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Abstract

We study spin- and mass-imbalanced mixtures of spin-
1
2 fermions interacting via an

attractive contact potential in one spatial dimension. Specifically, we address the influ-
ence of unequal particle masses on the pair formation by means of the complex Langevin
method. By computing the pair-correlation function and the associated pair-momentum
distribution we find that inhomogeneous pairing is present for all studied spin polar-
izations and mass imbalances. To further characterize the pairing behavior, we analyze
the density-density correlations in momentum space, the so-called shot noise, which is
experimentally accessible through time-of-flight imaging. At finite spin polarization, the
latter is known to show distinct maxima at momentum configurations associated with
the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) instability. Besides those maxima, we find
that additional features emerge in the noise correlations when mass imbalance is in-
creased, revealing the stability of FFLO-type correlations against mass imbalance and
furnishing an experimentally accessible signature to probe this type of pairing.
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1 Introduction

Ultracold quantum gases represent excellent test grounds to challenge our understanding of
the physics of strongly interacting Fermi systems. The unprecedented experimental plastic-
ity of these systems allows for the investigation of a rich variety of physical scenarios in a
clean and controllable way [1–4]. An intriguing phenomenon occurs in attractively interact-
ing spin-1

2 Fermi gases, where singlet pair-formation of spin-up and spin-down particles leads
to superfluid behavior at low temperatures. In the case of equally populated spin species,
the mechanism is well understood and can be explained via conventional Bardeen-Cooper-
Schrieffer (BCS) theory.

Our understanding of fermion pairing can be further tested by considering deviations from
the balanced limit of equal Fermi surfaces. A prominent example for such a “deformation” is
obtained by introducing a spin imbalance. In this case, superfluidity is generally expected to
break down above a critical polarization, commonly referred to as the Chandrasekhar-Clogston
limit [5,6]. Below the critical polarization, so-called polarized superfluid states may be stabi-
lized, for which several different mechanisms have been proposed in the literature [7–9]. A
particularly intriguing scenario was put forward independently by Fulde and Ferrell (FF) and
by Larkin and Ovchinnikov (LO), who argued on very general grounds that a spatially inho-
mogeneous ground state may be energetically most favorable even in infinite systems [10,11].
In this case, the emerging pairs of spin-up and spin-down fermions carry a finite total momen-
tum, potentially giving rise to the formation of a spatially varying order parameter, generally
referred to as the FFLO state (see, e.g., Refs. [12,13] for an illustration).

Despite the experimental ability to study population-imbalanced Fermi gases [14–17], a
smoking-gun evidence for the spontaneous formation of FFLO-type pairing is still missing. In
addition to the increased technical challenge, part of the reason for the absence of a clear signal
of inhomogeneous pairing is the “lack of stability” of this inhomogeneous phase: For three-
dimensional (3D) systems, beyond mean-field calculations suggest that only a thin layer of the
parameter space between the homogeneous superfluid and the normal fluid is occupied by an
inhomogeneous phase, if at all [13, 18–21]. For one dimensional (1D) systems, on the other
hand, inhomogeneous pairing is expected to exist in a wide range of parameter space [22–25]
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and experimental measurements are indeed consistent with FFLO-type pairing [16,17].
On the theory side, continuum 1D systems with zero-range interaction are described by

the so-called Gaudin-Yang model which can be solved in closed form via the famous Bethe
ansatz (BA) [4, 26, 27]. While many ground-state properties are accessible within this ap-
proach, correlation functions remain notoriously challenging to compute and typically one
has to either resort to low-energy effective treatments, such as the Tomonaga-Luttinger-liquid
(TLL) description, or use numerical methods, such as the density-matrix renormalization group
(DMRG), exact diagonalization (ED) or Monte Carlo (MC) approaches.

In addition to the preparation of systems with two different hyperfine states of the same
atom species, recent experiments explored the possibility to realize heteronuclear mixtures
such as 6Li-40K, 40K-161Dy or 6Li-53Cr, which feature a mass imbalance between the spin-up
and spin-down fermions [28–31]. These setups represent a compelling test ground for our
picture of the underlying pair formation. However, their theoretical description remains rel-
atively scarce in the literature since the reduced symmetry of the model renders BA studies
inapplicable, except for a very few specific values for the mass ratio. Nevertheless, progress
on analytic insights has been made for special symmetric configurations in the few-body sec-
tor [32–34] and numerically the regime was explored by worldline MC [35,36], ED [37] and
complex Langevin (CL) studies [38, 39]. Beyond the few-body regime, several studies based
on effective descriptions have been conducted [40–44] and numerical studies investigated
the phase-diagram of the asymmetric 1D Hubbard model (which coincides with the contin-
uum model at low fillings) by means of DMRG [45,46] as well as spin- and mass-imbalanced
systems via MC [47], time-evolving block decimation (TEBD) method [48] and DMRG [49]
approaches.

The present study aims to complement the above investigations by exploring two-body
correlation functions for general spin and mass imbalances for attractive interactions. Our
ultimate goal is to arrive at an experimentally accessible quantity to study pairing in spin-
and mass-imbalanced systems, and to that end we present numerical results for the so-called
shot-noise correlation function as obtained from the CL approach [50–52]. The latter was
recently found to provide a promising way to circumvent the sign problem in nonrelativistic
Fermi gases [38,53,54]. It is an additional objective of the present work to further develop the
method in this context by presenting the first study of spin- and mass-imbalanced systems in
the strict T = 0 limit via a projective formulation, as well as the first CL determination of two-
body correlation functions for nonrelativistic systems. The CL method is a versatile tool which,
unlike other approaches mentioned above, may be readily extended to higher spatial dimen-
sions. Indeed, this capability was recently demonstrated for 3D fermions at unitarity, where
excellent agreement with state-of-the-art numerical and experimental data for the equation of
state was reported [55].

The work is organized as follows: In Sec. 2, we introduce the model, define the relevant
scales, and briefly discuss some aspects of the CL approach; a detailed discussion of our CL
approach to ultracold Fermi gases can be found in Refs. [38, 54, 56, 57]. Numerical results
are subsequently presented, where we first validate our numerical study via a comparison of
ground-state energies to known exact results obtained with the BA method. We then proceed
with the main focus of the present work, namely the computation of two-body correlation
functions of the purely spin-polarized case in Sec. 3, and finally of general spin- and mass-
imbalanced systems in Sec. 4. Our conclusions and a brief outlook are presented in Sec. 5.
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2 Model, Scales & Method

2.1 Model and Scales

We consider systems of two fermionic species interacting via contact interaction in a one-
dimensional periodic box of extent L. Ignoring interactions between fermions of the same
species, the associated Hamilton operator in its second-quantized form reads

Ĥ =

∫

d x

�

∑

σ=↑,↓

ψ̂†
σ(x)

�

−
ħh2∇2

2mσ

�

ψ̂σ(x) + gψ̂†
↑(x) ψ̂↑(x) ψ̂

†
↓(x) ψ̂↓(x)

�

, (1)

where ψ̂†
σ (ψ̂σ) represent creation (annihilation) operators for a fermion of species σ and

mass mσ. In the following, units are chosen such that ħh= kB = 1. In the mass-balanced case,
we set m↑ = m↓ = 1. For our conventions in the case of unequal masses, we refer to Sec. 4.
Note that at low densities this system corresponds to the (asymmetric) 1D Hubbard model.

In our numerical studies below, we always work in the canonical ensemble which implies
that the particle numbers Nσ of the spin-up and spin-down fermions are parameters at our
disposal, determining the densities nσ = Nσ/L of the two species and their Fermi momenta
kσF = πnσ. Assuming that discretization artifacts in our CL studies on a finite lattice are neg-
ligible, physical observables depend on three parameters, namely the mass ratio κ = m↑/m↓,
the spin polarization p,

p ≡
N↑ − N↓
N↑ + N↓

, (2)

and the dimensionless coupling γ = g/n with n = n↑ + n↓ being the total density. The latter
can be related to the s-wave scattering length as via g = 2/as (see, e.g., Ref. [58]).

A meaningful comparison of systems associated with different mass ratios κ requires to
identify one scale which is kept fixed to the same value in all systems. In this work, we shall
keep the two-body binding energy εB fixed for g < 0 (attractive case):

εB = −
κ

2(1+ κ)
g2 . (3)

In practice, this is conveniently achieved by introducing a suitably chosen rescaled coupling
constant γ̃:

γ̃ =

√

√ 2κ
1+κ

γ. (4)

Thus, for fixed γ̃, the dimensionless binding energy εB/n
2 = −γ̃2/4 then remains constant

when we vary the mass ratio κ. Note that we have γ̃= γ in the mass-balanced limit κ= 1.

2.2 Outline of the numerical treatment

For our studies of ground-state properties of spin- and mass-imbalanced Fermi gases, we start
from the canonical partition function Z which is obtained by projecting an arbitrary trial state
|ψT〉 (typically chosen to be a Slater determinant) onto the ground state in the limit of large
imaginary times β:

Zβ = 〈ψT|e−β Ĥ |ψT〉. (5)

This partition function (not to be confused with its finite temperature counterpart, whose
calculation requires summing over a complete set of states) can be rewritten in terms of a
Euclidean-time path integral over a Hubbard-Stratonovich (HS) field φ, which is introduced
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to integrate out the fermions exactly, yielding the usual expression in terms of fermionic de-
terminants

Zβ =
∫

Dφ det M↑[φ,β]det M↓[φ,β]. (6)

This expression is the basis of the well-known class of auxiliary-field methods [59]. The path
integral in Zβ can now be tackled straightforwardly with conventional stochastic methods,
provided that the system is in a mass- and spin-balanced state. In that case, the determinants
of the two fermion species are equal and their product yields a nonnegative number. Away from
this balanced configuration, a standard MC evaluation of the path integral (6) is complicated
by the infamous sign problem [54]. In order to tackle the systems at the heart of this work,
we therefore employ the CL approach which allows us to surmount the sign problem by a
complexification of the HS field [54, 60]. The key ingredient is the use of a complexified
version of the Langevin equation to produce a Markov chain of randomly distributed field
values φ which then allows us to measure observables in the same fashion as in conventional
MC approaches based on, e.g., the Metropolis algorithm. Nevertheless, it should be stressed
that the CL approach is still a method under construction and this prescription is not without
shortcomings in certain theories, as discussed in Refs. [61–64]. As remarked above, however,
these potential issues seem to be under control for ultracold Fermi gases in a wide parameter
range [54], in particular for attractive interactions [36,38].

In practice, the field integration of Eq. (6) is performed by discretizing spacetime (on which
the field φ lives) into a spacetime lattice of size Nx × Nτ, where Nx and Nτ determine the
number of grid points in spatial and imaginary time direction, respectively. Thus, the field
integral in Eq. (6) becomes an integral over a finite (albeit large) number of dimensions. In
our computations of the pair-correlation functions, and their corresponding pair-momentum
distribution functions and ground-state energies, we have fixed the density and polarizations
in lattice sizes in the range Nx = 120 − 140. Such lattice sizes allow for good resolution
of the correlation functions and result in negligible finite-size effects. A discussion of finite-
size effects of similar quantities can be found in Ref. [65]. Moreover, we fixed the spatial
lattice constant to ` = 1, such that the first Brillouin zone extends from −π to π. For the
imaginary-time axis it was found sufficient to use a discretization step of ∆τ = 0.05. In
order to reach the ground state, statistically independent runs were performed for different
projection times corresponding to Nτ = 50 − 150 (depending on the density). Averaging
runs across multiple converged projection times then yields robust estimates of ground-state
properties, see, e.g., Ref. [66].

Our sampling strategy consists in integrating the CL equation for the HS field with a suit-
ably chosen step size up to trajectory lengths tL ≈ 1000. Here, tL denotes the fictitious
Langevin time that parametrizes the Markov chain and relates to the number of samples N
via tL = N∆tL. The parameter ∆tL denotes the adaptive integration step of the discrete CL
equations and has been fixed to an average value of ∆t(0)L = 0.04 which was found to be
sufficient for the study of the correlation functions presented below. Moreover, we have used
a regulator term of strength ξ = 0.1 in order to stabilize the CL trajectories, as also done in
previous studies with this method [38, 39, 56]. We have checked that a further reduction of
this parameter leaves our present results for the correlation functions unaltered, such that an
extrapolation to the limit ξ→ 0 is not needed.

During the evolution of the random process we take “snapshots” of the HS field separated
by∼ 1.0 “Langevin seconds” which is sufficient to yield decorrelated samples. Unless specified
otherwise, data points reflect averages over five such CL trajectories associated with randomly
chosen initial conditions of the CL equation. This yields roughly 5000 decorrelated samples
in total, allowing for a statistical uncertainty of ∼ 1 − 2%. At this point, we would like to
emphasize that the error bars presented in this work reflect purely statistical uncertainties and
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Figure 1: Ground-state energy for attractively interacting spin-up and spin-down
fermions in units of n3 L as a function of the modulus of the coupling strength γ as
obtained from our CL study (symbols). Systems with fixed spin-polarization p = 0.5
for total densities of n = 0.16, 0.2,0.25, 0.4 and 0.5 are shown. For comparison, the
exact BA result for the thermodynamic limit [67] is shown (gray dashed line).

do not contain systematic artifacts associated with the discretizations underlying our numerical
solution of the CL equation.

Finally, we note that we have monitored running averages and histograms of computed ob-
servables to analyze the reliability of our calculations. For all systems discussed in the present
work, we have found well-behaved distributions with well-defined second moments and most
importantly without so-called fat tails that could spoil the expectation values, see also Ref. [65]
for a related discussion. Further checks, specific to the CL approach, include the investigation
of imaginary parts of computed quantities which we have found to be exponentially decaying
with increasing tL as expected for physical observables.

3 Pairing in population-imbalanced Fermi gases

The main focus of this section is the investigation of pairing with the aid of appropriate two-
body correlation functions. To this end, we consider systems with a large number of particles
on large lattices, i.e., systems sufficiently close to the thermodynamic limit (TL) where finite-
size effects should be negligible. Moreover, to be consistent with our previous work [65], we
only consider odd numbers of particles for a given species to ensure that we do not explicitly
break translational invariance.

3.1 Ground-state energy

As a validation of our numerical framework, it is instructive to first look at ground-state ener-
gies and compare them with exact results from the literature. In Fig. 1, we show the ground-
state energy for systems with fixed polarization p = 0.5 at various densities as a function of
the modulus of the coupling strength γ with γ < 0 (attractive case). A comparison with the
exact solution [67] reveals significant deviations from the thermodynamic limit (TL) for sys-
tems with n = 0.5 and |γ| = 3.0. This is a consequence of the discretization of the spatial
volume in our study. In fact, the large density induces a finite interaction range on the lattice
which causes a deviation from the pure zero-range limit in the continuum. However, we find
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Figure 2: On-site pair-correlation function for systems of fixed density n = 0.4 and
polarizations of p = 0.0,0.25, 0.5 and 0.75 (from left to right). The “oscillatory
behavior” with increasing polarization is clearly visible. Note that the envelope of
the correlation functions obeys a power-law behavior for large r. The statistical error
bars are smaller than the symbol size.

convergence to exact results with decreasing density. For dilute systems with n = 0.16, we
find excellent agreement across the considered range of interaction strengths, indicating the
validity of our numerical approach.

3.2 On-site pair-correlation function

A prominent difference between 1D and 3D systems is the effect of long-range fluctuations
which prohibit the spontaneous breakdown of a continuous symmetry in the 1D case [68,69].
Instead, quasi long-range order (QLRO) takes place [70–72], manifesting itself in a algebraic
decay of two-body correlation functions:

C(r)∝ r−∆C . (7)

Here, r = |x − x ′| and ∆C denotes the correlation exponent associated with the underlying
ordering mechanism. The dominant instability is the one with the smallest correlation ex-
ponent, i.e., the one whose correlations survive the longest distances. For spin-imbalanced
Fermi gases away from half-filling, it has been found that spin-singlet pairing is dominant in
the parameter range of interest in this work [23]. For this reason, we compute the on-site
pair-correlation function, defined as the overlap of a state with a point-like pair of spin-up and
spin-down fermions removed at point x from the ground state and a state with such a pair
removed at point x ′ from the ground state:

ρ↑↓(x , x ′) ≡ 〈ψ̂†
↑(x
′) ψ̂†

↓(x
′) ψ̂↓(x) ψ̂↑(x)〉. (8)

In addition to the algebraic decay of this correlation function, spin-imbalanced systems are
expected to exhibit an additional feature at sufficiently large distances r = |x − x ′|, namely a
spatially oscillating behavior of the form [72]:

ρ↑↓(x , x ′) ∝ | cos(q|x − x ′|)| |x − x ′|−∆↑↓ . (9)

Here, q = |k↑F − k↓F| quantifies the population difference and ∆↑↓ is the correlation exponent
associated with the pair-correlation function. Since the long-range behavior of ρ↑↓ is related
to the order parameter for the fermion gap, a phenomenological interpretation of the minima
of ρ↑↓ can be given [72]: These minima may be viewed as “pockets” in which the excess
fermions (here: excess spin-up fermions for p > 0) tend to reside since the positions of these
minima are associated with vanishing (or small) fermion gap.
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Figure 3: Pair-momentum distribution n↑↓ in the first Brillouin zone for systems
of fixed density n = 0.4 and polarizations of p = 0.0, 0.25,0.5 and 0.75 (from left
to right). A clearly visible maximum/peak away from the point k = 0 emerges for
any non-zero polarization. The gray dashed lines reflect the non-interacting system.
Inset of rightmost panel: The dependence of the position of the maximum (for
k > 0) on the polarization in form of the difference |k↑F−k↓F | is found to be in excellent
agreement with the FFLO prediction. The statistical error bars are smaller than the
symbol size.

In Fig. 2, we show our results for the on-site pair-correlation function for a total den-
sity n= 0.4 and for different values of the polarization p. In the unpolarized limit, the mono-
tonic decay of the pair-correlation function is apparent, whereas oscillatory behavior is ob-
served for any finite polarization. Moreover, the frequency of the oscillations increases when
the polarization increases, as suggested by Eq. (9). We observe the above behavior for all po-
larizations considered in this work, indicating the absence of a Chandrasekhar-Clogston limit
in 1D, in agreement with earlier MC and DMRG studies of the spin-imbalanced 1D Hubbard
model [23,73].

To further analyze pairing, it is instructive to study the pair-momentum distribution which
is the Fourier transform of Eq. (8):

n↑↓(k, k′) =
∑

x ,x ′
ϕ∗k(x)ρ↑↓(x , x ′)ϕk′(x

′)

=
∑

p,p′

¬

χ̂†
↑ (k)χ̂

†
↓ (k− p)χ̂↓(k

′)χ̂↑(k
′ − p′)

¶

.
(10)

Here, we have introduced the creation and annihilation operators in momentum space:

χ̂σ(k) =
∑

x

ϕk(x) ψ̂σ(x) , χ̂†
σ(k) =

∑

x

ϕ∗k(x) ψ̂
†
σ(x), (11)

with the the box-normalized single-particle orbitals

ϕk(x) =
1
p

L
ei 2πk

L x . (12)

The pair-momentum distribution quantifies the probability of finding a zero-size (i.e. point-
like) pair composed of one spin-up and one spin-down fermion with a given momentum in the
system. Thus, the FFLO state reveals itself through off-center peaks at k = ±q. Of course, from
our analysis of the on-site pair-correlation function, the appearance of these off-center peaks
does not come unexpected. Indeed, if pairing predominantly occurs at non-zero momenta, the
corresponding real-space signal will be modulated by the appropriate wavenumber.

In Fig. 3 we show results for the diagonal part of the pair-momentum distribution, i.e.,
n↑↓(k, k), at fixed density n= 0.4 for various spin imbalances. For the spin-balanced case, we
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observe a pronounced peak in n↑↓ at k = 0, as it is expected from BCS theory. This is also in
agreement with previous MC studies of such systems [65]. The situation changes as soon as
we turn on a finite spin imbalance. We then observe peaks at k 6= 0 as a consequence of pairing
across mismatched Fermi points. To illustrate this, we show the pair-momentum distribution
for systems with polarizations p = 0.25, 0.5,0.75 in Fig. 3. The position of the off-center peaks
in momentum space follow the prediction for FFLO type pairing. This is highlighted in the inset
of the right panel of Fig. 3, where the dependence of the peak positions as a function of the
mismatch q = |k↑F − k↓F| is depicted.

3.3 Noise correlations

In addition to the pair correlator, we also discuss the density-density correlation function in
momentum space – often referred to as the “atomic shot-noise”. It is defined as follows

Gσσ′(k, k′)≡ 〈∆n̂k,σ∆n̂k′,σ′〉
= 〈n̂k,σ n̂k′,σ′〉 − 〈n̂k,σ〉 〈n̂k′,σ′〉.

(13)

Here, n̂k,σ denotes the number operator in momentum space for the species σ and
∆n̂k,σ = n̂k,σ −




n̂k,σ

�

denotes the fluctuation around the thermal average.
This quantity has been proposed as a suitable probe for correlations in ultracold quantum

gases [74]. Several theoretical studies predict distinct imprints of the underlying ordering
mechanism in the shot noise [23,75–77]. Experimentally, it is accessible through the analysis
of time-of-flight images of the spatial density profile after ballistic expansion, i.e., after inter-
actions and the trap have been switched off. The so-obtained time-of-flight images are then
proportional to the single-particle momentum distribution. A requirement for the experimen-
tal measurement is the ability of spin-selective imaging of the sample density which has been
applied in several setups so far (see, e.g., Refs. [78–80]).

Loosely speaking, the computation of G↑↓(k, k′) allows us to study the internal momentum
structure of a pair of one spin-up and one spin-down fermion. Indeed, we can combine the
momenta k and k′ such that we obtain ktot = (k+k′) and krel = k−k′ being the total and relative
momentum of the two fermions in a pair, respectively. To understand the quantity itself, it is
instructive to think of it as the covariance matrix of the single-particle momentum distributions
nσ(k) and nσ′(k′): Positive values of Gσσ′(k, k′) correspond to situations where high (low)
values of nσ(k) occur alongside with high (low) values of nσ′(k′), whereas negative Gσσ′(k, k′)
corresponds to anti-correlation, i.e. high (low) values of nσ(k) entail low (high) values of
nσ′(k′). The two cases can be physically identified with particle-particle (or hole-hole) and
particle-hole correlations, respectively. Within this picture, it is also straightforward to see
that Gσσ′(k, k′) vanishes for non-interacting systems, as the two single-particle distributions
are then statistically independent. Note that the converse of this statement does not hold.

In Fig. 4, we show the density-density correlation function G↑↓(k, k′) in the first Brillouin
zone at constant total particle number N = 26, for a variety of polarizations at the intermediate
coupling γ = −2.0. For all results discussed in the following, we have fixed the spatial lattice
size to Nx = 64 which we found sufficient to study relevant features (see, e.g., Ref. [23]).

The top-left panel of Fig. 4 shows the unpolarized case, for which the dominant correlations
are expected to occur at the momentum space coordinates (±k↑F,∓k↓F), reflecting BCS-type pair-
ing, i.e., pairing at equal and opposite momenta between spin-up and -down particles. Since
the Fermi momenta of the two species coincide in this case, the correlation peaks occur on the
anti-diagonal k = −k′ and thus indicate pairing with a total pair-momentum of q = k+k′ = 0.

For non-zero polarizations, a similar – yet distinct – picture emerges: While pairing still
appears to happen close the respective Fermi points, the peaks of positive correlation shift “out-
wards” from the central anti-diagonal line by an offset of |q|. This is a hallmark of FFLO-type
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Figure 4: Shot-noise correlation function G↑↓(k, k′) for polar-
ized systems with N↑ + N↓ = 26 particles for configurations
(N↑, N↓) = (13,13), (15,11), (17,9), (19, 7), (21, 5), and (21,3) corresponding
to polarizations p = 0,0.15, 0.31,0.46, 0.62, and 0.77 (from top left to bottom
right). Positive (negative) correlations are indicated by red (blue) color coding,
white color indicates that there is no correlation. To facilitate a better comparison
between the different particle numbers, all values have been normalized to the
respective maximal absolute values of the shot-noise such that the range of the
correlation is always in the interval [−1,1]. Lower left panel: The direction along
the momentum-space diagonal defines the total momentum ktot of a pair whereas
the direction along the anti-diagonal defines the relative momentum krel. The two
dashed lines show lines of constant ktot = ±q which include the points of opposite
Fermi momenta labeled with their respective momentum-space coordinates.

correlations which we already discussed in the previous section. Since the positive particle-
particle correlations dominate over the negative particle-hole contributions, singlet-pairing
clearly dominates other ordering mechanisms, in particular the formation of a charge-density
wave.

Another interesting feature is the “checkerboard” pattern, that separates the Brillouin zone
into segments of positive and negative correlations at the intersection lines of the Fermi points.
Employing the argument above, we expect four particle-hole-like areas with negative correla-
tions alongside with five particle-particle (or hole-hole) regions with positive correlation. This
is reflected in our numerical data which is also in excellent agreement with the observations
in Ref. [23].

With increasing interaction strength, it becomes energetically more and more favorable to
scatter particles from well below the Fermi point which leads to a broadening of the peaks
of positive correlation at the opposite Fermi points. In unpolarized systems, this broadening
eventually leads to the vanishing of the checkerboard pattern whereas the pattern is extremely
stable in the spin-imbalanced case, indicating the “preservation” of the respective Fermi points
as expected for systems with gapless excitations [75].

10

https://scipost.org
https://scipost.org/SciPostPhys.9.1.014


SciPost Phys. 9, 014 (2020)

/ /

> = .
= .
= .
= .

/ /

< = .
= .
= .
= .

Figure 5: Pair-momentum distribution n↑↓ for mass-imbalanced systems with
(N↑, N↓) = (17,9) particles on a lattice of Nx = 64 sites and γ̃ = −2.0. Left panel:
Heavy-majority systems with mass ratios κ= 1.0, 2.0,5.0, 10.0. Right panel: Heavy-
minority systems with mass ratios κ= 0.1, 0.2,0.5, 1.0. The statistical error bars are
smaller than the symbol size.

4 Spin-polarized fermions with unequal masses

Turning now to the spin- and mass-imbalanced case, we note that the reduced symmetry of
the Hamiltonian renders the system non-integrable, such that numerical methods have to be
employed. Several studies based on DMRG [49], MC [47] and TEBD [48] have explored the
phase diagram for either purely mass-imbalanced or spin-imbalanced 1D mixtures before. In
this section, we present results for mass ratios which are in the range of potentially realizable
values in experiments. This should allow for a check of previously made predictions on the
stability of pairing in the presence of a finite mass imbalance in 1D Fermi mixtures.

In the following we set the scales such that the mass ml of the lighter species is fixed to
ml = 1. This leaves the mass mh of the heavier fermion species at our disposal, which we
characterize by the numerical factor κ as mh = κml (see also Sec. 2.1 for our conventions).
For the balanced case, we thus obtain a reduced mass µ = 1

2 and hence γ̃ = γ, whereas the
reduced mass increases for mass ratios κ 6= 1 from µ = 1

2 up to a maximum of µ = 1 in the
limit of κ→∞. Keeping γ̃ fixed ensures that we take out any trivial dependence on the mass
imbalance. Any residual dependence of our results on the mass imbalance should be a true
many-body effect.

As mentioned above, we now have to deal with a reduced symmetry of the Hamiltonian.
To be specific, because of the additional mass asymmetry, the system is no longer invariant
under a flip of the sign of the polarization, p→−p. This requires us to consider two separate
scenarios: The case where the majority species is heavier than the minority (heavy-majority
case) and the opposite case (heavy-minority case). We keep the convention as in the spin-
polarized case, namely N↑ > N↓. This implies that κ > 1 (κ < 1) corresponds to a heavy-
majority (heavy-minority) system.

4.1 Pair-momentum distribution

As a first step, we investigate again the diagonal of the pair-momentum distribution n↑↓(k, k)
as we did in the previous section. In Fig. 5, we show n↑↓(k, k) for (N↑, N↓) = (17, 9) particles
on a lattice of Nx = 64 sites, corresponding to a density of n≈ 0.41. Interestingly, we observe
almost no variation of n↑↓(k, k) as a function of κ for both the heavy-majority case (left panel)
and the heavy-minority case (right panel). Most importantly, for all mass imbalances consid-
ered in this work, we observe constant positions of the maxima, indicating the stability of the
FFLO-type correlations in the presence of a finite mass imbalance. Of course, the robustness
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of the pair-momentum distribution with respect to a variation of the mass imbalance trans-
lates directly into a robustness of the on-site pair-correlation function, which is the Fourier
transform of the pair-momentum distribution.

For the considered mass ratios, which are in the range of potentially realizable values, we
observe FFLO-type correlations, regardless of the spin polarization. At the interaction strength
considered here, γ̃= −2.0, this is in line with previous studies [47–49].

For mass imbalances beyond those considered in the present work, it has been observed
in the asymmetric 1D Hubbard model that FFLO-type ordering is eventually suppressed. In-
stead, a charge-density-wave-type phase appears before either phase separation sets in [45]
or the system collapses [41,47]. The “critical imbalances” above which these transitions occur
depend on the interaction strengths but are expected to be well above the experimentally real-
izable values for the mass ratio κ. In any case, an exploration of this highly mass-imbalanced
regime is beyond the scope of the present study 1.

For completeness, we comment on the possible occurrence of multi-particle bound states
at large mass imbalances. For commensurate spin imbalances (i.e. integer ratios of the spin-
up and spin-down densities), stable phases – where ordering is associated with the formation
of such multi-particle bound states – have been observed [43, 44, 49, 81]. For general spin
imbalances away from the commensurate points, however, such phases are unstable and are
thus not relevant for the present discussion.

4.2 Shot-noise correlations

It may appear counterintuitive that a finite mass imbalance seems to leave the pairing of spin-
up and spin-down particles unchanged altogether, as suggested by our results for the pair-
momentum distribution. Loosely speaking, by increasing the mass of a fermion species, the
spacing between the energy levels decreases (or, in terms of the Hubbard model, the bands flat-
ten with decreased hopping while retaining the same number of states). With such a rescaled
energy spectrum, the participation of higher-lying momentum states in scattering processes
appears energetically possible and therefore pairing should also take place (far) away from
the Fermi points. This is indeed the case. As we shall see below, however, pairs still pre-
dominantly form with the FFLO-momentum q = |k↑F − k↓F| even in the mass-imbalanced case,
such that only certain combinations of momenta of the spin-up and spin-down particles away
from the Fermi points are preferred. In essence, the energy in mass-imbalanced systems is
still minimized by accommodating the excess particles at the almost gapless points (i.e. at
the nodes of the on-site pair-correlation function) which implies pairing at finite ktot. In the
following we analyze this aspect with the help of the shot-noise correlator G↑↓ which shows
distinct fingerprints of this mechanism.

Recently, studies based on ED explored shot-noise correlations [82] and a related mea-
sure [83] to study the influence of mass imbalance on pair formation in harmonically trapped
spin-balanced few-body systems have also been performed. In the present work, however,
we address this quantity in the presence of spin imbalance for many-body systems and show
that unambiguous features emerge which can potentially be identified in currently available
experimental setups.

1In [47], a detailed investigation for the onset the collapsed state in the Hubbard model was performed. For a
(rough) translation of our parameters to the ones in [47], we may relate the Hubbard model at low filling to Eq. (1)
via the kinetic energies t ∼ 1

2m and therefore U/t ∼ 2mg. For κ = 10.0 (which is the largest value considered in
this work and on the upper end of the current capabilities of our CL implementation) and the interaction strength
γ̃= 2.0 the ratio t2/|U | ∼ 1/(2gκ)≈ 0.083, placing our results well above typical values where the collapse occurs
for any polarization studied (see Fig. 4 in [47]).
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4.2.1 Heavy-majority systems
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Figure 6: Pairing in heavy-majority systems. Top row panels: Shot-noise correlator
G↑↓ for (N↑, N↓) = (17, 9) particles and mass imbalances κ= 1, 2, and 5. Bottom left
panel: Cuts of G↑↓ along constant ktot = −q, corresponding to the gray dashed line in
the upper left panel (the statistical error bars are smaller than the symbol size). The
peaks labeled “A” and “B” correspond to the points marked in the upper panels. The
vertical gray dashed lines indicate the position of the Fermi points associated with
the majority species k = ±k↑F. Bottom right panel: Sketch of the pairing mechanism
in momentum space. The upper (lower) line depicts the first Brillouin zone of the
spin-up (spin-down) species. The end points of the gray-shaded bands correspond to
the Fermi points of the two species. Finally, the big black dots connected with a black
solid line symbolize standard BCS-type pairing “across the Fermi lines” (gray-shaded
bands) which gives rise to peak A. The big blue dots connected with a dashed blue
line symbolize the second most dominant pairing correlation which gives rise to the
peak B.

First, let us consider the heavy-majority scenario in more detail, for which we show our re-
sults in Fig. 6. As discussed above, in the balanced case (top-left panel), pairing predominantly
occurs at lines of constant momentum ktot = ±q = ±|k↑F− k↓F|, which corresponds to k′ = k±q
and describes the positions of the two maxima in the pair-momentum distribution discussed
above. We observe peaks at (±k↑F,∓k↓F) which are associated with the expected FFLO-type
pairing in the vicinity of both Fermi points. The dominant peak labeled with “A” in the top-left
panel of Fig. 6 is located on the line ktot = −q.2

With increasing mass ratio κ, additional peaks emerge at (±k↑F ∓ 2q,∓k↓F), indicated by

2In addition, an equally dominant peak on the line ktot = q exists. For our discussion below, however, it is
sufficient to focus on the line corresponding to ktot = −q. Indeed, since the shot-noise correlator G↑↓(k, k′) is
invariant under a point reflection with respect to the origin k = k′ = 0, it suffices to consider the shot-noise
correlator on one side of the anti-diagonal defined by k′ = −k.
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stronger particle-particle correlations (i.e., darker red coloring). For the sake of readability,
only the point at (−k↑F + 2q, k↓F) is labeled with “B” in the rightmost panel of Fig. 6. The emer-
gence of a peak at the coordinates (k↑F − 2q,−k↓F) reflects pairing of light fermions “sitting”
close to the opposite Fermi point with heavy fermions whose momenta are shifted such that
the total momentum remains fixed.

The build-up of a second peak is highlighted in detail in the bottom-left panel of Fig. 6
where we show the cut along the line of ktot = −q (corresponding to the dashed line in the
upper-left panel) for different mass imbalances. The configurations corresponding to the peaks
are the ones that are most likely to be found. Of course, this does not mean that fermion pairs
with a different internal momentum structure are not formed in the system. The probability
to find the latter pairs is just lower.

The bottom-right panel of Fig. 6 illustrates the underlying pairing mechanism: For suffi-
ciently large mass imbalance, it becomes energetically more favorable to pair up with heavy
particles from far below the Fermi point while still obeying the constraint |ktot| = |q|. The
sketch depicts the perspective of the lighter (spin-down) particle at the Fermi point: In ad-
dition to forming a pair with a spin-up particle at k = −k↑F (big black dots), there is now a
significant probability to pair up with a particle at k↑ = −k↑F + 2q (big blue dots).

4.2.2 Heavy-minority systems

The investigation of the heavy-minority scenario, which is shown in Fig. 7, reveals a similar
picture albeit with reversed roles of the majority and minority particles. For the same mass
ratios as above, we now observe additional peaks at (±k↑F,±k↓F ∓ 2k↑F), already clearly visible
as additional “fringes” in the middle and the right panel of Fig. 7. The build-up of a secondary
peak becomes again more clearly visible by comparing the shot-noise correlations along the
line ktot = −q, see bottom-left panel of Fig. 7. The additional peak “C” emerges at the expense
of some weight at the opposite Fermi point of the majority species.

The underlying pairing mechanism is depicted in the bottom-right panel of Fig. 7 where
pairing of a light majority particle sitting at its Fermi point is now favored to occur with either a
heavy-minority particle sitting at its Fermi point (big black dot) or a fermion far above the Fermi
point (big red dot). Similar to the heavy-majority case, the latter option becomes energetically
more favorable with increasing mass ratio since higher-lying states can, loosely speaking, be
reached more easily. Recall that the difference between the energy levels is proportional to
the inverse of the mass of a particle. The corresponding peak in the shot-noise correlation
function is labeled with “C” in the top-right panel of Fig. 7.

5 Discussion & Summary

To summarize, we have investigated the ground-state pairing behavior of non-relativistic spin-
and mass-imbalanced Fermi gases in 1D, which is expected to be of the FFLO type. To that
end, we employed the complex Langevin method (applied to the present system for the first
time) and calculated two-body correlation functions, finding remarkable agreement with ear-
lier theoretical predictions and numerical calculations, wherever available. In particular, we
have observed hallmark features of the FFLO pairing across all spin polarizations considered
in agreement with earlier studies on related systems.

Most importantly, we have presented results for the density-density correlation function.
The latter shows an exceptionally clean signal for pairing across the mismatched Fermi points
and is also accessible in experimental setups. Especially for spin- and mass-imbalanced sys-
tems, our study has revealed remarkable features with increasing mass imbalance. In fact, we
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Figure 7: Pairing in heavy-minority systems. Top row panels: Shot-noise correlator
G↑↓ for (N↑, N↓) = (17,9) particles and mass imbalances κ= 1, 0.5 and 0.2 (from left
to right). Bottom left panel: Cuts of G↑↓ along constant ktot = −q, corresponding to
the gray dashed line in the upper left panel (the statistical error bars are smaller than
the symbol size). The peaks labeled “A” and “C” correspond to the points marked in
the upper panels. The vertical gray dashed lines indicate the position of the Fermi
points associated with the majority species k = ±k↑F. Bottom right panel: Sketch
of the pairing mechanism in momentum space. The upper (lower) line depicts the
first Brillouin zone of the spin-up (spin-down) species. The end points of the gray-
shaded bands correspond to the Fermi points of the two species. Finally, the big
black dots connected with a black solid line symbolize standard BCS-type pairing
“across the Fermi lines” (gray-shaded bands) which gives rise to peak A. The big red
dots connected with a dashed red line symbolize the second most dominant pairing
correlation which gives rise to the peak C.

have found indications that, even for very large mass imbalances, the dominant correlations
are of the FFLO type. However, in addition to the naively expected conventional FFLO-type
pairing-peaks appearing at the opposite Fermi points in the density-density correlation func-
tion, we have observed that new peaks emerge with increasing mass imbalance. Interestingly,
the spectral weight is found to be only shifted along anti-diagonals of constant total momen-
tum of the fermion pairs. This is consistent with our finding of a constant peak position in
the pair-momentum distribution. In particular, we have found that the aforementioned new
peaks build up at the Fermi points of the light fermion species, pushing some of the weight of
the heavier component away from its own Fermi point. Phenomenologically, the effect may be
understood by recognizing that it is “easier” to move the higher-mass component to a different
momentum state since the energy expense for this process decreases with increasing fermion
mass.

It should be noted that technically the finding of a peak in the pair-correlation function (as
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well as the corresponding features in the shot-noise) alone does not constitute a proof that the
FFLO-type pairing is indeed the leading instability - nevertheless, it may be taken as a strong
indication. In combination with what is known in the literature for the studied range of param-
eters, however, we are confident that the FFLO-type pairing is indeed the leading instability
for the presented results. To unambiguously address this point, a precise determination of the
correlation exponents is required. However, this is beyond the scope of the present study and
is therefore deferred to a subsequent investigation.

While the present work focuses on bulk systems, i.e., we have employed periodic boundary
conditions, we nevertheless expect it to be of relevance for experiments where the particles
reside in non-uniform trapping potentials. In fact, earlier studies of the shot-noise for trapped
systems suggest the stability of the distinct pairing patterns in the presence of harmonic (and
likely any other) confinement [23], and even in the few-body sector [82,84].

The success of the CL method in computing two-body correlation functions sets the stage
for further investigations based on this method. In the future, it will be interesting to study
the temperature dependence of the pairing patterns found here. In addition, future efforts
will be directed towards systems in higher spatial dimensions, where long-range order is more
stable against fluctuations. A particularly exciting avenue concerns the advent of quantum gas
microscopes, which give direct access to shot-noise correlation functions for two-dimensional
systems in optical lattices and could provide a viable way to study, e.g., the fate of pair corre-
lations across the BCS-BEC crossover in 2D spin- and mass-polarized Fermi gases.

Acknowledgements

The authors acknowledge numerous fruitful and enlightening discussions with H.W. Hammer,
J.R. McKenney, and A.G. Volosniev. J.B. acknowledges support by the DFG under grant BR
4005/4-1 (Heisenberg program). J.B. and L.R. acknowledge support by HIC for FAIR within
the LOEWE program of the State of Hesse. This material is based upon work supported by the
National Science Foundation Computational Physics Program under Grant No. PHY1452635.
Numerical calculations have been performed on the LOEWE-CSC Frankfurt.

References

[1] M. Inguscio, W. Ketterle and C. Salomon, Proceedings of the International School of Physics
"Enrico Fermi" 164th Course, Ultra-cold Fermi Gases, Proc. Int. Sch. Phys. Fermi 164, ISBN:
9781586038465 (2007).

[2] S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of ultracold atomic Fermi gases, Rev.
Mod. Phys. 80, 1215 (2008), doi:10.1103/RevModPhys.80.1215.

[3] I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod.
Phys. 80, 885 (2008), doi:10.1103/RevModPhys.80.885.

[4] X.-W. Guan, M. T. Batchelor and C. Lee, Fermi gases in one dimension: From Bethe ansatz
to experiments, Rev. Mod. Phys. 85, 1633 (2013), doi:10.1103/RevModPhys.85.1633.

[5] B. S. Chandrasekhar, A note on the critical field in high-field superconductors, Appl. Phys.
Lett. 1, 7 (1962), doi:10.1063/1.1777362.

[6] A. M. Clogston, Upper limit for the critical field in hard superconductors, Phys. Rev. Lett.
9, 266 (1962), doi:10.1103/PhysRevLett.9.266.

16

https://scipost.org
https://scipost.org/SciPostPhys.9.1.014
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.85.1633
http://dx.doi.org/10.1063/1.1777362
http://dx.doi.org/10.1103/PhysRevLett.9.266


SciPost Phys. 9, 014 (2020)

[7] L. Radzihovsky and D. E. Sheehy, Imbalanced Feshbach-resonant Fermi gases, Rep. Prog.
Phys. 73, 076501 (2010), doi:10.1088/0034-4885/73/7/076501.

[8] F. Chevy and C. Mora, Ultra-cold polarized Fermi gases, Rep. Prog. Phys. 73, 112401
(2010), doi:10.1088/0034-4885/73/11/112401.

[9] K. B. Gubbels and H. T. C. Stoof, Imbalanced Fermi gases at unitarity, Phys. Rep. 525, 255
(2013), doi:10.1016/j.physrep.2012.11.004.

[10] P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-exchange field, Phys. Rev. 135,
A550 (1964), doi:10.1103/PhysRev.135.A550.

[11] A. I. Larkin and Y. N. Ovchinnikov, Inhomogeneous state of superconductors, J. Exp. Theor.
Phys. 20, 762 (1965).

[12] D. Roscher, J. Braun, J.-W. Chen and J. E. Drut, Fermi gases with imaginary mass imbalance
and the sign problem in Monte-Carlo calculations, J. Phys. G: Nucl. Part. Phys. 41, 055110
(2014), doi:10.1088/0954-3899/41/5/055110.

[13] D. Roscher, J. Braun and J. E. Drut, Phase structure of mass- and spin-imbalanced unitary
Fermi gases, Phys. Rev. A 91, 053611 (2015), doi:10.1103/PhysRevA.91.053611.

[14] Y. Shin, M. W. Zwierlein, C. H. Schunck, A. Schirotzek and W. Ketterle, Observation
of phase separation in a strongly interacting imbalanced Fermi gas, Phys. Rev. Lett. 97,
030401 (2006), doi:10.1103/PhysRevLett.97.030401.

[15] M. W. Zwierlein, Fermionic superfluidity with imbalanced spin populations, Science 311,
492 (2006), doi:10.1126/science.1122318.

[16] Y.-a. Liao, A. Sophie C. Rittner, T. Paprotta, W. Li, G. B. Partridge, R. G. Hulet, S. K.
Baur and E. J. Mueller, Spin-imbalance in a one-dimensional Fermi gas, Nature 467, 567
(2010), doi:10.1038/nature09393.

[17] M. C. Revelle, J. A. Fry, B. A. Olsen and R. G. Hulet, 1D to 3D crossover of a spin-imbalanced
Fermi gas, Phys. Rev. Lett. 117, 235301 (2016), doi:10.1103/PhysRevLett.117.235301.

[18] D. E. Sheehy and L. Radzihovsky, BEC-BCS crossover in “magnetized”
Feshbach-Resonantly paired superfluids, Phys. Rev. Lett. 96, 060401 (2006),
doi:10.1103/PhysRevLett.96.060401.

[19] H. Hu and X.-J. Liu, Mean-field phase diagrams of imbalanced Fermi gases near a Feshbach
resonance, Phys. Rev. A 73, 051603 (2006), doi:10.1103/PhysRevA.73.051603.

[20] A. Bulgac and M. McNeil Forbes, Unitary Fermi supersolid: The Larkin-Ovchinnikov phase,
Phys. Rev. Lett. 101, 215301 (2008), doi:10.1103/PhysRevLett.101.215301.

[21] B. Frank, J. Lang and W. Zwerger, Universal phase diagram and scaling func-
tions of imbalanced Fermi gases, J. Exp. Theor. Phys. 127, 812 (2018),
doi:10.1134/S1063776118110031.

[22] G. Orso, Attractive Fermi gases with unequal spin populations in highly elongated traps,
Phys. Rev. Lett. 98, 070402 (2007), doi:10.1103/PhysRevLett.98.070402.

[23] A. Lüscher, R. M. Noack and A. M. Läuchli, Fulde-Ferrell-Larkin-Ovchinnikov state in the
one-dimensional attractive Hubbard model and its fingerprint in spatial noise correlations,
Phys. Rev. A 78, 013637 (2008), doi:10.1103/PhysRevA.78.013637.

17

https://scipost.org
https://scipost.org/SciPostPhys.9.1.014
http://dx.doi.org/10.1088/0034-4885/73/7/076501
http://dx.doi.org/10.1088/0034-4885/73/11/112401
http://dx.doi.org/10.1016/j.physrep.2012.11.004
http://dx.doi.org/10.1103/PhysRev.135.A550
http://dx.doi.org/10.1088/0954-3899/41/5/055110
http://dx.doi.org/10.1103/PhysRevA.91.053611
http://dx.doi.org/10.1103/PhysRevLett.97.030401
http://dx.doi.org/10.1126/science.1122318
http://dx.doi.org/10.1038/nature09393
http://dx.doi.org/10.1103/PhysRevLett.117.235301
http://dx.doi.org/10.1103/PhysRevLett.96.060401
http://dx.doi.org/10.1103/PhysRevA.73.051603
http://dx.doi.org/10.1103/PhysRevLett.101.215301
http://dx.doi.org/10.1134/S1063776118110031
http://dx.doi.org/10.1103/PhysRevLett.98.070402
http://dx.doi.org/10.1103/PhysRevA.78.013637


SciPost Phys. 9, 014 (2020)

[24] D. Roscher, J. Braun and J. E. Drut, Inhomogeneous phases in one-dimensional
mass- and spin-imbalanced Fermi gases, Phys. Rev. A 89, 063609 (2014),
doi:10.1103/PhysRevA.89.063609.

[25] J. J. Kinnunen, J. E. Baarsma, J.-P. Martikainen and P. Törmä, The
Fulde–Ferrell–Larkin–Ovchinnikov state for ultracold fermions in lattice and harmonic po-
tentials: a review, Rep. Prog. Phys. 81, 046401 (2018), doi:10.1088/1361-6633/aaa4ad.

[26] M. Gaudin, Un systeme a une dimension de fermions en interaction, Phys. Lett. A 24, 55
(1967), doi:10.1016/0375-9601(67)90193-4.

[27] C. N. Yang, Some exact results for the many-body problem in one dimension
with repulsive delta-function interaction, Phys. Rev. Lett. 19, 1312 (1967),
doi:10.1103/PhysRevLett.19.1312.

[28] M. Lu, N. Q. Burdick and B. L. Lev, Quantum degenerate dipolar Fermi gas, Phys. Rev. Lett.
108, 215301 (2012), doi:10.1103/PhysRevLett.108.215301.

[29] A. Frisch, K. Aikawa, M. Mark, F. Ferlaino, E. Berseneva and S. Kotochigova, Hyperfine
structure of laser-cooling transitions in fermionic erbium-167, Phys. Rev. A 88, 032508
(2013), doi:10.1103/PhysRevA.88.032508.

[30] C. Ravensbergen, V. Corre, E. Soave, M. Kreyer, S. Tzanova, E. Kirilov and R. Grimm,
Accurate determination of the dynamical polarizability of dysprosium, Phys. Rev. Lett. 120,
223001 (2018), doi:10.1103/PhysRevLett.120.223001.

[31] E. Neri, A. Ciamei, C. Simonelli, I. Goti, M. Inguscio, A. Trenkwalder and M. Zaccanti,
Realization of a cold mixture of fermionic chromium and lithium atoms, Phys. Rev. A 101,
063602 (2020), doi:10.1103/PhysRevA.101.063602.

[32] M. Olshanii and S. G. Jackson, An exactly solvable quantum four-body problem associated
with the symmetries of an octacube, New J. Phys. 17, 105005 (2015), doi:10.1088/1367-
2630/17/10/105005.

[33] A. S. Dehkharghani, A. G. Volosniev and N. T. Zinner, Impenetrable mass-imbalanced parti-
cles in one-dimensional harmonic traps, J. Phys. B: At. Mol. Opt. Phys. 49, 085301 (2016),
doi:10.1088/0953-4075/49/8/085301.

[34] N. L. Harshman, M. Olshanii, A. S. Dehkharghani, A. G. Volosniev, S. Glenn
Jackson and N. T. Zinner, Integrable families of hard-core particles with unequal
masses in a one-dimensional harmonic trap, Phys. Rev. X 7, 041001 (2017),
doi:10.1103/PhysRevX.7.041001.

[35] H. Singh, Worldline approach to few-body physics on the lattice (2018), arXiv:1812.02364.

[36] H. Singh and S. Chandrasekharan, Few-body physics on a spacetime lattice in the worldline
approach, Phys. Rev. D 99, 074511 (2019), doi:10.1103/PhysRevD.99.074511.
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