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Abstract

We demonstrate how self-sourced collective modes – of which the plasmon is a promi-
nent example due to its relevance in modern technological applications – are identified
in strongly correlated systems described by holographic Maxwell theories. The char-
acteristic ω ∝

p
k plasmon dispersion for 2D materials, such as graphene, naturally

emerges from this formalism. We also demonstrate this by constructing the first holo-
graphic model containing this feature. This provides new insight into modeling such
systems from a holographic point of view, bottom-up and top-down alike.
Beyond that, this method provides a general framework to compute the dynamical charge
response of strange metals, which has recently become experimentally accessible due to
the novel technique of momentum-resolved electron energy-loss spectroscopy (M-EELS).
This framework therefore opens up the exciting possibility of testing holographic models
for strange metals against actual experimental data.
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1 Introduction

Holography is a powerful framework for computing the response functions of strongly cor-
related matter, where, due to the absence of long-lived quasi-particles, perturbation theory
is not applicable. When constructing holographic models one has to distinguish between
screened response functions, which, for example, describe the response to changes in the inter-
nal, screened electric field E and the genuine, physical response functions [1] to the external
electric displacement field D. And it is the latter which would be the quantity that is actually
being tuned directly in an experimental setup. The relation between screened and physical
response is encoded in the dielectric function ε, whose zeroes give self-sourced excitations in
the material, one prominent example being the plasmon modes.

Thus, by analyzing the dielectric function ε we can both compare holographic models to
experiments, as well as predict novel behavior of strongly correlated matter. Of particular
interest is the little understood ‘strange-metal’ phase appearing e.g. above the critical tem-
perature in high-temperature superconductors, and also in graphene in the form of the Dirac
fluid. The dynamical charge response of strange metals, including plasmonic properties, has
recently become experimentally accessible using the new method of momentum-resolved elec-
tron energy-loss spectroscopy (M-EELS) and an overdamped plasmon mode has been observed
for small momenta [2]. Note that we use the term “plasmon” rather loosely to describe prop-
agating self-sourced plasma oscillations, even in the absence of long lived modes. In recent
work [3], we constructed the first holographic model of bulk plasmons, i.e. plasmons propa-
gating in the interior of a three-dimensional material, and a key ingredient in the model was
a very specific choice of boundary conditions. In this paper, we generalize these findings by
giving a holographic prescription to model all collective modes, both in the longitudinal and
transverse sectors. Furthermore, by extending the techniques developed in [3] to the situa-
tion of having charge carriers confined to a codimension one surface, we demonstrate how
an ω∝

p
k behavior generically emerges, thereby providing the first holographic model that

accurately and naturally reproduces this characteristic feature of 2D plasmons1. This behav-
ior is not just a theoretical prediction, but has been confirmed in experiments with 2D layers,
particularly graphene [4–6], within the accuracy that experiments allow. The reason why it
is difficult to get highly accurate data for very low momenta is a phenomenon referred to as
wave localization, where the wave-length for a plasmon at a specific frequency is significantly
shorter than for light in vacuum at the same frequency. For graphene the difference can be
up to a factor α−1 ∼ 100, where α is the fine structure constant [7]. This means that when
trying to experimentally probe plasmon properties of a sheet of graphene the probing light and
the sheet effectively decouple. A remedy employed is to add a grating to the graphene sheet,
with a grating distance adjusted to the probe frequency. This provides an improved resolution,

1By this we mean a strictly 2D excitation, like in a sheet of graphene, in contrast to ‘surface plasmons’ which
propagate in an interface between a metal and a dielectric material or air, where there is an exponential fall-off
of the excitation in the direction transverse to the interface. We refrain from using the term 2DEG plasmons,
i.e. plasmons in a 2D electron gas, since in the holographic framework there are in general no quasi-particles, and
hence the relevant area of application is for systems without quasi-particle excitations like strange metals, e.g. the
Dirac fluid in graphene.
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but also requires a different physical sample for each probe frequency, making the systematic
determination of the dispersion relation a very cumbersome and time-consuming process.

When considering linear response in holography, one generally obtains a set of coupled
PDEs. Modes of the boundary theory correspond to specific solutions of these equations with
a set of boundary conditions that would make the resulting boundary value problem over-
determined. This is to be expected, however, since modes, by definition, correspond to partic-
ular intrinsic properties of the system. The conditions at the horizon are determined by reg-
ularity of the solution, and are thus inviolable. At the boundary, conditions are related to the
holographic dictionary, with different choices corresponding to different responses one wishes
to study. What has been well-established is that Dirichlet conditions give quasi-normal modes
(QNMs), which are identified with poles of the holographic Green function. The knowledge of
only these modes, however, is not sufficient to characterize all electromagnetic properties, as
they just give the response to a screened electric field E , which is ‘internal’ to the system. To
obtain the physical response function, one needs to know the response to the, external, electric
displacement field D. In this work, we fill this gap and, based on that, draw conclusions on
what conditions holographic models need to satisfy in order to describe all collective modes
in the boundary theory.

This paper is structured as follows. In sec. 2 we will introduce the holographic notion
of a collective mode and summarize how internal, physical, properties are related through
the dielectric function. In sec. 3 we will then extend previous work [3] to illustrate how
collective modes, both in the longitudinal and transverse sectors, correspond to specific choices
of boundary conditions. This identification is consistent with the notion that these modes
are, in condensed matter theory (CMT), usually identified with the vanishing of the dielectric
function. Building up on this correspondence, we then continue in sec. 4 to lay out how
these insights have to be incorporated into an effective holographic description of a strongly
correlated codimension one system, like graphene, since the relative number of dimensions
in which the charge carriers can move compared to the number of dimensions the potential
permeates is an essential point. Based on these considerations, we argue in sec. 5 how a
characteristic ω∝

p
k dispersion for 2D plasmons naturally emerges when our formalism for

identifying collective modes in holography is properly applied. We then corroborate this by
constructing a holographic toy model that correctly reproduces this generic feature of the 2D
plasmon dispersion relation. Furthermore, within the large parameter space of the holographic
model, we will elaborate on the detailed agreement with results in regions where conventional
condensed matter approaches are applicable.

2 Collective Modes

In this section we will introduce the holographic notion of a ‘collective mode’, i.e. a pole in the
physical density-density response function2 using the conventions and nomenclature of our
previous work [3], which we review below to make the paper self-contained.

In a medium, the response to external electromagnetic fields is entirely described by
Maxwell’s equations,

dF = 0 , d ?W = ?Jex t , (1)

where, without loss of generality, we have absorbed the Maxwell coupling into the fields3. The

2See e.g. [1]
3The Maxwell coupling e can easily be reinstated by re-scaling the 4-current J → eJ , remembering that e.g. χsc

is defined to be quadratic in the charge density, c.f. (5), implying χsc → e2χsc .
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field strength F and induction tensor W are decomposed as,

F = E ∧ d t + ?−1(B ∧ d t) , (2)

W = D ∧ d t + ?−1(H∧ d t) . (3)

Thus, W describes the ‘external’ electric displacement field D and the magnetic field
strength H, which are sourced by an external current Jex t . In contrast, F describes the electric
field strength E and magnetic flux density B inside the system, being the sums of the external
fields and contributions from screening due to effects like polarization and magnetization in
the material.

This distinction is important in order to decide which modes are to be considered ‘collective
modes’, i.e. oscillations of the system in the absence of external fields [1]. The Green function
gives the response to the induced current,

J = (−〈ρ〉 d t + j) = ?−1d ? (F −W) , (4)

when the gauge field A is varied. This function encodes current-current correlations, and can
be used to obtain the conductivity or the ‘screened’ density-density response,

σi j = −
〈 ji j j〉

iω
, χsc = 〈ρρ〉 , (5)

where σi j is defined through Ohm’s law, j = σ · E . Due to functional identities of the Green
function following from the continuity equation, it is also straightforward to derive elementary
identities like,

χsc =
k2

iω
σL , (6)

whereσL is the longitudinal conductivity. One has to keep in mind though, that these functions
are ‘constructs’, as they describe the response to the screened fields E and B, encoded in F ,
and not the external fields D and H encoded in W . For an electric response, the relation
between the screened and unscreened response is encoded in the dielectric function

εi j =
∂Di

∂ E j
. (7)

In particular, for the physical density-density response,

χ =
χsc

εL
, (8)

where εL is the longitudinal component of the dielectric function (7). Thus, a priori, collective
modes, i.e. poles of the response function χ, would be given by the poles of χsc , as well as
by the zeros of εL . However, due to Maxwell’s equations (1) there is a relation between the
dielectric tensor and the conductivity,

�

ε − 1+
σ

iω

�

· E = k ×M
ω

. (9)

In isotropic media in particular, this implies that poles of σL , and hence of χsc , are also poles
of εL , meaning that it is only the zeros of the latter that characterize the poles of the physical
response χ, which by definition correspond to collective modes as they represent propagating
modes in the absence of external fields.
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3 Holographic Boundary Conditions for Collective Modes

In this section we will extend previous work [3] to illustrate how both longitudinal and trans-
verse collective modes correspond to specific choices of boundary conditions for perturbations.
In the following we will use the term ‘collective modes’ to refer to poles of the physical response
function χ. That is, a function describing a response to an external, physical, source – in con-
trast to a response to the screened, internal, fields E and B.

As argued in the last section, collective modes correspond to the zeros of the longitudinal
dielectric function εL . One type of collective modes is plasma oscillations inside the medium,
so-called plasmons. It has recently been shown how to identify them holographically [3]. In
that framework, these modes are again given by linear response in the electromagnetic sector,
but one has to consider boundary conditions which are fundamentally different from Dirichlet
conditions – as one would have when calculating QNMs, which would correspond to poles
of the screened response χsc . This is because collective modes characterize a situation with
self-sustained excitations, i.e. vanishing external fields, D = 0 and ρex t = 0, but non-vanishing
fields in the interior of the material, E 6= 0, giving rise to effects like propagating plasma
oscillations. This makes the distinction to QNMs clear since imposing Dirichlet conditions
on the gauge field leads, via the decomposition (3), to E = 0, which according to Maxwell’s
equations (1) requires a specific external current to be applied in order to cancel the induced
current in (4) so that Ohm’s law is satisfied. This shows that QNMs are driven excitations from
the viewpoint of the Maxwell theory on the boundary.

In the case of an isotropic system, there is only one transverse and one longitudinal counter-
part of the dielectric function, denoted by εT and εL , which provide all necessary information
to identify the collective modes of the system. We proceed by deriving the boundary condi-
tions for the corresponding bulk fields. Without loss of generality we impose δAt ≡ φ = 0
and study a harmonic perturbation with momentum in the x-direction, and y denoting any
transverse direction. Then, after Fourier transforming, from Maxwell’s equation (1) and the
defining relation (4) in the absence of external fields it follows that

ω2δAx + δJx = 0 , (10)
�

ω2 − k2
�

δAy + δJy = 0 . (11)

These conditions can be turned into boundary conditions for the bulk fields using the holo-
graphic dictionary, where we can relate the field strength on the boundary to the boundary
value of the potential for the corresponding field in the bulk, as well as the current to the
bulk induction tensor. Therefore, the explicit formulation is model-dependent, but in the class
of Lagrangians usually studied in holography the current is generally related to the normal
derivative of the corresponding potential at the boundary, such that,

ω2δAx + pL δA
′
x = 0 , (12)

�

ω2 − k2
�

δAy + pT δA
′
y = 0 . (13)

These provide a unified description of all self-sourced solutions to holographic Maxwell the-
ories. The functions pL/T are determined by the specific bulk theory at hand and the holo-
graphic dictionary [3]. They are generally bounded, but may depend on ω and k. In the case
of a standard Maxwell action in the bulk, p is constant. The type of mixed boundary condi-
tions we arrive at are related to a double trace deformation in the QFT [3,8,9], corresponding
to the random phase approximation (RPA) form of the Green function [10]. Therefore, our
approach represents a natural extension of the conventional CMT techniques for computing
the dielectric function to systems without long-lived quasi-particles.

It is also straightforward to reformulate the boundary conditions in terms of the dielectric
function. This essentially follows from basic definitions and the relation (9), as well as noting

5

https://scipost.org
https://scipost.org/SciPostPhys.8.6.093


SciPost Phys. 8, 093 (2020)

that in the absence of external fields we have M= B. Then, a bit of algebra reveals that (10)
and (11) are nothing but

εL(k,ω) = 0 , εT (k,ω) = 0 . (14)

The first one, in accordance with the nomenclature in [3], we will refer to as the plasmon
condition, but as shown above this condition yields all collective modes. The second one,
i.e. the counterpart in the transverse direction, are transverse symmetric waves [1] involving
transverse current fluctuations.

We emphasize that the collective modes corresponding to (12) and (13) are distinct from
QNMs. The latter correspond to poles of the Green function for internal correlators, while the
former yield collective modes that can be directly accessed via experiments. Thus, identifying
all collective modes is a crucial step to relate holographic results to actual data and, for the
holographic Maxwell theories we consider, all collective modes correspond to (12) and (13),
as explained above.

4 Holographic Graphene as Codimension One Boundary Theory

All electromagnetic phenomena can be described through the field strength F and the induc-
tion tensor W . While it has been known for a while how to identify the former in the boundary
theory, the correspondence for the latter seems to have gone unmentioned until recently [3].
In the following we will examine consequences of this identification with regard to codimen-
sion one systems, like graphene. For a different holographic bottom-up model of graphene
see [11].

Holography has been established as an effective description of strongly correlated systems.
However, while the strength of interaction is large in these systems, one does not wish to
change the fundamental nature of the interaction, respectively test charges, itself. And the
latter is intricately connected with the dimension in which particles interact, as creation and
annihilation operators are determined as distribution-valued operators for point-like sources.
This becomes relevant in systems like graphene, certain high-Tc superconductors and other
compound materials, where charge carriers move in layers – or even edges, in some cases.
I.e. positioning is confined to a lower number of dimensions, but the charge carriers are, in
essence, still subject to interactions determined by the ‘1/r ’ Coulomb potential in three spatial
dimensions – in contrast to, e.g., the ‘ln r ’ potential in two dimensions. In a proper description
of such a material, this feature must therefore also be incorporated into an effective model.
Meaning that while the system one wishes to study is effectively (2 + 1)-dimensional, one
has still to keep in mind that it is composed of particles whose electromagnetic interaction is
determined by Maxwell’s equations in (3+ 1)-dimensions.

From a holographic perspective, this requires to incorporate a mechanism that keeps par-
ticles ‘in place’. In a top-down construction, this is usually achieved via embedding D-branes,
which is also how aspects of graphene and related systems were holographically modeled pre-
viously [12–17], and is illustrated in figure 1. This description, however, will create some
difficulties from a practical standpoint. As pointed out in previous work [3], gravitational
back-reaction seems crucial to determine material properties like plasmon excitations. For D-
branes, however, going beyond a probe limit – in which back-reaction is neglected – is a rather
difficult task where, in general, no efficient computational methods are at hand.

Nevertheless, we will illustrate in the following how the interplay of confinement of charge
carriers to a lower-dimensional subspace and gravitational back-reaction are the basic features
that make a holographic description provide physically realistic results. The important point
to keep in mind is that it is not the details of the gravitational interaction with the brane that is
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Figure 1: Schematics of a holographic setup for a physically realistic model for
graphene. While the induced current δJ on the boundary is confined to 2 + 1 di-
mensions, the boundary potential δA lives in 3+1 dimensions. Therefore, a realistic
holographic setup would require a brane-construction that keeps particles in place
and electromagnetic phenomena are described by the bulk physics projected onto the
brane.

relevant, just that there is some mediating interaction with the background. Thus, as a proxy,
consider the gravitational interaction ‘projected’ onto the brane – which is sufficient, since we
are only interested in studying phenomena due to particles that are, ultimately, constrained
to not being able to move beyond the dimensions in which the brane extends. The crucial
ingredient will be the appropriate choice of the function pL in (12) for the condition on the
boundary at asymptotic infinity, such that it properly reflects the feature of a codimension
one system, where the gauge potential can permeate one dimension more than the induced
current. To derive this condition, consider first an ordinary (3+ 1)-dimensional system. The
longitudinal boundary condition can be derived rather straightforwardly from the Coulomb
potential. For simplicity, we work in Coulomb gauge At = φ and Ax = 0. In the absence of
external sources, a perturbation of the internal charge density δρ must be related to a change
in the potential,

δφ(t, r ) =

∫

d3r ′V (|r − r ′|)δρ(t, r ′) . (15)

Before proceeding, we emphasize that even though this seem like an instantaneous Coulomb
interaction, this is the fully relativistic result following from a retarded interaction. The ap-
parent conundrum is simply due to the fact that the choice of Coulomb gauge makes the
interaction just look instantaneous, while it, of course, still preserves causality – see e.g. [18].

At any rate, after Fourier-transforming we get

δφ(ω, k) = V (k)δρ(ω, k) . (16)

With a standard Coulomb potential, V (k) = k−2, in terms of bulk fields this corresponds to

δAt −
1
k2
δJt = 0 , δAx = 0 . (17)

Though, when working in a holographic description at fixed chemical potential, it is more
convenient to gauge transform these conditions into

ω2δAx +δJx = 0 , δAt = 0 . (18)

This is exactly the plasmon condition (10) for codimension zero. However, if the charges are
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confined to a plane z = 0, the integral (15) changes to

δφ(t, r ) =

∫

d3r ′δ(z)V (|r − r ′|)δρ(t, r ′) . (19)

The δ-function can be incorporated into the potential to an effective potential Veff for longitu-
dinal modes. In Fourier-space,

δφ(ω, k) = Veff(k)δρ(ω, k) . (20)

For a standard Coulomb potential V (k) = k−2,

Veff(k) =
2
|k|

, (21)

and this leads to the boundary conditions being adjusted with a factor k/2. That is, in the
(2+ 1)-dimensional boundary, the boundary conditions are instead

ω2δAx +
|k|
2
δJx = 0 , δAt = 0 . (22)

Thus, the foremost effect of restricting the currents to one dimension less than the gauge
potential is a factor of |k|/2 in the plasmon boundary conditions. And in what follows we will
demonstrate how this provides an accurate holographic model of the physics of 2D plasmons.

For illustrative purposes we will also introduce a toy model that is representative of a large
class of holographic models considered in the literature and which contains all the key ingredi-
ents to demonstrate the effect of (22), while still being simple enough to not get bogged down
with technicalities involving implementation that would only distract from the core issue at
hand. To avoid the difficulties of the dynamics when it comes to gravitational back-reaction
to the brane embedding, we will, as a proxy, just take a simple lower-dimensional charged
system coupled directly to gravity, like a planar Reissner-Nordström black hole. This is suffi-
cient because the exact details of the back-reaction are of secondary importance and have little
influence on qualitative results, the main ingredient is having the proper boundary conditions
to identify the collective modes. Regarding the latter, we then have to remedy the fact that we
actually would have one additional spatial dimension to include. This we achieve by including
the factor |k|/2 into the boundary condition (12), and we will show below that this is indeed
the crucial ingredient to find a physically accurate response.

5 Results

As mentioned above, we simulate a holographic codimension one system by taking a planar
Reissner-Nordström model with a (2 + 1)-dimensional boundary. As far as conventions and
basic setup are concerned, we stay consistent with previous work [3], though for the sake
of consistency and being self-contained, the reader will also find necessary detail and model
specifics in appendix A. To counteract that test-charges in this description would, implicitly,
tend to have the wrong potential, we include the corrective factor |k|/2 in the plasmon con-
dition (12), which would be there if interactions in the system would, correctly, be described
by electromagnetism in (3+ 1)-dimensions. The longitudinal result is presented in figures 2a
and 2b. For a non-zero charge, the dispersion relation isω∝

p
k for small k, while for large k

the dispersion changes to ω≈ k, i.e. the dispersion of a (zero) sound mode. The holographic
model we have constructed therefore correctly captures the behavior of codimension one ma-
terials like a sheet of graphene. The small k behavior can in fact be derived analytically to be
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(b) The lowest collective mode for the RN
background at µ/T = 0 and µ/T ≈ 25 with
p = k/2. Imaginary parts are negative and
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Figure 2

ω(k) =

√

√ 2Q2

6+ 3Q2

p

λk− i

�

6−Q2

12+ 6Q2

�2

λk + · · · , (23)

where λ is a parameter relating the bulk and boundary electromagnetic coupling constants,
which do not have to be chosen to be the same, in principle. However, since the relative
coupling strength λ does not qualitatively affect the results in the model we study, we will
work with λ = 1 in the following, and refer to [3] for a thorough discussion. We also wish
to emphasize that while the prefactors in (23) are of course very model-dependent, having a
consistent hydrodynamic expansion with O(k) = O(ω2) is a direct consequence of the |k|/2
factor in the codimension one plasmon boundary condition (22). And thus, naturally, a low k
dispersion relation with ω∝

p
k will be the generic outcome.

Furthermore, the consistency of the model can be checked by considering that it must
be subject to certain sum rules. And, within numerical precision, we indeed can verify
that limk→0

∫∞
0 dω Im [ε(ω, k)−1/ω] = −π/2 , as required, c.f. [19] for details. The appar-

ent divergence of the (derivative of the) dispersion at k→ 0 is expected for charges perfectly
confined to a plane. A less perfect confinement, which in an ideal model would correspond
to smearing of the branes, would introduce a cut-off at small enough k with an instead linear
dispersion. The dispersion is thus not to be confused with that of plasmons at an interface,
where charges are not strictly confined to a plane, but have a finite penetration depth into the
material away from the conducting layer.

Beyond that, we can reach regions of parameter space which have only recently become
accessible to experiments, such as µ ≈ T relevant for the Dirac fluid in graphene [20–22].
The extreme case µ/T = 0 is possible to observe for truly neutral media (such as He-3), and
our result for this case can be seen in figures 2a and 2b. Here, we can note that for small
k there is a hydrodynamic (first) sound mode, Re[ω] ≈ k/

p
2 and Im[ω] ∝ −k2, and a

collisionless (zero) sound mode, Re[ω] ≈ k and Im[ω] ∝ −const, for large k. This is in
accordance with the expectation that the plasmon mode of charged systems turns into the
sound mode for neutral systems [23]. Since we can access intermediate values of µ/T , which
is very challenging to access with standard CMT techniques, we can also predict how this
happens, with the result being that there are three regions. For small k, there is the plasmon
ω∝

p
k, for intermediate k, there is (first) sound, Re[ω] ≈ k/

p
2 and Im[ω]∝ −k2, and

for large k, there is the collisionless (zero) sound mode, Re[ω] ≈ k and Im[ω] ∝ −const.
One way to present these different regions is by plotting the derivative of the logarithms,
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Figure 3: The derivatives d log Re[ω]
d log k (solid), respectively d log−Im[ω]

d log k (dashed)
for the lowest collective mode at µ/T ≈ 0.08 with p = k/2. Note how
ω∝

p
k+ iΓ k→ k+ iΓ k2→ k+ i const.

shown in figure 3. There is a distinction into, roughly, three different regions, which by using
nomenclature from studies of dispersion relations in holographic models [24], we will denote
as hydrodynamic (I), collisionless thermal (II) and collisionless quantum (III) regime.

In particular, note the significant difference in physics between the two linear sound modes,
for small and large k respectively, in figures 2a and 2b. Working in units where c = 1, the (first)
sound mode for small k has speed 1/

p
2 and is increasingly unstable when increasing k. The

(zero) sound mode for large k, representing collective oscillations of the Fermi surface where
such exist, has speed 1 and an imaginary part largely unaffected by increasing k.

It is important to emphasize that the results in figure 3 are very generic for any type of
model for 2D plasmons considered in ‘applied holography’. The behavior in the collisionless
quantum regime (III) is generic when having a relativistic theory in the bulk. And the behavior
in the hydrodynamic regime (I) is a direct consequence of the boundary condition (22) for
holographic plasmons in codimension one systems – respectively a consistent hydrodynamic
expansion with O(k) =O(ω2) induced by it. Generalizations of the toy model considered, by
e.g. adding more fields, will mostly add more features in the collisionless thermal regime (II)
due to the introduction of additional scales, but as long as gravitational and electromagnetic
interactions in the bulk are not fundamentally altered, the qualitative behavior seen in regimes
(I) and (III) will remain the same.

It is also worth stressing that the dispersion we compute holographically agrees with the
results from conventional condensed matter approaches for the regions of configuration space
where comparisons can be made. In particular, in the small k region where ω ∝

p
k, in

addition to matching the real part of the dispersion also the linear dependence of the imaginary
part of ω on k, c.f. figure 3, matches recent computations for this “collisionless plasmon” part
of the configuration space, and so does the k-independent imaginary part ofω for large k in the
zero sound [23]. Furthermore, for small k the results match hydrodynamic4 results [25], but
since a scattering parameter is not explicitly included in our model, it is difficult to distinguish
between the hydrodynamic and “collisionless plasmon” regimes.

4For non-zero values of the intrinsic electrical conductivity σQ, which is the generic case for the hydrodynamic
limit of holographic models. Other common names for σQ are the quantum critical or incoherent conductivity.
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6 Conclusion

In this paper we derive the conditions that all collective modes in holography must satisfy, both
in the longitudinal and transverse sectors, thereby extending and further substantiating the
holographic formalism pioneered in [3]. We find that for isotropic systems there are boundary
conditions that translate the necessary features from the boundary theory into the bulk, (12)
and (13) for longitudinal and transverse collective modes, respectively. We also point out that,
in the case of holographic Maxwell theories, poles of the screened correlator χsc , corresponding
to QNMs, are not collective modes as they require non-vanishing external fields, and hence
represent driven excitations of the system.

We then demonstrate that this method of relating the physical set-up in the boundary the-
ory to the boundary conditions on the equations of motion in the bulk is not only instructive
and intuitive, but also a powerful tool when regarding other types of Maxwell theories, such
as codimension one materials. Such systems often show a characteristic ω ∝

p
k disper-

sion relation for 2D plasmons, which for graphene has been argued on general considerations
involving RPA and other condensed matter methods [26, 27], and been observed in experi-
ments [4–6]. It is therefore a very conclusive proof of consistency of the holographic plasmon
formalism, introduced in [3], that this small k behavior for 2D plasmons will emerge naturally
from just a few very basic assumptions. A dynamically back-reacted metric and confinement to
a codimension one surface being the only ingredients, we have argued that the coupling of the
gravitational and electromagnetic sectors will reproduce the correct 2D plasmon dispersion
relation in the hydrodynamic regime. We have further demonstrated this by simulations of an
illustrative toy model, where the ω∝

p
k dispersion can be seen to dominate over a range

of several orders of magnitudes before it transitions into the collisionless thermal regime in
an intermediate range, and then into the natural ω∼ k behavior in the collisionless quantum
regime for large k. We then have also established an argumentation why this behavior is in
fact generic for holographic 2D plasmons. Reproducing this behavior in a holographic model,
let alone have it emerge naturally, has previously been impossible both in bottom-up systems,
since the mode is heavily dimension dependent, and in top-down systems, since the mode also
requires a dynamically back-reacted metric.

The use of mixed boundary conditions that are tailored to the boundary theory opens
up a wide range of possible follow-up studies to previous work, as they can be applied to
previously examined bulk theories. Especially interesting are models that include a physically
more realistic mechanism for dynamical polarization, and back-reacted top-down models that
have a bulk theory that better aligns with the boundary theory in codimension one systems
while still keeping back-reacted gravity effects in the bulk.

Finally, the methods pioneered in this paper also hold the potential for making experi-
mentally relevant predictions for 2D plasmon physics in geometries difficult to analyse using
standard techniques. One such case concerns the plasmon properties in conical geometries
close to the tip where field enhancement effects lead to strong interactions5. In addition,
recent advances in experimental techniques targeting strange metals has led to the first ex-
perimental data on plasmon properties for this interesting class of materials [2]. So far there
are few data points to guide attempts for holographic model building, but this is expected to
change when further progress yield more data in the near future.

5We thank Bert Hecht for bringing this open problem to our attention.
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A The Planar RN Model

The planar AdS4-RN model is governed by the Einstein-Maxwell action

S = −
∫

d4 x
p

g
�

−1
4 FµνFµν +

3
L2
+

R
2

�

+

∫

z→0

d3 x
p
γ

�

−2K +
2
L

�

, (24)

where L is the AdS length scale, γ is the induced boundary metric, K = γµν∇µnν and nµ is
the normal vector to the boundary. The dynamics is given by the first term in (24), and the
standard boundary terms, i.e. the Gibbons-Hawking term and a constant term [28, 29], are
included to yield Dirichlet boundary conditions on the metric and make the action finite, re-
spectively. Note that in the context of holographic renormalization no counter-term is needed
for the Maxwell part of the action, since the gauge field falls off sufficiently fast when ap-
proaching the boundary in AdS4, see e.g. [30]. A radial coordinate z, can be chosen such that
the black hole horizon is located at z = 1 and the conformal boundary at z = 0. The static
solution then has the metric

ds2 =
L2

z2

�

− f (z)dt2 + dx2 + dy2 +
1

f (z)
dz2

�

, (25)

and a gauge field with only a time component, At . The equations of motion for this background
become

f ′(z) =
z4
�

A′t (z)/L
�2
+ 6 f (z)− 6

2z
, (26)

A′′t (z) = 0 . (27)

Requiring f and At to vanish at z = 1 (which defines the horizon respectively eliminates a
divergence) the different RN-backgrounds are determined by a single parameter Q, with

f (z) = 1−
�

1+
1
2

Q2
�

z3 +
1
2

Q2z4 , (28)

At(z) = L Q (1− z) . (29)

This parameter is related to the only relevant dimensionless quantity on the boundary, µ/T ,
as

µ

T
=

8πQ
6−Q2

, (30)

where the boundary temperature T is given by the Hawking temperature of the black hole,
and the chemical potential µ, can be read off with the holographic dictionary as the boundary
value of At .

To study the longitudinal excitations of this system, plane wave perturbations with
(ω, k = kx̂) are made in the gt t , gt x , gx x , g y y , At and Ax components. These perturbations
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are treated in linear response, that is,

gµν→ gµν + ε
L2

z2
e−iωt+ikxδgµν , (31)

Aµ→ Aµ + εLe−iωt+ikxδAµ , (32)

with some small parameter ε. The resulting six equations of motion are shown in appendix
B. There are in general 6 solutions to these equation that are relevant, two of them in-falling,
which need to be solved for, or pure gauge. To be a physical excitation, there must exist a
non-trivial linear combination of these solutions that satisfy the boundary conditions at z = 0,
which is only the case for some values of (ω, k). For the metric components, the conditions
are that they should vanish on the boundary. The remaining two boundary conditions are
determined by the type of electromagnetic modes one wishes to describe on the boundary,
e.g. (22). Computationally, finding such (ω, k) is done most conveniently by studying the
determinant of the matrix of solutions and their respective boundary values,
�

�

�

�

�

�

δgt t(z)1 δgt x(z)1 δgx x(z)1 δg y y(z)1 δAt(z)1
�

ω2δAx + pL δA
′
x(z)

�

1
δgt t(z)2 δgt x(z)2 δgx x(z)2 δg y y(z)2 δAt(z)2

�

ω2δAx + pL δA
′
x(z)

�

2
· · ·

�

�

�

�

�

�

z→0

, (33)

and finding for which values of ω and k it vanishes. When the determinant is zero, there
must exist a linear combination of the individual solutions that satisfy all boundary conditions.
Sweeping overω and k yields the dispersion relations of the boundary theory, shown in figures
2a, 2b and 3.

B Equations of Motion for the Perturbations

The six second order differential equations for the perturbations become as follows:
Equation for δgt t :

�

−
f ′

2 f
−

2
z

�

δg ′t t −
1
4

f ′δg ′x x −
1
4

f ′δg ′y y +
δgt t

�

�

f ′
�2 − f

�

k2 +Q2z2
�

�

2 f 2

−
δg y y

�

f k2 +ω2
�

2 f
−

kωδgt x

f
−
ω2δgx x

2 f
− 3Qz2δA′t +δg ′′t t = 0 .

Equation for δgt x :
kωδg y y

f
− 2Qz2δA′x +δg ′′t x −

2δg ′t x

z
= 0 .

Equation for δgx x :

δgt t

�

k2 +Q2z2
�

2 f 2
−
δg y y

�

f k2 +ω2
�

2 f 2
+

kωδgt x

f 2
+
ω2δgx x

2 f 2
+
�

3 f ′

4 f
−

2
z

�

δg ′x x −
f ′δg ′y y

4 f

−
Qz2δA′t

f
+δg ′′x x = 0 .

Equation for δg y y :

−
δgt t

�

k2 −Q2z2
�

2 f 2
+
δg y y

�

ω2 − f k2
�

2 f 2
−

kωδgt x

f 2
−
ω2δgx x

2 f 2
−

f ′δg ′x x

4 f
+
�

3 f ′

4 f
−

2
z

�

δg ′y y

−
Qz2δA′t

f
+δg ′′y y = 0 .
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Equation for δAt :

Q f ′δgt t

2 f 2
−

k2δAt

f
−

kωδAx

f
−

Qδg ′t t

2 f
−

Qδg ′x x

2
−

Qδg ′y y

2
+δA′′t = 0 .

Equation for δAx :
kωδAt

f 2
+
ω2δAx

f 2
+

f ′δA′x
f
−

Qδg ′t x

f
+δA′′x = 0 .

From varying the action, an additional four first order differential equations are obtained.
These are found in the z-components, and should automatically be satisfied by a solution to
the equations above, but can be used to validate a found solution. These constraint equations
are as follows:
From the gtz-variation:

−
k f ′δgt x

f
−
ω f ′δgx x

2 f
−
ω f ′δg y y

2 f
+ kδg ′t x +ωδg ′x x +ωδg ′y y = 0 .

From the gxz-variation:

−
k f ′δgt t

2 f
− f kδg ′y y − 2kQz2δAt + kδg ′t t − 2Qωz2δAx +ωδg ′t x = 0 .

From the gzz-variation:

δgt t

�

−2 f ′ + k2z +Q2z3
�

2 f
+
�

z f ′

4
− f

�

δg ′x x +
�

z f ′

4
− f

�

δg ′y y +
zδg y y

�

ω2 − f k2
�

2 f

+
kωzδgt x

f
+
ω2zδgx x

2 f
−Qz3δA′t +δg ′t t = 0 .

From the Az-variation:

2 f kδA′x −
Qωδgt t

f
− 2kQδgt x −Qωδgx x −Qωδg y y + 2ωδA′t = 0 .
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