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Abstract

We explore a new numerical method for studying one-dimensional quantum systems in
a trapping potential. We focus on the setup of an impurity in a fermionic background,
where a single distinguishable particle interacts through a contact potential with a num-
ber of identical fermions. We can accurately describe this system, for various particle
numbers, different trapping potentials and arbitrary finite repulsion, by constructing a
truncated basis containing states at both zero and infinite repulsion. The results are
compared with matrix product states methods and with the analytical result for two
particles in a harmonic well.

Copyright E. J. Lindgren et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 28-08-2019
Accepted 12-06-2020
Published 13-07-2020

Check for
updates

doi:10.21468/SciPostPhys.9.1.005

Contents

1 Introduction 1

2 Hamiltonian 2

3 Variational method 3
3.1 States at zero interaction 3
3.2 States at infinite interaction 3
3.3 Overlaps between the zero and infinite interaction states 4
3.4 Constructing the basis 4
3.5 The Hamiltonian expressed in the basis 5

4 Observables 7
4.1 Single particle minority density matrix 7
4.2 Majority particle density matrix 9
4.3 Momentum distributions 10
4.4 Minority-Majority correlation function 11

5 Examples 11

1

https://scipost.org
https://scipost.org/SciPostPhys.9.1.005
mailto:ejonathanlindgren@gmail.com
mailto:barfknecht@lens.unifi.it
mailto:zinner@aias.au.dk
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.9.1.005&amp;domain=pdf&amp;date_stamp=2020-07-13
http://dx.doi.org/10.21468/SciPostPhys.9.1.005


SciPost Phys. 9, 005 (2020)

5.1 Two particles in a harmonic potential 12
5.1.1 Energies 13
5.1.2 Position space densities 13
5.1.3 Momentum space densities 13

5.2 Three particles 13
5.2.1 Energies 14
5.2.2 Position space densities 15
5.2.3 Momentum space densities 15

5.3 Seven particles 15
5.4 Eleven particles 16

6 Conclusions 16

7 Acknowledgements 18

A Some integral formulas 19
A.1 Integral 1 19
A.2 Integral 2 21

B Two particle system 22
B.1 Odd states 27
B.2 Absolute coordinates 27

C Wavefunctions and energies for a smooth double well potential 27

D Matrix Product States 30

E Polynomial interpolation for computing determinants 31

References 31

1 Introduction

The investigation of one-dimensional quantum systems of interacting particles has, in the last
decades, attracted renewed interest due to striking advances in experiments with cold atoms
in optical traps [1]. Paradigmatic models extensively explored in the fields of condensed mat-
ter [2–5] and mathematical physics [6–8] are now within reach of experiments, and their
exotic properties can be measure with great precision. Moreover, the degree of control over
several experimental parameters, including interactions between the atoms [9–12] and trap-
ping geometries opens up the possibility of using such experiments as quantum simulators for
a multitude of interesting models [13], even beyond usual condensed matter systems [14].

One particular problem which has attracted interest in this context is that of a single distinct
atom (or impurity) embedded in a background of identical particles. In the field of condensed
matter, such systems can present interesting phenomena, such as the Kondo effect [15] and the
orthogonality catastrophe [16]. Theoretical and experimental studies with ultracold atomic se-
tups have extensively explored both the bosonic [17–27] and fermionic [28–37]manifestations
of these models - the so-called Bose and Fermi polarons, respectively. The one-dimensional
fermionic case, in particular, dates back to McGuire’s impurity model in a homogeneous ge-
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ometry [38, 39], which is exactly solvable through the Bethe ansatz approach [40]. Other
approaches have later generalized the study of static properties to mixed fermionic systems
in harmonic potentials [41–47]. On the dynamical side, impurity models have been shown to
present exotic effects such as Bloch oscillations [48] and quantum flutter [49,50].

In this work we present an original way to obtain the static properties of an impurity in a
fermionic background, where the number of background fermions can be arbitrarily modified.
We employ a variational principle where our ansatz for the wavefunction is a combination
of states at zero and infinite interaction, relying on the fact that the analytical expressions
for these limits are known. In practice, we construct a truncated basis by choosing a certain
number of states at each limit and then employ the Gram-Schmidt ortonormalization process
to construct an orthonormal basis. By diagonalizing the Hamiltonian in this basis, we obtain
an approximation for the wavefunctions and eigenvalues. While it may be difficult to reach
a regime of strong interactions with usual methods, our approach is exact in the zero and
infinite interaction limits. This method is an extension of Ref. [51], where only two basis states
were used. It can be applied to systems in different trapping geometries, and the repulsive
interactions can be tuned from weak to strong. To validate our method, we compare our results
for spatial densities and momentum distributions to simulations of the continuum obtained
with Matrix Product States (MPS) [52, 53], as well as the known analytical results for two
atoms in a harmonic trap [54].

2 Hamiltonian

We focus on a one-dimensional system of N identical fermions (majority) which interacts with
a single distinct particle (minority) with the same mass in the presence of a trapping potential.
The Hamiltonian can be written as

H =
N
∑

i=0

�

p2
i

2m
+ V (xi)

�

+ g
N
∑

i=1

V0,i(x0 − xi), (1)

where the potential V is the background potential (which in this paper is either a harmonic
potential, V (x) = mω2 x2/2, or the double well constructed in Appendix C with parameters as
shown in Figure 1) and V0,i is the interaction between the minority and majority, namely we
have 〈x0, x1, . . . , xN |V0,i|x ′0, x ′1, . . . , x ′N 〉= v(x0− x i)δ(x0− x ′0) · · ·δ(xN − x ′N ). In our case of a
contact interaction, we have v(x) = δ(x). Since all particles have the same mass, we can in-
terpret the single impurity as a fermionic atom in a different internal state than the remaining
majority atoms. Such systems can be realized in the lab with ultracold Li atoms in different
hyperfine states [4].

For simplicity we will work in units where ħh = 1 and m = 1, but we will reinstate these
units in all figures.

3 Variational method

Our variational method consists of constructing a suitable truncated basis of states. The basis
states are constructed by using both the analytically known eigenstates at zero interactions as
well as the analytically known solutions at infinite interaction.
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3.1 States at zero interaction

The states at zero interaction are denoted by |φi〉, for 0≤ i ≤ n−1. Each state |φi〉 is defined
by a collective index ~k(i) of N + 1 single particle states, namely

~k(i) = [k(i)0 ; k(i)1 , . . . , k(i)N ]. (2)

Note that for the k(i)1 , . . . , k(i)N , different orders correspond to the same state up to a sign since

they correspond to the majority particles, while the single k(i)0 corresponds to the quantum

number of the minority particle. We assume that k(i)1 < . . . < k(i)N . We define the totally
antisymmetric state of a number of M (ordered) quantum states ~v by

|Φ~v〉=
1
p

M !

∑

σ

sign(σ)| fvσ(1)〉 · · · | fvσ(M)〉. (3)

Let us further denote ~v[i, j, . . .] as the (ordered) set ~v with vi , v j , . . ., removed. This notation
will be used throughout this article. A zero interaction state is then of the form

|φi〉= | fk(i)0
〉|Φ~k(i)[0]〉. (4)

3.2 States at infinite interaction

At infinite interaction, the states are denoted as |ψµ〉, for 0≤ µ≤ m−1. Note that the number
of states at zero interaction, n, is not necessarily the same as the number of states at infinite
interaction. Each state |ψµ〉 corresponds to a collective index ~q(µ) of N+1 single particle states
corresponding to a completely antisymmetric state Φ~qµ built from the quantum states

~q(µ) = [q(µ)0 , . . . , q(µ)N ], (5)

as well as a set of N + 1 coefficients ~a(µ),

~a(µ) = [a(µ)0 , . . . , a(µ)N ]. (6)

Note that different orders of the q(µ)i correspond to the same state up to a sign, and we will

assume that q(i)0 < . . .< q(i)N , and we will assume that the ~a(µ) satisfy

N
∑

l=0

(a(µ)l )
2 = N + 1,

N
∑

l=0

a(µ)l a(ν)l = 0, µ 6= ν. (7)

The state at infinite interaction is then defined in the coordinate representation as

ψµ(x0, . . . , xN ) = a(µ)l Φ~q(µ)(x0, . . . , xN ), when (x0, . . . , xN ) ∈Ml , (8)

where we denote Ml as the set of points where x0, the coordinate for the minority particle, is
smaller than exactly l of the x1, . . . , xN .

These exact solutions of the Hamiltonian (1) at g = +∞ [43, 44], are orthogonal and
properly normalized to unity provided that (7) holds. However, they are not orthogonal to
the zero interaction eigenstates, and in Section 3.4 we will apply the Gram-Schmidt process
to construct an orthonormal basis.
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3.3 Overlaps between the zero and infinite interaction states

In this section we will compute the overlaps between the infinite interaction statesψµ and the
zero interaction states φi , which is a necessary input for the construction in Section 3.4 and
for computing the matrix elements and overlaps that include the states χµ. We will denote
the overlaps between the states at zero interaction and at infinite interaction by Ciµ, where
by convention i ∈ (0, . . . , n − 1) corresponds to the index for the zero interaction states and
µ ∈ (0, . . . , m − 1) corresponds to the index for the states at infinite interaction. The zero
interaction state is on the form

φi(x0, . . . , xN ) = fk(i)0
(x0)Φ~k(i)[0](x1, . . . , xN ), (9)

where Φ~k(i)[0] is again the totally antisymmetric wave function

Φ~k(i)[0] =
1
p

N !

∑

π

sign(π) fk(i)
π(1)
· · · fk(i)

π(N)
. (10)

Again, we use the notation where ~k(i)[J] is the set (k(i)0 , . . . , k(i)N )with k(i)J removed. Recall that
at g = +∞, an eigenstate can be specified by a sequence of N + 1 numbers al , 0 ≤ l ≤ N , as
well as a set ~q(µ) = (q(µ)0 , . . . , q(µ)N ) of single particle quantum numbers, and is constructed by

ψµ = alΦ~q(µ)(x0, x1, . . . , xN ), x1, . . . , xN ∈Ml(x0), (11)

where Ml(x0) is the set where x0 is smaller than exactly l of the x j with j ≥ 1. The overlaps
are thus given by

Ciµ =
N
∑

l=0

al Il , (12)

where

Il ≡
∫ ∞

−∞
dx0

∫

Ml (x0)
φi(x0, . . . , xN )ψµ(x0, . . . , xN )dx1 · · ·dxN

=
1

p
N + 1

N
∑

J=0

(−1)J
∫ ∞

−∞
dx0 fk(i)0

(x0) fq(µ)J
(x0)

∫

Ml (x0)
Φ~k(i)[0]Φ~q(µ)[J]

=
1

l!
p

N + 1

N
∑

J=0

(−1)J
∫ ∞

−∞
dx0 fk(i)0

(x0) fq(µ)J
(x0)∂

l
ε det(AJ + εBJ )ε=0, (13)

where in the last step we have used the formula in Appendix A.1. The matrix AJ is defined
by AJ

kl =
∫ x0

−∞ fk(i)k+1
fq(µ)l

for l < J and AJ
kl =

∫ x0

−∞ fk(i)k+1
fq(µ)l+1

for l ≥ J while BJ is defined by

BJ
kl =

∫∞
x0

fk(i)k+1
fq(µ)l

for l < J and BJ
kl =

∫∞
x0

fk(i)k+1
fq(µ)l+1

for l ≥ J . To compute the derivatives

efficiently we evaluate the determinant for several values of ε, linearly spaced in (−1,1), and
fit a polynomial. We will encounter similar, but more involved, calculations when we compute
the densities.

3.4 Constructing the basis

We will construct our basis by starting with the n states at zero interaction. We then add the
infinite interaction states one by one, and orthonormalize after each added state. In other
words, each state at infinite interaction |ψµ〉 corresponds to a state |χµ〉, which is a linear
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combination of all the |φi〉 and the |χν〉 with ν < µ such that it is orthogonal to all of these
states. This procedure will be explained below.

We define Ciµ = 〈φi|ψµ〉 and Wµν = 〈χµ|ψν〉. Note that neither of these matrices are
symmetric. The states |χµ〉 are then given by

|χµ〉= Nµ

 

|ψµ〉 −
n−1
∑

i=0

Ciµ|φi〉 −
µ−1
∑

ρ=0

Wρµ|χρ〉

!

, (14)

where the normalization constant is given by

Nµ =

 

1−
n−1
∑

i=0

C2
iµ −

µ−1
∑

ρ=0

W 2
ρµ

!−1/2

. (15)

The Wµν can be computed inductively. We first have that

W0ν = N0

�

δ0ν −
n−1
∑

i=0

Ci0Ciν

�

. (16)

Then, for any µ, assuming knowledge of Wρσ where ρ ≤ µ− 1, we can compute Wµν as

Wµν = Nµ

 

δµν −
n−1
∑

i=0

CiµCiν −
µ−1
∑

ρ=0

WρµWρν

!

, (17)

where Nµ is also given in terms of known Wρσ. Given the Wµν, Ciµ and Nµ we now know our
truncated basis (|φ0〉, . . . , |φn−1〉, |χ0〉, . . . , |χm−1〉) ≡ (ξ0, . . . ,ξm+n−1). We will then express
our Hamiltonian in this basis and numerically diagonalize it to find approximations to the
eigenstates and energies.

Note that the construction of the basis ξi in this subsection assumes that none of the states
are linearly dependent. The only states at infinite interaction that can be linearly dependent
with the states at zero interaction are the totally antisymmetric states, namely the states with
coefficients a(µ)0 = . . . = a(µ)N = 1, and thus one may have to exclude some of these states
(or exclude some states at zero interaction) such that the final basis only contains states that
are linearly independent. However, note that totally antisymmetric states are anyway already
eigenstates to the Hamiltonian at finite g, and thus can be safely removed since they will be
orthogonal to any non-trivial eigenstates. We will thus always exclude totally antisymmetric
states at infinite interaction.

3.5 The Hamiltonian expressed in the basis

We will now express the Hamiltonian in the |ξi〉 basis by computing 〈ξi|H|ξ j〉. We will write
the Hamiltonian as

H = H0 + gV, (18)

where V is the contact interaction between the majority and minority particles and H0 is the
Hamiltonian at zero interaction. We will treat these two terms individually.

For the zero interaction states, we have 〈φi|H0|φ j〉 = δi j Ei , 〈φi|H0|χµ〉 = 0 due to the
orthogonality propery of the basis and also 〈ψµ|H0|ψν〉= δµνEµ. Let us define the quantity

Lµν = 〈ψµ|H|χν〉= Nν

 

Eµδµν −
n−1
∑

i=0

CiµCiνEi −
ν−1
∑

ρ=0

WρνLµρ

!

. (19)
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These can be computed recursively, starting with the known Lµ0. The matrix elements
〈χµ|H0|χν〉 are then given by

〈χµ|H0|χν〉= Nµ

 

Lµν −
µ−1
∑

ρ=0

Wρµ〈χρ|H0|χν〉

!

, (20)

which can also be calculated recursively starting with the known 〈χ0|H0|χν〉.

Now let us look at the interaction operator V . Note that 〈ξi|V |ψµ〉= 0 since V is a contact
interaction and 〈x |ψµ〉 vanishes when x0 = x j for 1 ≤ j ≤ N . Let us define Vi j = 〈φi|V |φ j〉.
We then have

Viµ = Nµ

 

−
n−1
∑

j=0

Vi jC jµ −
µ−1
∑

σ=0

WσµViσ

!

, (21)

which can be computed recursively starting with Vi,µ=0. Given these quantities, the remaining
matrix elements can be calculated as

Vµν = Nµ

 

−
n−1
∑

j=0

C jµVjν −
µ−1
∑

σ=0

WσµVσν

!

. (22)

To compute the matrix elements Vi j , note that the interaction operator between two parti-
cles, which we denote by V2, is defined as

〈x1, x2|V2|y1, y2〉= δ(x1 − y1)δ(y1 − y2)δ(x2 − y2), (23)

where 〈x1, x2| is a position space eigenstate for two particles. Now consider some discrete set
of single particle states |i〉, i = 0, 1, . . ., defined by the wavefunction by 〈x |i〉 = fi(x). The
matrix element for the interaction operator between two particles in this basis is then

〈k1, k2|V2|k′1, k′2〉=
∫ ∞

−∞
fk1
(x) fk2

(x) fk′1
(x) fk′2

(x) . (24)

Now we would like to know the matrix elements of the total interaction operator between two
many-body states ~k(i) = [k(i)0 ; k(i)1 , . . . , k(i)N ] and ~k( j) = [k( j)0 ; k( j)1 , . . . , k( j)N ] (and we again denote
~k(i)[0] = [k(i)1 , . . . , k(i)N ], and we assume k(i)1 > . . . > k(i)N ). The total interaction operator is
given as V =

∑N
l=1 V0l , where V0l is the interaction operator between particle 0 (the impurity)

and particle with index l. For two sets A and B with equal size, let us define |A− B| be the
number of elements that only appear in A (or equivalently in only B). For a particle with index
p, with p 6= 0, l, V0l is diagonal and thus we have

〈~k(i)|V |~k( j)〉= 0, (25)

if |~k(i)[0]− ~k( j)[0]|> 1. If |~k(i)[0]− ~k( j)[0]|= 1, we obtain

〈~k(i)|V |~k( j)〉= 〈k(i)0 , k(i)l |V2|k
( j)
0 , k( j)l ′ 〉(−1)l−l ′ , (26)

where l and l ′ are the unique indices such that k(i)l 6= k( j)l ′ and ~k(i)[0, l] = ~k( j)[0, l ′]. If
~k(i)[0] = ~k( j)[0], we instead obtain

〈~k(i)|V |~k( j)〉=
N
∑

l=1

〈k(i)0 , k(i)l |V2|k
( j)
0 , k( j)l 〉. (27)

This concludes our construction of the Hamiltonian H = H0 + gV , and all that remains is
diagonalizing the matrix 〈ξi|H|ξ j〉 to find the energies and wavefunctions.
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4 Observables

In this section we explain how to compute several important observables. They
will all be computed starting with a specific eigenstate, which we denote by |Ψ〉, or
Ψ(x0, . . . , xN ) = 〈x0, . . . , xN |Ψ〉 in the coordinate basis. This state is expressed as a linear
combination of the zero interaction states and infinite interaction states

|Ψ〉=
n−1
∑

i=0

Ci|φi〉+
m−1
∑

µ=0

Dµ|ψµ〉, (28)

which can be obtained easily given the expansion of Ψ in the basis {φi ,χµ}. Note that the
{φi ,ψµ} is not an orthonormal basis.

We will start by computing the single particle density, which is the easiest observable pre-
sented in this section. The equations for the other observables are similar in nature but with
varying extra degrees of complexity and subtleties, and thus it is recommended to understand
the single particle density computation in detail first.

4.1 Single particle minority density matrix

The single particle density matrix is defined by integrating out the coordinates of the majority
particles as

ρ(x0, y0) =

∫

Ψ∗(x0, x1, . . . , xN )Ψ(y0, x1, . . . , xN )

=

∫ n−1
∑

i=0, j=0

C∗i C jφ
∗
i (x0, x1, . . . , xN )φ j(y0, x1, . . . , xN )+

+

∫ n−1
∑

i=0

m−1
∑

µ=0

�

C∗i Dµφ
∗
i (x0, x1, . . . , xN )ψµ(y0, x1, . . . , xN )+

+Ci D
∗
µφi(y0, x1, . . . , xN )ψ

∗
µ(x0, x1, . . . , xN )

�

+

+

∫ m−1
∑

µ=0,ν=0

D∗µDνψ
∗
µ(x)ψν(x)

≡
∑

i, j

C∗i C jαi, j(x0, y0) +
∑

i,µ

�

C∗i Dµβi,µ(x0, y0)+

+ Ci D
∗
µβ
∗
i,µ(y0, x0)

�

+
∑

µ,ν

D∗µDνγµ,ν(x0, y0), (29)

where the integral is short for
∫

=
∫∞
−∞ d x1 · · ·

∫∞
−∞ d xN . The density matrix is useful since

it is related to the momentum distribution by a simple Fourier transform. For just the particle
density in coordinate space, we set x0 = y0. We will comment on how the computations sim-
plify for this special case.

The simplest term, namely between the zero interaction states is given by

αi, j(x0, y0) = f ∗
k(i)0

(x0) fk( j)0
(y0)δ~k(i)[0],~k( j)[0]. (30)

Here we are again using the notation that ~k[0] is equal to ~k with k0 removed, namely the set
{k1, . . . , kN}, and the Kronecker delta is thus equal to one if and only if the sets {k(i)1 , . . . , k(i)N }
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and {k( j)1 , . . . , k( j)N } are the same.

For the cross terms βi,µ, it will be useful to split up the integral into several regions, and
we write

∫

=
N
∑

l=0

∫

Ml

, (31)

where Ml as the set of points where y0 is smaller than exactly l of the x1, . . . , xN . We then
split up the term βi,µ(x0, y0) as

βi,µ(x0, y0) =
∑

l

β l
i,µ(x0, y0). (32)

The cross term is then given by

β l
i,µ(x0, y0) =

alp
N + 1

N
∑

J=0

(−1)J fk(i)0
(x0) fq(µ)J

(y0)

∫

Ml

Φ~k(i)[0](x1, . . . , xN )Φ~q(µ)[J](x1, . . . , xN )

=
al

l!
p

N + 1

N
∑

J=0

(−1)J fk(i)0
(x0) fq(µ)J

(y0)∂
l
ε det(AJ + εBJ )ε=0(y0), (33)

where Φ represents a totally antisymmetric state. The matrix AJ is defined by
AJ

ab =
∫ y0

−∞ fk(i)a+1
fq(µ)b

for b < J and AJ
ab =

∫ y0

−∞ fk(i)a+1
fq(µ)b+1

for b ≥ J while BJ is defined

by BJ
ab =

∫∞
y0

fk(i)a+1
fq(µ)b

for b < J and BJ
ab =

∫∞
y0

fk(i)a+1
fq(µ)b+1

for b ≥ J . Here a and b take the

values 0, . . . , N − 1. For a derivation of this equation see A.1.

For the density where x0 = y0, this works also for the infinite interaction terms, namely
we can write

γl
µ,ν(x0) =

a2
l

N + 1

N
∑

J ,J ′=0

(−1)J+J ′ fq(µ)J
(x0) fq(ν)

J′
(x0)

∫

Ml

Φ~q(µ)[J]Φ~q(ν)[J ′]

=
a2

l

l!(N + 1)

N
∑

J ,J ′=0

(−1)J+J ′ fq(µ)J
(x0) fq(ν)

J′
(x0)∂

l
ε det(AJ ,J ′ + εBJ ,J ′)ε=0(x0), (34)

where now the matrices AJ ,J ′ and BJ ,J ′ are defined by AJ ,J ′

ab =
∫ x0

−∞ fq(µ)a+σ
fq(ν)b+δ

and

BJ ,J ′

ab =
∫∞

x0
fq(µ)a+σ

fq(ν)b+δ
where σ = 0 for a < J , σ = 1 for a ≥ J , δ = 0 for b < J ′ and

δ = 1 for b ≥ J ′. Here a and b take the values 0, . . . , N − 1 and we refer again to A.1 for a
derivation of the determinant formulas.

However, when x0 6= y0, it is necessary to split the integral in more regions. We then write

∫

=
N
∑

l=0,s=0

∫

Ml,s

, (35)

where Ml,s is the region where x0 and y0 are smaller than exactly l respectively s of the
x1, . . . , xN . We then split up the terms γµ,ν(x0, y0) as

γµ,ν(x0, y0) =
∑

l,s

γl,s
µ,ν(x0, y0). (36)
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The term only involving infinite interaction states is then given by

γl,s
µ,ν(x0, y0) =

al as

N + 1

N
∑

J ,J ′=0

(−1)J+J ′ fq(µ)J
(x0) fq(ν)

J′
(y0)

∫

Ml,s

Φ~q(µ)[J]Φ~q(ν)[J ′]

=
al as

|l − s|!(min(l, s))!
p

N + 1

N
∑

J ,J ′=0

(−1)J+J ′ fq(µ)J
(x0) fq(ν)

J′
(y0)×

∂ |l−s|
ε ∂ min(l,s)

τ det(AJ ,J ′ + εBJ ,J ′ +τC J ,J ′)(x0, y0)|ε=0,τ=0 . (37)

Now the matrices are defined as Aab =
∫min(x ,x ′)
−∞ fq(µ)a+σ

(x ′′) fq(ν)b+δ
(x ′′)dx ′′,

Bab =
∫max(x ,x ′)

min(x ,x ′) fq(µ)a+σ
(x ′′) fq(ν)b+δ

(x ′′)dx ′′ and Cab =
∫∞

max(x ,x ′) fq(µ)a+σ
(x ′′) fq(ν)b+δ

(x ′′)dx ′′ where

σ = 0 for a < J , σ = 1 for a ≥ J , δ = 0 for b < J ′ and δ = 1 for b ≥ J ′. The indices a and b
take the values 0, . . . , N − 1. See A.2 for a derivation of this formula.

4.2 Majority particle density matrix

The single particle majority density matrix is defined by integrating out the coordinate of the
single minority particle and the coordinates of N − 1 of the majority particles. We thus write

ρmaj(x0, y0) =

∫

Ψ∗(x0, x1, . . . , xN )Ψ(x0, y1, . . . , xN )

=

∫ n−1
∑

i=0, j=0

C∗i C jφ
∗
i (x0, x1, . . . , xN )φ j(x0, y1, . . . , xN )+

+

∫ n−1
∑

i=0

m−1
∑

µ=0

�

C∗i Dµφ
∗
i (x0, x1, . . . , xN )ψµ(x0, y1, . . . , xN )+

+Ci D
∗
µφi(x0, y1, . . . , xN )ψ

∗
µ(x0, x1, . . . , xN )

�

+

+

∫ m−1
∑

µ=0,ν=0

D∗µDνψ
∗
µ(x0, x1, . . . , xN )ψν(x0, y1, . . . , xN )

≡
∑

i, j

C∗i C jα
maj
i, j (x1, y1) +

∑

i,µ

C∗i Dµ

∫

d x0β
maj
i,µ (x0, x1, y1)+

+ Ci D
∗
µ

∫

d x0β
maj∗
i,µ (x0, x1, y1) +

∑

µ,ν

D∗µDν

∫

d x0γ
maj
µ,ν(x0, x1, y1), (38)

where in all but the last line the integral is short for
∫

=
∫∞
−∞ d x2 · · ·

∫∞
−∞ d xN and in the last

line we have separated out the d x0 integral in all but the first term. In this case there are not
many simplifications when x1 = y1. The zero interaction term is given by

α
maj
i, j (x1, y1) =

δk(i)0 ,k( j)0

N

N+1
∑

I=1,J=1

(−1)I+J f ∗
k(i)I

(x1) fk( j)J
(y1)δ~k(i)[0,I],~k( j)[0,J]. (39)

The latter delta function means that this expression is zero unless the set ~k(i) with k(i)0 and k(i)I

removed and the set ~k( j) with k( j)0 and k( j)J removed, are equal, in which case it is equal to one.

For the cross term β
maj
i,µ (x1, y1), we split it up into N terms βmaj,l , corresponding to x0 being
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smaller than exactly l of the x2, . . . , xN . We have

β
maj,l
i,µ (x0, x1, y1) =

a(µ)(l, x0, y1)p
N(N + 1)

N+1
∑

I=1,J=0,J ′=0,J ′ 6=J

sgn(J , J ′)(−1)I+1 fk(i)I
(x1) fq(µ)

J′
(y1)

fk(i)0
(x0) fq(µ)J

(x0)

∫

Ml

Φ~k(i)[0,I](x2, . . . , xN )Φ~q(µ)[J ,J ′](x2, . . . , xN )

=
a(l, x0, y1)

l!
p

N(N + 1)

N+1
∑

I=1,J=0,J ′=0,J ′ 6=J

sgn(J , J ′)(−1)I+1 fk(i)I
(x1) fq(µ)

J′
(y1)

fk(i)0
(x0) fq(µ)J

(x0)∂
l
ε det(A0,I ;J ,J ′ + εB0,I ;J ,J ′)ε=0(x0), (40)

where the integral is again short for
∫

=
∫∞
−∞ d x0d x2 · · ·

∫∞
−∞ d xN . The sign

sgn(J , J ′) is defined as (−1)J+J ′ if J ′ < J and −(−1)J+J ′ otherwise. We have
defined a(µ)(l, x0, y1) as being equal to a(µ)l if x0 < y1 and equal to a(µ)l+1 oth-
erwise. This formula does not simplify much for the density where x1 = y1.
We have defined the matrices A0,I ;J ,J ′

ab =
∫ x0

−∞ f[~k(i)(0)(I)]a(x
′) f[~q(µ)(J)(J ′)]b(x

′)d x ′ and

B0,I ;J ,J ′

ab =
∫∞

x0
f[~k(i)(0)(I)]a(x

′) f[~q(µ)(J)(J ′)]b(x
′)d x ′, and simplified the notation by assum-

ing that ~S(I) is the (ordered) set S with the element with index I removed.

Now let’s consider the term γ. We now have the expression

γmaj,l
µ,ν (x0, x1, y1) =

a(µ)(l, x0, x1)a(ν)(l, x0, y1)
N(N + 1)

N+1
∑

I 6=I ′,J 6=J ′
sgn(I , I ′)sgn(J , J ′) fq(µ)

I′
(x1) fq(ν)

J′
(y1)

fq(µ)I
(x0) fq(ν)J

(x0)

∫

Ml

Φ~q(µ)[I ,I ′](x2, . . . , xN )Φ~q(ν)[J ,J ′](x2, . . . , xN )

=
a(µ)(l, x0, x1)a(ν)(l, x0, y1)

l!N(N + 1)

N+1
∑

I 6=I ′,J 6=J ′
sgn(I , I ′)sgn(J , J ′) fq(µ)

I′
(x1) fq(ν)

J′
(y1)

fq(µ)I
(x0) fq(ν)J

(x0)∂
l
ε det(AI ,I ′;J ,J ′ + εB I ,I ′;J ,J ′)ε=0(x0). (41)

The matrices are now analogously defined, namely

AI ,I ′;J ,J ′

ab =

∫ x0

−∞
f[~q(µ)(I)(I ′)]a(x

′) f[~q(ν)(J)(J ′)]b(x
′)d x ′

and

B I ,I ′;J ,J ′

ab =

∫ ∞

x0

f[~q(µ)(I)(I ′)]a(x
′) f[~q(ν)(J)(J ′)]b(x

′)d x ′.

4.3 Momentum distributions

The momentum distributions are obtained as a Fourier transform of the single particle density
matrices. Let us denote the single particle density matrices by ρmin(x , y) and ρmaj(x , y) for
the minority respectively majority species. The momentum distributions are then defined as

ρmin(p) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
d xd yeip(x−y)ρmin(x , y)

ρmaj(p) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
d xd yeip(x−y)ρmaj(x , y) ,

(42)

and have the same normalization as the coordinate space densities.
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Figure 1: The two potentials used in this paper, the harmonic well with angu-
lar frequency ω and the double well described in Appendix C with parameters

x2 = −x0 = 2
q

ħh
ωm , ω0 =ω1 ≡ω, ∆0 = 0, ∆1 = 1.5×ħhω and ∆2 = 0.8×ħhω.

4.4 Minority-Majority correlation function

The last observable we will consider is the coordinate space minority-majority correlation func-
tion, which is defined as

ρ(x0, x1) =

∫

Ψ∗(x0, x1, . . . , xN )Ψ(x0, x1, . . . , xN ), (43)

where the integral is short for
∫

=
∫∞
−∞ d x2 · · ·

∫∞
−∞ d xN . The computation of the minority-

majority correlation functions is very similar to the computation of the majority density; take
the formulas for the majority density matrix and set x1 = y1, and drop the integrals over x0.
Dropping the x0 integral in the β and γ terms is trivial, and the α term is given by

αcorr
i, j (x0, x1) =

1
N

f ∗
k(i)0

(x0) fk( j)0
(x0)

N+1
∑

I=1,J=1

(−1)I+J f ∗
k(i)I

(x1) fk( j)J
(x1)δ~k(i)[0,I],~k( j)[0,J]. (44)

5 Examples

In this section we will consider several examples with different number of particles and in
different background potentials. For two particles, we will compare with the analytic result
for a harmonic trap. For more particles, we will compare with results computed using matrix
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product states as explained in Appendix D.

Recall from Section 3, that when describing the basis we will write [k(i)0 ; k(i)1 , . . . , k(i)N ] to

denote a zero interaction state with index i, with the single particle in state k(i)0 and the ma-

jority particles in the antisymmetric state with quantum numbers k(i)1 > . . .> k(i)N . A state with

index µ at infinite interaction will be denoted by two sets of numbers, [q(µ)0 , . . . , q(µ)N ]∞ and

[a(µ)0 , . . . , a(µ)N ], such that the wavefunction is a totally antisymmetric wavefunction built from

q(µ)0 > . . . > q(µ)N and which is multiplied with the coefficient a(µ)l if x0 is smaller than exactly
l of x1, . . . , xN .

When truncating the infinite basis (of both zero and infinite interaction states), some
choice must be made on how this truncation should be done. In this paper, we will sim-
ply truncate when the number of particle excitations above the lowest state is above a cer-
tain threshold, namely we will construct the basis from all zero interaction states that satisfy
∑

a k( j)a −
∑

a k(0)a ≤ ε and all infinite interaction states that satisfy
∑

a q(µ)a −
∑

a q(0)a ≤ ε. We
will refer to this cutoff as simply the basis threshold and denote it by ε in this section. For
the harmonic oscillator potential, this is equivalent to an energy cutoff on the states, since the
energy is linear in the quantum numbers, but for other potentials this is not the case. We will
leave a deeper investigation on the optimal selection of states for future work.

Note that in this paper we work in absolute coordinates and thus our energy spectra, such
as figures 2 and 7, show all energy levels. This must be taken into account when comparing
with for instance [51], where only the internal energy levels are shown and thus does not
include excitations of the center of mass of the particles.

5.1 Two particles in a harmonic potential

In this section we will make detailed comparisons between the methods in this paper and
the analytically known formula for two particles. A full derivation of the two particle system
can be found in Appendix B. The basis is built from states at zero interaction and from states
at infinite interaction. The states at zero interaction are specified by two quantum numbers,
denoted [k0; k1]. There are no constraints on these two quantum numbers as we are dealing
with two distinguishable particles. At infinite interaction, the states are built by taking a totally
antisymmetric state, denoted by ~q = [q0, q1]∞ with q0 > q1, but by multiplying with different
coefficients a0 and a1 depending on the position space coordinates. In other words, the wave
function is given by a0Φ~q(x0, x1) when x0 > x1 and a1Φ~q(x0, x1) when x0 < x1 where Φ is the
totally antisymmetric state. A basis for such states is given by all antisymmetric states and the
coefficients ~a(1) = [1, 1] and ~a(2) = [1,−1]. However, note that ~a = [1,1] just corresponds
to the totally antisymmetric state and is thus included among (a linear combination of) the
zero interaction states. As was mentioned in the end of Section 3.4, it is important to exclude
such linearly dependent states to avoid singular behaviour in the Gram-Schmidt orthogonal-
ization process when constructing the basis. We will thus exclude the states with coefficients
~a(1) = [1, 1] and thus for two particles it is enough to specify a state at infinite interaction
only by the quantum numbers ~q = [q0, q1] and we leave the coefficients [1,−1] implicit. For
example, for a basis threshold of ε= 2, we have the zero interaction states [0,0], [0, 1], [1, 0],
[2,0], [0, 2] and [1,1], as well as the infinite interaction states [0,1]∞, [0,2]∞, [0,3]∞ and
[1,2]∞ (with the implicit coefficients [1,−1]).

13

https://scipost.org
https://scipost.org/SciPostPhys.9.1.005


SciPost Phys. 9, 005 (2020)

5.1.1 Energies

In Figure 2 we show the energy of the lowest six states computed using our variational ap-
proach and the analytic formula, for various values of the coupling g. The ground state inter-
polates between the state [0,0] at g = 0 to the state [1,0]∞ at g = +∞ (with the implicit
coefficients [1,−1]).The first and third excited states are totally antisymmetric states (unaf-
fected by the interaction) with the quantum numbers [0, 1] and [0, 2].

As we can see from this plot, there is an agreement between the results, but it is difficult
to appreciate exactly how well they agree. In Figure 3 we therefore plot the energy difference
of the analytic result and the variational result for g = 1/2, 1,2 for the ground state and one
of the excited states for various basis sizes. As we can see, they agree to an extraordinary
accuracy (note the logarithmic scale). Each data point corresponds to a basis constructed with
basis threshold ε= 0, 2,4, . . . The x-axis then shows the total size of the basis.

The reason why we look at the fourth excited state is that this is the first “nontrivial”
excited state when computed using the analytical formula. As explained in Appendix B, the
non-trivial part of the analytical derivation is computing the eigenstates of the relative motion
Hamiltonian, and to get the full spectrum we also need to add the energy for the center of
mass Hamiltonian which is just a free harmonic oscillator. In the variational method, where
we work directly in absolute coordinates, we automatically get all states. It turns out that the
first excited state is just a totally antisymmetric state, the second excited state is just the first
state plus a center of mass excitation, and the third excited state is then also just a totally
antisymmetric state (actually the first excited state plus center of mass motion). The fourth
excited state is then the first excited state which corresponds to a non-trivial eigenstate to the
relative motion Hamiltonian and where the center of mass energy is zero.

5.1.2 Position space densities

In Figure 4 we show the position space density for the ground state at g = 1 compared to the
analytical result. We see that when we only use two states in the basis there is a small discrep-
ancy between the two methods, but when we use larger basis sizes the methods agree very
well. A more detailed comparison can be seen in Figure 5, where we plot the density at three
arbitrary values of x as a function of the basis size. We see that they agree exceptionally well
with the analytical result. To compute the density from the analytical result, we need to per-
form an integral transforming from Jacobi coordinates to absolute coordinates (see Appendix
B).

5.1.3 Momentum space densities

Finally we will compare the momentum densities, which is computed from the density matrix
by equation 42. The comparison between the analytical and the variational methods is shown
in Figure 6. Again, there is a discrepancy with the analytical result when only using 2 basis
states, but when using 10 basis states the results agree very well.

5.2 Three particles

In this section we will consider the case of three particles, namely one single particle and
two identical fermions. The states at zero interaction are now given by three quantum num-
bers [k(i)0 ; k(i)1 , k(i)2 ], and an infinite interaction state is defined using three quantum numbers

[q(µ)0 , q(µ)1 , q(µ)2 ] and three coefficients a(i)l . The coefficients must be linearly independent and
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Figure 2: Energies for the lowest six states for the 1+1 system in a harmonic trap,
computed both using the exact analytical method and the variational method.

orthogonal, and we will choose the coefficients [1, 1,1], [
p

3/2,0,
p

3/2] and
[−1/

p
2,
p

2,−1/
p

2]. For example, for a basis threshold ε = 2, we have the 7 zero interac-
tion states [0; 0,1], [0;0, 2], [1;0, 1], [0; 0,3], [0; 1,2] and [1;0, 2] and [2;0, 1]. The infinite
interaction states are built from the 4 antisymmetric states [0,1, 2]∞, [0, 1,3]∞, [0, 1,4]∞
and [0, 2,3]∞, all multiplied with the corresponding coefficients. Note however, as explained
in 3.4, the antisymmetric state [0, 1,2]∞ is linearly dependent on some of the zero interaction
states, and for simplicity we will thus exclude all antisymmetric states (the states at infinite
interaction with coefficients [1,1, 1]).

5.2.1 Energies

Figure 7 shows the lowest seven energies for the 2+1 system with harmonic potential. We
compare with the matrix product states (MPS) result at g = 1.0 for the ground state. Note that
to obtain good agreement, we need to compute the energy for several numerical accuracies
and then extrapolate the result. The MPS computations for the different accuracies are given
by the red dots, and the extrapolated value is the black cross. The dashed lines are the ground
state computed with the variational method using basis states with a basis threshold of ε= 0,
2, 4 and 6, and the solid lines are computed using a basis cutoff of ε = 8. These correspond
to basis sizes of 1+2,7+8, 22+22, 50+46 and 95+82 respectively, where the first (second)
number is the number of zero (infinite) interaction states the basis is constructed from. Our
vatiational method easily gives us the energies of several states at many different values of g,
which is one of the main advantages of the method compared to for example the MPS method
where each computation only yields the energy and wavefunction at one particular interaction.

15

https://scipost.org
https://scipost.org/SciPostPhys.9.1.005


SciPost Phys. 9, 005 (2020)

0 10 20 30 40 50 60 70
Number of basis states

10 11

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

E v
ar

ia
tio

na
l

E a
na

ly
tic

E a
na

ly
tic

g m
3 = 2

g m
3 = 1

g m
3 = 1/2

Ground state
4th excited state

Figure 3: Convergence of the energies in the 1+1 system in a harmonic trap, com-
paring the variational method to the analytical result.

5.2.2 Position space densities

Figure 8 and 9 shows the position space minority and majority density at g
q

m
ħh3ω
= 1 for the

2+1 system for different basis sizes compared with MPS method. In Figure 8 we assume a
harmonic potential, while in Figure 9 we consider the double-well geometry shown in Figure
1. In both cases we have good agreement with the MPS result. The computations are for
energy cutoffs of 0, 2 and 4.

In Figure 10 we plot the integral of the squared difference of the densities for different
basis sizes to better compare the convergence.

5.2.3 Momentum space densities

In Figure 11 we compare the momentum space densities at g
q

m
ħh3ω
= 1 in the harmonic well

with the MPS result. We see that they agree quite well already for the lowest possible number
of basis states, and we again see that the discrepeancy goes to zero as we increase the basis
size.

5.3 Seven particles

In this section we study the 6+1 system. Figure 12 and Figure 13 shows the position space den-
sity profiles for the ground state in the double well potential for g

q

m
ħh3ω
= 1 and g

q

m
ħh3ω
= 10.

We see that for large number of majority particles the system starts to look like a single impu-
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Figure 4: Position space density for the ground state for one of the particles for dif-
ferent basis sizes compared to the analytical result for the 1+1 system in a harmonic
well at g

q

m
ħh3ω
= 1.

rity in a homogeneous bath. Moreover, when the interaction increases the minority particle
density clearly gets deformed, which is reproduced with both methods, and we see that our
method does work well both for intermediate and strong interactions. However, the discrep-
ancy with the MPS result is clearly larger compared to the 2+1 system.

5.4 Eleven particles

Figure 14 shows the position space density profiles for the ground state in the harmonic trap
for g

q

m
ħh3ω
= 1 for the 10+1 system, and we see that the method still works well even for

higher particle numbers.

6 Conclusions

In this paper we explored a new method for studying strongly coupled one-dimensional sys-
tems where an impurity interacts with a background of identical fermions, a method that gen-
eralizes that of [51]. Our results compare well both with analytical methods for two particles
and with numerical methods based on matrix product states. However, our method has the
fundamental advantage of allowing calculations for arbitrary values of the interaction strength
by only constructing the basis once. Generally, numerical approaches would require a full cal-
culation for every value of the interaction strength. To compute the eigenstates and energies,
we just need to change the interaction parameter g in the Hamiltonian before diagonaliz-
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Figure 5: Detailed comparison between position space density in the 1+1 system at
g
q

m
ħh3ω
= 1 at particular values of x compared to the analytical result.

ing. Moreover, most numerical methods would perform worse the stronger the interaction
strength is, but our method is exact at infinite interaction and thus works well both for small
and strong interactions, with a peak of slower convergence at some intermediate interaction
strength. Since our states are chosen such as to well approximate a state at finite interaction,
the basis size is also relatively small and the computational power needed for the diagonal-
ization is negligible. In particular, the method does not require sophisticated diagonalization
algorithms or high performance computing tools, which is often the case for exact diagonal-
ization methods. Note, moreover, that the matrix we diagonalize is not a particularly sparse
matrix. Computing densities is more computationally heavy since they need to be evaluated
for each position space coordinate separately, and thus scales linearly with the number of grid
points. For majority densities, a double numerical integral must be performed which makes
them heavier than the minority density. Furthermore, each position space coordinate for the
minority density can be computed in parallel which can further decrease the computation time.
While it is possible that our numerical techniques can be significantly improved, such as finding
a way to efficiently parallelize the majority density calculations or optimize the grids on which
we evaluate the numerical integrals, we will leave such investigations for future work. We
also want to again stress that the time consuming calculations only have to be performed once
for each chosen basis and we can then easily obtain the densities for any interaction strength g.

In this paper we only considered repulsive interactions. The method will not generalize
trivially to attractive interaction since on the attractive sides, there are bound states that do not
converge to any state when the interaction goes to infinite interaction strength, but instead
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Figure 6: Momentum distribution of one of the particles in the ground state at
g
q

m
ħh3ω
= 1 for the 1+1 system in the harmonic trap, compared with the analytical

solution.

diverges with infinitely negative energy. Such states would not be well approximated by a
linear combination of exact solutions at infinite interaction and states at zero interaction. It
should be possible to extend the basis considered in this paper to states that would also capture
these bound states, similarly to what was done in [51], but we will leave the study of attractive
interactions for future work.
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Figure 7: Energies for the lowest seven states for the 2+1 system computed using the
variational method. The result using the matrix product states method for increasing
accuracy is shown in red dots, with the black star being the extrapolated value. The
energies are computed using basis states with basis threshold 8. The ground state is
computed also using basis threshold 0, 2, 4 and 6 to show the convergence, which
are shown with dashed lines.

A Some integral formulas

A.1 Integral 1

In this section we will derive an expression for

I k
~q,~p(x)≡

∫

Mk(x)
Φ~q(x1, . . . , xn)Φ~p(x1, . . . , xn), (45)

where Mk(x) is the set where x is smaller than exactly k of the coordinates x1, . . . , xn and
Φ~v is the (normalized) totally antisymmetric wave function of the states corresponding to the
quantum numbers in ~v = (v1, . . . , vn). We will use induction to show that

I k
~q,~p(x) =

1
k!
∂ k
ε det(A+ εB)ε=0, (46)

where A is the matrix defined by Aab(x) =
∫ x
−∞ fqa

(x ′) fpb
(x ′)dx ′ and

Bab =
∫∞

x fqa
(x ′) fpb

(x ′)dx ′ = δab − Aab. For k = 0 we easily obtain

I0
~q,~p(x) =

∫ x

−∞
dx1 · · ·

∫ x

−∞
dxnΦ~qΦ~p = det A(x), (47)
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Figure 8: Position space density for the ground state at g
q

m
ħh3ω
= 1 for the 2+1

system in the harmonic potential, for different basis sizes compared to the matrix
product states method. The density profile localized in the center is the minority
density and the other one is the majority density.

which proves the base case. Now assume that I j
~q,~p(x) =

1
j!∂

j
ε det(A+εB)ε=0 for j < k. We then

have

I k
~q,~p(x) =

1
k

∑

i, j

(−1)i+ j

∫ ∞

x
fqi
(x ′) fp j

(x ′)dx ′ I k−1
~q(i),~p( j)(x)

=
1
k

∑

i, j

(−1)i+ j

∫ ∞

x
fqi
(x ′) fp j

(x ′)dx ′
1

(k− 1)!
∂ k−1
ε det(A(i)( j) + εB(i)( j))ε=0

=
1
k
∂ k−1
ε

�

1
(k− 1)!

∂β det(A+ εB + βB)β=0

�

ε=0

=
1
k!
∂ k
ε det(A+ εB)ε=0, (48)

where we have use the notation that N(i)( j) is the matrix N with row i and column j re-
moved and similarly ~q(i) is the ordered set with the element indexed i removed. We also
used the formula tr[MadjN] =

∑

(−1)i+ j Mi j det N(i)( j) = ∂ε det(M + εN)ε=0 and he factor
1/k =

�N
k

�

/
�

N
�N−1

k−1

��

can be inferred from combinatorics and the normalization of the wave-
functions. Thus our formula is proven by induction.
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Figure 9: Position space density for the ground state at g
q

m
ħh3ω
= 1 for the 2+1

system in the double well potential in Figure 1, for different basis sizes compared
with the matrix product states method. The profile localized in the left well is the
minority density and the other one is the majority density.

A.2 Integral 2

Let us now consider the integral

I k,l
~q,~p(x , x ′)≡

∫

Mk,l (x ,x ′)
Φ~q(x1, . . . , xn)Φ~p(x1, . . . , xn), (49)

where Mk,l(x , x ′) is the set where x is smaller than exactly k of the coordinates x1, . . . , xn and
x ′ is smaller than exactly l of the coordinates x1, . . . , xn. Φ~v is the (normalized) totally antisym-
metric wave function of the states corresponding to the quantum numbers in ~v = (v1, . . . , vn).
The result is

I k,l
n,m(x , x ′) =

1
|k− l|!(min(k, l))!

∂ |k−l|
ε ∂ min(k,l)

ν det(A+ νB + εC)ε=0,ν=0, (50)

where Ai j =
∫ min(x ,x ′)
−∞ fni

(x ′′) fm j
(x ′′)dx ′′, Ci j =

∫ max(x ,x ′)
min(x ,x ′) fni

(x ′′) fm j
(x ′′)dx ′′ and

Bi j =
∫∞

max(x ,x ′) fni
(x ′′) fm j

(x ′′)dx ′′. We can also prove this by induction. Note that if we
assume x > x ′ and k = 0, the formula is the same as (46) if the upper integral limit is changed
from∞ to x and the same proof goes through. We will thus use this as a base case for our
induction proof and thus assuming without loss of generality that x > x ′, we can prove the
formula for l, k with k < l by assuming that it holds for k− 1, l − 1. Following the exact same
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Figure 10: Integrated difference square of the position space density for the ground
state at g

q

m
ħh3ω
= 1 for the 2+1 system compared with the matrix product states

method.

reasoning as in the proof in A.1, we have

I k,l
~q,~p(x , x ′) =

1
k

∑

i, j

(−1)i+ j

∫ ∞

x
fqi
(x ′′) fp j

(x ′′)dx ′′ I k−1,l−1
~q(i),~p( j) (x , x ′)

=
1
k

∑

i, j

(−1)i+ j

∫ ∞

x
fqi
(x ′′) fp j

(x ′′)dx ′′

1
|k− l|!k!

∂ |k−l|
ε ∂ k−1

ν det(A(i)( j) + νB(i)( j) + εC(i)( j))ε=0,ν=0

=
1
k
∂ |k−l|
ε ∂ k−1

ν

�

1
|k− l|!(k− 1)!

∂β det(A+ νB + εC + βB)β=0

�

ε=0,ν=0

=
1

|l − k|!k!
∂ |k−l|
ε ∂ k

ν det(A+ νB + εC)ε=0,ν=0. (51)

Since we assumed that k < l and x > x ′, and the exact same proof can be done for k > l and
x < x ′, formula (50) follows.

B Two particle system

In this section we review the analytical solution of two particles in a harmonic trap, with a
delta function interaction [54]. The full Hamiltonian is

H =
1
2

x2
1 +

1
2

x2
2 +

1
2

p2
1 +

1
2

p2
2 + V, (52)
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Figure 11: Momentum space density of the ground state at g
q

m
ħh3ω
= 1 for the 2+1

system in the harmonic trap, compared with the matrix product states method

where
〈x1, x2|V |x ′1, x ′2〉= gδ(x1 − x2)δ(x1 − x ′1)δ(x2 − x ′2). (53)

By introducing Jacobi coordinates x = (x1 − x2)/
p

2, p = (p1 − p2)/
p

2, X = (x1 + x2)/
p

2
and P = (p1 + p2)/

p
2 we can split this Hamiltonian into two parts, namely

H = Hrel +HCM, (54)

where HCM = X 2/2+ P2/2 is just a harmonic oscillator corresponding to the center-of-mass
motion, and

Hrel =
x2

2
+

p2

2
+

g
p

2
δ(x)δ(x − x ′). (55)

The hard part, which will occupy most of this appendix, is solving for the eigenstates of Hrel.
The full set of eigenstates and eigenenergies are then obtained by tensor product with the
eigenstates of HCM.

We will solve for the wavefuctions by first expanding in a harmonic oscillator basis. The
Harmonic oscillator eigenfunctions are given by

fn(x) =
1

p
2nn!

π−1/4e−
x2
2 Hn(x), (56)

where Hn are the Hermite polynomials. The energy is given by En = n+ 1/2. Let |Φ〉 be an

24

https://scipost.org
https://scipost.org/SciPostPhys.9.1.005


SciPost Phys. 9, 005 (2020)

4 3 2 1 0 1 2 3 4
x [ m ]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(x
)

[
m

]

Mi
no

rit
y

Majority

Variational, 4 basis states
Variational, 19 basis states
Variational, 61 basis states
MPS

2.3 1.6
0.50

0.52

0.54

Figure 12: Position space density for the ground state at g
q

m
ħh3ω
= 1 in the double

well potential in Figure 1 for the 6+1 system. The density profile localized in the left
well is the minority density and the other one is the majority density.

eigenstate for Hrel. We have

Hrel|Φ〉= EΦ|Φ〉 ⇒ En〈n|Φ〉+
∞
∑

m=0

〈n|V |m〉〈m|Φ〉= EΦ|Φ〉. (57)

Solving for cn ≡ 〈n|Φ〉 and defining the quantity A=
∑

fn(0)cn we obtain

cn =
g
p

2
fn(0)

A
EΦ − En

. (58)

Now multiplying both sides by fn(0) and summing over n, we can cancel A from both sides to
obtain

1=
g
p

2

∑

n

fn(0)2

EΦ − 1/2− n
=

g
p

2

∑

n

f2n(0)2

EΦ − 1/2− 2n
. (59)

For the case where A = 0, for which we can not cancel it from both sides to obtain equa-
tion (59), see Appendix B.1. For the Hermite polynomials, we have Hn(0) = 0 if n is odd,
and H2n(0) = (−1)n(2n!)/n!, which is the reason why we have omitted the odd terms. The
wavefunction is given by a similar formula, namely

Φ(x) =
g
p

2
A
∑

n

f2n(0) f2n(x)
EΦ − 2n− 1/2

. (60)
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Figure 13: Position space density for the ground state at g
q

m
ħh3ω
= 10 in the double

well potential in Figure 1 for the 6+1 system. The density profile localized in the left
well is the minority density and the other one is the majority density.

It thus makes sense to treat these simultaneously, so let us define

F(x) =
p
π
∑

n

f2n(0) f2n(x)
n− ν

. (61)

To compute this function, we use the following relation between Hermite polynomials and
Laguerre polynomials

H2n(x) = (−1)n22nn!L−1/2
n (x2). (62)

We thus obtain

F(x) =
∑

n

e−
x2
2 L−1/2

n (x2)

n− ν
. (63)

Now we use the integral representation

1
n− ν

=

∫ ∞

0

d y
1

(1+ y)2

�

y
1+ y

�n−ν−1

, (64)

to obtain

F(x) =
∫ ∞

0

d y
(1+ y)2

�

y
1+ y

�−ν−1

e−x2/2
∑

n

L−1/2
n (x2)

�

y
1+ y

�n

. (65)
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Figure 14: Position space density for the ground state at g
q

m
ħh3ω
= 1 in the harmonic

potential.

Now we can recognize the generating function e−t x/(1−t)(1− t)−α−1 =
∑

tn Lαn (x) to obtain

F(x) = e−x2/2

∫ ∞

0

d y(1+ y)ν−1/2 y−ν−1e−y x2
= Γ (−ν)e−x2/2U(−ν, 1/2, x2), (66)

where we have used a standard representation for the confluent hypergeometric function U .
At x = 0, we can use the relation U(−ν, 1/2,0) = Γ (1/2)/Γ (1/2 − ν) =

p
π/Γ (1/2 − ν), to

obtain

F(0) =
p
π
Γ (−ν)
Γ (1

2 − ν)
. (67)

Thus for the energy, we must solve the equation

1= −g
Fν=EΦ/2−1/4(0)

2
p

2π
= −

g

2
p

2

Γ (−EΦ/2+ 1/4)
Γ (−EΦ/2+ 3/4)

. (68)

For the wavefunction, we instead have

Φ(x) = −
gA

2
p

2π
Fν=EΦ/2−1/4(x) = −

gA

2
p

2π
Γ (−EΦ/2+ 1/4)e−x2/2U(−EΦ/2+ 1/4, 1/2, x2).

(69)
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To find the normalization constant A we can consider the normalization constraint

1=
∑

n

c2
n =

g2

2
A2
∑

n

f 2
n (0)

(EΦ − n− 1/2)2

=
g2

4
A2∂EΦ

Γ (−EΦ/2+ 1/4)
Γ (−EΦ/2+ 3/4)

. (70)

Defining ψ(x) = Γ ′(x)/Γ (x) and using the energy formula (68), we can simplify this to

A2 =
2
p

2
g(ψ(−EΦ/2+ 1/4)−ψ(−EΦ/2+ 3/4))

. (71)

B.1 Odd states

What we have obtained so far are all even parity states where the wavefunction in position
space is an even function. The odd parity states are just odd harmonic oscillator states and
they are unaffected by the interaction since they vanish at x = 0. These states would have
A= 0 and thus the step to obtain equation (59) would be illegitimate.

B.2 Absolute coordinates

The full eigenstates are then obtained by also multiplying by the center of mass states. The
complete wave function for H = Hrel +HCM is given by

Φk,n(x , X ) = Φk(x) fn(X ), (72)

where we have labeled all eigenstates of Hrel (both even and odd) by Φk for k = 0,1, . . . and fn
are just the standard harmonic oscillator wavefunctions. The energy is likewise Ek,n = EΦk

+En
where En = n+ 1/2 is the nth harmonic oscillator energy.

To compare with the variational method in this paper, we would also like to compute the
coordinate and momentum densities. Recall that x = (x1−x2)/

p
2 and X = (x1+x2)/

p
2. The

single particle density matrix is just the square of the wavefunction in absolute coordinates,
namely

ρ(x1, x2) = Φ
2
k,n(

x1 − x2p
2

,
x1 + x2p

2
), (73)

and the density is thus given by

ρ(x1) =

∫ ∞

−∞
Φ2

k,n(
x1 − x2p

2
,

x1 + x2p
2
)d x2. (74)

The momentum density can then be obtained by

ρ(p) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
d x1d x2eip(x1−x2)ρ(x1, x2). (75)

C Wavefunctions and energies for a smooth double well potential

In this appendix we give details on energies and wavefunctions of the double well potential.
The double well potential is defined as

V (x) =











1
2ω

2
0(x − x0)2 +∆0 x < xL < 0,

−1
2ω

2
1(x − x1)2 +∆1 x1 < x < x2,

1
2ω

2
2(x − x2)2 +∆2 x > x2 > 0,

(76)
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where we require x0 < x1 < x2 and xL < xR. Continuity of the potential as well as its
derivatives at two points xL and xR implies the equations

1
2
(xL − x0)

2ω2
0 +∆0 = −

1
2
(xL − x1)

2ω2
1 +∆1, (77)

−
1
2
(xR − x1)

2ω2
1 +∆1 =

1
2
(xR − x2)

2ω2
2 +∆2, (78)

ω2
0(xL − x0) = −ω2

1(xL − x1), (79)

−ω2
1(xR − x1) =ω

2
2(xR − x2). (80)

This system is uniquely solved for ω1, x1, xL and xR given the physically relevant quantities
ω0, ω2, x0, x2, ∆0, ∆1 and ∆2. The solution is given by

ω−2
1 =

1

2(∆2 −∆0)2ω
4
0ω

4
2

�

− 2
q

(x2 − x0)2(∆1 −∆0)(∆1 −∆2)ω6
0ω

6
2((x2 − x0)2ω2

0ω
2
2 + 2(∆2 −∆0)(ω2

0 −ω
2
2))

− 2(∆1 −∆0)(∆2 −∆0)ω
2
0ω

4
2 −ω

4
0ω

2
2(2(∆2 −∆0)(∆2 −∆1)

+ (x2 − x0)
2(−2(∆1 −∆0) + (∆2 −∆0))ω

2
2)
�

, (81)

x1 − x0 =
1

(∆2 −∆0)

�

(x2 − x0)(∆1 −∆0)−
1

(x2 − x0)ω
4
0ω

4
2

×

q

(x2 − x0)2(∆1 −∆0)(∆1 −∆2)ω6
0ω

6
2((x2 − x0)2ω2

0ω
2
2 + 2(∆2 −∆0)(ω2

0 −ω
2
2))
�

(82)

and then xL and xR are given by

xL =
x0ω

2
0 + x1ω

2
1

ω2
0 +ω

2
1

(83)

xR =
x2ω

2
2 + x1ω

2
1

ω2
2 +ω

2
1

. (84)

Extra care for these formulas must be taken when evaluating these expressions for∆0 =∆2.
In this case we have

ω2
1 =

8(∆1 −∆0)(x0 − x2)2ω
4
0ω

4
2

(x2 − x0)4ω
4
0ω

4
2 + 4(∆1 −∆0)2(ω2

2 −ω
2
0)2 − 4(∆1 −∆0)(x2 − x0)2ω2

0ω
2
2(ω

2
0 +ω

2
2)
(85)

x1 =
2(∆1 −∆0)ω2

0 + (2∆0 − 2∆1 + (x2
0 − x2

2)ω
2
0)ω

2
2

2(x0 − x2)ω2
0ω

2
2

. (86)

For the symmetric case (symmetric around x1 = (x0+x2)/2) where we also haveω0 =ω2,
we have

ω2
1 =

8(∆1 −∆0)ω2
0

8(∆0 −∆1) + (x0 − x2)2ω2
0

. (87)
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We can compute an upper limit on the parameter ∆1. The highest value is the value
such that ω1 =∞, namely we have the more well known double well potential which has
a discontinuous derivative between the wells. For such a potential the discontinuity is at the
intersection of the left and right wells, namely we solve

1
2
(xM − x0)

2ω2
0 +∆0 =

1
2
(xM − x1)

2ω2
2 +∆2, (88)

which results in the solution

xM =
x0ω

2
0 − x2ω

2
2 +

q

2(∆2 −∆0)ω2
0 + (2∆0 − 2∆2 + (x0 − x2)2ω2

0)ω
2
2

ω2
0 −ω

2
2

. (89)

Then the upper limit of ∆1 is given by ∆1,max =
1
2(xM − x0)2ω2

0 +∆0.
We will now work out the wavefunctions and energies. We will work in units where ħh= 1

and m = 1 (the mass of the particle) and for simplicity and we will define ν0 and ν2 by
E =ω0(ν0 +

1
2) +∆0 =ω2(ν2 +

1
2) +∆2. The eigenfunctions are now uniquely given by

ψ(x) = C0Dν0

�

−
p

2ω0(x − z0)
�

(90)

for x < xL and
ψ(x) = C2Dν2

�p

2ω2(x − z2)
�

(91)

for x > xR and for some constants C0, C2 (this follows since these are the only solutions with
the correct falloffs at x →±∞). The function D is the parabolic cylinder function given by

Dν(z) = 2ν/2e−z2/4

�

Γ (1
2)

Γ (1−ν
2 )

1F1

�

−
ν

2
;

1
2

;
z2

2

�

+
z
p

2

Γ (−1
2)

Γ (−ν2 )
1F1

�

1− ν
2

;
3
2

;
z2

2

�

�

, (92)

where 1F1 is the confluent hypergeometric function. Note that this function is a linear com-
bination of the two linearly independent solution of the Schrödinger equation in a harmonic
well, and the relative coefficient has been fixed by requiring falloff at infinity. In the interme-
diate region we need to solve the Schrödinger equation for an inverted harmonic well. It can
be showed that the solution then is

ψ(x) = C (1)1 K(1)ν1
(
p

2ω1(x − x1)) + C (2)1 K(2)ν1
(
p

2ω1(x − x1)), (93)

where

K(1)ν (z) = e−iz2/4
1F1(

iν
2
+

i
4
+

1
4

;
1
2

;
iz2

2
) (94)

and

K(2)ν (z) = e−iz2/4z1F1(
iν
2
+

i
4
+

3
4

;
3
2

;
iz2

2
) (95)

and where we have parametrized the energy as E =ω1(ν1 +
1
2) +∆1 (which we recall is also

equal to ω0(ν0+
1
2)+∆0 =ω2(ν2+

1
2)+∆2). Despite the complex arguments, these are real

functions. These solutions should now be glued smoothly across the points xL and xR such that
ψ and ψ′ are continuous. To simplify the equations, we will define r = ω2/ω1, R = ω/ω1,
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∆= ħhω1δ, C = ħhω1c and we work in units where µω1/ħh= 1. This gives the equations

C0Dν0

�

−
p

2ω0(xL − x0)
�

= C (1)1 K(1)ν1
(
p

2ω1(xL − x1)) + C (2)1 K(2)ν1
(
p

2ω1(xL − x1)),

(96)

C2Dν2

�p

2ω2(xR − x2)
�

= C (1)1 K(1)ν1
(
p

2ω1(xR − x1)) + C (2)1 K(2)ν1
(
p

2ω1(xR − x1)),
(97)

−
p

ω0C0D′ν0

�

−
p

2(xL − x0)
�

=
p

ω1C (1)1 K(1)
′

ν1
(
p

2ω1(xL − x1))

+
p

ω1C (2)1 K(2)
′

ν1
(
p

2ω1(xL − x1)),
(98)

p
ω2C2D′ν2

�

−
p

2(xR − x2)
�

=
p

ω1C (1)1 K(1)
′

ν1
(
p

2ω1(xR − x1))

+
p

ω1C (2)1 K(2)
′

ν1
(
p

2ω1(xR − x1)) .
(99)

If we are given ν0,ν1,ν2 (which are all determined by the energy E), this is a linear system
of equations for C0, C2, C (1)1 , C (2)1 . For this system to have a non-trivial solution, the determi-
nant of the corresponding matrix must vanish and this condition is what determines the energy
(or equivalently the parameters ν0,ν1,ν2). This system of equations, supplemented with nor-
malization of the wave function, then fixes all the constants C0, C2, C (1)1 , C (2)1 . In general, if
we piece together N different quadratic (or other analytically solvable) potentials, the en-
ergy will be obtained by solving the equation resulting from enforcing zero determinant of a
2(N − 1)× 2(N − 1) matrix.

D Matrix Product States

Throughout this work we compare our analytical method with simulations performed with
Matrix Product States (MPS), using the Open Source MPS (OSMPS) libraries [52]. In these
calculations, we employ the Hubbard model as an approximation to the continuum in order
to obtain static properties of a fermionic polaron system. Thus the spinful lattice Hamiltonian
is written as

H = −t
∑

j,σ

(c†
j+1,σc j,σ +H.c.) + U

∑

j

n j,↑n j,↓ +
∑

j,σ

ε jn j,σ, (100)

where c† and c are the creation and annihilation operators, respectively, t is the hopping pa-
rameter and U denotes the strength of the on-site interactions between fermions with different
spin projections. We denote the internal states as |↑〉 for the background fermions and |↓〉 for
the impurity. Since we consider only a single |↓〉 fermion, we have naturally

∑

j n j,↓ = 1, with
∑

j n j,↑ also being normalized to the number of background fermions. We include additionally
the trapping potential as the position-dependent ε j parameter.

We simulate the continuum by taking a total of L = 256 sites. We thus obtain a lattice
spacing a = l/L where l is the total length assumed for the trapping potential. The hopping
parameter is related to the kinetic term in the continuum as t = 1/(2ma2), where m is the
atomic mass, which we take to be 1. The continuum and discrete interaction parameters are
related as U = g/a. To obtain matching energies, we must include an additional term in the
Hamiltonian given by

∑

j 1/a2. In some cases, to improve the accuracy we compute the results
for several increasing values of L and then extrapolate to a final value using a function of the
form f (L) = A+ B/L + C/L2.
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E Polynomial interpolation for computing determinants

At several stages in the technique used in this paper we have to compute derivatives of deter-
minants of the form ∂ i

εD(ε)|ε=0 = ∂ i
ε

1
i! det(M(ε))|ε=0, where M(ε) is some n× n matrix and

i = 0, . . . , n. We evaluate these derivatives by computing the function D(ε) on n + 1 values
with εi = −1+ 2i/n, i = 0, . . . , n, and then fitting a polynomial to these values and extracting
the coefficients. These coefficients can be obtained by multiplying the vector D(εi) with the
inverse of the matrix Ki j ≡ ε

j
i .

For the single-particle density matrix, we also need to compute terms of the form
∂ i
ε∂

j
δ

D(ε,δ)|ε=0,δ=0. This is done similarly be fitting a polynomial of two variables to the val-
ues D(εi ,ε j) with εi = −1+2i/n, i = 0, . . . , n. We carry out the polynomial fit by applying the

(n + 1)2 × (n + 1)2 matrix KI J ≡ ε
bJ/(n+1)c
bI/(n+1)cε

J mod (n+1)
I mod (n+1) on the (n + 1)2 vector

DI = D(εbI/(n+1)c,εI mod (n+1)).
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[42] T. Sowiński, T. Grass, O. Dutta and M. Lewenstein, Few interacting fermions
in a one-dimensional harmonic trap, Phys. Rev. A 88, 033607 (2013),
doi:10.1103/PhysRevA.88.033607.

[43] F. Deuretzbacher, D. Becker, J. Bjerlin, S. M. Reimann and L. Santos, Quantum mag-
netism without lattices in strongly interacting one-dimensional spinor gases, Phys. Rev. A
90, 013611 (2014), doi:10.1103/PhysRevA.90.013611.

[44] A. G. Volosniev, D. V. Fedorov, A. S. Jensen, M. Valiente and N. T. Zinner, Strongly in-
teracting confined quantum systems in one dimension, Nat. Commun. 5, 5300 (2014),
doi:10.1038/ncomms6300.

[45] T. Grining, M. Tomza, M. Lesiuk, M. Przybytek, M. Musiał, P. Massignan, M. Lewen-
stein and R. Moszynski, Many interacting fermions in a one-dimensional harmonic trap:
a quantum-chemical treatment, New J. Phys. 17, 115001 (2015), doi:10.1088/1367-
2630/17/11/115001.
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