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Abstract

We explore large-N symmetric orbifolds of the N = 2 minimal models, and find evidence
that their moduli spaces each contain a supergravity point. We identify single-trace ex-
actly marginal operators that deform them away from the symmetric orbifold locus. We
also show that their elliptic genera exhibit slow growth consistent with supergravity
spectra in AdS3. We thus propose an infinite family of new holographic CFTs.
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1 Introduction

The AdS/CFT correspondence [1–3] is a duality between a conformal field theory in d space-
time dimensions and a theory of quantum gravity that contains Anti-de Sitter space with d+1
spacetime dimensions. One powerful aspect of this correspondence is that it makes tractable
how a geometrical description of AdS gravity emerges from the CFT. Still, the fundamental
mechanism that would allow us to describe this procedure from first principles is incomplete
and unclear. Our aim here is to propose an infinite family of CFTs that have the potential to
address aspects of this mechanism.

On the gravitational side of the correspondence, the AdS radius `AdS expressed in Planck
units controls the strength of gravitational interactions. To investigate weakly coupled theories
of gravity, we thus want this ratio to be large. We are often interested in bulk theories that
have the additional property that their low-energy description is given by a local effective field
theory (EFT). This EFT could be Einstein gravity or some supergravity variation of it, possibly
together with a finite number of matter fields. We then want to know up to what scale Λ this
EFT description of the bulk is valid. In particular, in order for it to be a useful description,
we want it to remain valid far beyond the AdS scale: that is, we want Λ to be parametrically
larger than ΛAdS. The range of validity is closely related to locality of the bulk theory: the EFT
description will certainly break down once we reach a scale where the bulk theory ceases to
be local. In [4] this was described as sharp holography versus coarse holography.

In the bulk, a typical scenario for such a separation of scales is a string theory setup where
the string scale Λs is parametrically larger than ΛAdS. In that case, a supergravity description
will remain valid up to Λs. Another scenario is that Λ is pushed all the way up to the Planck
scale ΛPl, at which point non-perturbative objects such as black holes will certainly spoil the
EFT description. Such a scenario could arise for example in a M-theory compactification on
an AdS background, or in a putative theory of pure gravity on AdS3 [5]. On the CFT side, the
simplest way to obtain this parametric separation is to demand a large gap for operators with
spin greater than two [4,6–9]. On a practical level, if we can construct such a CFT, then it may
be possible to describe its holographic dual using supergravity. If on the other hand the CFT
does not lead to a separation of scales between Λ and ΛAdS, then the bulk theory is intrinsically
non-local at the AdS scale and would have to be described, for example, by strings.

In this paper, we investigate this question for the AdS3/CFT2 correspondence. Here many
of the above statements can be made more precise. For example, the AdS radius is related to
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the central charge of the CFT by [10]

c =
3`AdS

2GN
. (1.1)

Semi-classical theories of gravity must therefore be dual to CFTs with a large central charge.
To probe for the appearance of a string scale Λs, we can investigate the growth of the CFT
spectrum for the low-lying operators. Let us denote by ρ(∆) the number of operators at
scaling dimension ∆, which is the energy measured in AdS units, ∆ ∼ E/ΛAdS. If Λs ∼ ΛAdS,
then for any E� ΛAdS we expect the number of states to grow like

Hagedorn (fast) growth : ρ(∆)∼ ecH∆. (1.2)

In such a case we might even identify the string scale in AdS units with c−1
H . In general, a

Hagedorn growth of the spectrum indicates that the gravity dual is a string theory in AdS,
where the string scale and AdS scale are of the same order. Such a theory would produce
large deviations from general relativity at low energies.

On the other hand, if Λs � ΛAdS, we can pick Λs > E � ΛAdS, and no stringy states
contribute such that all states can be described by the EFT. We therefore expect

Supergravity-like (slow) growth : ρ(∆)∼ ecS∆
γ

, γ < 1. (1.3)

Such supergravity-like theories have many nice properties: in particular they satisfy the sparse-
ness bound which automatically guarantees the familiar thermodynamics of black holes [11],
and they have a good chance of producing a bulk EFT that is well approximated by Einstein
gravity [12]. Supergravity-like growth is precisely the expected behavior of an Einstein gravity
dual. Indeed, supergravity on a background of the type AdS3×MD−3, where the size of MD−3
is of the order of the AdS scale, would produce a growth of this type with γ= D−1

D .
While constructing CFTs that lead to a Hagedorn growth is relatively easy to achieve, it is

very difficult to construct CFTs with a supergravity-like growth, and currently only a handful of
such CFTs are known. In other words, examples of coarse holography are relatively common,
whereas examples of sharp holography are rare. Finding more such sharp needles in the
haystack of CFTs is the main goal of this paper.

The specific haystack that we consider in this paper consists of symmetric product orbifolds
CFTs. This broad family of CFTs exhibits several of the desired properties of holographic CFTs.
The symmetric product orbifold of a seed CFT X is given by

SymN (X ) := X N/SN . (1.4)

In the large N limit, these theories have a large central charge and have Hagedorn growth as in
(1.2) with cH = 2π, regardless of the choice of seed theory X [13]. At first sight it would thus
appear that symmetric orbifolds always fix the string scale to the AdS scale, giving intrinsically
stringy dualities. This may sound surprising since these theories have a long history of being
studied with supergravity tools in the context of AdS/CFT, going back to the study of the D1D5
system [14] compactified on K3 or T4.

A separation of scales can happen because these string theory constructions can have in-
teresting moduli spaces. The symmetric orbifold describes a point where the string length is
indeed of the order of the AdS length, so that the gravitational dual is given by tensionless
strings [15–19]. To achieve a separation of scales as described above, we need to move far
away from that point by deforming the theory: There then exists a strongly coupled regime
where the string scale is parametrically large, so that the gravity dual becomes a supergravity
theory, such as type IIB supergravity on AdS3 × S3 in the case of the D1D5 system. One can
continuously interpolate between these two regimes by tuning an exactly marginal operator
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which controls the string length. This is very similar to AdS5/CFT4, where this coupling is the
’t Hooft coupling in N = 4 SYM (and the symmetric group SN plays the role of the SU(N)
gauge group).

To check if for a given X such a separation of scales is possible, we will use two diagnostics.
First, we can check if deformations away from the symmetric orbifold point X N/SN are even
possible in the first place. That is, we can check if the CFT has moduli, i.e. exactly marginal
operators that preserve supersymmetry. In fact, to obtain a supergravity growth, we need these
moduli to be in the twisted sector since the coupling must introduce interactions between the
N copies of the seed. We will argue that in fact the moduli have to be single trace fields, since
otherwise their contribution will be suppressed in the large N limit.

Second, we can investigate the growth of states that are protected under deformations.
Counting such states (or computing their index) gives a lower bound on the growth of all
states. If they themselves exhibit a Hagedorn growth, then there cannot be a supergravity
point anywhere in the moduli space [20]. The way to do this in practice is to compute the
elliptic genus at the orbifold point,

ZEG(τ, z) = TrRR

�

(−1)F qL0−
c

24 y J0 q̄ L̄0−
c

24

�

, (1.5)

which is an index of 1/4-BPS states, and is therefore constant on the entire moduli space.
It is worth pointing out that in our haystack of symmetric orbifold CFTs, most seed CFTs X

fail both diagnostics: On the one hand, the weight of states in the twisted sectors, which could
potentially serve as deformations, grows linearly in the central charge. This means that if X
has central charge c > 6, then there cannot be any twisted moduli. On the other hand, [21]
showed that if we start with the elliptic genus of almost any seed CFT X , then the elliptic genus
of its symmetric orbifold will exhibit Hagedorn growth. That is, even for the elliptic genus, a
Hagedorn growth is very generic. It is therefore quite difficult to find a sharp needle in the
haystack of symmetric orbifold CFTs.

To find a holographic needle, we thus need to circumvent these two hurdles. To deal with
the first hurdle, we simply concentrate on CFTs with c ≤ 6. To deal with the second hurdle, we
use the fact that [22–24] found mathematical exceptions to the generic behavior established
in [21]: that is, there are specific so-called weak Jacobi forms, which could describe the elliptic
genus of a CFT, whose symmetric orbifold exhibits a slow, supergravity-like growth. In this
paper we build on these observations to find explicit CFTs that pass both diagnostics: N = 2
minimal models.1

Summary of results

The two main results of this paper are the following:

1. We show that the growth in the elliptic genus for the symmetric orbifold of any N = 2
minimal model is supergravity-like, with γ= 1

2 .

2. We show that each of these theories has at least one exactly marginal single-trace oper-
ator that can turn on a coupling between the copies.

Along the way, we give a complete description of all moduli of these theories. The mod-
uli spaces present interesting structures with several directions, most of which correspond to
turning on multi-trace operators. We also discuss the space of slow growing weak Jacobi forms
and its relation to the space of physical CFTs. For CFTs with c < 3, we conjecture that all slow
growing forms that satisfy some basic physical consistency conditions are related to actual

1The study of minimal models has appeared in other contexts in holography; see for instance [25–30].

4

https://scipost.org
https://scipost.org/SciPostPhys.8.6.084


SciPost Phys. 8, 084 (2020)

CFTs, namely N = 2 minimal models. This strongly suggests that cancellations in the elliptic
genus do not arise by mathematical accident. We also comment on a generalization of this
conjecture for CFTs with 3≤ c ≤ 6.

We note that our results are similar in spirit to [31, 32], for which the seed theory has
N = (2, 2) and c = 6. In their case, they made a concrete proposal for the supergravity dual.
We have not attempted to do so. Since our theories pass the two very restrictive consistency
checks outlined above, we believe that there are in fact supergravity duals to them. We are
able to write down explicit expression for the BPS spectrum, which will greatly help identifying
such gravity duals and could enable a precise matching along the lines of [33,34].

This paper is organized as follows. In Section 2 we review some basics including the
elliptic genus, symmetric orbifolds, slow growth, and exactly marginal operators. In Section
3 we review the N = 2 minimal models, and show that SymN (N = 2 minimal model) has
both a slow-growing elliptic genus, and single-trace exactly marginal operators. In Section 4
we generalize to other seed theories, including Kazama-Suzuki theories and tensor products
of minimal models. Some detailed calculations are relegated to the appendices.

2 Aspects of large N SCFT2

In this section, we review the salient features of N = (2, 2) two-dimensional CFTs as well as the
symmetric orbifolds of such theories in the large N limit. Our discussion here will strengthen
and interlace results in prior literature, with the aim to establish necessary conditions that
connect symmetric product orbifolds to CFTs that exhibit supergravity-like properties.

2.1 N = (2,2) SCFTs and the elliptic genus

We will consider unitary compact N = (2, 2) CFTs in two dimensions, with central charge c
and U(1)R level t̂ = c/6. Our conventions follow those in, e.g., [35,36]. The representations of
such theories are parametrized by their weight h and their U(1)R charge Q. There are two types
of representations: long (or non-BPS) representations, and short (or BPS) representations. A
representation is short if it saturates the unitarity bound. In the NS sector, this implies that
BPS states are of the form

�

�

�

�

h=
|Q|
2

, Q
·

NS
, (2.1)

and depending on the sign of Q, we call it a chiral (c) or anti-chiral (a) field. In the Ramond
sector, this implies that

�

�

�h=
c

24
, Q

E

R
, (2.2)

and we therefore call it a Ramond ground state. Each state has a left- and right-moving com-
ponent; if both components are BPS, we say the state is 1/2-BPS, and if only one is BPS, we
say it is 1/4-BPS.

One of the central objects we will consider is the elliptic genus

ZEG(τ, z) = TrRR

�

(−1)F qL0−
c

24 y J0 q̄ L̄0−
c

24

�

, q ≡ e2πiτ, y ≡ e2πiz , (2.3)

which captures the 1/4-BPS states in the Ramond sector. If the CFT has a discrete spectrum,
then ZEG is a holomorphic function of τ, as it only receives contributions from right-moving
ground states. From this we can define the NS sector elliptic genus through

ZNS(τ, z) = q
c

24 q
t̂
2 y t̂ ZEG(τ, z +

τ

2
). (2.4)
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The shift in z is the half-unit spectral flow that modifies the periodicity of the left-moving
fermions from R to NS along the spatial cycle; the right movers stay in the Ramond sector.
More generally, the spectral flow automorphism acts on the zero modes as

J0→ J0 + 2 t̂ η, L0→ L0 +η J0 + t̂ η2. (2.5)

For η ∈ Z+ 1/2 it relates the NS (R) sector and the R (NS) sector, while for η ∈ Z it maps the
R and NS sector to themselves. It is this NS sector elliptic genus that will play the central role
in counting the growth of states.

Crucially, ZEG is invariant (up to a phase) under modular transformations. If in addition
all U(1)R charges are integral, then ZEG is a weak Jacobi form (wJf) of weight 0 and index
t̂ [37]. The mathematical theory of such wJf was developed in [38]. In this paper, we will
consider families of CFTs which may have fractional U(1)R charges, in which case ZEG is not
a wJf. However, there is simple way to convert it to a wJf: If the charges Q of the theory are
fractional, this can be done by a procedure we refer to as unwrapping, i.e.,

ZEG(τ,κ z) =: ϕ(τ, z) =
∑

n≥0
`∈Z

c(n,`)qn y`, (2.6)

where we have simply rescaled z by κ, which we have chosen as the smallest integer such that
κQ ∈ Z for all charges Q, ensuring charge integrality. Here ϕ is now a wJf of weight 0 whose
index t is given in relation to the central charge of the SCFT by

t =
c
6
κ2. (2.7)

Assuming the holomorphic U(1)R-symmetry is compact and has rational charges, one can thus
always go from an elliptic genus ZEG of an N = (2,2) theory with fractional charges to a weak
Jacobi form ϕ with an integral Fourier expansion by unwrapping. Note that nothing physical
about the theory changed by redefining the U(1)R; in particular, the growth of the spectrum
can be analyzed just as well from the unwrapped elliptic genus.

A few additional properties of the wJf will be important and useful in the following sec-
tions; for additional background material we refer to [38]. The discriminant of a state (n,`)
in ϕ is given by 4tn− `2; states with negative discriminant are called polar. Since the weight
is 0, specifying all the coefficients c(n,`) for the polar states in (2.6) uniquely determines the
whole wJf. We will take the most polar state in ϕ to be of the form

y−b q0, (2.8)

with b a positive integer and b ≤ t; we recall that a wJf of index t is allowed to have at most
terms with polarity −t2. We will interpret this term, after unwrapping and spectral flow, as
the ground state in the NS sector,2 which leads to the relation

t = bκ. (2.9)

2.2 Spectrum of the symmetric orbifold

Beginning with a CFT X of central charge c, one can construct an infinite family of CFTs with
central charges cN , with N = 1,2, . . ., by taking symmetric product orbifolds of X . The N -th

2It is possible that the contribution of the NS vacuum to the elliptic genus vanishes due to fermionic zero modes
in the RR sector. An example where this occurs is the non-linear sigma models on an odd-dimensional Calabi-
Yau [39]. A more extreme version of these cancellations is the non-linear sigma model with target space T 4 where
the elliptic genus vanishes alltogether. We will not consider such theories in this paper and always assume that the
vacuum gives a non-vanishing contribution to the elliptic genus.
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symmetric product of X , which we will denote as SymN (X ), is constructed by tensoring N
copies of the CFT X with each other and then orbifolding by the symmetric group SN , i.e.,

SymN (X ) = X ⊗ . . .⊗ X
︸ ︷︷ ︸

N

/SN . (2.10)

One very appealing aspect of this construction is that several quantities can be easily expressed
in terms of the “seed theory” X . In particular, the partition function (elliptic genus) of the
symmetric product theory SymN (X ) is completely determined by the partition function (elliptic
genus) of the seed theory. This feature is elegantly captured by the generating function for the
elliptic genera of SymN (X ) [40], which shows

∞
∑

N=0

pN ZN
EG(τ,κ z) =

∏

m>0
n,`

1
(1− pmqn y`)c(mn,`)

, (2.11)

where ZN
EG is the elliptic genus of SymN (X ), and the coefficients c(n,`) are those in the elliptic

genus of the seed X . To avoid introducing further notation, we are displaying the generating
function for the unwrapped elliptic genus, albeit this product relation also holds without the
need of unwrapping. This expression is robust under spectral flow as well, allowing us to
obtain the NS sector spectrum via (2.4).

From these generating functions, one can read off the spectrum of SymN (X ) in the large
N limit. In the case of the partition function, the behavior of the spectrum is universal and
has Hagedorn growth, independent of the choice of the seed theory [13]. On the other hand,
the elliptic genus may exhibit more interesting behavior. There are generically cancellations
among states due to the presence of the (−1)F term in (2.6), and these cancellations may be
so large that the spectrum of 1/4-BPS states contributing to the elliptic genus of SymN (X )
significantly deviates from the spectrum of the partition function at large N . We distinguish
between two cases: we say the elliptic genus of the symmetric product has “fast growth" if the
growth of the coefficients is Hagedorn (1.2), and we say it has “slow growth" if the coefficients
exhibit supergravity-like behavior (1.3).

The authors of [23, 24] give a simple criterion to determine which seed theories X yield
elliptic genera which exhibit slow growth at large N . Let us briefly state this criterion, which
is stated for the unwrapped elliptic genus (2.6). Let ϕ(τ, z) be the seed wJf of weight 0 and
index t. The criterion then works the following way: Assume that q0 y b is the most polar term
of ϕ for some b ≤ t. To determine the growth of the symmetric orbifold, for each term qn y`

in the seed wJf with non-vanishing coefficient c(n,`), we compute the quantity

α= max
j=0,...,b−1

�

−
t

b2
j
�

j −
b`
t

�

− n
�

. (2.12)

If for any term α > 0, the symmetric orbifold of ϕ has Hagedorn growth; otherwise, it has
supergravity-like growth. Hence, a necessary condition on our needles is to have α≤ 0 for all
states. Note that this is a condition only for polar states: states with 4tn−`2 ≥ 0 automatically
give α < 0. This implies that for a fixed t, there is only a relatively small number of such terms,
roughly ∼ t2/12.

The analysis of (2.12) in [23] also established that b2 > t implies Hagedorn growth. This
implies that if ϕ is the elliptic genus of a bona fide CFT, i.e. κ= 1 in (2.9), all such forms will
have Hagedorn growth except if t = b = 1. This is the case of the K3 sigma model, which does
exhibit supergravity-like growth in the symmetric product elliptic genus [21]. If ϕ however is
an unwrapped elliptic genus, there are wJf that meet the criteria of supergravity-like growth,
and one necessary condition for their existence is that

c =
6b2

t
≤ 6, (2.13)
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which is already a strong restriction on the central charge of the seed CFT. In the remainder
of this section we will analyze other criteria that the needles in the haystack of SymN (X ) need
to satisfy and how they intertwine with the criteria imposed by (2.12).

2.3 Marginal operators and the large N limit

We described above that for some theories, there is a discrepancy between a slow (supergravity-
like) growing elliptic genus and a fast (Hagedorn) growing partition function. In this section
we argue that this discrepancy is explained by the existence of a moduli space for the theory.
That is, we want to establish the existence of suitable marginal operators that allow us to
deform the theory.

Our reasoning is based on known string theory constructions. For example, the symmetric
product orbifold of a K3 sigma model, K3N/SN , describes the D1D5 system on AdS3×S3×K3
when the string length is of order the AdS length [41,42]. The symmetric product CFT contains
a marginal operator which can drive the system into a strongly coupled regime; this separates
the string and AdS lengths, and leads to the supergravity description of D1D5. In particular,
the marginal deformation reduces the Hagedorn growth by introducing large anomalous di-
mensions to most of the operators in theory. The elliptic genus however, is protected under this
deformation and hence already captures the reductions that match the BPS spectrum of the su-
pergravity theory [33]. This makes the elliptic genus a precursor to quantify the gravitational
features; identifying the marginal operator that turns on the coupling further strengthens the
argument by giving a physical explanation to the reduced growth in the elliptic genus.

Let us describe in more detail the properties of these marginal operators that introduce
the separation of scales at large N . First, it is instructive to highlight the resemblance of
symmetric orbifolds of 2d CFTs and their large N limit to the well known large N limit of
N = 4 supersymmetric Yang-Mills (SYM) in 4d. The symmetric group SN plays the role of the
gauge group SU(N). Similarly, there is a notion of single-trace and multi-trace states:

Single trace: a single-trace state is either a symmetrized state of the seed theory (which is in
the untwisted sector), or a single cycle of some length L in the twisted sector.

Multi-trace: A general (multi-trace) state in the SN orbifold is then the (symmetrized) product
of at least two single-trace factors.

The reason for this terminology is that in the large N limit, their correlation functions behave
in the same way as correlation functions of SYM: to leading order in N , they are given by
combinatorial Wick contractions of all single-trace factors [43,44].

The generalization of the string length for K3 is the following. Symmetric orbifolds can
have a moduli space. That is, they may contain operators O such that a deformation to the
action by

λN
β
2

∫

d2 x O(x), (2.14)

gives another CFT. That is, we can use these O to move around on the moduli space. We
take O to be normalized such that it has a unit two-point function, but allow for the moment
arbitrary powers of N multiplying λ, which we take to be an N -independent coupling. To
preserve conformal invariance, O has to be exactly marginal, i.e. it must have conformal
dimension (h, h̄) = (1, 1), and not receive any corrections to the dimension to all orders in
perturbation theory. If we want it to preserve N = (2, 2) supersymmetry, it additionally must
be the G−−1/2 (G+−1/2) descendant of a (anti-)chiral primary in the NS sector of

Q = 1(−1), h= 1/2. (2.15)
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The moduli are thus given by primary operators with (2.15), which may be of the form (c, c),
(a, c), (c, a), or (a, a).

A priori, we can choose β in (2.14) any way we want. However, we want to ensure that
our theory has a good planar limit for N →∞. This only happens for an appropriate choice
of β . In the case of 4d SYM, this corresponds to the statement that the ‘t Hooft coupling λ
is related to the Yang-Mills coupling by λ = N g2. For symmetric orbifolds, the situation is
more complicated. As we review in appendix D, the correct choice of β depends on the type
of multi-trace operator O. In particular, when O is a K-trace operator, we have

β = 2− K . (2.16)

It then turns out that to leading order in N , only single-trace moduli lead to significant defor-
mations of the CFT. All other moduli contribute O(N−1) corrections to the spectrum. We will
therefore be mostly interested in single-trace moduli.

2.4 Twisted sector moduli

Having established how single trace moduli can deform the symmetric orbifold, let us now
explain how to count them. To identify such exactly marginal operators, it is useful to work in
the Ramond sector. If we have chiral primaries in the NS sector of SymN (X ) obeying (2.15),
then the corresponding Ramond ground states will have

h=
cN
24

, Q = 1−
cN
6

, (2.17)

if the primary is chiral, and

h=
cN
24

, Q = −1+
cN
6

, (2.18)

for anti-chiral primaries. These are the operators we want to detect and quantify, which as we
will see are straightforward to count.

The Ramond ground states are 1/2-BPS states; for a seed CFT these are captured by the
function

Z 1
2−BPS(y, ȳ) =

∑

Q,Q̄

d(Q, Q̄)yQ ȳQ̄, (2.19)

where d(Q, Q̄) is the multiplicity of the RR ground state of charge (Q, Q̄). To compute the
spectrum of 1/2-BPS states for the N -th symmetric orbifold, we use the generating function
(see, e.g. [33,45]),

∞
∑

N=0

ZN
1
2−BPS

(y, ȳ)pN =
∞
∏

L=1

∏

Q,Q̄

1

(1− pL yQ ȳQ̄)d(Q,Q̄)
, (2.20)

where ZN
1
2−BPS

(y, ȳ) is the 1/2-BPS spectrum of SymN (X ). To identify the twisted sector states,

we can use a modified version of (2.20),

∞
∑

N=0

ZN ,L
1
2−BPS

(y, ȳ)pN =
Lmax
∏

L=1

∏

Q,Q̄

1

(1− pL yQ ȳQ̄)d(Q,Q̄)
, (2.21)

which only counts states that have no twist cycle longer than Lmax. In particular, Lmax = 1 gives
the untwisted states. Finally, for a given N we can identify which of these states ground states
carry charges as in (2.17)-(2.18). These formulas allows us to read off the number of moduli
of a given chirality type from (2.20) for any N , and if it is single or multi trace depending
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on which term in the product formula leads to that state. Note that this number vanishes for
N = 0, and can increase with N . In fact, for symmetric orbifolds, this number stabilizes above
a certain value of N , see e.g. [13].

Let us focus on the (c, c) moduli, and explain how to count them. The generating function
for (c, c) primaries is

∞
∑

N=0

ZN
cc(y, ȳ)pN =

∞
∏

L=1

∏

Q,Q̄

1

(1− pL yQ+cL/6 ȳQ̄+cL/6)d(Q,Q̄)
, (2.22)

which is the appropriate spectral flow of (2.20) to the NS sector 1/2-BPS states. The lightest
moduli in a given twisted sector would potentially come from the NS ground state of the seed:
This corresponds to the values Q = −c/6 in (2.22). We find that in the NS sector, the twist L
BPS operator with the smallest charge has

Q =
c
6
(L − 1), (2.23)

from which it immediately follows that its weight is

h=
c

12
(L − 1). (2.24)

Note that for bosonic theories, the well-known expression for the weight of the twist operator
is h = c

24(L − 1/L), see e.g. [46, 47]; to impose the correct monodromy for fermions while
preserving supersymmetry, it is necessary to include a spin field, whose weight increases the
weight of the twist operator. As an immediate consequence of (2.24), we see that the highest
value of c for which there can be twisted moduli is c = 6, in which case there can be twist-2
moduli. Therefore, the existence of a marginal operator that preserves supersymmetry leads
to

c ≤ 6. (2.25)

This agrees nicely, and non-trivially, with what we found in (2.13). We reiterate that the
argument here is valid for the (c, c) moduli, and one can proceed in a similar fashion for the
other types of moduli.

3 The symmetric product of N = 2 minimal models

From Section 2, we have summarized the two necessary conditions we require for a symmetric
product theory to have a semiclassical gravity dual – sub-Hagedorn growth in the elliptic genus,
and (at least one) single-trace exactly marginal operator – both require the seed theory to have
c ≤ 6. In the rest of this paper, we will analyze various N = (2, 2) CFTs with c ≤ 6 as candidate
seed theories. Unfortunately N = (2,2) CFTs with 3 ≤ c ≤ 6 are unclassified, but for c < 3
a classification is complete and is given by the minimal models. In this section we will study
the symmetric product of N = 2 minimal models. Remarkably we will find that the symmetric
product of every unitary N = 2 minimal model obeys both of our conditions for a semiclassical
gravity dual. In Section 3.1 we review salient features of the minimal models. In Section 3.2
we describe the supergravity-like growth of their symmetric product elliptic genus. In Section
3.3 we describe their exactly marginal operators.

3.1 The N = 2 minimal models

The unitary N = (2, 2) SCFTs with c < 3 are fully classified by the N = 2 minimal models
[48,49]. They come labeled by a positive integer k, with the central charge given by

c =
3k

k+ 2
. (3.1)
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Such minimal models are rational CFTs; that is, they have a finite number of irreducible rep-
resentations of the N = 2 superconformal Virasoro algebra. The characters of the algebra at
these values of the central charge are combined into modular invariant partition functions.
The possible ways of obtaining such partition functions are given by an ADE classification of
the theories. Originally, this ADE classification was found for the A(1)1 WZW models [50]: all
modular invariant partition functions are given by combinations of their characters χr(τ),

ZA(1)1 (τ, τ̄) =
∑

1≤r,r ′<k+1

NΦr,r ′χr(τ)χr ′(τ̄). (3.2)

Here Φ is one of the simply laced Dynkin diagrams, which are given by the A, D, and E series.
The allowed multiplicity matrices NΦr,r ′ are in one-to-one correspondence to such Dynkin dia-

grams; this explains the term ‘ADE classification’. The same ADE classification as in the A(1)1
WZW models can be used to obtain modular invariants of N = 2 minimal models [51]. In
general there are many more modular invariants [52], but if we require the CFT to be invariant
under spectral flow by half a unit, then the possible invariants are indeed classified by the same
ADE series as the A(1)1 WZW models [53,54]. (In string theory, this condition is usual phrased
as preserving spacetime supersymmetry.) Since we rely on spectral flow for our arguments,
we will restrict ourselves to such invariants. Their partition functions in the Ramond sector
are then given by

ZΦRR(τ, τ̄, z, z̄) =
1
2

∑

1≤r,r ′≤k+1

NΦr,r ′
∑

s∈Z/(2k+2)Z

χ̃ r
s (τ, z)χ̃ r ′

s (τ̄, z̄), (3.3)

where χ̃ r
s (τ, z) are related to characters of the N = 2 algebra at these values of the central

charge. See Appendix A.1 for more details. The upshot of our discussion is that the minimal
models come in the following families:

• the A-series, which have c = 3k
k+2 for any positive integer k and are denoted Ak+1;

• the D-series, which have c = 3k
k+2 for any even k ≥ 4 and are denoted Dk/2+2;

• and three exceptional theories denoted E6, E7, and E8, which have c = 5
2 , 8

3 , and 14
5

respectively.

From the partition function (3.3), we can easily recover both the elliptic genus and the
1/2-BPS spectrum. To recover the elliptic genus of the Φ-type minimal model we set z̄ = 0,
giving

ZΦEG(τ, z) =
1
2

∑

1≤r,r ′≤k+1

NΦr,r ′
�

χ̃ r
r ′(τ, z)− χ̃ r

−r ′(τ, z)
�

. (3.4)

To recover the 1/2-BPS partition function ZΦ1
2−BPS

, we specialize q = q̄ = 0, giving

ZΦ1
2−BPS

(y, ȳ) =
1
2

∑

1≤r≤k+1

NΦr,r
�

(y ȳ)
r

k+2−
1
2 + (y ȳ)−

r
k+2+

1
2

�

. (3.5)

3.2 Growth of symmetric product of minimal models

Using (3.4), we can obtain expressions for the elliptic genus of the minimal models. They turn
out to be given by [55,56]:

ZAk+1
EG (τ, z) =

θ1

�

τ, (k+1)z
k+2

�

θ1

�

τ, z
k+2

� , A-series,
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Z
Dk/2+2

EG (τ, z) =
θ1

�

τ, kz
k+2

�

θ1

�

τ, (k+4)z
2(k+2)

�

θ1

�

τ, 2z
k+2

�

θ1

�

τ, kz
2(k+2)

� , D-series,

Z E6
EG(τ, z) =

θ1

�

τ, 3z
4

�

θ1

�

τ, 2z
3

�

θ1

�

τ, z
4

�

θ1

�

τ, z
3

� , E6,

Z E7
EG(τ, z) =

θ1

�

τ, 7z
9

�

θ1

�

τ, 2z
3

�

θ1

�

τ, 2z
9

�

θ1

�

τ, z
3

� , E7,

Z E8
EG(τ, z) =

θ1

�

τ, 4z
5

�

θ1

�

τ, 2z
3

�

θ1

�

τ, z
5

�

θ1

�

τ, z
3

� , E8, (3.6)

with the convention that the supercharge has charge±1. We define θ1(τ, z) as the usual Jacobi
theta function:

θ1(τ, z) = −iq
1
8 y

1
2

∞
∏

n=1

(1− qn)(1− yqn)(1− y−1qn−1). (3.7)

We now want to rescale so that all the charges in ZEG(τ, z) are integers with gcd 1, accord-
ing to (2.6). This gives the following weak Jacobi forms:

ϕAk+1(τ, z) =
θ1(τ, (k+ 1)z)
θ1(τ, z)

, b =
k
2

, t =
k(k+ 2)

2
: A-series, k even,

ϕAk+1(τ, z) =
θ1(τ, 2(k+ 1)z)
θ1(τ, 2z)

, b = k, t = 2k(k+ 2) : A-series, k odd,

ϕDk/2+2(τ, z) =
θ1

�

τ, kz
2

�

θ1

�

τ, (k+4)z
4

�

θ1

�

τ, kz
4

�

θ1(τ, z)
, b =

k
4

, t =
k(k+ 2)

8
: D-series, k ≡ 0 (mod 4),

ϕDk/2+2(τ, z) =
θ1 (τ, kz)θ1

�

τ, (k+4)z
2

�

θ1

�

τ, kz
2

�

θ1(τ, 2z)
, b =

k
2

, t =
k(k+ 2)

2
: D-series, k ≡ 2 (mod 4),

ϕE6(τ, z) =
θ1(τ, 8z)θ1(τ, 9z)
θ1(τ, 4z)θ1(τ, 3z)

, b = 5, t = 60 : E6,

ϕE7(τ, z) =
θ1(τ, 6z)θ1(τ, 7z)
θ1(τ, 2z)θ1(τ, 3z)

, b = 4, t = 36 : E7,

ϕE8(τ, z) =
θ1(τ, 12z)θ1(τ, 10z)
θ1(τ, 5z)θ1(τ, 3z)

, b = 7, t = 105 : E8. (3.8)

The parameters b and t are defined in (2.7)-(2.9).
Remarkably, every weak Jacobi form in (3.8) satisfies the condition in (2.12) and therefore

is a wJf that exhibits slow growth in the symmetric product! In Appendix B we prove this
explicitly.3 Moreover, we can write down a generating function for the low-lying states in
the large N symmetric product which exhibit this slow growth. The qh y` term in the NS-
sector elliptic genus of the symmetric product can be formed into a generating function we
call χNS

∞(q, y); see [23]. In Appendix C, we give explicit expressions for χNS
∞(q, y) for all

minimal models. They all take the qualitative form

χNS
∞(q, y) =

∏

h,`

1
(1− qh y`) fNS(h,`)

, (3.9)

3We note that there is also a simpler proof of this that does not rely on (2.12) [57].
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where fNS(h,`) takes only a finite number of allowed values. This means that the qh coefficient
of the NS-sector elliptic genus grows roughly as ∼ e

p
h, which is indeed supergravity-like slow

growth with γ = 1/2 in (1.3). In contrast, if the theory had Hagedorn growth, the fNS(h,`)
would grow exponentially. We emphasize functions χ∞NS (q, y) are not counting consistent CFT
spectra; instead they are counting the states that have energy much less than N in the large
N limit. They are counting low-lying states in the theory, for instance Kaluza-Klein modes in
a dimensional reduction of the supergravity theory.

We therefore arrive at one of the main results of this paper: The symmetric product
orbifold of any N = 2 minimal model exhibits sub-Hagedorn growth in the NS-sector
elliptic genus. This is a necessary and very nontrivial condition for the theory to have a
large-radius Einstein gravity locus in moduli space.

3.3 Moduli

Let us now investigate the existence of moduli in symmetric orbifolds of minimal models along
the lines of our discussion in Sections 2.3 and 2.4. Note that similar to the case of K3 or T4,
we take ‘moduli’ to mean fields which preserve both conformal invariance and supersymmetry.
(There are exactly marginal fields such as J J̄ which do not preserve supersymmetry [58–60].)
That is, we want to study what is usually called the moduli space, and not the conformal
manifold of the theory.

In the case of K3, the seed theory itself already has 80 moduli (which can be seen from the
Hodge diamond of K3). The symmetric orbifold then automatically has symmetrized versions
of these in the untwisted sector. In addition, there are 4 more moduli in the twist-2 sector.
These are the moduli that actually change the string length. In total there are thus 84 moduli.
See, for example, [42].

For minimal models, the situation is different: the seed theory has no supersymmetry-
preserving moduli. It does contain relevant chiral fields though, which potentially can be
combined to give marginal fields in the symmetric orbifold theory, giving multi-trace moduli
in the untwisted sector. Moreover moduli can also appear in the twisted sector. We will see
that both in fact happen.

A-series

For Φ= Ak+1, we find the following expression for the 1/2-BPS partition function:

ZAk+1
1
2−BPS

(y, ȳ) =
k+1
∑

j=1

(y ȳ)
j

k+2−
1
2 . (3.10)

We give detailed expressions for the moduli in appendix A.2. Here let us simply summarize
the counting in Table 1, and point out that for every value of k we always find at least one
single traced modulus in the twisted sector.

D-series

For Φ= Dk/2+2, we find

Z
Dk/2+2
1
2−BPS

(y, ȳ) = 1+

k
2+1
∑

j=1

(y ȳ)
2 j−1
k+2 −

1
2 . (3.11)

The analysis of the D series is similar to the A series with k even, and a summary is given in
Table 1. Again we note that there is always a single trace moduli in the twist 3 sector.
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E-series

For the E-type minimal models, we find

Z E6
1
2−BPS

(y, ȳ) = (y ȳ)−
5
12 + (y ȳ)−

1
6 + (y ȳ)−

1
12 + (y ȳ)

1
12 + (y ȳ)

1
6 + (y ȳ)

5
12 ,

Z E7
1
2−BPS

(y, ȳ) = (y ȳ)−
4
9 + (y ȳ)−

2
9 + (y ȳ)−

1
9 + 1+ (y ȳ)

1
9 + (y ȳ)

2
9 + (y ȳ)

4
9 , (3.12)

Z E8
1
2−BPS

(y, ȳ) = (y ȳ)−
7
15 + (y ȳ)−

4
15 + (y ȳ)−

2
15 + (y ȳ)−

1
15+

+ (y ȳ)
1
15 + (y ȳ)

2
15 + (y ȳ)

4
15 + (y ȳ)

7
15 .

The number of moduli can be computed directly via (2.20). It turns out that all three E series
models have one single trace modulus in the twist 2 sector.

Table 1: Number of moduli for symmetric orbifolds of the ADE minimal models. We
always take N large enough so that the moduli have converged. P(n) is the integers

partition function, i.e.
∞
∑

n=0
P(n)qn =

∞
∏

n=1

1
(1−qn) .

Series k untwisted moduli twisted moduli single trace twisted
A2 1 1 28 1 twist 5, 1 twist 7
A3 2 3 26 1 twist 3, 1 twist 4, 1 twist 5
A5 4 9 24 1 twist 2, 1 twist 3, 1 twist 4

Ak+1 odd, ≥ 3 P(k+ 2)− 2 9 1 twist 3

Ak+1 even, ≥ 6 P(k+ 2)− 2 10+
k
2+2
∑

r=1
P(r) 1 twist 2, 1 twist 3

D4 4 6 20 1 twist 2, 2 twist 3, 1 twist 4

Dk
2+2 0 mod 4, ≥ 8 P( k

2 + 1) + P( k
4 + 1) 8+

k
4+1
∑

r=1
P(r) 1 twist 2, 1 twist 3

Dk
2+2 2 mod 4, ≥ 6 P( k

2 + 1) 7 1 twist 3

E6 10 4 5 1 twist 2
E7 16 6 5 1 twist 2
E8 28 6 5 1 twist 2

We summarize our results in Table 1. The upshot is that the symmetric orbifold of all min-
imal models in the ADE series have one or more single trace moduli in the twisted sector. We
can thus deform the theory away from the orbifold point, and potentially reach a supergravity
point in the moduli space.

4 The landscape of symmetric orbifold theories

4.1 A conjecture on the landscape

In the prior sections we established that the elliptic genus of any minimal model can be un-
wrapped to give a weak Jacobi form of index t with maximal polar term q0 y b that is slow
growing, where t and b are related by

c =
6b2

t
. (4.1)

Let us now address the converse of that statement: Does every slow growing form come from
the elliptic genus of a N = (2,2) CFT?
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Before we can make a precise statement, let us first discuss several qualifications. First we
note that due to (2.9), any unwrapping of an elliptic genus automatically gives

t
b
∈ Z. (4.2)

Any conjecture we are making can thus only hold for wJf that satisfy (4.2).
Next, we note that slow growing wJf form a vector space, whereas CFTs do not. The best

we can hope for is thus that elliptic genera of minimal models may give a basis for the space
of slow growing forms. More precisely, consider the space of wJf of weight 0 and index t, J0,t ,
and for fixed t and b we define

Ut,b := {ϕ ∈ J0,t : ϕ has no terms more polar than y bq0, satisfies α≤ 0 w.r.t b}, (4.3)

that is the vector space of wJf that satisfy the slow growth condition in (2.12) with respect to
b, and that do not have any terms more polar than y bq0. Note that because we want Ut,b to
be a vector space, we have to allow for the coefficient of y bq0 to vanish. This is no problem
formally, since we can still check the α condition for such a form.

Given a form ϕ(τ, z) ∈ Ut,b, for any κ̂ ∈ Z>0 we immediately obtain an element in Uκ̂2 t,κ̂b
from the unwrapped wJfϕ(τ, κ̂z). (Note that this unwrapping is conceptually slightly different
from the unwrapping described in section 2, since here we are unwrapping an object that is
already a bona fide wJf.) For a given Ut,b, let us denote by Uold

t,b the subspace generated by all
such unwrapped forms coming from smaller index wJf.

The question we are really interested in is: For which values of t and b do genuinely new
slow growing wJf appear that are not just unwrappings of lower index forms? And can these
new slow growing wJf be described by unwrapped elliptic genera?

We therefore want to investigate the quotient space of new forms

Unew
t,b := Ut,b/U

old
t,b , (4.4)

or equivalently, Ut,b = Unew
t,b ⊕ Uold

t,b . Let us now give the precise form of our conjecture:

Conjecture: For any t, b such that t/b ∈ Z and 6b2/t < 3, there is a basis of Unew
t,b

which consists only of unwrapped elliptic genera of N = 2 minimal models.

To put it another way: for any Ut,b satisfying the conditions on t, b, we can find a basis con-
sisting of 1) elements of Uold

t,b , that is unwrapped wJf, and 2) unwrapped elliptic genera of
minimal models.

Note that this does not imply that any form in Ut,b with t, b satisfying (4.2) can be written
as a linear combination of unwrapped elliptic genera: even though some of the unwrapped
wJf in Uold

t,b may indeed be unwrapped elliptic genera themselves, some of them may not. For

instance, dim U36,4 = 3, but its basis necessarily involves the unwrapped form ϕ t=9,b=2(τ, 2z),
which clearly cannot come from an elliptic genus, as 9/2 /∈ Z.

We have tested this conjecture experimentally. In Table 2 we list all vector spaces Ut,b
with t/b ∈ Z and 6b2/t < 3 for t ≤ 18 with a basis consisting of unwrapped elliptic genera.
Moreover we have checked this conjecture up to t = 50, and found that it always holds.
We thank Jason Quinones for providing us the data for high values of t [57]. It would be
interesting to prove the conjecture analytically and we hope to return to this question in the
future.

Physically, the conjecture implies the following. Since the conditions we wrote down were
necessary but not sufficient to be the elliptic genus of a physical 2d CFT, it was possible that
there existed some weak Jacobi forms that was a mathematical “accident" and did not corre-
spond to an actual physical spectrum (see e.g. [61,62] for similar examples of this at the level
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Table 2: Ut,b 6= 0 for t ≤ 18 satisfying t/b ∈ Z and 6b2/t < 3. We provide a basis
given by (unwrapped) elliptic genera of the minimal models defined in (3.8).

t b 6b2

t dim Ut,b Basis
3 1 2 1 ϕD4(τ, z)
4 1 3

2 1 ϕA3(τ, z)
6 1 1 1 ϕA2(τ, z)
10 2 12

5 1 ϕD6(τ, z)
12 2 2 2 ϕA5(τ, z), ϕD4(τ, 2z)
16 2 3

2 1 ϕA3(τ, 2z)

of the partition function). Our conjecture implies that for c < 3, this does not happen, and the
weak Jacobi forms that satisfy the conditions we list come from the ADE classification of the
N = 2 minimal models.

We note that there is a natural stronger form of the conjecture: Namely, that all Unew
t,b

with t/b ∈ Z have a basis of unwrapped elliptic genera of N = (2,2) CFTs. We note that
since [23] showed that if b >

p
t, the symmetric product cannot grow slowly, for such cases

Ut,b = 0. This means that the CFTs in the stronger conjecture have to have c ≤ 6. Since the
only unitary N = (2,2) CFTs with c < 3 are minimal models, our original conjecture would
follow immediately from the stronger form. Table 3 gives some examples of basis elements
with c ≥ 3. However, at higher values of t there are examples of wJf for which we have not
yet found a corresponding CFT. Since there is no classification of unitary N = (2,2) CFTs with
3≤ c ≤ 6, it remains open if the stronger conjecture is correct.

4.2 Kazama-Suzuki theories and tensor product theories

So far, for c < 3 we could do a complete analysis due to the fact that all unitary N = (2,2) CFTs
of such central charge are known and given by minimal models. Our analysis suggests that
the range 3≤ c ≤ 6 is just as interesting. There is however no classification of such N = (2, 2)
CFTs, and it is reasonable to expect that there is a very large number of them. We therefore
cannot treat them systematically. Instead let us briefly discuss two types of constructions:
so-called Kazama-Suzuki theories [63,64], and tensor products of minimal models.

Kazama-Suzuki theories are a two-parameter family of rational N = (2,2) SCFTs given by
the following coset

SU(M + 1)k × SO(2M)1
SU(M)k+1 × U(1)M(M+1)(M+k+1)

, (4.5)

for positive integers k, M . This coset theory has central charge

c =
3kM

k+M + 1
. (4.6)

There is a level-rank duality relating k ↔ M . Just as with N = 2 minimal models, we can
then assemble them into various modular invariant partition functions. For simplicity in what
follows we take the diagonal invariant, corresponding to the Ak+1 family. For M = 1, these
theories are then equivalent to the Ak+1 minimal model. However for M > 1, they are a natural
generalization of minimal models. If c ≤ 6, they are therefore natural candidates to test for
slow-growing symmetric product elliptic genera.
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Table 3: All Ut,b 6= 0 for t ≤ 18 satisfying t/b ∈ Z. The last column lists some CFTs,
not necessarily minimal models, whose unwrapped elliptic genus can serve as a basis
vector of Ut,b 6= 0. The last column is not necessarily an exhaustive list; it is possible
that there are other CFTs whose (unwrapped) elliptic genera will give a complete set
of basis vectors.

t b c = 6b2

t CFT Examples
1 1 6 K3 sigma model
2 1 3 T2/Z2 (see e.g. [31])
3 1 2 D4

4 1 3
2 A3

4 2 6 T4/G (see [31,32])
6 1 1 A2
6 2 4 (A2)4

8 2 3 (A3)2

9 3 6 (A2)6

10 2 12
5 D6

12 2 2 A5

12 3 9
2 (A3)3

15 3 18
5 (A4)2

16 4 6 (A3)4

18 3 3 (A2)3, A2 ⊗ A5

The elliptic genus for the Ak+1 Kazama-Suzuki models is given by [56]

Z M ,k
EG (τ, z) =

M
∏

j=1

θ1

�

τ, (k+ j)z
M+k+1

�

θ1

�

τ, jz
M+k+1

� . (4.7)

Note that Z M ,k
EG (τ, z) = Zk,M

EG (τ, z). As before, the function (4.7) is in general not a weak
Jacobi form since it does not have integer charges. To get integer U(1)R charges, we rescale
by M + k+ 1 if at least one of M , k is even; otherwise we rescale by 2(M + k+ 1):

ϕM ,k(τ, z) =















M
∏

j=1

θ1(τ,(k+ j)z)
θ1(τ, jz) , Mk ∈ 2Z,

M
∏

j=1

θ1(τ,2(k+ j)z)
θ1(τ,2 jz) , Mk 6∈ 2Z.

(4.8)

These weak Jacobi forms have

t =
kM(M + k+ 1)

2
, b =

Mk
2

, if Mk ∈ 2Z,

t = 2kM(M + k+ 1), b = Mk, if Mk 6∈ 2Z. (4.9)

Without loss of generality, let us assume that M ≤ k. The Kazama-Suzuki theories with c ≤ 6
are:

M = 1, k ≥ 1,

M = 2, k ≥ 2,
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M = 3, k = 3, 4,5, 6,7, 8,

M = 4, k = 4, 5. (4.10)

For M = 1 we already know their symmetric products give slow growth since they are equiva-
lent to N = 2 minimal models. For M = 2 we have explicitly checked the symmetric product
of Kazama-Suzuki up to k = 10, and find that they all give slow growth in the elliptic genus.
It is thus natural to conjecture that all M = 2 Kazama-Suzuki theories satisfy this property.
For the remaining cases in (4.10), the following pairs (M , k) give a slow-growing weak Jacobi
form in the symmetric product: (3,4), (3,6), (3,8), (4,4), (4,5). Interestingly, (3,3), (3,5), and
(3, 7) do not. Moreover, every Kazama-Suzuki theory in (4.10) except for (M , k) = (3,3), (3,5),
and (3,7) has at least one single-trace twisted sector marginal operator. Thus it seems that
Kazama-Suzuki theories have slow-growing elliptic genera if and only if they have at least one
single-trace twisted sector modulus.

Another class of N = (2,2) SCFTs that can have c ≤ 6 are tensor products of minimal
models. In particular, the tensor product of any two N = 2 minimal models has c < 6. We
have explicitly checked the first twelve A-series minimal models tensored with themselves, i.e.

(Ak)
2, k = 2,3, . . . , 13, (4.11)

and every one of them does give rise to both a slow-growing weak Jacobi form in the symmetric
product, and has at least one exactly marginal single-trace twisted-sector operator. We have
also shown various other tensor products of minimal models give rise to slow-growing weak
Jacobi forms (see Table 3). On the other hand, not every tensor product of N = 2 minimal
models with c ≤ 6 gives rise to a slow-growing weak Jacobi form. As an explicit example, the
theory (A2)5 has c = 5 and its unwrapped elliptic genus is a weak Jacobi form with t = 30,
b = 5 which we check does not obey (2.12). Moreover, the theory (A2)5 has no twisted-
sector marginal operators. It would be interesting to classify which tensor products of minimal
models do and do not give a slow-growing weak Jacobi form in the symmetric product and
have single-trace exactly marginal twisted-sector operators.

4.3 Open questions

Finding the supergravity duals and their string theory origin

Two immediate follow-up questions to this work are: can we find a supergravity background
in AdS3 whose KK modes reproduce the signed count of BPS states we predict, and does there
exist a top-down construction in string theory or M-theory whose low-energy approximation is
this supergravity solution? In the D1D5 system, the signed 6d (2, 0) supergravity KK spectrum
on AdS3 × S3 was found to precisely match the elliptic genus of SymN (K3) [33, 34]. Can
we construct a supergravity background to match symmetric products of minimal models?
Moreover in the D1D5 system, the BPS spectrum itself had interesting properties. The unsigned
count of BPS states coming from supergravity KK modes differs substantially from the (signed)
elliptic genus, with different asymptotics [65]. The signed count grows as e

p
n whereas the

unsigned count grows as en3/4
. Is there a similar set of quarter-BPS states that fail to cancel at

the supergravity point in moduli space?

Slow-growing symmetric orbifold genera with seed central charge 3 ≤ c ≤ 6

So far in this paper we have mainly focused on N = (2, 2) SCFTs with c < 3, since there the
classification of the theories is complete. Remarkably, every theory (i.e. the minimal models)
exhibited both slow growth in the symmetric orbifold elliptic genus and had a single-trace
marginal operator. In Section 4.2 we started exploring these features for certain classes of
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theories with 3≤ c ≤ 6. The situation there is more subtle – for instance, we gave explicit ex-
amples of theories with 3≤ c ≤ 6 that give Hagedorn growth in the symmetric product elliptic
genus (e.g. certain Kazama-Suzuki theories and minimal model tensor products). It would
be interesting to extend this analysis further and make progress in understanding which seed
theories with 3 ≤ c ≤ 6 do and do not satisfy these two criteria. It would also be interesting
to find examples of theories that satisfy one but not the other; or to prove that such a situa-
tion is impossible. We emphasize that in every example we have checked so far, either both
criteria or neither criteria is satisfied. Another extension is to consider instead orbifolds by
subgroups of SN which are known as permutation orbifolds. Many subgroups lead to a good
large N limit [66,67] and it would interesting to see if one can find examples that also lead to
supergravity-like growth.

Nature of the strong coupling regime

In this paper, we have provided evidence for a new infinite class of two-dimensional CFTs
whose gravitational duals are described by semi-classical supergravity. The two main pieces
of evidence are the slow growth of the elliptic genus and the existence of exactly marginal
operators that turn on a “gauge" coupling between the N copies of the theory. It is worthwhile
mentioning how our theories, at strong coupling, could end up not being dual to semi-classical
supergravity.

The main concern one could have is that the large coupling limit does not give parametri-
cally large anomalous dimensions to the non-protected operators (in particular the operators
of spin s > 2, which need to be heavy for the gravity dual to be described by Einstein grav-
ity [4]). The existence of a single-trace marginal operators guarantees that a coupling can be
turned on, but it remains a logical possibility that the anomalous dimensions remain bounded
as λ→∞.

Apart from a direct inspection of the partition function at the strongly coupled point, one
could diagnose this fact from the behavior of out-of-time-ordered correlators which detect
chaotic behavior. At the orbifold point, the theory is not chaotic [68], and we can confidently
claim that turning on the coupling will turn on chaos. However, a CFT dual to Einstein gravity
is not just chaotic, it is maximally chaotic [69] and it remains possible that our theories do not
saturate the chaos bound. If the anomalous dimensions did end up asymptoting to constants,
the theory might resemble the two-dimensional supersymmetric versions of the SYK model
discussed in [70], which are chaotic but not maximally chaotic. Nevertheless, we would like to
emphasize that if such a situation occurs for our theories, there would need to be an additional
conspiracy that is responsible for the slow-growth of the elliptic genus, which we find unlikely.
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A More on symmetric products of minimal models

A.1 ADE series of minimal models

Let us define m̄= k+ 2. The minimal models then have central charge

c = 3−
6
m̄

. (A.1)

Irreducible representation are given by H±r,s [48,49]. Here ε ∈ {−1, 0,1, 2} determines the spin
structure: in the NS sector, ε = 0,2, and in the Ramond sector, ε = ± fixes the fermion parity
(−1)F of the highest weight state of the representation. The U(1)R charges and dimension of
the highest weight states in the Ramond sector are given by

hεr,s =
r2 − s2

4(k+ 2)
+

c
24

, Qεs =
s

k+ 2
+
ε

2
. (A.2)

The labels run as

r ∈ {1, . . . k+ 1}, 0≤ |s− ε| ≤ r − 1, r + s ≡ 0 (mod 2). (A.3)

From (A.2) we see that the BPS representations, that is the Ramond ground states, are given
by r = |s|. We define the characters in the Ramond sector with (−1)F inserted,

χ±r,s(τ, z) = TrH±r,s(−1)F y J0qL0−c/24. (A.4)

By defining
χ±r,s = χ

±
m̄−2−r,m̄+s = χ

±
r,s+2m̄Z, (A.5)

we can take s to run over Z/2m̄Z.
To turn this minimal model data into physical theories, we need to combine the characters

into modular invariant partition functions

ZRR(τ, τ̄, z, z̄) := TrRR(−1)FL+FR y J0 ȳ J̄0qL0−c/24q̄ L̄0−c̄/24, (A.6)

as combinations of the minimal model characters χ±r,s. Since N = 2 minimal models can be
written as cosets of ŝu(2) models, we can use the ADE classification of [50] to obtain modular
invariants of N = 2 minimal models. This leads to an ADE series of minimal models, whose
partition functions are given by [51]

ZΦ(τ, τ̄, z, z̄) =
∑

r,s,ε
r ′,s′,ε′

NΦr,r ′ Ls,s′Sε,ε′χ
ε
r,s(τ, z)χε

′

r ′,s′(τ̄, z̄). (A.7)

Here the invariant S fixes the spin structure, and L is an invariant of a Θ system. In general,
there are many possibilities for these invariants [52]. We require however that the theory
has spectral flow: that is, we want the NS sector of the theory to be mapped to the R sector
under spectral flow and vice versa. In string theory this criterion is usually imposed to ensure
spacetime supersymmetry. In our case we need it to ensure that we can obtain the NS elliptic
genus, whose growth we measure, can be obtained from the Ramond elliptic genus. Under this
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Table 4: The ADE matrices Ω of Cappelli–Itzykson–Zuber [50].

Φ Coxeter number of Φ ΩΦ

Am̄−1 m̄= 1, 2,3, . . . Ωm̄(1)
Dm̄/2+1 m̄= 6,8, 10, . . . Ωm̄(1) +Ωm̄(m̄/2)

E6 12 Ω12(1) +Ω12(4) +Ω12(6)
E7 18 Ω18(1) +Ω18(6) +Ω18(9)
E8 30 Ω30(1) +Ω30(6) +Ω30(10) +Ω30(15)

requirement, L and S need to be chosen as diagonal [54], which implies that there is exactly
one invariant for every NΦ, so that the ADE classification carries over [53].

Because of this invariance under spectral flow, it is enough to concentrate on the Ramond
sector, or more precisely on the (−−) structure. We define

χ̃ r
s (τ, z) := χ+r,s −χ

−
r,s. (A.8)

Explicit expressions for χ̃ r
s (τ, z) can be found in, for instance, [37,51].4 In total we get for the

RR partition function with (−1)F inserted

ZΦRR(τ, τ̄, z, z̄) =
1
2

∑

0<r,r ′<m̄

NΦr,r ′
∑

s∈Z/2m̄

χ̃ r
s (τ, z)χ̃ r ′

s (τ̄, z̄). (A.9)

HereΦ is a simply laced Dynkin diagram with Coxeter number m̄. Possible multiplicity matrices
NΦr,r ′ are in one-to-one correspondence to such Dynkin diagrams. The Capelli-Itzykson-Zuber
(CIZ) matrix NΦr,r ′ can be obtained from

NΦr,r ′ = Ω
Φ
r,r ′ −Ω

Φ
r,−r ′ , (A.10)

where we introduced the 2m̄×2m̄ matrix ΩΦ. To specify the matrix ΩΦ, we introduce for each
divisor n of m̄ the matrix

Ωm̄(n)r,r ′ =

¨

1 if r + r ′ ≡ 0 (mod 2n) and r − r ′ ≡ 0 (mod 2m̄/n),

0 otherwise.
(A.11)

Note that the matrices satisfy Ωm̄(n)r,r ′ = Ωm̄(n)2m̄−r,2m̄−r ′ . From the definition we also imme-
diately see that it makes sense to take the indices r, r ′ ∈ Z/2m̄Z, which we will often do in the
following. The ΩΦ can then be specified in terms of these matrices as in Table 4 .

We are actually not interested in the full partition function (A.9). Instead, we will consider
two specializations. First, we recover the elliptic genus of the Φ-type minimal model by setting
z̄ = 0. By the usual argument, only BPS states make a contribution, meaning that

χ̃ r
s (τ, 0) = δr,s −δr,−s. (A.12)

Defining χ̃ r
s (τ, z) := −χ̃−r

s (τ, z) for r < 0 and then continuing r periodically in 2m̄Z, and
using ΩΦr,r ′ = Ω

Φ
−r,−r ′ we can write the elliptic genus as

ZΦEG(τ, z) =
1
2

∑

r,r ′∈Z/2m̄

ΩΦr,r ′χ̃
r
r ′(τ, z) =

1
2

Tr(ΩΦ · χ̃). (A.13)

4Note that our convention for the χ̃ r
s is has a shift of r by 1 compared to [37,51].
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We note that it is possible to compute the elliptic genus of the Φ-type minimal model by
exploiting the description of N = 2 superconformal minimal models as IR fixed points of
N = (2, 2) Landau-Ginzburg theories in 2 dimensions with superpotential WΦ. Superpoten-
tials in N = (2,2) theories in 2d are famously protected by a nonrenormalization theorem; a
list of the superpotentials relevant for the N = 2 minimal models is given in Table 4. As de-
scribed in [55], the elliptic genus is an invariant of the 2d SQFT under renormalization group
flow, and thus can be computed via a “free-field" computation in the UV Landau-Ginzburg de-
scription of the theory. This leads to the an expression in terms of free bosons and fermions
for the elliptic genus of the A-type minimal models [55], and was subsequently generalized to
the D- and E-type theories in [56], leading to the expression given in section 3.2.

Second, we recover the 1/2-BPS partition function ZΦ1
2−BPS

by specializing to q = 0, q̄ = 0.

Again only the BPS characters give a contribution, namely

χ̃ r
s (τ, z)|q→0 =











y−
1
2+

r
m̄ s = r (mod 2m̄),

−y
1
2−

r
m̄ s = −r (mod 2m̄),

0 otherwise.

(A.14)

giving

ZΦ1
2−BPS

=
1
2

∑

0<r<m̄

NΦr,r
�

(y ȳ)
r
m̄−

1
2 + (y ȳ)−

r
m̄+

1
2

�

. (A.15)

If the CFT was a non-linear sigma model coming from a Calabi-Yau, this would be the Hodge
diamond. We also note that the 1/2-BPS partition function only depends on the diagonal
entries of the CIZ matrix and is always diagonal, even for the D and E series models.

A.2 Moduli

It can be seen from (A.15) that the minimal models only have Ramond ground states with
Q = Q̄. This means that only (c, c) and (a, a) moduli appear. For concreteness we will focus
on (c, c), as by charge conjugation symmetry there is the same number of (a, a) moduli. From
(A.15), we see that Ramond ground states of charge

Qr =
r

k+ 2
−

1
2

, r = 1, . . . , k+ 1, (A.16)

can appear in the theory. From (2.15) and (2.22), we see that to find chiral primaries of the
right charge, we need to find configurations that satisfy

Q =
∑

i

2ri − 2+ k(mi − 1)
2(k+ 2)

!
= 1, (A.17)

where ri is the representation, and mi the twist of the ith single trace factor.

A-series

Let us describe how we count moduli in somewhat more detail for the A-series. For k large
enough, we will be able to write down closed form expressions for all moduli. This is due to
the fact that, as can be seen from (A.17), the charges of twisted factors (mi > 1) scale like O(1)
for large k, whereas untwisted factors scale like O(1/k). This means that for k large enough,
only a fixed, small number of twisted factors can appear. Enumerating untwisted factors on
the other hand is quite straightforward by counting partitions of integers.

For the A-series, this means that there are simple expressions once k > 4. For k ≤ 4,
additional moduli can appear. These can easily be found by an explicit computation; namely
we have
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k = 1, 29 marginal operators: 1 untwisted, 6 twist-2, 10 twist-3, 6 twist-4, 4 twist-5, 1 twist-6,
1 twist-7. There is one single trace operator for twist-5 and 7 each.

k = 2, 29 marginal operators: 3 untwisted; 13 twist-2; 9 twist-3; 3 twist-4; 1 twist-5. There
is one single trace operator for twist-3,4,5 each.

k = 4, 33 marginal operators: 9 untwisted; 18 twist-2; 5 twist-3; 1 twist-4. There is one single
trace operator for twist-2,3,4 each.

For k large, we immediately see that that (A.17) cannot be satisfied if any of the mi > 3. There
are thus no moduli of twist bigger than 3 at sufficiently large k. In what follows we will use
the notation

(r . . . r), (A.18)

to mean a twisted sector whose length is given by the number of appearances of r. The value
of r is related to the charge in that sector according to (A.16). For example, (111) would be
the vacuum of a twist-3 sector, while (2) would be an excited state in the untwisted sector. A
straightforward counting of the possibilities gives:

k even:

untwisted: We have
∑

(r − 1) = k+ 2, r − 1≤ k, (A.19)

which leads to P(k+ 2)− 2 possible moduli, the −2 coming from the fact that the
partitions {k+ 2} and {k+ 1, 1} are not allowed.

twist-2: (k/2+3, k/2+3), (33)(11), (22)(22), (22)(11)(2), (11)(11)(3), (11)(11)(2)(2).
In addition we have (r r)(i1) . . . (iK) where for a given K we must have

K
∑

n=1

(in − 1) =
k
2
+ 3− r,

giving an additional
k/2+2
∑

r=1
P(r) moduli.

twist-3: (333), (222)(2), (111)(2)(2), (111)(3).

k odd:

untwisted: The same P(k+ 2)− 2 untwisted moduli as for k even.

twist-2: (33)(11), (22)(22), (22)(11)(2), (11)(11)(3), (11)(11)(2)(2)

twist-3: (333), (222)(2), (111)(2)(2), (111)(3)

In particular, we find that there is always one single trace twist 3 modulus, and for k even also
a single trace twist 2 modulus.

D-series

The analysis of the D-series is therefore analogous to the A-series with k even. The difference
is now that r only runs over odd integers,

r = 1,3, . . . k+ 1. (A.20)

Moreover there is an additional ground state with r = k/2 + 1, which we will denote by a
hat if its value coincides with a value in (A.20). For k large enough, we can thus read off the
marginal operators:
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k = 4ρ :

untwisted: We have P(k/2)−1 moduli without the k/2+1 state. We then have P(k/4)
states of the form (k/2+ 1)(i1) . . . (iK),plus the state (k/2+ 1)(k/2+ 1)(3), for a
total of P(k/2) + P(k/4) untwisted moduli.

twist-2: (k/2 + 3, k/2 + 3), (33)(11), (11)(11)(3), (33)(k/2 + 1),(11)(3)(k/2 + 1),

(k/2 + 1, k/2 + 1)(3) and (r r)(i1) . . . (iK) where
K
∑

n
(in − 1) = k

2 + 3 − r, giving

an additional
k/4
∑

r=1
P(r) moduli, for a total of 5+

k/4
∑

r=1
P(r) twist-2 moduli.

twist-3: (333), (111)(3).

k = 4ρ + 2 :

untwisted: We have P(k/2) − 1 moduli without the k/2 + 1 state, plus the state
(k/2+ 1)(k/2+ 1)(3), for a total of P(k/2) untwisted moduli.

twist-2: (33)(11), (11)(11)(3),(33)(k/2+1),(11)(3)(k/2+1),(k/2+1, k/2+1)(3). Be-
cause k/2 is odd, there are no moduli of the form (r r)(i1) . . . (iK).

twist-3: (333), (111)(3).

E-series

For the E-series minimal models, we find

χ
E6
1
2−BPS

(y, ȳ) = (y ȳ)−
5

12 + (y ȳ)−
1
6 + (y ȳ)−

1
12 + (y ȳ)

1
12 + (y ȳ)

1
6 + (y ȳ)

5
12 ,

χ
E7
1
2−BPS

(y, ȳ) = (y ȳ)−
4
9 + (y ȳ)−

2
9 + (y ȳ)−

1
9 + 1+ (y ȳ)

1
9 + (y ȳ)

2
9 + (y ȳ)

4
9 ,

χ
E8
1
2−BPS

(y, ȳ) = (y ȳ)−
7

15 + (y ȳ)−
4

15 + (y ȳ)−
2
15 + (y ȳ)−

1
15+

+ (y ȳ)
1
15 + (y ȳ)

2
15 + (y ȳ)

4
15 + (y ȳ)

7
15 . (A.21)

The number of moduli can be computed directly. It turns out that all three models have one
single trace modulus of twist-2 of the form (k/2+ 3, k/2+ 3).

These results are summarized in Table 1.

B N = 2 minimal models: Proof of slow growth

In this appendix we will prove that all N = 2 minimal models satisfy the slow growth condi-
tion. The proof consists on verifying that (2.12) is strictly non-positive for the terms in the seed
wJfϕ(τ, z). As detailed in [23], there are a few simplifications that ease this task considerably:

1. Rewriting (2.12) as

α= max
j=0,...,b−1

�

−t
�

j
b
−

l
2t

�2

−
1
4t

�

4tn− l2
�

�

, (B.1)

it is clear that we only need to check polar terms, i.e. terms with 4tn− l2 < 0.

2. A necessary, while not sufficient condition, to have α≤ 0 is

b2 ≤ t. (B.2)

It is simple to show by checking that when b2 > t the most polar term, y bq0, has α > 0.
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3. Combining the two above requirements, with the properties of c(n, l) and the allowed
ranges of j, one can also show that it is sufficient to restrict

0< l ≤ t. (B.3)

All N = 2 minimal models already have b2 ≤ t, hence in the following we will focus on
showing that their polar states with 0 < l ≤ t meet the slow growth criteria. The spectrum
of these theories is dictated by the ADE classification of minimal models, as reflected in (3.8),
and we will go through these cases individually.

B.1 A-series, k even

For the A-series with even k, we have

ϕAk+1(τ, z) =
θ1(τ, (k+ 1)z)
θ1(τ, z)

, with b =
k
2

, t =
k(k+ 2)

2
. (B.4)

Therefore for a given polar term qn y−`, we have

α= max
j=0,...,b−1

�

−n+
2 j(`− j(k+ 2))

k

�

. (B.5)

Let us suppose we fix the q-power n. In order to maximize α, we should maximize `. Therefore
it suffices to check α for the largest ` at fixed n. Using the product form (3.7) for the denom-
inator of the wJf in (B.4), taking the pth term from the numerator, for fixed n the largest `
comes from expanding the factor (1− yq)−1 that appears in the denominator of ϕAk+1 . If we
take the ith term of this expansion and the pth term in the sum form of the numerator of (B.4),
we find

n=
p(p+ 1)

2
+ i, (B.6)

and

`= p(k+ 1) +
k
2
+ i. (B.7)

For these states (B.5) reduces to

α= max
j=0,...,b−1

�

(p− 2 j)
2k

(2(k+ 2) j − k(p+ 1)) + i
�

j
b
− 1

��

. (B.8)

Since j < b, increasing values of i lowers α. Therefore, to find the maximum α, it suffices to
check only the cases with i = 0. Thus the problem now reduces to, for a fixed even k, show
that

(p− 2 j)(2(k+ 2) j − k(p+ 1))≤ 0, (B.9)

for p, j non-negative integers, with 0 ≤ p, j ≤ k
2 due to (B.3). Proving this inequality splits

naturally in two cases.

Case 1: p ≥ 2 j. The inequality (B.9) reduces to showing that

2(k+ 2) j − k(p+ 1)≤ 0, (B.10)

which we can write as

2(k+ 2) j − k(p+ 1)≤ (k+ 2)p− k(p+ 1) = 2p− k ≤ 0, (B.11)

since p ≤ k
2 .

Case 2: p < 2 j. Since p and j are integers, this case implies 2 j ≥ p+ 1. We can estimate the
second parenthesis in (B.9) by

2(k+ 2) j − k(p+ 1)≥ 2(p+ 1)> 0. (B.12)

Therefore (p− 2 j)(2(k+ 2) j − k(p+ 1))≤ 0 for p < 2 j.
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B.2 A-series, k odd

For the A-series with odd k, we have

ϕAk+1(τ, z) =
θ1(τ, 2(k+ 1)z)
θ1(τ, 2z)

, with b = k, t = 2k(k+ 2). (B.13)

The proof here follows the same strategy as for k even: For fix n, identify the largest value of
` and check that (B.1) is strictly negative for ϕAk+1 .

Let p and i be as above, such that

n=
p(p+ 1)

2
+ i, (B.14)

and
`= 2p(k+ 1) + k+ 2i. (B.15)

Note that we can assume i ≤ p: if i > p, then we instead take the term with p+1 and i− p−1,
which has the same n, but smaller `, since the restricted range (B.3) implies that p ≤ k.5

Plugging these values in for α gives

α= max
j=0,...,k−1

�

i
k
(2 j − k)−

(2 j − p)
2k

(k(2 j − p) + 4 j − k)
�

. (B.16)

In contrast to (B.8), here i can either increase or decrease the value of α which will require
more work in proving our claim. In the following we will consider four cases dictated by the
sign of based on the sign of (2 j− p) and (2 j− k), and show that (B.16) is non-positive for k a
positive odd integer, with integers satisfying 0≤ j, p ≤ k and 0≤ i ≤ p.

Case 1: 2 j < p ≤ k. Since we have

2i(2 j − k)≤ 0, 2 j − p < 0, (B.17)

it is sufficient to show that (2 j − p)k+ 4 j − k ≤ 0. From integrality,

2 j − p ≤ −1, (B.18)

which implies
(2 j − p)k+ 4 j − k ≤ 2(2 j − k)< 0. (B.19)

Case 2: p < 2 j ≤ k. Due to
2i(2 j − k)≤ 0, 2 j − p > 0, (B.20)

it is sufficient to show that (2 j − p)k+ 4 j − k ≥ 0. From integrality,

2 j − p ≥ 1, (B.21)

which implies
(2 j − p)k+ 4 j − k ≥ 4 j ≥ 0. (B.22)

5We also note that for 0 ≤ i ≤ p there are a few values of i that lead to non-polar terms. Decomposing the
range of i to accommodate for only polar terms is an unnecessary complication. To keep the inequalities simple
our proof includes these non-polar states, in addition to all of the relevant polar states. A similar issue also occurs
in the D-series, and it will be ignored there too.
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Case 3: p ≤ k < 2 j. Since 2i(2 j − k) > 0, it suffices to show the inequality for the largest
value of i, i.e., i = p. Then α reduces to

α= max
j=0,...,k−1

�

p
k
(2 j − k)−

2 j
k
(2 j − p)−

(2 j − p)
2

(2 j − p− 1)
�

. (B.23)

It is clear that
(2 j − p)

2
(2 j − p− 1)≥ 0, (B.24)

and simple to verify that
p(2 j − k)< 2 j(2 j − p), (B.25)

for the conditions in this case. Therefore α is non-positive.

Case 4: 2 j = p ≤ k. The second term of (B.16) vanishes, and α is clearly non-positive.

B.3 D-series, k ≡ 0 (mod 4)

For the D-series with k ≡ 0 (mod 4), we have

ϕDk/2+2(τ, z) =
θ1

�

τ, k
2z
�

θ1

�

τ, (k+4)
4 z

�

θ1

�

τ, k
4z
�

θ1(τ, z)
, with b =

k
4

, t =
k(k+ 2)

8
. (B.26)

To prove that all such functions satisfy α ≤ 0, we again look at all most polar terms at fixed
q-exponent. By inspecting the θ -functions appearing in ϕDk/2+2 , a useful way to write a given
power n is

n=
p2

8
+ i +



















0, p ≡ 0 (mod 4),
−1

8 , p ≡ 1 (mod 4),
1
2 , p ≡ 2 (mod 4),
−1

8 , p ≡ 3 (mod 4),

(B.27)

for p a positive integer and i an integer satisfying

0≤ i ≤



















p−4
4 , p ≡ 0 (mod 4),

p−1
4 , p ≡ 1 (mod 4),

p−6
4 , p ≡ 2 (mod 4),

p−3
4 , p ≡ 3 (mod 4).

(B.28)

Note that for even cases we have p > 2, while odd instances have p ≥ 1. Given this parametriza-
tion of n, we believe the most polar term at a given n has ` given by at most

`≤
p(k+ 1)

4
+ i +



















0, p ≡ 0 (mod 4),
−1

4 , p ≡ 1 (mod 4),
1
2 , p ≡ 2 (mod 4),
−3

4 , p ≡ 3 (mod 4).

(B.29)

As in the case of the even minimal models for the A-series, setting i to be any nonzero
number only decreases α. Thus it suffices to show the α ≤ 0 for i = 0. Thus, the only values
of (n,`) we will need to consider are:

n=
p2

8
+



















0, p ≡ 0 (mod 4),
−1

8 , p ≡ 1 (mod 4),
1
2 , p ≡ 2 (mod 4),
−1

8 , p ≡ 3 (mod 4),

`=
p(k+ 1)

4
+



















0, p ≡ 0 (mod 4),
−1

4 , p ≡ 1 (mod 4),
1
2 , p ≡ 2 (mod 4),
−3

4 , p ≡ 3 (mod 4),

(B.30)
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with p a positive integer. Demanding (B.3) for all four cases in (B.30) reduces to p ≤ k
2 .

To finally establish that α ≤ 0, the task is very similar to the A-series: we evaluate (B.1)
for every case in (B.30), and by taking into account the range of p, we show the non-positivity
of α. These steps are straightforward, but rather tedious to present in detail here.

B.4 D-series, k ≡ 2 (mod 4)

Here we have

ϕDk/2+2(τ, z) =
θ1 (τ, kz)θ1

�

τ, (k+4)
2 z

�

θ1

�

τ, k
2z
�

θ1(τ, 2z)
, with b =

k
2

, t =
k(k+ 2)

2
. (B.31)

As before, we write a given power n as

n=
p2

8
+ i +



















0, p ≡ 0 (mod 4),
−1

8 , p ≡ 1 (mod 4),
1
2 , p ≡ 2 (mod 4),
−1

8 , p ≡ 3 (mod 4),

(B.32)

for p a positive integer and i an integer satisfying

0≤ i ≤



















p−4
4 , p ≡ 0 (mod 4),

p−1
4 , p ≡ 1 (mod 4),

p−6
4 , p ≡ 2 (mod 4),

p−3
4 , p ≡ 3 (mod 4).

(B.33)

Note that for even cases we have p > 2, while odd instances have p ≥ 1. Given this parametriza-
tion of n, we have checked that for a given n the maximal value of ` is at most

`≤
p(k+ 1)

2
+ 2i +



















0, p ≡ 0 (mod 4),
−1

2 , p ≡ 1 (mod 4),
1, p ≡ 2 (mod 4),
−3

2 , p ≡ 3 (mod 4).

(B.34)

By demanding ` ≤ t, we get p ≤ k for even p and p ≤ k + 1 for odd p. The subsequent steps
in the proof of α are straightforward with the information provided here.

B.5 E-series

An explicit check, using Mathematica, of the last three functions in (3.8) show that they obey
α≤ 0.

C χNS
∞ for N = 2 minimal models

In this section, we write explicit expressions for the low-lying spectrum counted by the elliptic
genus of symmetric products of minimal models. This function is denoted as χNS

∞(τ, z) in [23],
which gave an explicit expression for this spectrum in terms of the coefficients of the “seed"
elliptic genus, c(n,`) (see also [21]). In particular, if we are computing the low-lying spectra
of SymN (X ) where X has unwrapped elliptic genus ϕX (τ, z),

ϕX (τ, z) =
∑

n,`

c(n,`)qn y`, (C.1)

28

https://scipost.org
https://scipost.org/SciPostPhys.8.6.084


SciPost Phys. 8, 084 (2020)

then the states χNS
∞(τ, z) are given by

χNS
∞(τ, z) =

∏

h,`

1
(1− qh y`) fNS(h,`)

, (C.2)

where:

fNS(h,`) = f̃
�

h−
b`
2t

,`
�

,

f̃ (n,`) = f (n,`)− c(0,`)−δn,0

∑

m>0

c(0,`+ bm),

f (n,`) =















∑

m̂∈bZ−`
c(0, m̂) n= 0,

∑

m̂∈bZ
c(−nm̂/b− n2 t/b2, m̂) `= − nt

b , n> 0,

0 otherwise.

(C.3)

If the theory has a large-radius holographic dual, the expression χNS
∞ should be interpreted

as counting some supergravity KK states in the theory; for example in the D1D5 system, it
is counting the 6d KK modes in AdS3 × S3 [33]. In this section we write out these functions
explicitly for all minimal models.

C.1 A-series k even

The theory has

t =
k(k+ 2)

2
, b =

k
2

, (C.4)

with

ϕAk+1(τ, z) =
θ1(τ, (k+ 1)z)
θ1(τ, z)

. (C.5)

The nonzero values of f (n,`) are given by

f (0,`) =

¨

3 `≡ 0 (mod k
2),

2 ` 6≡ 0 (mod k
2),

f
�

kn
2

,−
k(k+ 2)n

2

�

= 3, n ∈ Z+,

f

�

k(n− 1
2)

2
,−

k(k+ 2)(n− 1
2)

2

�

= 1, n ∈ Z+, k ≡ 0 (mod 4). (C.6)

This implies the nonzero f̃ (n,`) are given by

f̃ (0,`) =



















1, 1≤ ` < k
2 ,

2, `= k
2

2, ` > k
2 , ` 6≡ 0 (mod k

2),
3, ` > k

2 , `≡ 0 (mod k
2),

f̃ (n,`) = −1, n ∈ Z+, −
k
2
≤ `≤

k
2

,

f̃
�

kn
2

,−
k(k+ 2)n

2

�

= 3, n ∈ Z+,

f̃

�

k(n− 1
2)

2
,−

k(k+ 2)(n− 1
2)

2

�

= 1, n ∈ Z+, k ≡ 0 (mod 4). (C.7)
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Finally this implies the nonzero fNS(h,`) are given by

fNS

�

`

2(k+ 2)
,`
�

=



















1, 1≤ ` < k
2 ,

2, `= k
2 ,

2, ` > k
2 , ` 6≡ 0 (mod k

2),
3, ` > k

2 , `≡ 0 (mod k
2),

fNS

�

n+
`

2(k+ 2)
,`
�

= −1, n ∈ Z+, −
k
2
≤ `≤

k
2

,

fNS

�

kn
4

,−
k(k+ 2)n

2

�

= 3, n ∈ Z+,

fNS

�

k(n− 1
2)

4
,−

k(k+ 2)(n− 1
2)

2

�

= 1, n ∈ Z+, k ≡ 0 (mod 4). (C.8)

Note that the last lines of (C.6), (C.7), and (C.8) are only if k ≡ 0 (mod 4). We therefore get:

1. If k ≡ 0 (mod 4):

χ
NS,Ak+1
∞ =





∞
∏

n=1

(1− qn)

(1− q
n

2(k+2) yn)2(1− q
kn

4(k+2) y
kn
2 )(1− q

kn
4 y−

k(k+2)n
2 )3(1− q

k(n− 1
2 )

4 y−
k(k+2)(n− 1

2 )
2 )



×





∞
∏

n=1

k
2
∏

`=1

(1− qn−1+ `
2(k+2) y`)(1− qn− `

2(k+2) y−`)



 . (C.9)

2. If k ≡ 2 (mod 4):

χ
NS,Ak+1
∞ =





∞
∏

n=1

(1− qn)

(1− q
n

2(k+2) yn)2(1− q
kn

4(k+2) y
kn
2 )(1− q

kn
4 y−

k(k+2)n
2 )3



×





∞
∏

n=1

k
2
∏

`=1

(1− qn−1+ `
2(k+2) y`)(1− qn− `

2(k+2) y−`)



 . (C.10)

C.2 A-series k odd

The theory has
t = 2k(k+ 2), b = k, (C.11)

with

ϕAk+1(τ, z) =
θ1(τ, 2(k+ 1)z)
θ1(τ, 2z)

. (C.12)

The nonzero values of f (n,`) are given by

f (0,`) =

¨

2, `≡ 0 (mod k),
1, ` 6≡ 0 (mod k),

f (kn,−2k(k+ 2)n) = 2, n ∈ Z+. (C.13)

This implies the nonzero f̃ (n,`) are

f̃ (0,`) =











1, `= k,

1, ` > k, ` 6≡ 0 (mod k),
2, ` > k, `≡ 0 (mod k),
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f̃ (n,`) = −1, n ∈ Z+, − k ≤ `≤ k, ` odd,

f̃ (kn,−2k(k+ 2)n) = 2, n ∈ Z+. (C.14)

Finally this implies the nonzero fNS(h,`) are given by

fNS(
`

4(k+ 2)
,`) =











1, `= k,

1, ` > k, ` 6≡ 0 (mod k),
2, ` > k, `≡ 0 (mod k),

fNS(n+
`

4(k+ 2)
,`) = −1, n ∈ Z+, − k ≤ `≤ k, ` odd,

fNS(
kn
2

,−2k(k+ 2)n) = 2, n ∈ Z+. (C.15)

We therefore get

χ
NS,Ak+1
∞ =





∞
∏

`=k

1

(1− q
`

4(k+2) y`)









∞
∏

n=1

1

(1− q
k(n+1)
4(k+2) yk(n+1))



×





∞
∏

n=1

k+1
2
∏

`=− (k−1)
2

(1− qn+ 2`−1
4(k+2) y2`−1)





�∞
∏

n=1

1

(1− q
kn
2 y−2k(k+2)n)2

�

. (C.16)

C.3 D-series k ≡ 0 (mod 4)

The theory has

t =
k(k+ 2)

8
, b =

k
4

, (C.17)

with

ϕDk/2+2(τ, z) =
θ1

�

τ, k
2z
�

θ1

�

τ, (k+4)
4 z

�

θ1

�

τ, k
4z
�

θ1(τ, z)
. (C.18)

The nonzero values of f (n,`) are given by

f (0,`) =

¨

4, `≡ 0 (mod k
4),

2, ` 6≡ 0 (mod k
4),

f
�

kn
4

,−
k(k+ 2)n

8

�

= 4, n ∈ Z+. (C.19)

This implies the nonzero f̃ (n,`) are

f̃ (0,`) =



















1, 1≤ ` < k
4 ,

3, `= k
4 ,

2, ` > k
4 , ` 6≡ 0 (mod k

4),
4, ` > k

4 , `≡ 0 (mod k
4),

f̃ (n, 0) = −2, n ∈ Z+,

f̃ (n,`) = −1, n ∈ Z+, −
k
4
≤ `≤

k
4

, ` 6= 0,

f̃
�

kn
4

,−
k(k+ 2)n

8

�

= 4, n ∈ Z+. (C.20)
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Finally this implies the nonzero fNS(h,`) are given by

fNS(
`

k+ 2
,`) =



















1, 1≤ ` < k
4 ,

3, `= k
4 ,

2, ` > k
4 , ` 6≡ 0 (mod k

4),
4, ` > k

4 , `≡ 0 (mod k
4),

fNS(n, 0) = −2, n ∈ Z+,

fNS(n+
`

k+ 2
,`) = −1, n ∈ Z+, −

k
4
≤ `≤

k
4

, ` 6= 0,

fNS

�

kn
8

,−
k(k+ 2)n

8

�

= 4, n ∈ Z+. (C.21)

We therefore get

χ
NS,Dk/2+2
∞ =





∞
∏

n=1

(1− qn)2

(1− q
kn

4(k+2) y
kn
4 )2(1− q

n
k+2 yn)2(1− q

kn
8 y−

k(k+2)n
8 )4



×





∞
∏

n=1

k
4
∏

`=1

(1− qn+ `
k+2−1 y`)(1− qn− `

k+2 y−`)



 . (C.22)

C.4 D-series k ≡ 2 (mod 4)

The theory has

t =
k(k+ 2)

2
, b =

k
2

, (C.23)

with

ϕDk/2+2(τ, z) =
θ1 (τ, kz)θ1

�

τ, (k+4)z
2

�

θ1

�

τ, kz
2

�

θ1(τ, 2z)
. (C.24)

The nonzero values of f (n,`) are given by

f (0,`) =

¨

3, `≡ 0 (mod k
2)

1, ` 6≡ 0 (mod k
2)

f
�

kn
2

,−
k(k+ 2)n

2

�

= 3, n ∈ Z+. (C.25)

This implies the nonzero f̃ (n,`) are given by

f̃ (0,`) =











2, `= k
2 ,

1, ` > k
2 , ` 6≡ 0 (mod k

2),
3, ` > k

2 , `≡ 0 (mod k
2),

f̃ (n,`) = −1, n ∈ Z+, −
k
2
≤ `≤

k
2

, ` odd,

f̃ (n, 0) = −1, n ∈ Z+,

f̃
�

kn
2

,−
k(k+ 2)n

2

�

= 3, n ∈ Z+. (C.26)
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Finally this implies the nonzero fNS(h,`) are given by

fNS

�

`

2(k+ 2)
,`
�

=











2, `= k
2 ,

1, ` > k
2 , ` 6≡ 0 (mod k

2),
3, ` > k

2 , `≡ 0 (mod k
2),

fNS(n+
`

2(k+ 2)
,`) = −1, n ∈ Z+, −

k
2
≤ `≤

k
2

, ` odd,

fNS(n, 0) = −1, n ∈ Z+,

fNS

�

kn
4

,−
k(k+ 2)n

2

�

= 3, n ∈ Z+. (C.27)

We therefore get

χ
NS,Dk/2+2
∞ =





∞
∏

`= k
2+1

1

(1− q
`

2(k+2) y`)









∞
∏

n=1

1− qn

(1− q
kn

4(k+2) y
kn
2 )2(1− q

kn
4 y−

k(k+2)n
2 )3



×





∞
∏

n=1

k+2
4
∏

`=− k−2
4

(1− qn+ 2`−1
2(k+2) y2`−1)



 . (C.28)

C.5 E6

The theory has
t = 60, b = 5, (C.29)

with

ϕE6(τ, z) =
θ1(τ, 8z)θ1(τ, 9z)
θ1(τ, 4z)θ1(τ, 3z)

. (C.30)

The nonzero values of f (n,`) are given by

f (0,`) =

¨

2, `≡ 0 (mod 5),
1, ` 6≡ 0 (mod 5),

f (5n,−60n) = 2, n ∈ Z+. (C.31)

This implies the nonzero f̃ (n,`) are given by

f̃ (0,`) =











1, `= 5,

1, `≥ 3, ` 6≡ 0 (mod 5),
2, ` > 5, `≡ 0 (mod 5),

f̃ (n,±5) = f̃ (n,±2) = f̃ (n,±1) = −1, n ∈ Z+,

f̃ (5n,−60n) = 2, n ∈ Z+. (C.32)

Finally this implies the nonzero fNS(h,`) are given by

fNS

�

`

24
,`
�

=











1, `= 5,

1, `≥ 3, ` 6≡ 0 (mod 5),
2, ` > 5, `≡ 0 (mod 5),

fNS

�

n±
5
24

,±5
�

= fNS

�

n±
1
12

,±2
�

= fNS

�

n±
1
24

,±1
�

= −1, n ∈ Z+,

33

https://scipost.org
https://scipost.org/SciPostPhys.8.6.084


SciPost Phys. 8, 084 (2020)

fNS

�

5n
2

,−60n
�

= 2, n ∈ Z+. (C.33)

Where therefore get

χ
NS,E6
∞ =

�

1− q
1

24 y
��

1− q
1
12 y2

��

1− q
5
24 y5

�

× (C.34)
∞
∏

n=1

(1− qn+ 5
24 y5)(1− qn− 5

24 y−5)(1− qn+ 1
12 y2)(1− qn− 1

12 y−2)(1− qn+ 1
24 y)(1− qn− 1

24 y−1)

(1− q
5n
2 y−60n)2(1− q

n
24 yn)(1− q

5n
24 y5n)

.

C.6 E7

The theory has
t = 36, b = 4, (C.35)

with

ϕE7(τ, z) =
θ1(τ, 6z)θ1(τ, 7z)
θ1(τ, 2z)θ1(τ, 3z)

. (C.36)

The nonzero values of f (n,`) are given by

f (0,`) =











3, `≡ 0 (mod 4),
2, `≡ 2 (mod 4),
1, `≡ 1,3 (mod 4),

f (4n,−36n) = 3, n ∈ Z+,

f (4n− 2,−36n+ 18) = 1, ∈ Z+. (C.37)

This implies the nonzero f̃ (n,`) are given by

f̃ (0,`) =



























1, `= 2,

1, `≥ 3, ` odd,

2, `= 4,

2, ` > 4, `≡ 2 (mod 4),
3, ` > 4, `≡ 0 (mod 4),

f̃ (n,±4) = f̃ (n,±2) = f̃ (n,±1) = f̃ (n, 0) = −1, n ∈ Z+,

f̃ (4n,−36n) = 3, n ∈ Z+,

f̃ (4n− 2,−36n+ 18) = 1, n ∈ Z+. (C.38)

Finally this implies the nonzero fNS(h,`) are given by

fNS

�

`

18
,`
�

=



























1, `= 2,

1, `≥ 3, ` odd,

2, `= 4,

2, ` > 4, `≡ 2 (mod 4),
3, ` > 4, `≡ 0 (mod 4),

fNS(n±
2
9

,±4) = fNS(n±
1
9

,±2) = fNS(n±
1

18
,±1) = fNS(n, 0) = −1, n ∈ Z+,

fNS (2n,−36n) = 3, n ∈ Z+

fNS (2n− 1,−36n+ 18) = 1, n ∈ Z+. (C.39)
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We therefore get

χ
NS,E7
∞ =

�

1− q
1
18 y
��

1− q
1
9 y2

��

1− q
2
9 y4

�

× (C.40)
∞
∏

n=1

(1− qn+ 2
9 y4)(1− qn− 2

9 y−4)(1− qn+ 1
9 y2)(1− qn− 1

9 y−2)(1− qn+ 1
18 y)(1− qn− 1

18 y−1)(1− qn)

(1− q2n y−36n)3(1− q2n−1 y−36n+18)(1− q
n

18 yn)(1− q
n
9 y2n)(1− q

2n
9 y4n)

.

C.7 E8

The theory has
t = 105, b = 7, (C.41)

with

ϕE8(τ, z) =
θ1(τ, 12z)θ1(τ, 10z)
θ1(τ, 5z)θ1(τ, 3z)

. (C.42)

The nonzero values of f (n,`) are given by

f (0,`) =

¨

2, `≡ 0 (mod 7),
1, ` 6≡ 0 (mod 7),

f (7n,−105n) = 2, n ∈ Z+. (C.43)

This implies the nonzero f̃ (n,`) are given by

f̃ (0,`) =











1, `= 3, 5,6, 7,

1, ` > 7, ` 6≡ 0 (mod 7),
2, ` > 7, `≡ 0 (mod 7),

f̃ (n,±7) = f̃ (n,±4) = f̃ (n,±2) = f̃ (n,±1) = −1, n ∈ Z+,

f̃ (7n,−105n) = 2, n ∈ Z+. (C.44)

Finally this implies the nonzero fNS(h,`) are given by

fNS

�

`

30
,`
�

=











1, `= 3,5, 6,7,

1, ` > 7, ` 6≡ 0 (mod 7),
2, ` > 7, `≡ 0 (mod 7),

fNS(n±
7

30
,±7) = fNS(n±

2
15

,±4) = fNS(n±
1
15

,±2) = fNS(n±
1

30
,±1) = −1, n ∈ Z+,

fNS

�

7n
2

,−105n
�

= 2, n ∈ Z+. (C.45)

We therefore get

χ
NS,E8
∞ =

�

1− q
1
30 y
��

1− q
1

15 y2
��

1− q
2

15 y4
��

1− q
7

30 y7
�

×
� ∞
∏

n=1

(1− qn+ 7
30 y7)(1− qn− 7

30 y−7)(1− qn+ 2
15 y4)(1− qn− 2

15 y−4)

(1− q
7n
2 y−105n)2(1− q

n
30 yn)(1− q

7n
30 y7n)

×

(1− qn+ 1
15 y2)(1− qn− 1

15 y−2)(1− qn+ 1
30 y)(1− qn− 1

30 y−1)

�

. (C.46)
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D Large N scaling of marginal operators

In this section, we review the relevant N -power counting for holographic CFTs, assuming that
we have a planar-like limit where correlation functions factorize in the large N limit. Note
that a theory like N = 4 SYM has N2 degrees of freedom, while a symmetric orbifold has N
degrees of freedom. In what follows, we always use N as the order of the symmetric orbifold
so the expression will be slightly different than for N = 4 SYM. In large N theories, the light
operators whose dimensions don’t scale with N are divided into two classes: single trace and
multi-trace. We will use the following notation: a single trace operator will be denoted O
while a K-trace operator will be denoted : OK :. All operators we consider have unit two-
point function.6 What separates single and multi trace operators is the scaling of connected
correlation functions. A single-trace operator has connected correlation functions that scale
as

〈O1....On〉c ∼ N
2−n

2 . (D.1)

In particular, this means that all OPE coefficients between single trace operators are 1/
p

N sup-
pressed. These statements are also valid if we chose different types of single-trace operators.
On the contrary, multi-trace operators have correlation functions than can scale as

〈: OK1 : .... : OKn :〉c ∼ N0. (D.2)

In particular, OPE coefficients of three multi-trace operators with themselves scale as N0 [71].
We will now proceed in two steps. First, we will discuss how big we can make the sources for
a K-trace marginal operator while still preserving a planar-like limit, and we will then discuss
what the effect of such deformations are.

D.1 Large N scaling for deformation operators

We would now like to understand what large N -factorization implies for the deformation of a
large N theory by a marginal operator. We will give a short review of the discussion in [72]
and generalize it for multi-trace operators. We have in mind a deformation of the theory by

δS = λN
β
2

∫

d2 x : OK : (x). (D.3)

We would like to keep λ∼O(1), and the question is how big can we make β without spoiling
the planar-like structure. We will now show that the answer to this question is quite simple,
we have

β = 2− K . (D.4)

To see this, consider a connected n-point function of operators

〈O1...On〉c ∼ N
2−n

2 . (D.5)

Now let us deform this correlation function by the deformation (D.3). We can easily compute
the correlator in the deformed theory in terms of correlation functions of the undeformed
theory (we drop the c notation but we always just consider connected correlation functions)

〈O1...On〉λ = 〈O1...On〉+λNβ
∫

〈O1...On : OK :〉+O(λ2). (D.6)

6Note that this is not the usual normalization for operators like the current or the stress tensor.
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We now need to study the second term. To leading order in the large N expansion, the K
elements of OK will split into smaller correlation functions

〈O1...On : OK :〉= 〈O1...On1
O〉 .... 〈O1...OnK

O〉 ∼
∏

i

N
2−ni−1

2 ∼ N
K−n

2 , (D.7)

where we used
∑

i ni = n. Demanding that this is the same order as the correlator we started

with (namely N
2−n

2 ), we arrive at
β = 2− K , (D.8)

as advertised. Note that we have kept the leading possible piece where OK spreads into K
correlators. This contribution may yield zero in most of the correlators of the theory, but it
will always give a non-zero answer in some correlators which is what fixes β .

D.2 The effect of the deformations

We are now ready to study the effect of the deformations. Let us start by considering single-
trace operators. Say we want to compute the deformation to order λ2 of some 2-point function
of Op. We have

〈OO〉λ = 〈OO〉+λN
1
2

∫

〈OpOpO〉+λ2N

∫ ∫

〈OpOpOO〉 . (D.9)

We can now see that the first two corrections produce O(1) contributions. The term linear in
λ has a power of N

1
2 but the the three-point function of single-trace operators scales as N−

1
2

so we obtain an order one scaling. Similarly, the second term receives two contributions:

λ2N

∫ ∫

〈OpOpOO〉= λ2N

∫ ∫

�

〈OpOp〉 〈OO〉+ 〈OpOpOO〉c
�

. (D.10)

The first term can clearly not yield anomalous dimension since the 2 integrals will factor out
and we will not get log terms. The second term can (and will) give log terms and hence an
anomalous dimension to O. We see that the piece of interest will be O(1) since the connected
correlator goes like N−1 which will cancel against the N out front.

Now consider a double trace deformation:

〈OpOp〉λ = 〈OpOp〉+λ
∫

〈OpOp : O2 :〉

= 〈OpOp〉+λ
∫

〈OpO〉 〈OpO〉+O(N−1). (D.11)

We can now see very clearly that the effect is very different. First if the probe Op 6= O, then
there is no O(N0) and all anomalous dimensions are suppressed by 1/N . As advocated in the
main text, the effect of multi-trace deformations are small. Note however that we can produce
order N0 anomalous dimensions to O itself from such a deformation. This is in accordance
with the fact that double-trace deformations only change the boundary condition for the bulk
fields, but that the rest of the theory remains unchanged. We conclude from this that double-
trace deformations that preserve the ’t Hooft limit cannot lift the spectrum, since their effect
on other operators than O is “quantum" and thus 1/N suppressed.

For higher-trace operators, the source itself is at least 1/
p

N suppressed and since all corre-
lation functions are at most O(1), the anomalous dimension due to higher-trace deformations
are suppressed. This type of deformation can still produce effects which change the leading
behavior of connected correlators: In general, deforming by a K-trace operator can produce
leading order effects on connected K-point function and higher (which corresponds to tree-
level processes in the bulk), but these effects are purely quantum from the point of view of the
spectrum.
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