥|
eiφ

p
x(1−x)

CL
(1−x)m2

a+xm2
b−2m2

V x(1−x)

mV

p
x(1−x)

− CR
mamb

mV

p
x(1−x)

• Fermions and Scalars

→ f b
−1/2 + h f b

1/2 + h

f a
−1/2 − y fp

2
mb+ma(1−x)p

1−x
− y fp

2
|k⊥|

e−iφ
p

1−x

f a
1/2

y fp
2
|k⊥|

eiφ
p

1−x
− y fp

2
mb+ma(1−x)p

1−x

→ f̄ a
−1/2 + f b

−1/2 f̄ a
1/2 + f b

−1/2

h − y fp
2
|k⊥|

eiφ
p

x(1−x)
− y fp

2
mb(1−x)−ma xp

x(1−x)

• Triple Scalar and Scalar-Vector Splittings

→ h+ h V b
0 + V a

0

h −3
2 g

m2
h

mW

C
2

h

m2
hp

mamb
−ma

Ç

ma
mb

2−x
x −mb

Ç

mb
ma

1+x
1−x

i

→ V b
1 + V a

1 V b
1 + V a

−1 V b
1 + V a

0

h 0 C
p

mamb −C
Ç

mb
ma
|k⊥|

e−iφ
p

2(1−x)
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→ h+ V b
1 h+ V b

−1 h+ V b
0

V a
1 −C

p
mamb 0 −C

Ç

ma
mb
|k⊥|

eiφ
p

2

→ h+ V b
1 h+ V b

−1 h+ V b
0

V a
0 C

Ç

mb
ma
|k⊥|

e−iφ
p

2x
−C
Ç

mb
ma
|k⊥|

eiφ
p

2x
C
2

h

− m2
hp

mamb
+ma

Ç

ma
mb
(1− 2x)−mb

Ç

mb
ma

2−x
x

i

• Triple Vector Splittings

→ V b
1 + V c

1 V b
1 + V c

−1 V b
−1 + V c

1 V b
−1 + V c

−1

V a
1 −

p
2Cabc|k⊥|

e−iφ

x(1−x)

p
2Cabc

(1−x)
x |k⊥|e

iφ p
2Cabc

x
1−x |k⊥|e

iφ 0

V a
0 0 Cabc

m3
c−m2

b+(1−2x)m2
a

m1
Cabc

m3
c−m2

b+(1−2x)m2
a

m1
0

→ V b
1 + V c

0 V b
−1 + V c

0 V b
0 + V c

0

V a
1 Cabc

h

m2
b−m2

a
mc

+mc
(2−x)

x

i

0 − Cabcp
2

m2
b+m2

c−m2
a

mbmc
|k⊥|eiφ

→ V b
1 + V c

0 V b
−1 + V c

0

V a
0 − Cabcp

2

m1
a+m2

c−m2
b

mamc(1−x) |k⊥|e
−iφ Cabcp

2

m1
a+m2

c−m2
b

mamc(1−x) |k⊥|e
iφ

→ V b
0 + V c

0

V a
0

Cabc
2mambmc

�

m2
a(m

2
b +m2

c −m2
a)(1− 2x)−m2

b(m
2
a +m2

c −m2
b)

1+x
1−x +m2

c (m
2
a +m2

b −m2
c )

2−x
x

�
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• Scalars and Transverse Vector (absent in the SM)

→ h+ V+1

h′ Cp
2
|k⊥|

e−iφ

x

→ h′ + h

V+1 − Cp
2
|k⊥|eiφ
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[22] M. Baumgart, O. Erdoğan, I. Z. Rothstein and V. Vaidya, Breakdown of the naive
parton model in super-weak scale collisions, Phys. Rev. D 100, 096008 (2019),
doi:10.1103/PhysRevD.100.096008, arXiv:1811.04120.

[23] P. Borel, R. Franceschini, R. Rattazzi and A. Wulzer, Probing the scatter-
ing of equivalent electroweak bosons, J. High Energy Phys. 06, 122 (2012),
doi:10.1007/JHEP06(2012)122, arXiv:1202.1904.

[24] M. S. Chanowitz and M. K. Gaillard, The TeV physics of strongly interacting W’s and Z’s,
Nucl. Phys. B 261, 379 (1985), doi:10.1016/0550-3213(85)90580-2.

[25] A. Wulzer, An equivalent gauge and the equivalence theorem, Nucl. Phys. B 885, 97 (2014),
doi:10.1016/j.nuclphysb.2014.05.021, arXiv:1309.6055.

[26] G. ’t Hooft, Renormalizable Lagrangians for massive Yang-Mills fields, Nucl. Phys. B 35,
167 (1971), doi:10.1016/0550-3213(71)90139-8.

[27] T. Kugo and I. Ojima, Manifestly covariant canonical formulation of Yang-Mills field the-
ories. 2. The case of pure Yang-Mills theories without spontaneous symmetry breaking in
general covariant gauges, Prog. Theor. Phys. 61, 294 (1979), doi:10.1143/PTP.61.294.

[28] G. J. Gounaris, R. Kögerler and H. Neufeld, Relationship between longitudinally polar-
ized vector bosons and their unphysical scalar partners, Phys. Rev. D 34, 3257 (1986),
doi:10.1103/PhysRevD.34.3257.

59

https://scipost.org
https://scipost.org/SciPostPhys.8.5.078
http://dx.doi.org/10.1088/1126-6708/2006/09/055
https://arxiv.org/abs/hep-ph/0604070
http://dx.doi.org/10.1103/PhysRevD.81.085033
https://arxiv.org/abs/0902.1855
http://dx.doi.org/10.1103/PhysRevD.80.094013
https://arxiv.org/abs/0909.0012
http://dx.doi.org/10.1016/j.physletb.2014.11.050
https://arxiv.org/abs/1409.1918
http://dx.doi.org/10.1007/JHEP05(2018)106
https://arxiv.org/abs/1803.06347
http://dx.doi.org/10.1088/1126-6708/2005/11/022
https://arxiv.org/abs/hep-ph/0505047
http://dx.doi.org/10.1007/JHEP08(2017)036
https://arxiv.org/abs/1703.08562
http://dx.doi.org/10.1007/JHEP08(2018)137
https://arxiv.org/abs/1802.08687
http://dx.doi.org/10.1007/JHEP11(2017)093
https://arxiv.org/abs/1611.00788
http://dx.doi.org/10.1103/PhysRevD.100.096008
https://arxiv.org/abs/1811.04120
http://dx.doi.org/10.1007/JHEP06(2012)122
https://arxiv.org/abs/1202.1904
http://dx.doi.org/10.1016/0550-3213(85)90580-2
http://dx.doi.org/10.1016/j.nuclphysb.2014.05.021
https://arxiv.org/abs/1309.6055
http://dx.doi.org/10.1016/0550-3213(71)90139-8
http://dx.doi.org/10.1143/PTP.61.294
http://dx.doi.org/10.1103/PhysRevD.34.3257


SciPost Phys. 8, 078 (2020)

[29] C. Becchi, A. Rouet and R. Stora, Renormalization of gauge theories, Ann. Phys. 98, 287
(1976), doi:10.1016/0003-4916(76)90156-1.

[30] J. Fröhlich, G. Morchio and F. Strocchi, Higgs phenomenon without a symmetry breaking
order parameter, Phys. Lett. B 97, 249 (1980), doi:10.1016/0370-2693(80)90594-8.

[31] Y.-P. Yao and C. P. Yuan, Modification of the equivalence theorem due to loop corrections,
Phys. Rev. D 38, 2237 (1988), doi:10.1103/PhysRevD.38.2237.

[32] J. Bagger and C. Schmidt, Equivalence theorem redux, Phys. Rev. D 41, 264 (1990),
doi:10.1103/PhysRevD.41.264.

[33] W. B. Kilgore, The equivalence theorem in the abelian Higgs theory, Phys. Lett. B 294, 257
(1992), doi:10.1016/0370-2693(92)90691-V.

[34] H.-J. He, Y.-P. Kuang and X.-y. Li, On the precise formulation of equivalence theorem, Phys.
Rev. Lett. 69, 2619 (1992), doi:10.1103/PhysRevLett.69.2619.

[35] H.-J. He, Y.-P. Kuang and X. Li, Further investigation on the precise formulation of the
equivalence theorem, Phys. Rev. D 49, 4842 (1994), doi:10.1103/PhysRevD.49.4842.

[36] S. Pozzorini, Electroweak radiative corrections at high-energies, Ph.D. thesis, Zurich U.,
Inst. Math. (2001), arXiv:hep-ph/0201077.

[37] M. Bohm, A. Denner and H. Joos, Gauge theories of the strong and electroweak interaction,
ISBN 9783519230458, 9783322801623, 9783322801609 (2001).

[38] H. G. J. Veltman, The equivalence theorem, Phys. Rev. D 41, 2294 (1990),
doi:10.1103/PhysRevD.41.2294.

[39] A. Aeppli, G. J. van Oldenborgh and D. Wyler, Unstable particles in one loop calcula-
tions, Nucl. Phys. B 428, 126 (1994), doi:10.1016/0550-3213(94)90195-3, arXiv:hep-
ph/9312212.

[40] W. Beenakker, F. A. Berends and A. P. Chapovsky, Radiative corrections to pair produc-
tion of unstable particles: results for e+e− → 4 fermions, Nucl. Phys. B 548, 3 (1999),
doi:10.1016/S0550-3213(99)00110-8, arXiv:hep-ph/9811481.

[41] A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Electroweak radiative corrections
to e+e− → W W → 4 fermions in double pole approximation: The RACOONWW ap-
proach, Nucl. Phys. B 587, 67 (2000), doi:10.1016/S0550-3213(00)00511-3, arXiv:hep-
ph/0006307.

[42] E. Accomando, A. Denner and S. Pozzorini, Electroweak correction effects in gauge
boson pair production at the CERN LHC, Phys. Rev. D 65, 073003 (2002),
doi:10.1103/PhysRevD.65.073003, arXiv:hep-ph/0110114.

[43] R. J. Eden, P. V. Landshoff, D. I. Olive and J. C. Polkinghorne, The analytic S-matrix,
Cambridge Univ. Press, Cambridge (1966).

[44] S. P. Martin, Top-quark pole mass in the tadpole-free MS scheme, Phys. Rev. D 93, 094017
(2016), doi:10.1103/PhysRevD.93.094017, arXiv:1604.01134.

[45] T. Hahn, Feynman diagram calculations with FeynArts, FormCalc, and LoopTools, Proc. Sci.
ACAT2010, 078 (2010), arXiv:1006.2231.

60

https://scipost.org
https://scipost.org/SciPostPhys.8.5.078
http://dx.doi.org/10.1016/0003-4916(76)90156-1
http://dx.doi.org/10.1016/0370-2693(80)90594-8
http://dx.doi.org/10.1103/PhysRevD.38.2237
http://dx.doi.org/10.1103/PhysRevD.41.264
http://dx.doi.org/10.1016/0370-2693(92)90691-V
http://dx.doi.org/10.1103/PhysRevLett.69.2619
http://dx.doi.org/10.1103/PhysRevD.49.4842
https://arxiv.org/abs/hep-ph/0201077
http://dx.doi.org/10.1103/PhysRevD.41.2294
http://dx.doi.org/10.1016/0550-3213(94)90195-3
https://arxiv.org/abs/hep-ph/9312212
https://arxiv.org/abs/hep-ph/9312212
http://dx.doi.org/10.1016/S0550-3213(99)00110-8
https://arxiv.org/abs/hep-ph/9811481
http://dx.doi.org/10.1016/S0550-3213(00)00511-3
https://arxiv.org/abs/hep-ph/0006307
https://arxiv.org/abs/hep-ph/0006307
http://dx.doi.org/10.1103/PhysRevD.65.073003
https://arxiv.org/abs/hep-ph/0110114
http://dx.doi.org/10.1103/PhysRevD.93.094017
https://arxiv.org/abs/1604.01134
https://arxiv.org/abs/1006.2231


SciPost Phys. 8, 078 (2020)

[46] A. Denner and T. Sack, The top width, Nucl. Phys. B 358, 46 (1991), doi:10.1016/0550-
3213(91)90530-B.

[47] B. A. Irwin, B. Margolis and H. D. Trottier, Electroweak radiative corrections to t → b W
for a heavy top, Phys. Lett. B 256, 533 (1991), doi:10.1016/0370-2693(91)91804-5.

[48] J.-a. Liu and Y.-P. Yao, One loop radiative corrections to a heavy top decay in the standard
model, Int. J. Mod. Phys. A 6, 4925 (1991), doi:10.1142/S0217751X91002331.

[49] A. Denner, Techniques for calculation of electroweak radiative corrections at the one
loop level and results for W physics at LEP-200, Fortsch. Phys. 41, 307 (1993),
doi:10.1002/prop.2190410402, arXiv:0709.1075.

[50] F. Jegerlehner, M. Yu. Kalmykov and O. Veretin, M̄S vs. pole masses of gauge bosons. 2. Two
loop electroweak fermion corrections, Nucl. Phys. B 658, 49 (2003), doi:10.1016/S0550-
3213(03)00177-9, arXiv:hep-ph/0212319.

[51] E. Fermi, On the theory of collisions between atoms and electrically charged particles, Nuovo
Cim. 2, 143 (1925), doi:10.1142/9789812704214_0026, arXiv:hep-th/0205086.

[52] E. J. Williams, Nature of the high-energy particles of penetrating radiation and status of ion-
ization and radiation formulae, Phys. Rev. 45, 729 (1934), doi:10.1103/PhysRev.45.729.

[53] C. F. von Weizsäcker, Radiation emitted in collisions of very fast electrons, Z. Phys. 88, 612
(1934), doi:10.1007/BF01333110.

[54] S. Dawson, The effective W approximation, Nucl. Phys. B 249, 42 (1985),
doi:10.1016/0550-3213(85)90038-0.

[55] Z. Kunszt and D. E. Soper, On the validity of the effective W approximation, Nucl. Phys. B
296, 253 (1988), doi:10.1016/0550-3213(88)90673-6.

[56] M. Jacob and G. C. Wick, On the general theory of collisions for particles with spin, Ann.
Phys. 7, 404 (1959), doi:10.1016/0003-4916(59)90051-X.

[57] A. Martin and T. Spearman, Elementary particle theory, North-Holland Pub. Co. (1970).

[58] C. Bourrely, E. Leader and J. Soffer, Polarization phenomena in hadronic reactions, Phys.
Rept. 59, 95 (1980), doi:10.1016/0370-1573(80)90017-4.

[59] H. E. Haber, Spin formalism and applications to new physics searches, In Spin structure in
high-energy processes: Proceedings, 21st SLAC Summer Institute on Particle Physics, 26
Jul - 6 Aug 1993, Stanford, CA, 231 (1994), arXiv:hep-ph/9405376.

61

https://scipost.org
https://scipost.org/SciPostPhys.8.5.078
http://dx.doi.org/10.1016/0550-3213(91)90530-B
http://dx.doi.org/10.1016/0550-3213(91)90530-B
http://dx.doi.org/10.1016/0370-2693(91)91804-5
http://dx.doi.org/10.1142/S0217751X91002331
http://dx.doi.org/10.1002/prop.2190410402
https://arxiv.org/abs/0709.1075
http://dx.doi.org/10.1016/S0550-3213(03)00177-9
http://dx.doi.org/10.1016/S0550-3213(03)00177-9
https://arxiv.org/abs/hep-ph/0212319
http://dx.doi.org/10.1142/9789812704214_0026
https://arxiv.org/abs/hep-th/0205086
http://dx.doi.org/10.1103/PhysRev.45.729
http://dx.doi.org/10.1007/BF01333110
http://dx.doi.org/10.1016/0550-3213(85)90038-0
http://dx.doi.org/10.1016/0550-3213(88)90673-6
http://dx.doi.org/10.1016/0003-4916(59)90051-X
http://dx.doi.org/10.1016/0370-1573(80)90017-4
https://arxiv.org/abs/hep-ph/9405376

	Introduction
	Warm-up: The Higgs–Kibble Model
	Useful Identities
	On-Shell Stable Vectors
	Unstable or Off-Shell Vectors

	General Gauge Theory
	Notation
	Generalized Ward Identities
	Equivalent Propagator and Longitudinal Vectors
	Renormalization Scheme (In-)Dependence

	The Standard Model
	Setup
	The Goldstone-Equivalent Standard Model
	Kpi at One Loop
	Applications
	Power-Counting in WW Scattering
	Radiative Corrections to Top Decay


	Collinear Factorization and Splitting Functions
	Amplitude Factorization
	Splitting Amplitudes and Splitting Functions

	Conclusions and Outlook
	Single-Particle States and Wave Functions
	Splitting in the Standard Model
	References

