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Normal modes in thermal AdS via the Selberg zeta function

Victoria L. Martin? and Andrew Svesko†

Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

? victoria.martin.2@asu.edu, † asvesko@asu.edu

Abstract

The heat kernel and quasinormal mode methods of computing 1-loop partition functions
of spin s fields on hyperbolic quotient spacetimes H3/Z are related via the Selberg zeta
function. We extend that analysis to thermal AdS2n+1 backgrounds, with quotient struc-
ture H2n+1/Z. Specifically, we demonstrate the zeros of the Selberg function encode the
normal mode frequencies of spin fields upon removal of non-square-integrable modes.
With this information we construct the 1-loop partition functions for symmetric trans-
verse traceless tensors in terms of the Selberg zeta function and find exact agreement
with the heat kernel method.
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1 Introduction

In Euclidean quantum gravity the main object of interest is the partition function

Z =

∫

DgDφ e−SE(g,φ)/~ , (1)

where g is the dynamical metric and φ represents all other matter fields. The leading order
quantum effects are captured by the 1-loop partition function Z (1)

φ
. For a free field φ on a

gravitational background M, computing Z (1)
φ

involves calculating functional determinants of

kinetic operators ∇2
φ,M. This perturbative approach is useful when finding quantum correc-

tions to black hole entropy [1–3] and holographic entanglement entropy [4].
There are several methods for computing functional determinants of kinetic operators. Two

such methods we consider are known as the heat kernel method (c.f. [5]) and the quasinormal
mode method [6]. We outline the heat kernel method in Appendix B and give a more extensive
review of the quasinormal mode method in Section 2.2.

The quasinormal mode method [6, 7] builds functional determinants of kinetic operators
by exploiting the Weierstrass factorization theorem, which permits us to write a meromorphic
function Z (1)(∆) as a product of its zeros and poles, up to an entire function ePoly(∆),

Z (1)(∆) = ePoly(∆)

∏

∆0
(∆−∆0)d0

∏

∆p
(∆−∆p)

dp
. (2)

Here∆ is a function of the mass m of the field in question, and d0 and dp are the degeneracies
of the zeros ∆0 and poles ∆p, respectively. For examples we consider, ∆ is the conformal
dimension of the field theory operator dual to the bulk field in question. It was shown in
[6,7] that Z (1)(∆) for a massive scalar field φ living on a thermal AdSd+1 background may be
expressed in terms of quasinormal modes1 ω∗(∆):

Z (1)(∆) = ePoly(∆)
∏

n,∗
(ωn(T )−ω∗(∆))−1 . (3)

Here ∗ stands for a collection of additional quantum numbers, such as angular momentum,
and ωn(T ) are the Matusubara frequencies of the thermal background at temperature T aris-
ing from the condition that φ is regular in the Euclidean time coordinate. For stationary
spacetimes, the Matsubara frequencies will generalize fromωn(T ) = 2πinT to a function that
depends on the angular momentum quantum number [8].

Recently the authors of [9] showed how to connect the heat kernel and quasinormal mode
methods on the Bañados, Teitelboim and Zanelli (BTZ) black hole [10]. In particular, the two
methods were formally related via the Selberg zeta function ZZ(z) [11], a zeta function that
is built entirely from the quotient structure of H3/Z:

ZZ(z) =
∞
∏

k1,k2=0

�

1− e2i bk1 e−2i bk2 e−2a(k1+k2+z)
�

. (4)

In (4), a and b are geometric quantities2. Specifically, the authors of [9,12] showed that when
the zeros of the Selberg zeta function z∗ are identified with ∆s ±

isb
a , and when the Selberg

1Quasinormal modes are eigenmodes of dissipative systems, such as those modes obeying infalling boundary
conditions at a black hole horizon. The quasinormal mode method can be applied to spacetimes without horizons,
such as thermal AdSN . However, in these cases the quasinormal modes are replaced by normal modes as damping
does not occur in such backgrounds.

2For the BTZ black hole a = πr+ and b = π|r−|, where r− and r+ are the inner and outer horizon radii. For
thermal AdS3, a = 1/(2T ) and b = θ/2, where T is the temperature and θ is an angular potential.
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integers k1 and k2 are appropriately recast via a relabeling inspired by scattering theory [13],
the quasinormal mode frequencies ω∗ are equal to the Matsubara frequencies ωn(T ):

∆s ±
isb
a
= z∗⇐⇒ω∗(∆) =ωn(T ) . (5)

Condition (5) leads to the observation: if any two of (i) the Selberg zeta function, (ii) the
Matsubara frequencies, or (iii) the quasinormal mode frequencies of a spacetime and field are
known, then one can reconstruct the third. This observation provides a means of predicting
quasinormal mode (or Matsubara) frequencies of fields on locally thermal AdS3 spacetimes.

In this article we extend the results of [9, 12] in two ways. First we confine ourselves to
thermal AdS3, and build the connection between heat kernel and quasinormal mode methods
presented in [12] using instead the normal mode frequencies of general spin s fields. We find
that the relabelings of the Selberg integers k1 and k2 are the same as for the BTZ black hole
[13], except with the thermal quantum number n and angular quantum number ` switched.
This connection is not surprising, in that the BTZ black hole and thermal AdS3 are related via
a modular transformation. However, this extension provides a testbed in which to study the
ideas presented in [9, 12]. Indeed, using the Selberg formalism we are able to “predict” the
known normal modes of spin s fields on thermal AdS3.

Second, we extend [9,12] to higher dimensional thermal AdS2n+1. To do this, we employ
the higher dimensional generalization of (4), the Selberg zeta function on H2n+1/Z [11,14]:

ZZ(z) =
∞
∏

k1,...,k2n=0

�

1− e2i b1k1 e−2i b1k2 ...e2i bnk2n−1 e−2i bnk2n e−2a(k1+...+k2n+z)
�

. (6)

We conjecture an augmented relabeling for the integers ki , generalizing [13]. We do this first
for a complex scalar field. We then move to higher spin s fields, and write an explicit formula
for the 1-loop partition function for symmetric transverse traceless tensor fields on thermal
AdS5 in terms of the Selberg zeta function. We then discuss a generalization to AdS2n+1.

Our note is organized as follows. We begin Section 2 with a brief review of the geometry
and quotient structure of thermal AdS3 (with non-zero angular potential), and demonstrate
how the quasinormal mode method is used to calculate the 1-loop partition function for scalar
fields on this spacetime. We then relate the zeros of the Selberg zeta function and normal mode
frequencies of arbitrary spin fields on thermal AdS3. In Section 3 we extend our analysis to
thermal AdS2n+1, both without and with non-zero angular potentials. Concluding remarks are
given in Section 4. To keep the article self-contained, Appendix A gives an overview of the
geometry of Euclidean AdS2n+1, and Appendix B reviews basic elements of the group theoretic
construction of the heat kernel on hyperbolic spaces [15,16].

2 Thermal AdS3

2.1 Geometry of Thermal AdS3

Anti-de Sitter space in three dimensions in global coordinates takes the form

ds2 = L2(− cosh2ρd t2 + dρ2 + sinh2ρdφ2) , (7)

where L is the AdS radius. These coordinates have ranges −∞ < t <∞, 0 < ρ <∞, and
0 < φ < 2π. Written in global coordinates, it is clear AdS3 is static and axially symmetric,
symmetries generated by the Killing vectors H ≡ i∂t and J ≡ i∂φ . These vectors can be used
to define a notion of energy and angular momentum and define a pair of conserved charges.
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We are interested in studying free quantum field theory on a fixed AdS3 background. Upon
quantization the vectors H and J become operators on the field theory Hilbert space such that
the Hilbert space is organized into states of fixed energy and angular momentum. To properly
define quantum field theory on an AdS3 background we analytically continue t → −i tE , to
obtain the Euclidean AdS3 metric

ds2
E = L2(cosh2ρd t2

E + dρ2 + sinh2ρdφ2) . (8)

Euclidean AdS3 is equivalent to the hyperbolic space H3. To obtain a thermal spacetime, we
periodically identify the Euclidean time coordinate tE and the angular coordinate φ via

(tE ,φ)∼ (tE + β ,φ + θ ) , (9)

where β is defined as the inverse temperature and θ is an angular potential. The identifications
(9) allow us to recast the path integral (1) as a thermal partition function

Z(β ,θ ) = tre−βH−iθ J . (10)

Euclidean AdS3 (8) with identifications (9) is known as thermal AdS3. The identifications
(9) generate the group Z, and so thermal AdS3 is topologically equivalent to the hyperbolic
quotient H3/Z. We can view H3/Z as a solid torus with a T2 ' S1

θ
×S1

β
boundary and modular

parameter 2πτ = θ + iβ [5]. We can see from the ρ = 0 behavior of (8) that the Euclidean
time circle tE ∼ tE + β is non-contractible, so S1

θ
fills in the solid torus.

2.2 Normal modes and the 1-loop partition function

Here we review the derivation of the 1-loop partition function of a spin-s field living on thermal
AdS3 via the quasinormal mode method [6]. Our discussion is slightly more general than the
one provided in [6] as we consider arbitrary spin-s fields and θ 6= 0. For concreteness we first
consider a massive complex scalar field ϕ of mass m.

The chief idea of the quasinormal mode method is to assume Z (1) is a meromorphic func-
tion of some mass parameter ∆, and then analytically continue this mass parameter to the
complex plane. For a scalar field the mass parameter is the conformal dimension

∆= 1+
Æ

1+ (mL)2 (11)

of the conformal field theory operator dual to ϕ.
If Z (1)(∆) is meromorphic in ∆, we may use Weierstrass’s factorization theorem (2) and

express the 1-loop partition function as a product over its zeros and poles up to a entire func-
tion3 Poly(∆). Since Z (1)scalar ∝ (det∇2)−1, it has no zeros but will have a pole whenever ∇2

has a zero mode. Zero modes occur when ∆ is tuned such that the Klein-Gordon equation
�

−∇2 +
∆n,∗(∆n,∗ − 2)

L2

�

ϕ = 0 (12)

has a smooth, single-valued solution ϕ = ϕ∗,n in Euclidean signature which obeys the asymp-
totic boundary conditions, (14). Here n labels the mode number in the Euclidean time direc-
tion and ∗ represents all other quantum numbers. The associated ∆ for which ϕ∗,n solve the
Klein-Gordon equation are denoted ∆∗,n. Thus, poles in Z (1)(∆) occur when ∆=∆∗,n.

3As described in [6], Poly(∆) hides UV divergences. For example, a scalar field in AdS will contribute its zero
point energy,

∑∞
κ=0(κ + 1) κ+∆2T , to Poly(∆). To have a complete accounting of the 1-loop partition function we

must determine Poly(∆). We are not interested in this divergent term and will often drop it from our calculations.
Poly(∆) is fixed by imposing the correct large ∆ behavior and using the heat kernel coefficients of the Laplacian
∇2 as in [17]. The term Poly(∆) is proportional to the volume of H3/Z.
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It was first realized in [6] that for scalar fields on AdS black hole backgrounds, the
(anti)quasinormal modes are Lorentzian modes that are purely (out)ingoing at the horizon,
and satisfy the asymptotic boundary conditions. Both conditions can only be satisfied at a
set of discrete frequencies ω∗(∆), and setting ∆ = ∆∗,n is equivalent to setting the black
hole quasinormal frequencies to the Matsubara frequencies ωn(T ) arising from the Euclidean
periodicity condition, ω∗(∆∗,n) = ωn. The 1-loop partition function is therefore computed
using (3). Despite AdS not having a horizon, the quasinormal method of computing 1-loop
determinants can nonetheless be applied in this context. Because there is no horizon, the key
change is that there is no dissipation, and so the quasinormal frequencies ω∗ become normal
frequencies, and that there is no sensible difference between ingoing and outgoing modes.

The exact normal frequencies4 for scalar fields are known [6,19] and can be written as:

ω∗(∆) = ±
(2p+ |`|+∆)

L
, (13)

where p = 0, 1,2, ... is the radial quantum number and ` is the angular momentum quantum
number, ` ∈ Z. The mode frequencies (13) are found by solving the Klein-Gordon equation
and imposing Dirichlet boundary conditions. From here on we will set L = 1.

The Matsubara frequencies are found via the large ρ limit of the solution to the Klein-
Gordon equation after imposing that ϕ is periodic under identifications (9). The large ρ limit
of ϕ is [19]

ϕ(ρ, t,φ)∼ (sinhρ)−∆e−iωt+i`φ . (14)

Upon Wick rotation t →−i tE and demanding that ϕ be periodic under (9) sets the frequency
ω to a particular form ωn(T ),

ωn(T ) = 2πinT − i`θT . (15)

Here the thermal integer n ranges over all integers. The frequenciesωn(T ) in (15)5 are known
as the Matsubara frequencies with a shift by a chemical potential µ= −θT .

We can now construct the 1-loop determinant for a scalar field on thermal AdS3 with
θ 6= 0. Substituting the normal mode frequencies (13) and Matsubara frequencies (15) into
the expression for the 1-loop partition function over its poles (3), we find:

Z (1)(∆)
ePoly(∆)

=
∏

n,∗
(ωn(T )−ω∗(∆))−1

=
∏

n>0,p≥0,`

[(ωn(T )−ωp,`(∆))(ω−n(T )−ωp,`(∆))]
−1

=
∏

p≥0,`

�

1− e−β(2p+∆+|`|)−i`θ
�−1

.

(16)

To get to the second line we cast the product over n ∈ Z into a single product over n > 0,
absorbing any UV divergent pieces into the Poly(∆) contribution, and moving to the third
line regulated the product over n using the identity

∏

n>0

�

1+ x2

n2

�

= eπx

πx (1 − e−2πx), again
absorbing any UV divergent contribution into the entire function Poly(∆).

4The AdS3 normal frequencies can be obtained from the BTZ quasinormal frequencies via the identifications,
r− → 0, and r+ → ±i L where L is the AdS length scale, and r± are the outer and horizon radii. Correspondingly,
TBTZ → ∓2πi L. These are the same changes which transform the (Lorentzian) rotating BTZ metric in Boyer-
Lindquist form with ADM mass and angular momentum M = −1 and J = 0, respectively, into (Lorentzian) AdS3

in global coordinates [18].
5Using the modular transformation τAdS3

= −1/τBTZ it is straightforward to show the Matsubara frequencies of
thermal AdS3 with θ 6= 0 transform into the Matsubara frequencies for the Euclidean BTZ black hole with rotation
(e.g., take Eqn. (2.8) of [8], rewrite the left and right temperatures TL and TR in terms of τBTZ and then perform
the modular transformation).
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We recast the product over ` ∈ Z into one over `≥ 0, introducing a degeneracy factor D(1)
`

:

Z (1)(∆) = ePoly(∆)
∞
∏

p,`=0

�

(1− (qq̄)p+∆/2q`)(1− (qq̄)p+∆/2q̄`)
�−D(1)

` . (17)

Here D(1)0 = 1 and D(1)
`>0 = 2, and q = e2πiτ = ei(θ+iβ) and q̄ = e−2πiτ̄ = e−i(θ−iβ). When we set

θ = 0 we recover the expression of the 1-loop partition function found in [6].
Taking the logarithm and evaluating the sums over p and `, we arrive at

log Z (1)(∆)− Poly(∆) = 2
∞
∑

k=1

|q|k∆

k|1− qk|2
. (18)

Up to the entire function Poly(∆), our expression (18) matches the 1-loop determinant
− logdet(−∇2+m2) of a scalar field on thermal AdS3 found using the heat kernel method [15]
(set s = 0 and n = 1 in (80)). The expression (18) is also the 1-loop determinant for the BTZ
black hole because it is invariant under the modular transformation τAdS3

→−1/τBTZ.

2.3 Normal Modes from Selberg Zeros and Higher Spin

In [9, 12] the authors formally connected the heat kernel and quasinormal mode methods
using the Selberg zeta function. The Selberg zeta function ZΓ is a zeta function that is built
entirely from the geometry of the hyperbolic quotient H3/Γ , where Γ is a discrete subgroup of
SL(2,C). For example, ZΓ for the quotient space H3/Z is [13]

ZZ(z) =
∞
∏

k1,k2=0

�

1− e2i bk1 e−2i bk2 e−2a(k1+k2+z)
�

. (19)

The parameters a and b are related to the identifications (9) of thermal AdS3; specifically,
2a = β and 2b = θ . The zeros z∗ of the Selberg zeta function (19) are

z∗ = −(k1 + k2) +
iθ
β
(k1 − k2) +

2πiN
β

, (20)

where N ∈ Z.
One-loop determinants can be recast in terms of the Selberg zeta function [9,13,20], e.g.,

for a scalar, log det∇2
s=0 = 2 log ZΓ (∆). It is interesting to see what happens when we set the

argument of the Selberg zeta function, ∆, to the zeros (20):

∆+ k1 + k2 =
2πiN
β
+

iθ
β
(k1 − k2) . (21)

Notice that when we suggestively relabel the integers k1, k2 and N such that

k1 + k2 = 2p+ |`| , k1 − k2 = ±` , N = ∓n , (22)

we find that (21) becomes

∓(2p+ |`|+∆) = (2πin− i`θ )T . (23)

That is, tuning the conformal dimension ∆ to the zeros z∗ of the Selberg zeta function gives
us the condition that ωn(T ) =ω∗(∆).

The relabeling of integers k1, k2 is not ad hoc. Rather, (22) comes from spectral theory on
the hyperbolic quotient H3/Z [13], where k1, k2 are repackaged into new integers p ≥ 0 and

6
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` ∈ Z such that the zeros of the Selberg zeta function coincide with the poles of the so-called
scattering operator ∆Γ , i.e., the positive Laplacian acting on the Hilbert space.

The observation that ∆ = z∗ leads to ωn(T ) = ω∗ was noted in [9], and generalized to
include higher spin fields in [12] in the context of a rotating BTZ background. Our above
analysis for thermal AdS3 is largely the same as the one performed for the BTZ black hole [9],
however, there are some key differences, specifically the physical interpretation of the integers
appearing in the redefinition (22). For the BTZ black hole, the relabeling of k1, k2 is

k1 + k2 = 2p+ |n| , k1 − k2 = ±n , N = ∓` . (24)

Comparing to the relabeling for thermal AdS3 (22), we observe that the roles of the thermal
integer n and angular momentum quantum ` are swapped. This is reminiscent of the topology
of each of these spacetimes: the thermal time circle for the BTZ black hole is contractible, while
it is non-contractible for thermal AdS3. Therefore, we see that the interpretation of k1−k2 and
N are linked to spacetime topology, and signals the fact that the BTZ black hole and thermal
AdS3 are related via a modular transformation.

It was also emphasized in [9] that given knowledge of any two of (i) Matsubara frequen-
cies, (ii) (quasi)normal mode frequencies, and (iii) the zeros of the Selberg zeta function, the
third can be constructed. This provides us a means of predicting the normal modes of a field
on thermal AdS3. Let us use this predictive power to uncover the normal mode frequencies
for an arbitrary spin-s field in a thermal AdS3 background.

We begin by considering spin-s bosonic fields of mass ms. The 1-loop determinant can be
cast as a product of Selberg zeta functions [9,12,20]

logdet(−∇2
(s) +m2

s )s∈Z+ = log
�

ZΓ

�

∆s +
isθ
β

�

· ZΓ
�

∆s −
isθ
β

��

, (25)

where ∆s = 1+
Æ

s+ 1+m2
s is the conformal dimension of the dual CFT2 operator [21]. At

this point the arguments ∆s ±
isθ
β are perhaps unmotivated, but we will shed light on them

shortly. Setting the arguments∆s+σ∆
isθ
β , where we use σ∆ to denote the ± sign, to the zeros

(20) leads to:

∆s + k1 + k2 =
iθ
β
(k1 − k2 −σ∆s) +

2πiN
β

. (26)

Then, motivated by the relabeling (22) of [13], and using the form of the Matsubara frequen-
cies (15), we may write down

k1 + k2 = 2p+ |`−σss| , k1 − k2 = −σ∆σs`+σ∆s , N = σ∆σsn , (27)

where σs = ±1. For example, when σ∆ = −1, i.e., considering the argument ∆s −
isθ
β , and

selecting σs = −1, we have

k1 + k2 = 2p+ |`+ s| , k1 − k2 = −(`+ s) , N = n , (28)

such that (26) becomes
2p+ |`+ s|+∆s =ωn(T ) . (29)

This allows us to read off the normal mode frequency ω∗(∆s) = 2p+ |`+ s|+∆s.
Collectively, the relabeling (27) substituted into (26) gives the condition ω∗(∆s) =ωn(T )

where we identify the normal mode frequencies of a spin-s boson in thermal AdS3

ω∗ = ±(2p+ |`± s|+∆s) . (30)

Our relabeling (27) can be understood as a generalization of the redefinitions of integers k1
and k2 from [13].
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A similar generalized relabeling was found for spin-s bosons on the rotating BTZ back-
ground in [12], where the relabeling led toωn =ω∗(∆s) for only square-integrable Euclidean
zero modes. More specifically, the Euclidean zero modes of higher spin fields will be non-
square integrable for specific low lying values of p, a consequence of imposing regularity on the
zero modes. In order to maintain regularity, one removes these non-square integrable modes,
leading to the condition ωn =ω∗(∆s). For example, in the case of a massive spin-2 field hµν,
Euclidean solutions h(λ)µν are required to satisfy the following integrability condition [8]:

∫

d3 x
p

g gµνgρσh(λ)µρh(λ
′)∗

νσ = δ)λ−λ′) , (31)

with λ an eigenvalue. There will be non-integrable solutions at the radial coordinate singu-
larity in the BTZ background in global coordinates. To avoid such non-integrable solutions,
thereby maintaining regularity, the range over the thermal integer n is restricted for Euclidean
solutions with particular low-lying values of the radial quantum number p, where the remain-
ing Euclidean solutions are referred to as “good" Euclidean zero modes (see, e.g., Appendix
B of [8] for more details). Consequently, it was further shown in [8] that the conditions
ωn = ω∗(∆s) are equivalent to ωn = ωscalar

∗

�

∆s +σ∆
isθBTZ
βBTZ

�

, where σ∆ depends on the sign
of ms, i.e., σ∆ = −1 corresponds to ms > 0.

Since the Euclidean BTZ black hole is related to thermal AdS3 via a modular transforma-
tion, higher spin fields in thermal AdS3 will likewise have unphysical non-square integrable
Euclidean zero modes for particular low lying values of p, upon adjusting the thermal inte-
ger n. The removal of these modes leads to the our conditions ωn = ω∗(∆s) summarized by
(26) with the relabeling (27). As such, we also have that arguments of the Selberg zeta func-
tions in (25) come from removing the non-square integrable zeros modes and reexpressing
ωn =ω∗(∆s) for scalar fields with ∆→∆s +σ∆

isθ
β . Indeed, the 1-loop partition function for

a spin-s boson can be written as

Z (1)s (∆s) = −ZΓ

�

∆s +
isθ
β

�

ZΓ

�

∆s −
isθ
β

�

= Z (1)
�

∆s +
isθ
β

�

Z (1)
�

∆s −
isθ
β

�

,
(32)

where Z (1)(∆) is the 1-loop partition function for a scalar field (17) without Poly(∆).
Lastly, we note that our method works equally well for spin-s fermions. The 1-loop deter-

minant for spin-s fermions with anti-periodic boundary conditions is

logdet(−∇2
(s) +m2

s )s∈Z+1
2

= log
�

ZΓ

�

∆s +
isθ
β
+

iπ
β

�

· ZΓ
�

∆s −
isθ
β
+

iπ
β

��

. (33)

The anti-periodic boundary conditions along the Euclidean circle force n→ n+1/2. As in the
case of spin-s fermions on a BTZ background [12], we again find that anti-periodic boundary
conditions along the φ cycle are imposed upon us, such that `→ `+ 1/2. Our spin-s fermion
result is the same as the spin-s boson one (27), except with n→ n+ 1/2 and `→ `+ 1/2.

In summary, the zeros of the Selberg zeta function encode the normal mode frequencies
of arbitrary spin-s fields which propagate on thermal AdS3. Moreover, setting the arguments
∆s ±

isθ
β (for bosons) or ∆s ±

isθ
β +

iπ
β (for fermions) equal to the zeros of the Selberg zeta

function leads to the condition the Matsubara frequencies are aligned with the normal mode
frequencies:

∆s ±
isθ
β
= z∗⇐⇒ωn =ω∗(∆s) . (34)
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3 Extending to Thermal AdS2n+1

We now extend the analysis presented in Section 2 to thermal AdS2n+1. The geometry of
AdS2n+1 is reviewed in Appendix A. Generally, thermal AdS2n+1 can be viewed as the quotient
space H2n+1/Z. The quotient structure arises from the periodic identification of the Euclidean
time coordinate tE and the remaining angular coordinates {φ1, ...,φn+1} being identified via

(tE ,φ1, ...,φn)∼ (tE + β ,φ1 + θ1, ...,φn + θn) , (35)

where β is the inverse temperature and θi are angular potentials.
Written in global coordinates (68), we see AdS2n+1 has symmetries generated by the Killing

vectors H ≡ i∂t and Ji ≡ i∂φi
, defining phase space charges associated with energy H and

angular momenta Ji . Upon quantization, the vectors H and Ji organize the field theory Hilbert
space into states of fixed energy and angular momenta. Field theory quantities are computed
using the canonical ensemble partition function Z(β ,θi),

Z(β ,θi) = tre−βH−i
∑n

j=1 θ j J j , (36)

generalizing the thermal partition function in AdS3, (10).
Evaluating the partition function (36) is equivalent to calculating a Euclidean path inte-

gral on H2n+1/Z. The leading order quantum effects are quantified by the 1-loop partition
function Z (1). The 1-loop partition function for complex scalar fields on thermal AdSd+1 with-
out angular potentials was computed using the quasinormal mode method in [6]. The 1-loop
determinant for STT tensor fields on thermal AdS2n+1 with non-zero angular potentials was
constructed using the heat kernel method [16,22] (also reviewed in Appendix B).

Here we explore the connection between the 1-loop partition function, the Selberg zeta
function on H2n+1/Z, and the normal modes of STT tensor fields on thermal AdS2n+1, both
with and without angular potentials. We begin by considering STT tensor fields on thermal
AdS2n+1 with θi = 0. The remaining discussion will mirror the presentation in Section 2,
where we begin with a scalar field on thermal AdS2n+1 when θi 6= 0. We will then consider
higher spin field partition functions, where we explicitly write the 1-loop partition function in
AdS5 in terms of a higher dimensional Selberg zeta function.

3.1 Thermal AdSd+1 (θi = 0)

It is straightforward to generalize the complex scalar field 1-loop partition function in [6] to
include symmetric, transverse, traceless (STT) tensor fields of spin-s6

Z (1)(s) (∆s) = ePoly(∆)
∏

p,`≥0

h

�

1− e−β(2p+`+∆s)
�ds(2−δs,0)

i−2D(d−1)
`

, (37)

where ∆s is the conformal dimension ∆s =
d
2 +

Ç

s+ d2

4 +m2
s . Here ds is the dimension (75)

when d + 1 is odd, and D(d−1)
`

is the degeneracy of the `th angular momentum eigenvalue

D(d−1)
`

=
2`+ d − 2

d − 2
(`+ d − 3)!
`!(d − 3)!

. (38)

Some degenerate cases of note include when d = 1 for which D(0)0 = D(0)1 = 1 and D(0)
`>1 = 0,

while for d = 2, D(1)0 = 1 and D(1)
`>0 = 2.

6By spin-s we mean unitary irreducible representations of SO(2n + 1) under which the fields transform. We
further restrict ourselves to symmetric transverse traceless representations of SO(2n+ 1), the highest weight rep-
resentations, which greatly simplifies our study. Such fields include bosons of spin-s.
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Taking the logarithm of (37) yields

log Z (1)s (∆s) = ds(2−δs,0)
∞
∑

k=1

2e−k∆sβ

k

∞
∑

p=0

e−2pkβ
∞
∑

`=0

D(d−1)
`

e−k`β , (39)

where we ignore the Poly(∆s) term. Performing the sums of p and ` we find, (check steps
here)

log Z (1)s (∆s) = ds(2−δs,0)
∞
∑

k=1

2
k

e−βk(∆s−d)

(1− ekβ)d
, (40)

matching the heat kernel result (78), with θi = 0.
Interestingly, one can build the 1-loop partition function (40) in odd dimensions using

multiple copies of the AdS3 result, (18) (when θ = 0). For example, consider thermal AdS5.
Replacing p→ p1 + p2 and `→ `1 + `2 where {pi ,`i} ∈ N, and D(3)

`
→ D(1)

`1
D(1)
`2

, we have

log Z (1)s=0(∆) =
∞
∑

k=1

2e−k∆β

k

 

∞
∑

pi=0

e−2pi kβ

!2 ∞
∑

`1=0

D(1)
`1

e−k`1β

! 

∞
∑

`2=0

D(1)
`2

e−k`2β

!

=
∞
∑

k=1

2e−k∆β

k
1

(1− e−βk)4
,

(41)

which matches the scalar result (40). We can likewise build the full 1-loop determinant in
AdS2n+1, where for each additional odd dimension, introduce another pi and `i . For example,
in the AdS7 case let p→ p1 + p2 + p3 and `→ `1 + `2 + `3, and so forth7. We will show that
introducing additional integers pi and `i is motivated from the higher dimensional Selberg
zeta function.

3.2 Thermal AdS2n+1 (θi 6= 0)

Scalar fields

To compute the 1-loop partition function, we must have knowledge of the Matsubara frequen-
cies ωn and the normal mode frequencies for a scalar field on AdS2n+1. The periodic identifi-
cation (35) imposed on a scalar field ϕ leads to a generalization of the Matsubara frequencies
in thermal AdS3 (15),

ωñ(T ) = 2πiñT − i
n
∑

i=1

`iθi T , (42)

where ñ ∈ Z is the thermal integer and `i ∈ Z is the angular momentum quantum number
with respect to each φi in the geometry (69).

The normal mode frequencies for scalar fields on AdS2n+1 were calculated explicitly in [19]
in terms of a single radial quantum number p and angular momentum quantum number `. Let
us instead use the Selberg zeta function to “predict" these normal mode frequencies, extending
our algorithm developed for thermal AdS3 to higher-dimensional thermal AdS.

The Selberg zeta function of H2n+1/Z is given by [11,14]

ZZ(z) =
∞
∏

k1,...,k2n=0

�

1− e2i b1k1 e−2i b1k2 ...e2i bnk2n−1 e−2i bnk2n e−2a(k1+...+k2n+z)
�

, (43)

7We can in fact build the 1-loop determinant in even dimensions in a similar way, but with one less copy of p.
For example, in AdS4, p→ p and `→ `1 + `2; for AdS6, p→ p1 + p2, and `→ `1 + `2 + `3, etc.
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where 2a is the length of the primitive closed geodesic and e2i bi are the eigenvalues of a rota-
tion matrix A describing the rotation of nearby closed geodesics under the Poincaré recurrence
map. In the context of thermal AdS2n+1, we identify 2a = β and 2bi = θi . The zeros of ZZ(z)
occur at the special value of z∗,

z∗ = −
n
∑

i=1

(k2i−1 + k2i) +
i
a

n
∑

i=1

bi(k2i−1 − k2i) +
iNπ

a
, (44)

where N ∈ Z.
Taking the logarithm and evaluating the resulting sums over integers k1, ..., k2n leads to

log ZZ(z) = −
∞
∑

k=1

e−2akz

k
1

e−2ank
∏n

i=1 |e2ak − e2ikbi |2

= −
∞
∑

k=1

e−2akz

k
1

∏n
i=1 |1− qk

i |2
,

(45)

where we have introduced a ‘modular’ parameter for each angular potential,

2πτ≡ θ1 + iβ , 2πτ′ ≡ θ2 + iβ , 2πτ′′ ≡ θ3 + iβ , ... (46)

such that
q1 ≡ e2πiτ = ei(θ1+iβ) , q2 ≡ e2πiτ′ = ei(θ2+iβ) , ... (47)

Notice the denominator matches the denominator of the Harish-Chandra character (77).
Setting ∆= z∗ gives us

∆+
n
∑

i=1

(k2i−1 + k2i) =
i
β

n
∑

i=1

θi(k2i−1 − k2i) +
2πiN
β

. (48)

Motivated by the relabeling (22) of k1 and k2 from thermal AdS3, we consider the following
relabeling

k2i−1 + k2i = 2pi + |`i| , k2i−1 − k2i = σ``i , N = −σ`ñ , (49)

where pi is a non-negative integer, `i ∈ Z, and σ` is the sign of `i . For example, in thermal
AdS5, we have that (49)

k1 + k2 = 2p1 + |`1| , k1 − k2 = σ``1

k3 + k4 = 2p2 + |`2| , k3 − k4 = σ``2 , N = −σ`ñ .
(50)

The sign σ` is written such that σ` = +1 when k1− k2 = +`1 and k3− k4 = +`2, and σ` = −1
when k1 − k2 = −`1 and k3 − k4 = −`2. We do not consider any mixture of signs, e.g.,
k1− k2 = +`1 and k3− k4 = −`2. This can also be accomplished by setting the sign of `1, and
then relabeling each subsequent k2i−1 − k2i to have the same sign as `1.

Using our conjectured8 relabeling (49) we arrive at

±(2p+ |`1|+ ...|`n|+∆) = 2πiñT − i
n
∑

i=1

`iθi T , (51)

8Unlike in the case of AdS3, we are unaware of whether our relabeling (49) arises from identifying the zeros
of the Selberg zeta function with the poles of the scattering operator ∆Γ on H2n+1/Z. Our higher dimensional
relabeling is therefore a conjecture. It would be interesting to generalize the relationship observed in [13] to
determine if (49) comes from studying scattering on H2n+1/Z.
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where p ≡ p1 + p2 + ... + pn. Recognizing the right hand side as the Matsubara frequencies
(42), we ‘predict’ the normal mode frequencies for a scalar field in AdS2n+1 to be

ω∗ = ±(2p+ |`1|+ ...+ |`n|+∆) , (52)

where we again find that tuning the conformal dimension ∆ to the zeros of the Selberg zeta
function, we uncover the condition ω∗(∆) =ωn(T ).

As a consistency check, we can substitute the Matsubara (42) and normal mode frequencies
(52) into our expression for the 1-loop partition function (3) and show that we reproduce the
1-loop partition function calculated using the heat kernel method (81). For concreteness,
consider AdS5. Following similar steps as in the AdS3 case, (17), we obtain

log Z (1)s=0 =
1
2

log
∞
∏

p1,p2,
`1,`2=0

§

(1− (q1q̄1)
p1+

∆
4 (q2q̄2)

p2+
∆
4 q`1

1 q`2
2 )(1− (q1q̄1)

p1+
∆
4 (q2q̄2)

p2+
∆
2 q`1

1 q̄`2
2 )

(1− (q1q̄1)
p1+

∆
4 (q2q̄2)

p2+
∆
4 q̄`1

1 q`2
2 )(1− (q1q̄1)

p1+
∆
4 (q2q̄2)

p2+
∆
4 q̄`1

1 q̄`2
2 )
ª−D(1)

`1
D(1)
`2

.

(53)

Or, using (q1q̄1) = (q2q̄2) = e−2β we may write

log Z (1)s=0 =
1
2

log
∞
∏

p1,p2,
`1,`2=0

§

(1− e−2β(p1+p2+
∆
2 )q`1

1 q`2
2 )(1− e−2β(p1+p2+

∆
2 )q`1

1 q̄`2
2 )

(1− e−2β(p1+p2+
∆
2 )q̄`1

1 q`2
2 )(1− e−2β(p1+p2+

∆
2 )q̄`1

1 q̄`2
2 )
ª−D(1)

`1
D(1)
`2

.

(54)

Note that when we turn off the angular potentials, define p1 + p2 ≡ p, |`1| + |`2| ≡ ` and
make the replacement D(1)

`1
D(1)
`2
→ D(3)

`
we recover the logarithm of (37) for scalars. Taking

the logarithm and evaluating the sums over integers p1, p2,`1, and `2, we arrive to the 1-loop
partition function computed using the heat kernel method (81) at s = 0.

The above procedure holds for the scalar field AdS2n+1. Each higher dimension includes
an additional pi and `i , from which it is straightforward to show

log Z (1)s=0 =
1

2n−1
log

∞
∏

p1,p2,...,pn
`1,`2,...,`n=0

§

(1− e−2β(p1+p2+...+pn+
∆
2 )q`1

1 q`2
2 ...q`2

n )

(1− e−2β(p1+p2+...+pn+
∆
2 )q`1

1 q`2
2 ...q̄`n

n )...(1− e−2β(p1+p2+...+pn+
∆
2 )q̄`1

1 q̄`2
2 ...q̄`n

n )
ª−D(1)

`1
D(1)
`2

...D(1)
`n

,

(55)

where ... implies the permutations q1q2...qn and their complex conjugates corresponding to
rewriting the products over `i to range from all integers to all non-negative integers. Evaluting
the sum over `i and pi yields the s = 0 1-loop partition function computed using the heat kernel
method (80).

Higher Spin

We now turn to building the 1-loop partition functions of STT spin-s fields on thermal AdS2n+1.
This was accomplished using the heat kernel method in [16]. To use the quasinormal mode
method, we need the Matsubara frequencies (42) and the normal mode frequencies for STT
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tensor fields. We will follow our approach in Section 2 and uncover the normal mode frequen-
cies using the zeros of the Selberg zeta function.

In the AdS3 case, recall we first recast the 1-loop determinant for arbitrary spin-s fields –
found via the heat kernel method – in terms of a product of Selberg zeta functions. We then
tuned the arguments of the Selberg zeta functions to their zeros and extended the relabeling
of integers k1 and k2 from [13]. Our first task then is to rewrite the 1-loop partition function
(80) in terms of Selberg zeta functions. For concreteness, we will consider first the AdS5 case
and then comment on general AdS2n+1.

The Selberg zeta function for H5/Z is (45)

log ZZ(z) = −
∞
∑

k=1

(q1q̄1)kz/4(q2q̄2)kz/4

k
1

|1− qk
1|2|1− qk

2|2
. (56)

We can incorporate the character formula χSO(4)
s (82) appearing in (81) using the geometric

series representation of SU(2) characters, e.g.,

sin[α+(s+ 1)]
sin(α+)

=
s/2
∑

m=−s/2

e−2imα+ = eisα+
s
∑

m=0

e−2imα+ . (57)

Using α± = (θ1 ± θ2)/2, we have

sin[k(s+ 1)α+]
sin (kα+)

sin[k(s+ 1)α−]
sin (kα−)

= eiskθ1

s
∑

m,m′=0

e−ikθ1(m+m′)e−ikθ2(m−m′) , (58)

leading to the 1-loop partition function for STT tensors in thermal AdS5 in terms of Selberg
zeta functions

log Z (1)s = −(2−δs,0)
s
∑

m,m′=0

log ZΓ

�

∆s +
iθ1

β
(m+m′ − s) +

iθ2

β
(m−m′)

�

. (59)

For example, for spin-2 fields we have

log Z (1)2 =− 2
§

log ZΓ

�

∆2 +
2iθ1

β

�

+ log ZΓ

�

∆2 −
2iθ1

β

�

+ log ZΓ

�

∆2 +
2iθ2

β

�

+ log ZΓ

�

∆2 −
2iθ2

β

�

+ log ZΓ

�

∆2 +
iθ1

β
−

iθ2

β

�

+ log ZΓ

�

∆2 −
iθ1

β
+

iθ2

β

�

+ log ZΓ

�

∆2 +
iθ1

β
+

iθ2

β

�

+ log ZΓ

�

∆2 −
iθ1

β
−

iθ2

β

�

+ log ZΓ (∆2)
ª

.

(60)

We see that, just as in the AdS3 case (32), the spin-s 1-loop partition function on AdS5
breaks into a product of scalar 1-loop partition functions,

Z (1)s =
s
∏

m,m′=0

Z (1)
�

∆=∆s +
iθ1

β
(m+m′ − s) +

iθ2

β
(m−m′)

�

, (61)

where Z (1)(∆) is given by (54). We expect the arguments of the Selberg zeta function (59) arise
from an analysis similar to the AdS3 set-up where we must remove the non-square integrable
zero modes for particularly low lying values of pi , resulting from a readjustment of the integers
ñ. This expectation is based on our observation that the higher dimensional 1-loop partition
functions can be constructed from copies of the three-dimensional result, where the removal
of the non-integrable zero mode analysis has been completed [8]. The actual removal of the
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non-integrable Euclidean zero modes in the case of higher spin fields in higher dimensions has
not been done explicitly (as this would require a full analysis the quasinormal mode method for
massive higher spin fields on thermal AdS2n+1, which has not yet been accomplished). Using
our prediction for the normal mode frequencies of higher spin fields (see (64)), it would be
worthwhile to explicitly complete this analysis.

Setting the arguments of the Selberg zeta functions (59) to the zeros (44) for n = 2, we
obtain

∆s + (k1 + k2) + (k3 + k4) =
iθ1

β

�

k1 − k2 − (m+m′ − s)
�

+
iθ2

β

�

k3 − k4 − (m−m′)
�

+
2πiN
β

,

(62)
with m, m′ = 0,1, ..., s. We now extend the relabeling presented in (50):

k1 + k2 = 2p1 + |`1 +σ`(m+m′ − s)| , k1 − k2 = σ``1 + (m+m′ − s) ,

k3 + k4 = 2p2 + |`2 +σ`(m−m′)| , k3 − k4 = σ``2 + (m−m′) , N = −σ`ñ .
(63)

Since there are (s + 1)2 combinations of m and m′, we have (s + 1)2 different relabelings of
the pairs k1, k2 and k3, k4.

Collectively, the relabeling (63) gives

±(2p+ |`1 ± (m+m′ − s)|+ |`2 ± (m−m′)|+∆s) =ωn(T ) , (64)

where p ≡ p1 + p2. We are inclined to interpret the left hand side as the set of normal mode
frequenciesω∗(∆s), such that (64) becomesω∗(∆s) =ωn(T ). Unsurprisingly, it is straightfor-
ward to confirm that substituting the (s + 1)2 collection of normal mode frequencies into the
1-loop partition function (3) leads to the spin-s result found via the heat kernel method. We
expect that the normal mode frequencies displayed in (64) will arise from a spin-s quasinormal
mode analysis on thermal AdS2n+1, whereupon we remove non-square integrable Euclidean
zero modes. We leave this confirmation for future work.

Our study of 1-loop partition functions of higher spin on AdS5 informs us of how to extend
the result to AdS2n+1. Specifically, the spin-s 1-loop partition function Z (1)s (∆s) on AdS2n+1 is
a product of d(2n−1)

s scalar field 1-loop partition functions9 Z (1)(∆) on AdS2n+1, corresponding
to the number of replacements made to ∆. For example, in AdS3 we found that for s 6= 0, the
1-loop partition function Z (1)s (∆s) is a product of two scalar field partition functions, such that
∆ is replaced by ∆s ± isθ1/β , and the magnitude of the integer coefficient to iθ1/β matches
the spin of the field (32), corresponding to d(1)s = 2 for any s > 0. Moreover, for AdS5, the
1-loop partition function is the product of (s + 1)2 scalar field partition functions, such that
the magnitude of the integer coefficients in front of each iθi/β sum to the total spin of the
field. For example, for s = 2, we replace ∆ with each argument appearing in the Selberg zeta
functions in (60).

Likewise, we may build Z (1)s (∆s) on AdS2n+1 from a product of scalar field partition func-
tions on AdS2n+1, where the number of terms in the product correspond to the number of
replacements to ∆, where the magnitude of the integer coefficients in front of each iθi/β

must sum to the spin of the field s. For example, for a spin-1 field on AdS7, Z (1)1 (∆1) is given
by a product of six scalar field 1-loop partition functions corresponding to the replacements
of ∆ by ∆→∆1 ±

iθi
β , for i = 1,2, 3 (using d(5)s = (s+ 3)(s+ 2)2(s+ 1)/12). For each higher

dimension, the number of relabelings (63) will also go as d(2n−1)
s .

9Or, equivalently, a product over Selberg zeta functions ZΓ (∆), where the number of terms in the product is
given by d(2n−1)

s corresponding to the replacements of ∆.
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4 Discussion

We have extended the relationship between the heat kernel and quasinormal mode methods for
computing 1-loop determinants, as explored in [9,12], toH2n+1/Z, i.e., thermal AdS2n+1. First
we considered arbitrary spin-s fields propagating on a thermal AdS3 background and showed
that by tuning the zeros of the Selberg zeta function to conformal dimensions ∆s, we arrive
at the condition that the normal modes must be identified with the Matsubara frequencies of
thermal AdS3. Comparing to our previous work with the BTZ black hole, we observed the
relabeling of the integers k1, k2 depends on which circle of the solid torus H3/Z is filled in. We
then extended our analysis on H3/Z to higher dimensional thermal AdS2n+1 for arbitrary STT
tensor fields. These generalizations to [9,12] allowed us to derive the normal modes for STT
tensors on thermal AdS2n+1 with angular potentials, using the zeros of the Selberg zeta func-
tion. With the normal modes we verified for consistency that the sum over radial and angular
momentum quantum numbers p and `i build up the global characters of SO(2n+1, 1), and the
sum over images arises from taking the logarithm of the functional determinant, matching the
heat kernel results found in [16]. Finally, we developed an algorithm for recasting the higher
spin field 1-loop partition functions as a product of Selberg zeta functions on H2n+1/Z.

There are multiple generalizations and potential applications of our work. For example,
we mostly focused on odd-dimensional hyperbolic quotients H2n+1/Z. In the case of higher
spin fields, even dimensional quotients H2n/Z ' (SO(2n, 1)/SO(2n))/Z introduce additional
ambiguities, e.g., how to incorporate angular potentials, and dealing with the fact that the
principal series of SO(2n, 1) carries an additional discrete series of representations not present
in thermal AdS2n+1. Much of the analysis for H2n+1/Z goes through for STT tensors, however,
some important subtleties remain which require further study.

Another extension would be to compare to other methods of computing partition func-
tions. For example, in [23] partition functions of free massless quantum fields on AdSN were
computed using Hamiltonian techniques. The spectral data of the partition function was then
encoded into a “Hamiltonian" zeta function, with the Hamiltonian being an operator acting
on single particle states, and the zeta function related to the trace over the Hilbert space of
the single paowrticle states. The Hamiltonian zeta function is related to single particle parti-
tion function via a Mellin transform. Given that the 1-loop determinant is related to the heat
kernel via a Mellin transformation, it is expected that there is some overlap between the meth-
ods discussed here. A couple points of difference is that here we considered massive higher
spin fields (mostly bosonic in character) in odd-dimensional thermal AdS, while [23] focus
on massless fields that are either bosonic or fermionic in even- and odd-dimensional AdS. It
would be interesting to connect these two works, especially to see how the Hamiltonian zeta
function relates to the Selberg zeta function. A first step would be to see how the heat kernel
computed using the method of images relates to the Hamiltonian zeta function.

A third extension to this work would be to consider non-hyperbolic spacetimes that possess
sufficient symmetry, e.g., the sphere SN and the quotients SN/Γ . In fact, it is straightforward
to extend our analysis from AdSN to SN via a formal Wick rotation, where the normal modes
of thermal AdS become the quasinormal modes of Euclidean de Sitter space. Understanding
the relationship between the heat kernel and quasinormal mode methods of computing 1-loop
determinants on SN and SN/Γ may lead to deeper insights into de Sitter quantum gravity.
This was recently accomplished in [24] for higher spin fields in odd-dimensional Euclidean de
Sitter space.
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A Geometry of AdS2n+1

One way to obtain the metric of global Euclidean AdS2n+1 is to perform a double Wick rotation
of the sphere S2n+1 metric. Specifically, define the coordinates of the S2n+1 sphere in terms
complex numbers (z1, z2, ..., zn+1) such that

|z1|2 + |z2|2 + ...+ |zn+1|2 = 1 , (65)

each with a phase φi . For example, for S3 there are two complex numbers zi with phases
φ1,φ2; for S5 there are three complex numbers zi with φ1,φ2,φ3, and so forth. It is often
useful to decompose the complex numbers into real coordinates {x i} that embed the sphere
S2n+1 into R2n+2. For S5 the three complex numbers are decomposed into six real

x1 = cosθ cosφ1 , x2 = cosθ sinφ1 , x3 = sinθ cosψ cosφ2 ,

x4 = sinθ cosψ sinφ2 , x5 = sinθ sinψ cosφ3 , x6 = sinθ sinψ sinφ3 .
(66)

The corresponding line element for S5 is

dθ2 + cos2 θdφ2
1 + sin2 θdΩ2

3 , (67)

where dΩ2
3 is the 3-sphere line element written in Hopf coordinates,

dΩ2
3 = dψ2 + sin2ψdφ2

3 + cos2ψdφ2
2 . Generalizing this procedure to 2n + 1 dimensions,

the metric for S2n+1 is

ds2 = dθ2 + cos2 θdφ2
1 + sin2 θdΩ2

2n−1 . (68)

Euclidean AdS2n+1 is now obtained by Wick rotating θ → −iρ and φ1 → i tE , where
ρ, tE ∈ R, and ds→ ids, leading to

ds2
AdS2n+1

= dρ2 + cosh2ρd t2
E + sinh2ρdΩ2

2n−1 . (69)

In what follows we will relabel the phases φi appearing in dΩ2
2n−1 so that they run from

i = 1, ..., n−1. For example, replace dΩ2
3→ dψ2+ sin2ψdφ2

1 +cos2ψdφ2
2 in the line element

for AdS5.

B Group Theoretic Construction of the Heat Kernel

The heat kernel method [15, 16] is used to compute 1-loop functional determinants by con-
structing the heat kernel K(s)(x , y; t) with respect to the normalized eigenfunctions ψ(s)n,a(x)
of the kinetic operator ∇2

(s) for a spin-s field on a d + 1-dimensional manifold M

K(s)ab (x; y; t)≡ 〈y, b|e−t∇2
(s) |x , a〉=

∑

n

ψ(s)n,a(x)ψ
(s)∗
n,b (y)e

−tE(s)n . (70)

The subscripts a and b to denote the local Lorentz indices of the spin-s field [16]. The 1-loop
partition function Z (1)s is given in terms of the trace of the coincident heat kernel K(s)(t)

log Z (1)s = logdet(−∇2
(s)) = −

∫ ∞

0

d t
t

K(s)(t) , (71)
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where

K(s)(t) = tr(e−t∇2
(s)) =

∫

M

p
gdd+1 x

∑

a

K(s)aa (x , x; t) . (72)

When M is a highly symmetric homogeneous space G/H, group theoretic techniques can be
used to write down the eigenfunctions ψ(s)n,a of the spin-s Laplacian ∇2

(s) in terms of matrix
elements of representations of the symmetry group. These techniques were developed by
Camporesi and Higuchi [25–29] and adapted for thermal AdS by [15,16]. Here we summarize
the findings of [15,16].

Euclidean AdSN is the homogeneous space HN ' SO(N , 1)/SO(N). Building the heat
kernel on HN requires that we construct the eigenfunctions associated with a section10 in
SO(N , 1). Specifically, the eigenfunctions are determined by the matrix elements of unitary
representations of SO(N , 1) containing unitary representations of SO(N). When N = 2n+ 1
these are the principal series representations11 of SO(2n+1, 1) labeled by the array R= (iλ, ~m)
for ~m = (m2, ..., mn+1) with each mi being a non-negative half integer, λ ∈ R. For STT tensor
fields, the array simplifies such that ~m = (s, 0, ..., 0). The eigenvalues E(s) for STT tensors is
given by the quadratic Casimir

E(s)R,AdS2n+1
= −(λ2 + s+ n2) . (73)

The coincident heat kernel on HN for N = 2n+ 1 can then be derived [16,28]

K(s)(x , x; t) =

∫

dµ(s)(λ)dse
tE(s)R , (74)

where dµ(s)(λ) is the odd-dimensional generalization of the Plancherel measure, and ds is the
dimension of the irreducible representation of N − 2-dimensional sphere. When N = 2n+ 1
we have [29]

d(2n−1)
s =

s+ n− 1
n− 1

(s+ 2n− 3)!
s!(2n− 3)!

. (75)

Notice that for any n the scalar s = 0 yields d0 = 1, for n = 1 we have ds>0 = 2, and when
n= 2, ds = (s+ 1)2.

The trace of the coincident heat kernel for massless spin-s fields on thermal AdS2n+1 with
angular potentials θi is built using the method of images [16]

K(s)(γ; t) =
β

2π

∞
∑

k=1

∫ ∞

0

dλχλ,s(γ
k)etE(s)R , (76)

where the χλ,s is the Harish-Chandra character for SO(2n+ 1,1)

χλ,s(β ,θ1, ...,θn) =
e−iβλχSO(2n)

s (θ1, ...,θn) + eiβλχSO(2n)
s (θ1, ...,θn)

e−nβ
∏n

i=1 |eβ − eiθi |2
, (77)

10Recall a section σ(x) in the principal bundle G of a homogeneous space G/H is a map σ : G/H 7→ G such that
π ◦σ = e, where π is the projection map from G to G/H, π(g) = gH for all g ∈ G, e is the identity element in G,
and x are coordinates on G/H.

11For even-dimensional AdS2n ' (SO(2n, 1)/SO(2n)) the principal series of SO(2n, 1) carries an additional dis-
crete series of representations not present in the odd-dimensional case [16]. It turns out, however, that for STT
tensor fields, this additional discrete series does not contribute for n > 1 [28]. The odd-dimensional analysis is
then readily extended to even-dimensional thermal AdS2n for n> 1, when all of the angular potentials are switched
off. The only change to the functional determinant in (78) is that, the dimension ds (75) must be replaced with its
even-dimensional counterpart.
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with χSO(2)
s is the character of SO(2n) in the s representation. The group element γ in (76)

γ= eiβQ12 eiθ1Q23 ...eiθnQ2n+1,2n+2 with Q’s as generators of SO(6). When all of the angular poten-
tials are turned off, θi = 0 for all i, the character χSO(2n)

s = ds in (75).
The functional determinant of the Laplacian of a massive spin-s field on H2n+1/Z is then

given by

− logdet(−∇2
(s) +m2

s ) = (2−δs,0)

∫ ∞

0

d t
t

K(s)(γ; t)e−tm2
s

= (2−δs,0)
∑

k∈Z+

2
k

e−βk(∆s−n)

e−nkβ
∏n

i=1 |ekβ − eikθi |2
χSO(2n)

s (kθ1, ..., kθn) ,
(78)

where we have introduced the conformal dimension

∆s = n+
q

s+ n2 +m2
s . (79)

When n = 1 (78) reduces to the functional determinant for arbitrary spin-s fields on thermal
AdS3 [15], where χSO(2)

s = cos(2πskτ1), with 2πτ1 = θ1, and 2πτ2 = β .
It is beneficial for us to put the functional determinant (78) in a way exemplifying its

modular form. Specifically, using (46) and (47), it is straightforward to rewrite (78) as

− logdet(−∇2
(s) +m2

s ) = (2−δs,0)
∞
∑

k=1

2
k

∏n
j=1(q j q̄ j)k∆s/2 j

∏n
i=1 |1− qk

i |2
χSO(2n)

s (kθ1, kθ2, ..., kθn) . (80)

In particular, for AdS5 we have

− log det(−∇2
(s) +m2

s ) = (2−δs,0)
∞
∑

k=1

2
k
(q1q̄1)k∆s/4(q2q̄2)k∆s/4

|1− qk
1|2|1− qk

2|2
χSO(4)

s (kθ1, kθ2) , (81)

where, since SO(4)' SU(2)× SU(2), the character χSO(4)
s is given by

χSO(4)
s (kθ1, kθ2) = χ

SU(2)
s (α+)χ

SU(2)
s (α−) =

sin[(s+ 1)α+]
sin(α+)

sin[(s+ 1)α−]
sin(α−)

, (82)

with α± ≡ (θ1 ± θ2)/2.
Let us briefly verify that our expression for the 1-loop partition function in terms of Selberg

zeta functions for general spin in thermal AdS5 (59) is equal to the expression found using the
heat kernel and the method of images (78). We do this by first writing the Selberg zeta function
ZZ(z) in (43) for n= 2:

ZZ(z) =
∞
∏

k1,...k4=0

�

1− eiθ1k1e−iθ1k2 eiθ2k3 e−iθ2k4 e−β (k1+k2+k3+k4+z)
�

. (83)

Note then that
s
∑

m,m′=0

log ZΓ (z) =
s
∑

m,m′=0

∞
∑

k1,...,k4=0

log(1− x) = −
∞
∑

k=1

s
∑

m,m′=0

∞
∑

k1,...,k4=0

xk

k
, (84)

with
x ≡ ei(θ1−β)k1 e−i(θ1+β)k2 ei(θ2−β)k3 e−i(θ2+β)k4 e−β

�

∆s+
iθ1
β (m+m′−s)+ iθ2

β (m−m′)
�

, (85)

where we made the replacement z = ∆s +
iθ1
β (m + m′ − s) + iθ2

β (m − m′). Performing the
geometric series over each ki , i = 1, ..., 4, and identifying the sum over m, m′ as the character
χSO(4)

s (kθ1, kθ2) (58), we are left with (78) in the case of n = 2 (upon implementing the
(2−δs,0) we left of above, and picking up a factor of 2 from the relation between log Z (1)s and
log det(−∇2

s +m2
s )), We recognize the remaining sum over k as the sum over images.
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