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Abstract

We study gravitational perturbations around the near horizon geometry of the (near) ex-
treme Kerr black hole. By considering a consistent truncation for the metric fluctuations,
we obtain a solution to the linearized Einstein equations. The dynamics is governed by
two master fields which, in the context of the nAdS2/nCFT1 correspondence, are both
irrelevant operators of conformal dimension ∆ = 2. These fields control the departure
from extremality by breaking the conformal symmetry of the near horizon region. One of
the master fields is tied to large diffeomorphisms of the near horizon, with its equations
of motion compatible with a Schwarzian effective action. The other field is essential for
a consistent description of the geometry away from the horizon.
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1 Introduction

Symmetries have played an important role in accounting for the quantum properties of black
holes, and particularly the enhancement of symmetries that takes place for extremal and near-
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extremal black holes [1–3]. The extremal limit of a black hole achieves zero Hawking temper-
ature, even though the entropy remains finite and large. More prominently, it exhibits confor-
mal invariance in the near horizon region and implies the existence of an AdS2 factor [4–10].
Our understanding of (near-)extremal black holes is therefore tied to AdS2 gravity, and our
progress relies on our holographic understanding of this instance of AdS/CFT.

One the most infamous features of AdS2 is that its symmetries do not allow for finite energy
excitations [11, 12]. Dynamical processes force the introduction of a deformation away from
AdS2, and the duality that describes these deformations is known as the nAdS2/nCFT1 corre-
spondence. This deformation is expected to be universal: breaking the conformal symmetry
of AdS2 induces a anomaly [13,14] which governs the thermodynamic response and quantum
chaos characterizing black holes. This expectation relies on studying 2D models of gravity
coupled to a scalar field, colloquially referred to as Jackiw-Teitelboim (JT) gravity [15, 16].
In JT gravity, a non-trivial profile for the scalar field breaks explicitly conformal symmetry
of AdS2. The novelty is that this profile is tied to large diffeomorphisms at the boundary of
AdS2. These diffeomorphisms induce an anomaly via a Schwarzian derivative which governs
the gravitational effects.

Reissner-Nordström black holes [17–20], with and without a cosmological constant, and
the three dimensional BTZ solution [21,22], fit well these advancements. In this context one
can show that the dynamics of (near) extreme black holes is described by an effective theory
of 2D gravity coupled to a scalar field. Other instances of this success include [23–32].

Rotating black holes add interesting features to this discussion. They share the AdS2 factor,
with the most prominent instance being the Near Horizon of Extreme Kerr (NHEK) in four di-
mensions [33]. A proposal for a holographic description of rotating black holes is the Kerr/CFT
correspondence [34]; see [35] for a review of this program. They also share the dynamical ob-
structions that makes AdS2 problematic [36,37], which limits our holographic understanding.
Recently, there has been some progress on quantifying rotating black holes along the lines of
nAdS2/nCFT1 [38–40]. Rotation adds more complexity to the deformations, due to a squash-
ing mode that breaks spherical symmetry. For certain 5D black holes it is possible to build a
2D model of gravity coupled to matter that encodes this complexity [39]. These models in-
clude non-trivial interactions that are not captured by JT gravity. Nevertheless the mechanism
that breaks conformal symmetry for this example conforms with the thermodynamic response
advocated in [13,14].

Our goal here is to illustrate how to break the conformal symmetry of the near horizon
geometry of the extreme Kerr solution. We will do this by solving the linearized Einstein equa-
tions around the near horizon geometry.1 We are able to show that one of the gravitational
perturbations incorporates a feature prominent in JT gravity: a scalar field that breaks con-
formal symmetry and is tied to the Schwarzian derivative. We also find an additional mode
that is needed to consistently capture the deviations away from extremality, since its profile
is non-vanishing for Kerr. We take this as evidence that simpler models, well suited for static
black holes, do not accommodate rotating black holes.

1The study of gravitational perturbations of the Kerr black hole is extensive and impressive. We refer to [41]
as a roadmap in this area. Examples of prior work on gravitational perturbations around NHEK that exploit its
conformal symmetry are [42–44].
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2 Near extreme Kerr

In this section we review properties of the near extreme Kerr geometry, with particular em-
phasis on its near horizon geometry. We start by considering the general Kerr solution,

ds2 = −
Σ∆

(r̃2 + a2)2 −∆ a2 sin2θ
d t̃2 +Σ

�

dr̃2

∆
+ dθ2

�

+
sin2θ

Σ
((r̃2 + a2)2 −∆ a2 sin2θ )

�

dφ̃ −
2aM r̃

(r̃2 + a2)2 −∆ a2 sin2θ
d t̃

�2

, (1)

with
∆= (r̃ − r−)(r̃ − r+) , r± = M ±

p

M2 − a2 , Σ= r̃2 + a2cos2θ . (2)

Here r− and r+ are the inner and outer horizons. We are using conventions where G4 = 1. M
is the mass and J = aM is the angular momentum of the black hole.

The extreme Kerr solution is obtained as the confluence of the inner and outer horizon:
r+ = r−. We are interested in describing the dynamics of Kerr slightly above extremality. In
this context, near extremality is defined as a deviation from the extreme limit which keeps J
fixed. Implementing it as a limit, we have

r± = M0 ± ελ+
ε2λ2

4M0
+O(λ3) , (3)

where λ is a small parameter that controls deviations away from extremality. M0 is the value
of the mass at extremality, and ε is a constant that controls the deviation of the mass above
extremality. Under these conditions, we can identify a near horizon region. Redefining the
coordinates in 1 as

r̃ =
r+ + r−

2
+λ

�

r +
ε2

4r

�

, t̃ = 2M2
0

t
λ

, φ̃ = φ +M0
t
λ

, (4)

and taking the limit λ→ 0 –with other parameters fixed– leads to the line element

ds2 = M2
0 (1+ cos2θ )

�

−r2

�

1−
ε2

4r2

�2

dt2 +
dr2

r2
+ dθ2

�

(5)

+M2
0

4sin2θ

1+ cos2θ

�

dφ + r

�

1+
ε2

4r2

�

dt

�2

.

For ε = 0, this is the Near Horizon geometry of Extreme Kerr (NHEK) [33,34]. For ε 6= 0, we
will call this background the near-NHEK geometry.

It is instructive to discuss some properties of 5. For ε = 0, we have

ds2 = M2
0 (1+ cos2θ )

�

−r2dt2 +
dr2

r2
+ dθ2

�

+M2
0

4sin2θ

1+ cos2θ
(dφ + r dt)2 . (6)

This geometry has four Killing vectors:

ξ−1 = ∂t , ξ0 = t∂t − r∂r , ξ1 =
�

1
r2
+ t2

�

∂t − 2r t∂r −
2
r
∂φ , k = ∂φ . (7)

These vectors generate an sl(2)× u(1) algebra which corresponds to the enhanced conformal
symmetry of the near horizon geometry. One can also impose asymptotic boundary conditions
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on 6. In particular, the set of diffeomorphisms preserving the asymptotic metric is [45]

t −→ f (t) +
2 f ′′(t) f ′(t)2

4r2 f ′(t)2 − f ′′(t)2
,

r −→
4r2 f ′(t)2 − f ′′(t)2

4r f ′(t)3
,

φ −→ φ + log
�

2r f ′(t)− f ′′(t)
2r f ′(t) + f ′′(t)

�

, (8)

where f (t) is an arbitrary function that reflects the freedom of reparametrization the boundary
metric.2 Acting on 5, this diffeomorphism gives

ds2 = M2
0 (1+ cos2θ )

�

−r2
�

1+
{ f (t), t}

2r2

�2

dt2 +
dr2

r2
+ dθ2

�

(9)

+
4M2

0 sin2θ

1+ cos2θ

�

dφ + r
�

1−
{ f (t), t}

2r2

�

dt
�2

,

where

{ f (t), t}=
�

f ′′

f ′

�′

−
1
2

�

f ′′

f ′

�2

, (10)

is the Schwarzian derivative. It is important to note that for f (t) = eεt , 9 reduces to the
near-NHEK metric 5. At this stage, this implies that NHEK and near-NHEK are just one diffeo-
morphism away. It is also worth noting that the shift ofφ in 8 is the large gauge transformation
discussed in [46].

3 Gravitational perturbations

In this section we will study the response of NHEK to a small amount of energy: how the
metric responds when we deviate from extremality. Our goal is to find a consistent truncation
of the perturbations that captures the Schwarzian mode which is believed to be universal in
the response to black hole near extremality. Our strategy is rather simple: we will propose an
ansatz for the metric perturbations of NHEK and solve the linearized Einstein equations.

A deviation from extremality is a correction due to the near horizon parameter λ intro-
duced in 4. By inspection of the full on-shell Kerr geometry 1, which would correspond to
stationary perturbations, it is clear that a suitable ansatz for metric perturbations needs to ac-
count for non-trivial θ -dependence. With the insight on the behavior of Kerr, we will consider
the following deviation of the NHEK geometry

ds2 = −M2
0
(1+ cos2θ +λχ̃(t, r))

1+λψ(t, r)
r2dt2 +M2

0

�

1+ cos2θ +λχ(t, r)
�

�

dr2

r2
+ dθ2

�

+4M2
0

sin2θ (1+λΦ(t, r))
1+ cos2θ +λχ(t, r)

(dφ + rdt +λA)2 , (11)

where the one-form A is supported in the (t, r) subspace

A= At(t, r,θ )dt + Ar(t, r,θ )dr , (12)

and captures the angular dependence of the ansatz. We treat the metric at linear order in
λ. The metric perturbation Φ(t, r) parametrizes the change of the volume of the squashed

2Spoiler alert: this symmetry will be broken in the next section.
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sphere; χ(t, r) characterizes the squashing parameter that breaks spherical symmetry; ψ(t, r)
and χ̃(t, r) are introduced for consistency of the ansatz. At this stage it is a guess that χ, χ̃
and ψ have no θ -dependence, and we will show that this is compatible with the equations of
motion. We are not introducing φ-dependence since it seems consistent, for the purpose of
capturing deviations from extremality, to focus on solutions which respect the isometry due to
the Killing vector k = ∂φ .

We now proceed to solve the linearized Einstein equations

Rµν = 0 , (13)

where Rµν is the 4D Ricci tensor, and look at the first correction due to λ in 11. The θ -
components of this equation are the simplest to solve first. From Rtθ and Rθφ we can determine
that the one-form can be written as

A= α+ εab∂
aΨ dx b , Ψ =

1

2sin2θ

��

1+
sin4θ

4

�

Φ(t, r)−χ(t, r)

�

, (14)

with
α= αt(t, r,θ )dt +αr(t, r)dr , αt(t, r,θ ) = a1(t, r) + a2(r,θ ) . (15)

The components of α are arbitrary functions at this stage. In 14 we introduced an auxiliary
2D metric, defined as

γabdxadx b = −r2dt2 +
dr2

r2
, (16)

and εab is the Levi-Civita tensor of this space, with εt r =
p

−detγab. This is the AdS2 space
appearing in the NHEK geometry 6. Using 14 in Rrθ and Rθθ , we can see that a2 = 0, and that
χ̃ = χ. In addition Rθθ = 0 implies

�2χ = 2χ , (17)

where �2 is the Laplacian for the AdS2 background 16, and therefore χ is an operator of
conformal dimension ∆= 2. With this input in place, setting Rφφ = 0 leads to

ψ(t, r) = −Φ+�2Φ− 2εab∂aαb . (18)

We have five components left to solve: Rt t , Rt r , Rtφ , Rr r and Rrφ . Using the previous
equations, one of these components is redundant. After some simple manipulations, we find

Φ(t, r) = Φ0 +ΦJT(t, r) . (19)

Here Φ0 is a constant: this is the degree of freedom that changes the value of M0, since it can
be reabsorbed as a rescaling of the angle φ. The field ΦJT satisfies

∇a∇bΦJT − γab�2ΦJT + γabΦJT = 0 , (20)

which is the equation of motion of the scalar field in Jackiw-Teitelboim gravity [15, 16]; see
Appendix A for a brief review. Finally, we also have

α= −εt r∂
tΦdr + α̃ . (21)

There is also a constraint on α̃, but this makes it pure gauge: we can remove α̃ via a trivial
diffeomorphism. The details are given in Appendix B.

In summary, the linearized perturbations are captured by two fields: χ and Φ. By solving
the dynamics of these two fields, dictated by 17 and 20 one can reconstruct consistently the
metric near NHEK. At this stage it is important to make some technical remarks:
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1. Our analysis is also a consistent truncation of the linearized Einstein equations around
the locally NHEK background 9 where we take the ansatz for the perturbations to have
the same form as in 11. The explicit form of the perturbed metric can be found in 47.
The solution is given by 14-21, with the modification that the auxiliary 2D metric in 16
is changed to a locally AdS2 metric:3

γabdxadx b = −r2
�

1+
{ f (t), t}

2r2

�2

dt2 +
dr2

r2
. (22)

In particular, the solutions to 20 on this background are of the form

ΦJT = ν(t) r +
µ(t)

r
, (23)

where ν obeys
�

1
f ′

�

( f ′ν)′

f ′

�′�′

= 0 , (24)

and µ satisfies 33. This equation relates the explicit breaking of symmetries in NHEK,
due to ν(t), with the diffeomorphism 8 on its boundary, parametrized by f (t). It can
also be obtained from the Schwarzian effective action 35, as reviewed in Appendix A.
See [14] for more details on this relation and its interpretation. In Appendix C, we show
how to obtain the Schwarzian action for near-NHEK from the 4D Einstein-Hilbert action.
We also reproduce the linear temperature response in the entropy of the near-extremal
Kerr solution as expected from the general arguments in [14].

2. We constructed a consistent truncation of the linearized problem that captures the de-
viations away from the AdS2 throat of the extremal Kerr solution. We do not expect
11 to be the most general ansatz for gravitational dynamics near the NHEK geometry:
additional angular dependence could be added, which will be interesting to quantify. In
particular, it would be interesting to develop a more systematic construction of master
fields along the lines of the techniques developed by Kodama-Ishibashi [47,48], and the
recent results in [49].

3. It is instructive to match the perturbations derived in this section with the stationary
configuration that would match the behavior of the Kerr black hole. Applying the limit
4 to the Kerr geometry 1, and comparing the linear order in λ with the perturbations 11
for near-NHEK, we obtain

χKerr = ΦKerr =
2

M0

�

r +
ε2

4r

�

, (25)

and the one-form α is zero. Hence both modes are non-trivial for the Kerr solution.

The nAdS2 analysis of the Kerr black hole shares one similarity with the charged counter-
parts studied in [17, 18]: there is one gravitational mode Φ which satisfies the JT equations
of motion 20. For Reissner-Nordström black holes, it was consistent to only focus on the dy-
namics of Φ as the leading effect in deviations away from extremality. But there are some
important differences for Kerr. First, the θ -dependence in 14 prevents us from building a 2D
effective theory that describes these modes. This is mostly a technical barrier, since it is more
cumbersome to keep track of the dynamics of the system. Nonetheless, we expect to be able

3Although the formula 21 is not covariant with respect to the 2D metric γab, it still holds for a linearized
perturbation around near-NHEK.
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to quantify, for example, correlation functions of these gravitational perturbations in future
work.

The second, and most important, difference relative to Reissner-Nordström black holes is
the additional degree of freedom χ that we have found. This is similar to the 5D rotating
black holes studied in [39]: there is a squashing mode χ that influences the gravitational
perturbations. Remarkably, χ and Φ are both irrelevant operators of conformal dimension
∆ = 2. While the dynamics of Φ is restricted by the large diffeomorphism of NHEK, via 24,
the field χ is a dynamical mode. As indicated by 25, the source for χ is turned on for the
Kerr solution: this a strong indication that although 24 captures some important aspects of
the deviations away from extremality, a complete characterization needs to take into account
the interactions of Φ with χ.

Large diffeomorphisms play a prominent role in our analysis, which begs for a compari-
son with Kerr/CFT. A crucial difference is that the asymptotic symmetry group used in [34]
had arbitrary functions of φ, while here we are considering generators that reparametrize
the boundary time.4 It would be interesting to investigate whether there is a deformation of
NHEK that ties the explicit breaking of the conformal symmetry by an irrelevant deformation
to the conformal anomaly in the Virasoro algebra of Kerr/CFT. This will require searching for
gravitational perturbations that have non-trivial φ-dependence, which we have ignored in this
work. We hope to pursue this direction in future work.
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A Aspects of JT gravity

In this appendix we review some basic properties of JT gravity [15,16]; our summary is based
on [13,14,51]. The 2D JT action with a negative cosmological constant is given by

I2D =
1

16πG2

∫

d2 x
p

−g Φ (R+ 2) +
1

8πG2

∫

d t
p

−hΦK . (26)

The on-shell metrics are all locally AdS2. The equation of motion for Φ takes the form

∇a∇bΦ− gab�2Φ+ gabΦ= 0 . (27)

For AdS2 in the coordinates used in 16, the explicit solution is

Φ(t, r) = c1r + c2 r t + c3

�

r t2 −
1
r

�

, (28)

where c1, c2 and c3 are arbitrary constants.

4In the context of Kerr/CFT, our symmetry group follows more closely the analysis in [50].
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Next, consider a diffeomorphism that preserves the boundary of AdS2 and the radial gauge

t −→ f (t) +
2 f ′′(t) f ′(t)2

4r2 f ′(t)2 − f ′′(t)2
,

r −→
4r2 f ′(t)2 − f ′′(t)2

4r f ′(t)3
, (29)

which is the 2D version of 8. The metric transforms as

ds2 = −r2
�

1+
s(t)
2r2

�2

dt2 +
dr2

r2
, (30)

where

s(t)≡ { f (t), t}=
�

f ′′

f ′

�′

−
1
2

�

f ′′

f ′

�2

. (31)

The solution for Φ is now modified to

Φ= ν(t) r +
µ(t)

r
, (32)

where

µ′ =
s(t)
2
ν′ , 2µ+ s(t)ν+ ν′′ = 0 . (33)

Combining them gives
�

1
f ′

�

( f ′ν)′

f ′

�′�′

= 0 . (34)

This last equation relates dynamically the source in Φ to the diffeomorphism 29 that induces a
reparametrization of the boundary. Although the relation 34 is derived from the 2D equations
of motion, it can also be captured by a 1D boundary action

Ibndy =
1

8πG2

∫

dt ν(t){ f (t), t} , (35)

which is the Schwarzian effective action. Ibndy is obtained by evaluating 26 for locally AdS2
metrics 30, and focusing on the finite terms near the boundary. The variation of Ibndy with
respect to f gives 34.

B Redundancies due to diffeomorphisms

In this appendix we determine which components of the metric fluctuations in 11 correspond
to pure diffeomorphisms. First consider an arbitrary infinitesimal diffeomorphism

δxµ = ξµ(t, r,θ ,φ) , (36)

which leads to a perturbation
δgµν = Lξgµν , (37)

where gµν is the NHEK metric 6. Demanding that the perturbation δgµν fits in the ansatz 11
gives some constraints on ξµ which can be solved explicitly. From this analysis, we can show
that Φ and χ are physical fields and that the one-form α̃ is pure gauge.
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To see that α̃ can be removed by a diffeomorphism, we first need to solve the following
constraint which comes from the (t, t) component of the linearized Einstein equation. Using
14-20 on Rt t = 0 gives5

∂r

�

r3∂r(∂t α̃r − ∂r α̃t)
�

= 0 . (38)

This constraint can be integrated explicitly and we can write the result as follows

α̃r(t, r) = ∂r F(t, r) , (39)

α̃t(t, r) = ∂t F(t, r) +
G(3)(t)

2r
+H ′(t)r ,

where F(t, r), G(t) and H(t) are arbitrary functions. The infinitesimal diffeomorphism that
we are looking for is then given by

ξ=
�

−H + G(t) +
G′′(t)
2r2

�

∂t − rG′(t)∂r −
�

F(t, r) + G′′(t)
�

∂φ . (40)

Indeed, the corresponding perturbation takes the form

Lξg = 2M2
0 (1+ cos2θ )(∂t α̃r − ∂r α̃t) r

2dt2 +
8M2

0 sin2θ

1+ cos2θ
(α̃tdt + α̃rdr)(dφ + rdt) , (41)

and precisely cancels the contribution of α̃ in the solution of our ansatz 11. We have also
noticed that the perturbations associated with the gravitational mode Φ are related to some
large diffeomorphisms of the NHEK with non-trivial φ-dependence. We hope to investigate
them in future work.

C On-shell action and thermodynamics

It is instructive to discuss the thermodynamics near extremality, and its ties to the gravitational
perturbation Φ. The thermodynamic properties of the near-NHEK geometry are as follows
[52]: implementing 3 on the standard thermodynamic variables, the energy above extremality
is

E = M −M0 =
ε2λ2

4M0
+O(λ3) . (42)

The near-extremal entropy at linear order in λ is

SBH =
AH

4
= 2πM2

0 + 2πM0 ελ+O(λ2) , (43)

and in this limit the Hawking temperature is given by

T =
r+ − r−
8πM r+

=
ελ

4πM2
0

+O(λ2) . (44)

This allows us to write

E = C T2 +O(T3) , S = 2πM2
0 + 2C T +O(T2) , (45)

where C = 4π2M3
0 .

5Solving Rr r = 0 gives the same constraint as Rt t = 0 after using 14-20.

9

https://scipost.org
https://scipost.org/SciPostPhys.8.6.089


SciPost Phys. 8, 089 (2020)

We will see that these thermodynamical properties can be understood using the renormal-
ized on-shell action, along the lines of [14]. Let’s consider

I4D =
1

16π

∫

M
d4 x

Æ

|g|R+
1

8π

∫

∂M
d3 x

Æ

|h|K , (46)

which is the standard Einstein-Hilbert action with the addition of the Gibbons-Hawking-York
term. We would like to evaluate I4D on the general perturbation of the locally NHEK back-
ground. The on-shell solution is

ds2 = −M2
0
(1+ cos2θ +λχ̃(t, r))

1+λψ(t, r)
r2
�

1+
{ f (t), t}

2r2

�2

dt2 (47)

+M2
0 (1+ cos2θ +λχ(t, r))

�

dr2

r2
+ dθ2

�

+4M2
0

sin2θ (1+λΦ(t, r))
1+ cos2θ +λχ(t, r)

�

dφ + r
�

1−
{ f (t), t}

2r2

�

dt +λA
�2

,

which we treat at linear order in λ, and the fields obey 14-21 with background metric 22. Re-
placing 47 in the 4D action 46 leads to divergences that are common for on-shell gravitational
actions. To remove them, we will take a standard route: after specifying a set of boundary
conditions, we will build a renormalized action by requiring that its variation is finite. Our
setup follows closely the rules of holographic renormalization in AdS gravity, with [39] being
the closest example, and any deviation from these rules will be highlighted.

To start, it is convenient to rewrite 47 as an asymptotic solution with arbitrary sources for
the fields:

ds2 = M2
0
(1+ cos2θ +λχ̃(t, r))

1+λψ(t, r)
γt t(t, r)dt2 (48)

+M2
0 (1+ cos2θ +λχ(t, r))

�

dr2

r2
+ dθ2

�

+4M2
0

sin2θ (1+λΦ(t, r))
1+ cos2θ +λχ(t, r)

(dφ + at(t, r)dt +λA)2 .

For χ̃, ψ, and A we will be using the on-shell values determined by γt t , Φ and χ as described
in Section 3. For the additional fields, we have

p

−γt t = α(t) r +
β(t)

r
, at = α(t) r −

β(t)
r
+ ζ(t) , (49)

Φ= ν(t)r +
µ(t)

r
, χ = σ(t)r + · · ·+

κ(t)
r2
+ · · · .

Here we identify α, ν, σ as sources for γt t , Φ and χ, respectively; the functions β , µ and κ
are the corresponding vevs. ζ is the source for at , while its charge is one in our conventions.6

Note that for χ we are only highlighting its source and vev: the dots are subleading terms in
the large r expansion that are determined by imposing its equation of motion. In this notation,
the solution to equation 33 reads

β(t) =
α(t)µ′(t)
ν′(t)

, µ(t) =
c0

ν(t)
−

ν′(t)2

4α(t)2ν(t)
, (50)

where c0 is a constant.

6For a 2D Maxwell field we are simply identifying the electric charge Q from Fr t =Q
p

|γ|.
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The renormalized action is of the form

Iren = I4D + Ict , (51)

where I4D is specified above and Ict is a counterterm action. We want to cast our variational
problem with respect to the 2D variables in 49. Leaving the gauge field fixed, for reasons
explained below, we set up the variation of the action as follows:

δIren =

∫

Σ

d3 x πµνδhµν

=

∫

Σ

d3 x
�

ΠΦδΦ+Π
t tδγt t +Πχδχ

�

=

∫

d t (παδα(t) +πνδν(t) +πσδσ(t)) , (52)

where Σ is a cutoff surface of constant r with induced metric hµν. From the first to the second
line we are simply casting the variation of the 3D boundary metric hµν in terms of the 2D fields.
In the last line we are specifying the variations of the 2D fields in terms of their sources, and
we have integrated over the angular variables (θ ,φ). Fixing the variation of the gauge field
in this notation means that we do not vary the sources appearing in at and A. The task is now
to build Ict such that the momenta πα, πν, and πσ are finite as we approach the boundary at
r →∞.

In terms of the 3D variables, the momenta πµν receives a contribution from I4D which is
the usual Brown-York stress tensor:

π
µν
4D =

δI4D

δhµν
= −

1
16π

p

−h (Kµν − Khµν) . (53)

This term will lead to divergences in πα, πν, and πσ as we take r →∞; in particular we get

πα,4D =
M2

0

2

�

ν(t) r2 −µ(t)
�

λ−
M2

0

8
ν(t)(4ν(t)−πσ(t))λ2r3 + · · ·

πν,4D =
M2

0

2

�

α(t) r2 − β(t)
�

λ−
M2

0

8
α(t) (2ν(t)− (π− 2)σ(t))λ2r3 + · · ·

πσ,4D =
M2

0

32
α(t) (4(π− 2)ν(t)− (4+ 3π)σ(t))λ2r3 + · · · , (54)

where the dots are higher-order terms in λr, and we have integrated over the angular variables
(θ ,φ). It is important to emphasize that our perturbative expansion is only meaningful at
leading order in the deformations we turn on, which implies that λr � 1 as r →∞.

The leading divergences in the canonical momenta πα,πν and πσ can be cancelled using
the following counterterms

Ict =
M2

0

8

∫

d t
p

−γt t

�

c1λΦ+ c2λ
2Φ2 + c3λ

2χ2 + c4λ
2Φχ

�

, (55)

where the coefficients are found to be

c1 = −4, c2 = 1, (56)

c3 =
1
8
(4+ 3π), c4 = 2−π .
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Note that the counterterms used here are very similar to those in [39] which also displays sim-
ilar equations of motion. Adding the contribution from these counterterms to 54, the renor-
malized momenta are

πα = πα,4D +πα,ct = −M2
0 µ(t)λ+O(λ2r) ,

πν = πν,4D +πν,ct = −M2
0 β(t)λ+

3M2
0

4
α(t)κ(t)λ2 +O(λ2r) ,

πσ = πσ,4D +πσ,ct =
3M2

0

32
(π+ 4)α(t)κ(t)λ2 +O(λ2r) . (57)

We have retained some subleading terms in conformal perturbation theory: this is to illus-
trate the different behavior of χ compared to Φ. Because the momenta for Φ is influenced by
the large diffeormorphism of the background metric, the finite contribution appears at O(λ).
In constrast, χ behaves as a more traditional propagating field in AdS, and hence the term
κ(t)δσ(t) appears at O(λ2).

Using 57 in 52, the renormalized variation is

δIren = −M2
0λ

∫

d t (µ(t)δα(t) + β(t)δν(t)) +O(λ2) , (58)

which can be integrated using the relations 50 and evaluated on-shell to give the effective
action

Iren = −
M2

0λ

2

∫

d t
�

ν(t){ f (t), t}+
4c0

ν(t)

�

+O(λ2) . (59)

We can compare with the near-extremal entropy by evaluating this action on the near-extremal
black hole. Using 5 and 25 we have

{ f (t), t}= −
ε2

2
, ν(t) =

2
M0

, c0 = 0 . (60)

Going to Euclidean signature by taking t → −i tE , we can derive the near-extremal entropy
from the Euclidean renormalized action IE = −i Iren on a circle of size 2π/ε according to

δSBH = (1+ ε∂ε)(−IE) = 2πM0ελ . (61)

This matches the linear response of the thermodynamics in 43.
Finally, we return to the role of the gauge field in our variational problem. The treatment

of this field is more delicate since the source ζ(t) in 49 is subleading compared to its electric
charge and the backreaction in 14. This is a known effect in 2D theories with a Maxwell field,
and how to properly treat this is discussed in detail in [21,39]. Following that discussion, one
simple way to circumvent the issues related to the gauge field is to freeze it in the variational
problem, and focus on the remaining variables. This would not be the most general varia-
tional problem, but it suffices to capture the Schwarzian effective action as illustrated by our
computations.
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