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Abstract

Recently, it has been found that there exist symmetry-protected topological phases of
fermions, which have no realizations in non-interacting fermionic systems or bosonic
models. We study the edge states of such an intrinsically interacting fermionic SPT phase
in two spatial dimensions, protected by Z4 × ZT2 symmetry. We model the edge Hilbert
space by replacing the internal Z4 symmetry with a spatial translation symmetry, and
design an exactly solvable Hamiltonian for the edge model. We show that at low-energy
the edge can be described by a two-component Luttinger liquid, with nontrivial symmetry
transformations that can only be realized in strongly interacting systems. We further
demonstrate the symmetry-protected gaplessness under various perturbations, and the
bulk-edge correspondence in the theory.
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1 Introduction

Symmetry-protected topological (SPT) phases [1–3] are characterized by their protected bound-
ary states. The protecting symmetries act anomalously on the boundary states, in such a way
that a symmetric and non-degenerate ground state is prohibited. As a result, a boundary with-
out symmetry breaking must be gapless, or gapped with intrinsic topological order when the
boundary is two-dimensional or higher [4]. Many examples of SPT phases have been discov-
ered in fermionic systems, in particular in electronic band insulators and BCS superconduc-
tors [5–8]. Their gapless boundary states are well-understood thanks to the non-interacting
nature of the states and can be described in terms of Dirac or Majorana fermions when the in-
teractions on the boundary are sufficiently weak. Dirac-like surface states have been observed
in 3D time-reversal-invariant topological insulators [7,8], as well as their generalizations with
crystalline symmetries. Strong interactions can drive the gapless surface to symmetry-enriched
topologically ordered phases [4,9–13].

Beyond free fermions, recently there has been significant theoretical progress in classify-
ing SPT phases in interacting fermionic systems [14–19], following previous classifications of
bosonic SPT phases using group cohomology [1]. A number of different approaches have been
put forward, such as fermionic generalizations of the group-cohomology constructions [14,
18,20], and classifications based on topological quantum field theories [21–24]. These results
have pointed to an interesting possibility, namely interacting Fermionic Symmery-Protected
Topological (FSPT) phases, which can only exist with strong interactions. One mechanism for
such phases is when fermions first form bosonic molecules/spins under strong interactions,
and then these bosons form a SPT state. To give an example, imagine in 2D fermions first
form charge-2e bosons, and then the bosons are put into a so-called bosonic integer quantum
Hall state [25], which has an electric Hall conductance quantized to 8e2

h , but a vanishing ther-
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mall Hall conductance, violating the Wiedemann-Franz law [26]. Thus this phase can only be
found in the presence of strong interactions. However, more interestingly there exist intrinsi-
cally fermionic phases which can not be realized by weakly interacting systems and have no
bosonic counterpart. Examples of such intrinsically FSPT phases have been discovered in one,
two and three dimensions [15, 17, 27]. In one dimension, an intrinsically interacting FSPT
phase exists when the symmetry group is Z f

4 ×Z4 [15, 27], where the edge modes transform

as a projective representation of the symmetry group. Here Z f
4 refers to the conservation of

fermion number mod 4. In two dimensions, the simplest symmetry group that allows an inter-
acting FSPT phase is Z f

2 ×Z4×ZT2 . Here ZT2 denotes the time-reversal symmetry that squares
to the identity, i.e. fermions are Kramers singlets. Similar states protected by crystalline sym-
metries have been found [28,29].

Given that these new phases require strong interactions to exist, their boundary states can
not be simply free Dirac/Majorana fermions. While exactly-solvable bulk Hamiltonians can
in principle be constructed [14, 27], it is very desirable to have a physical understanding of
the interacting edge states. Generally, nontrivial dynamics on the edge leads to either gapped
phases with broken symmetry, or a symmetric gapless phase. We will address this question for
the 2D Z f

2 ×Z4×ZT2 FSPT phase. Our strategy is to study a closely related 2D crystalline FSPT
phase, where the Z4 symmetry is replaced by a Z translation symmetry. The corresponding
crystalline SPT phase has a simple bulk wavefunction, and the edge modes can be cleanly
separated from the bulk as a stand-alone 1D chain of spinless fermions, which do not allow
any quadratic couplings respecting the symmetries. We design an analytically solvable model
for the boundary chain, and derive a two-component Luttinger liquid theory that captures
the low-energy physics, based on which we propose a very similar theory where the spatial
translation Z is replaced by an internal Z4 symmetry. We then demonstrate that the theory
exhibits the correct quantum anomaly.

2 Intrinsically interacting FSPT phases in 2D

We review the physics of intrinsically interacting FSPT phases in 2D, through a decorated
domain wall picture [30], and closely related ones with crystalline symmetries. Another con-
struction of FSPT phases using group super-cohomology theory will be briefly summarized in
Appendix A. We will focus on G = Z4×ZT2 . Notice that fermions transform as Kramers singlet,
e.g. spinless fermions, unlike the spin-1/2 electrons which are Kramers doublets.

We first briefly recall the non-interacting classification with such a symmetry group [31].
Since there is no charge conservation, in general the BdG Hamiltonian can be compactly writ-
ten as H = Ψ†hΨ, where the Nambu spinor Ψ is schematically defined as Ψ = (c, c†) sup-
pressing all the indices (site, spin, etc.). In the presence of a unitary symmetry, e.g. Z4 in
this case, the first-quantized Hamiltonian h can be block diagonalized, with blocks labeled by
Z4 eigenvalues. Now within each block the only symmetry is the ZT2 . Because the fermions
are Kramers singlets, the classification for each block is given by the BDI class in the ten-fold
way, which is completely trivial in 2D. We conclude that the overall classification is trivial as
well. Therefore strong interactions are necessary to form any nontrivial FSPT phases with this
symmetry.

2.1 Decorated domain wall construction

The ground state wavefunction of many SPT phases can be understood through a decorated
domain wall construction. One first imagines that a discrete symmetry H is broken sponta-
neously. We take this discrete symmetry to be a normal subgroup of the protecting symmetry
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of the SPT phase. Once the symmetry is broken, there can be domain walls between different
symmetry-breaking patterns, e.g. different expectation values of an order parameter. Mathe-
matically, each domain wall is uniquely labeled by a group element h ∈ H. This process can
be reversed: starting from the broken symmetry state, the symmetry can be restored by pro-
liferating domain walls. In other words, the wavefunction of a symmetric state can be viewed
as the quantum superposition of all possible domain wall configurations.

Now imagine that the domain walls are “decorated” by 1D SPT states protected by the
remaining symmetry G/H. The decoration is in fact the manifestation of the SPT order in
the symmetry-breaking phase, and can be understood more intuitively in the presence of a
physical edge: while domain walls are closed in the bulk, they can end on the edge, which also
terminate the associated 1D SPT states on the domain walls. Thus topologically protected zero-
energy modes must appear at a domain wall on the edge. A SPT wavefunction is then obtained
by proliferating domain walls decorated by 1D SPT states. Importantly, a consistent symmetric
wavefunction requires that the decorated 1D SPT states obey the same group multiplication
law as the domain walls. Namely, two domain walls labeled by group elements h1 and h2 can
fuse into a domain wall labeled by h1h2. The same relation must be satisfied by the associated
1D SPT states.

To illustrate, let us consider the example of class DIII topological superconductor (TSC) in
2D. As a simple model for DIII TSC, consider spin-1/2 electrons with px + ipy/px − ipy pairing
for spin up/down fermions. Time-reversal symmetry acts on fermion annihilation operators
as ψα →

∑

β(iσ
y)αβψβ , where α,β =↑,↓ are the spin z component. Edge states of this

TSC are described by helical Majorana fermions, where left- and right-moving modes carry
opposite spins. They can be gapped out by turning on a time-reversal breaking mass term.
Thus a time-reversal domain wall on the edge corresponds to a mass that changes sign. It
is well-known that a Majorana zero-energy bound state is found at the mass domain wall.
In the bulk, a domain wall then carries a Majorana chain which gives rise to the Majorana
zero mode when it is cut open by the physical edge 1. Hence the DIII TSC can be thought
of as proliferating domain walls decorated by Majorana chains. Such a picture was realized
recently in a commuting-projector model for the class DIII TSC [32].

For G = Z4 × ZT2 in 2D, we may write the wavefunction as a superposition of Z4 domain
walls, and decorate them with 1D SPT states protected by the remaining ZT2 symmetry. Denote
the generator of the Z4 group by g. The classification of 1D FSPT phases with ZT2 symmetry
is well-understood: non-interacting fermions with this symmetry fall into the class BDI in the
periodic table, with a Z classification [5, 6]. The integer invariant ν counts the number of
protected Majorana zero modes on one edge. When interactions are taken into account, the
classification collapses to Z8 [33,34], i.e. a state with ν= 8, although topologically nontrivial
for free fermions, can be trivialized by strong interactions.

Now we consider decorating the fundamental Z4 domain walls labeled by g by the ν = 2
1D FSPT states. Correspondingly, the g2 domain walls are decorated by the ν = 4 1D FSPT
state, etc. Finally, the g4 = 1 domain walls are decorated by ν= 8 states which become trivial
in the presence of strong interactions, as required by the consistency of the construction. This
is also why such a decorated domain wall construction necessarily requires strong interactions
to exist.

From the construction, it follows that a defining feature of the edge states in this FSPT
phase is that when the Z4 symmetry is broken, a Z4 domain wall carries a pair of Majorana
zero modes protected by the time-reversal symmetry.

While in principle one can study edge states using the exactly-solvable lattice model, in
practice such models are complicated to work with (see for examples Ref. [14] and Ref. [27]).

1At the domain wall, the time-reversal symmetry is broken so the remaining symmetry is just the fermion parity
conservation Z f

2 and the corresponding symmetry class for free fermions is class D.
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In this work we adopt a different approach, ultilizing the connection between SPT phases with
internal symmetry and those with crystalline symmetry with the same group structure.

2.2 Correspondence with crystalline SPT phases

The one-to-one correspondence between SPT phases with internal and crystalline symmetries
was observed in many examples, and recently formalized in Ref. [35]. We provide a heuris-
tic explanation for why this is true, and refer the interested readers to Ref. [35] for a more
systematic approach.

Suppose that the low-energy physics of a system of interest can be described by a contin-
uum field theory. It is very common that the continuum field theory enjoys a larger symme-
try than the microscopic Hamiltonian, for example discrete lattice translations enhanced to
continuous ones. A discrete lattice translation operation is implemented on the fields by the
corresponding (actually continuous) one, possibly combined with an internal transformation.
However, since the continuous translation itself is a symmetry, the purely internal part of the
transformation must be a symmetry of the field theory as well. In other words, one can extract
the “internal” action of the lattice translation by simply dropping the coordinate shift. Thus a
crystalline symmetry becomes effectively an internal one within the field-theoretical descrip-
tion. We thus expect that the classification of SPT phases with a crystalline symmetry group is
the same as those with an internal symmetry as long as the group structures are identical 2.

While the equivalence works at the level of topological classifications, technically it is of-
ten the case that crystalline SPT phases are easier to understand thanks to the “block state”
construction [36–39]. For example, consider 2D SPT phases protected by Z × G where Z is
lattice translation along the y direction and G is an on-site symmetry group. Besides those SPT
phases protected by G alone, the rest can all be constructed by stacking 1D states protected by
G, i.e. there is a 1D SPT state ‘per unit length’ along y .

This argument applies to boundary theories as well. An edge along the same direction
preserves the translation (as well as all the internal symmetries). In this construction, the
edge is nothing but a chain of end states of the 1D SPT phase which builds up the bulk, and
each site transforms projectively under the internal symmetry (i.e. Z f

2 × Z
T
2 ). We will study

an exactly solvable lattice model of this edge, and in particular a critical point described by a
(1+1)d Luttinger liquid, which is invariant under continuous translations. One can then derive
the symmetry transformations on the low-energy degrees of freedom and extract the “on-site"
part of the transformations. We will show that if the 1D building block of the bulk state is
chosen to be the ν = 2 1D FSPT phase, the resulting edge field theory has all the features
expected for the edge of an intrinsically interacting FSPT phase with Z4 ×ZT2 , and the lattice
translation is identified with the Z4 (namely, the “internal” part of the lattice translation has
order 4).

Similar methods have been applied to study both bulk and boundary physics of interacting
SPT phases in 3D [28,40,41].

3 The Microscopic Model

We consider a 2D weak topological superconductor, where the bulk is an array of 1D wires in
the BDI class. Looking at the edge, we have a 1D chain of Majorana modes:

γ†
i = γi , η

†
i = ηi , γ

2
i = η

2
i = 1, i = 1,2, . . . , 2N . , (1)

2For point-group operations on fermions, additional subtleties occur relating to how the symmetry group is
extended by the fermion parity symmetry [28], but this subtlety is not relevant for the kind of symmetry we are
interested in.
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which satisfy the following algebra:

{γi ,γ j}= {ηi ,η j}= 2δi j , {γi ,η j}= 0 ∀ i, j. (2)

The time-reversal (TR) symmetry Tr acts as

Tr :





γ

η

i



 −→





γ

η

−i



 . (3)

We can then pairwise combine the γi andηi into a complex fermion

ψ j =
γ j + iη j

2
, (4)

with canonical commutation relation {ψi ,ψ
†
j}= δi j , {ψi ,ψ j}= 0. TR symmetry then becomes

an anti-unitary particle-hole transformation:

Tr :ψ j →ψ
†
j . (5)

γ1

η1

γ2

η2

γ2N

η2N

ψ1

ψ2

ψ2N

Figure 1: Combining 4N Majorana edge modes, pairwise, to form 2N physical
fermions

It is straightforward to check that any Hamiltonian quadratic in ψi ,ψ
†
j is not allowed as

it breaks TR symmetry. This also follows from the Z classification of non-interacting Hamil-
tonians in BDI class in 1D. Any Hamiltonian we write down then must be interacting. With
interactions, it is known that the classification is reduced to Z8, i.e. eight Majorana zero modes
can be gapped out by quartic interactions without spontaneously breaking the TR-symmetry.
For the BDI chain, this gapping mechanism must break translation symmetry as one has to
group four sites together. In other words, if one is to find a gapped phase without breaking
the TR symmetry, the unit cell must be enlarged at least four times.

To explore the possible phases that can occur on edge, we consider the following TR-
invariant Hamiltonian for the boundary chain:

H = −
∑

i

�

tψ†
i+1ψi−1 +∆ψi+1ψi−1 + h.c.

��

2ψ†
iψi − 1

�

. (6)

For simplicity we assume both t and ∆ are real in the following. The model possesses transla-
tion symmetry; on our physical fermions translation in the transverse direction acts as
Tt : ψi → ψi+1. We will consider closing the chain into a ring with periodic boundary condi-
tions (PBC) (i.e. ψ2N+1 =ψ1).

This model is exactly solvable. Employing a Jordan-Wigner (JW) transformation twice we
can effectively split the chain in two (even sites and odd sites). One can then think of the
model as two copies of a p-wave superconductor, with the caveat that the JW transformation
maps a physical fermion to a non-local object in the “free" fermions.
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3.1 Jordan-Wigner transformation

Recall the JW mapping:

ψi =

 

i−1
∏

j=1

τz
j

!

τ−i . (7)

Here τx ,y,z are Pauli matrices. There is some subtlety involving the the BC conditions of the
chains which we will address in a separate section. As an example of the fermion-spin mapping,
away from the boundary site one finds

ψ†
i+1ψi−1(2ψ

†
iψi − 1) = τ+i+1τ

−
i−1. (8)

Note that we only have next to nearest neighbor interactions. This will be the case for all the
other terms in the Hamiltonian as well. Carrying out the JW mapping on the other terms one
arrives at

H = −
∑

i

�

tτ+i+1τ
−
i−1 +∆τ

−
i+1τ

−
i−1 + h.c.

�

. (9)

With only next-nearest-neighbor couplings, the Hamiltonian decomposes into two decoupled
ones on even and odd sites, respectively. We can further JW transform the two sets (even site
and odd site) of spin degrees of freedom resulting in two species of JW fermions. Given the
partitioning of the sites into even and odd it makes sense to make this explicit in our notation.
Let

f̃ j =ψ2 j−1, f j =ψ2 j . (10)

We will refer to ψi (as well as f j , f̃ j) as physical fermions since they are local operators in the
original theory. We will similarly define

σ j = τ2 j , σ̃ j = τ2 j−1. (11)

For later reference, we give the explicit expressions of the JW fermions c in terms of the physical
fermions f :

cn =
n
∏

j=1

(−1) f̃
†
j f̃ j fn, c̃n =

n−1
∏

j=1

(−1) f
†
j f j f̃n . (12)

Note that on a given chain our JW fermions do have fermionic statistics but JW fermions from
different chains actually commute: [cm, c̃n] = 0= [cm, c̃†

n].
The Hamiltonian becomes

H =
∑

j

�

− tc†
j+1c j +∆c j+1c j + h.c.

�

+ (c→ c̃) . (13)

3.2 Boundary conditions

Define the parity operator

P =
2N
∏

i=1

τz
i =

N
∏

j

(1− 2 f̃ †
j f̃ j)(1− 2 f †

j f j) . (14)

We can similarly define the parity of the even and odd site chains

P1 =
N
∏

j=1

(1− 2 f̃ †
j f̃ j), P2 =

N
∏

j=1

(1− 2 f †
j f j) . (15)
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Note P, P1 and P2 all commute with H. Let µ f and µb denote the boundary conditions on
the physical fermions and the JW spin degrees of freedom, respectively. Recall that we are
assuming a PBC in the fermionic variables so µ f = 1. Consider one of the boundary terms of
our original H:

f̃ †
N+1 f̃N = µ f f̃ †

1 f̃N = µ f τ
+
1

2N−2
∏

i=1

τz
iτ
−
2N−1

= τ+2N+1P
2N−2
∏

i=1

τz
iτ
−
2N−1

= −µbPτ+1

2N−2
∏

i=1

τz
iτ
−
2N−1 .

(16)

Therefore we have
µ f = −µbP . (17)

When we split the spin chain in two(even sites and odd sites), the resultant chains clearly
inherit the same BC, that is µb1

= µb = µb2
, where µbi

is the BC of the spin degrees of freedom
on chain i.

Denote the BCs for the JW operators c̃ and c by µ f1 and µ f2 . Then a similar argument
shows

µ fi
= −Piµbi

= −Piµb = Pi Pµ f , (18)

so µ f1 = P2µ f and µ f2 = P1µ f . We have imposed a PBC on the physical fermions f (µ f = 1)
thus:

µ f1 = P2 and µ f2 = P1 . (19)

Note we can divide up our Hilbert space into four parity sectors (P1, P2) = (±1,±1) or (±1,∓1).

4 Phase Diagram: Ising analysis

Since the model is supposed to describe an anomalous edge, the ground state can not be non-
degenerate. Due to the one dimensional nature it is either gapless, or gapped with spontaneous
breaking of the symmetries. In this section we analyze the gapped phases of the model Eq.
(6). After the JW transformation, the Hamiltonian decomposes into two Kitaev chains, which
are gapped as long as both t and ∆ are nonzero. We thus expect that the symmetries must be
spontaneously broken. To work out the symmetry breaking properties and gain some intuition
about the edge theory, we come back to the spin representation and consider the Ising point:
|t|= |∆|. The behavior at the Ising point should apply to other values of∆ with the same sign
since the gap remains open.

Our spin Hamiltonian is

H = −
∑

i

�

(∆+ t)τx
i−1τ

x
i+1 + (t −∆)τ

y
i−1τ

y
i+1

�

. (20)

We know from the properties of the JW transform on a closed chain that µb = −P, this will
emerge as the natural choice from the energetics of the ground state as well.

Symmetry transformations of the spin variables can be easily derived:

Tr : τ±i → (−1)i−1τ∓i , τz
i →−τ

z
i ,

Tt : τi → τi+1 .
(21)
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To diagnose the symmetry breaking, we will work with the order parameter f̃ †
i fi = σ̃+i σ̃

z
iσ
−
i .

For a given t we may consider the two Ising points: ∆ = t , which corresponds to
H = −2t

∑

i(σ
x
i σ

x
i+1 + σ̃x

i σ̃
x
i+1), and ∆ = −t which corresponds to

H = −2t
∑

i(σ
y
i σ

y
i+1 + σ̃

y
i σ̃

y
i+1). With regards to the order parameter, we are really work-

ing with its projection onto the ground state:

f̃ †
i fi = σ̃

+
i σ̃

z
iσ
−
i
∼=

¨

σ̃x
i σ

x
i , ∆= t

σ̃
y
i σ

y
i , ∆= −t

, (22)

where we take∼= to mean equal at the level of projecting onto the ground state space. Consider
the transformation properties of the order parameter (and its ground state projection) under
Tt and Tr :

Tt : f̃ †
i fi → f †

i f̃i+1
∼=

¨

σx
i σ̃

x
i+1, ∆= t

σ
y
i σ̃

y
i+1, ∆= −t

(23)

and

Tr : f̃ †
i fi →− f †

i f̃i
∼=

¨

−σ̃x
i σ

x
i , ∆= t

−σ̃ y
i σ

y
i , ∆= −t

. (24)

Below we work out the symmetry breaking properties for the ∆ = t case. From this analysis,
it is clear that the symmetry breaking properties of the ∆ = −t case are the same. Flipping
the sign of ∆ simply rotates between σx and σ y in the Hamiltonian and in the projection of
the order parameter on the ground state space. The upshot of this is that that the symmetry
breaking of the ground state only depends on the sign of t.

On general grounds, we expect that Tr will always be broken, as an Ising-like Hamiltonian
can at most induce translation symmetry breaking with a doubled unit cell. Whether Tt is
broken depends on the sign of the coupling t, i.e. ferromagnetic or anti-ferromagnetic. Below
we determine the ground state(s) for the different cases of sign of t and even/oddness of N .

4.1 N even

Let t =∆. One can then basically read off the ground states. In each case the spin chains will
have PBC; µB = 1 means P = −1.

4.1.1 t < 0

t < 0 means we are in a staggered anti-ferromagnetic phase; site i will anti-align with site
i + 2. Thus we expect that the translation symmetry is broken spontaneously.

Our ground state space will be constructed from the states

{|↑↑↓↓ ... ↓↓〉 , |↑↓↓↑ .. ↓↑〉 , |↓↑↑↓ .. ↑↓〉 , |↓↓↑↑ ... ↑↑〉} . (25)

Here |↑〉/|↓〉 is the eigenstate of τx with eigenvalue +/−. The BC-parity relationship can be
used to quickly read off the ground state. Note that P =

∏

i σ
z
i which, in the x-basis just flips

the spin at every site. Since parity is a good quantum number, we have a d = 2 ground state
space: with basis

|+〉= |↑↑↓↓ . . .〉 − |↓↓↑↑ . . .〉
|−〉= |↑↓↓↑ . . .〉 − |↓↑↑↓ . . .〉 ,

(26)

with parity eigenvalue −1. Now lets compute expectation values of our order parameter. In
the ground states, we find

〈±| σ̃x
i σ

x
i |±〉= ±1= −〈±|σx

i σ̃
x
i+1 |±〉 . (27)
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Since σ̃x
i σ

x
i is odd under Tr , the TR symmetry is spontaneously broken. From Eq. (27) it is

also clear that Tt is broken. Therefore, both Tt and Tr are broken, while their product, Tt Tr ,
is preserved.

4.1.2 t > 0

Here we are in a staggered ferromagnetic phase. A basis for our ground state, which must
have P = −1, is

|+〉= |↑↑↑↑ ....〉 − |↓↓↓↓ .....〉
|−〉= |↑↓↑↓ ....〉 − |↓↑↓↑ .....〉

(28)

and we see
〈±| σ̃x

i σ
x
i |±〉= ±1= 〈±|σx

i σ̃
x
i+1 |±〉 , (29)

suggesting Tt is not broken, as one expects.

4.2 N odd

4.2.1 t < 0

Again we are in a staggered anti-ferromagnetic phase but the oddness of the split chains re-
quires an APBC: Our ground state space will be constructed from the states

{|↑↑↓↓ ... ↑↑〉 , |↑↓↓↑ ... ↑↓〉 , |↓↑↑↓ ... ↓↑〉 , |↓↓↑↑ ... ↓↓〉} (30)

but now P = 1. The P = 1 ground state basis is

|+〉= |↑↑↓↓ ...〉+ |↓↓↑↑ ...〉 ,
|−〉= |↑↓↓↑ ...〉+ |↓↑↑↓ ...〉 .

(31)

Checking the order parameter expectation values we see:

〈±| σ̃x
i σ

x
i |±〉= ±1= −〈±|σx

i σ̃
x
i+1 |±〉 ,

〈±| Trσ̃
x
i σ

x
i T−1

r |±〉= −〈±| σ̃
x
i σ

x
i |±〉 .

(32)

As in the N even case both Tt and Tr are broken, while their product Tt Tr is not.

4.2.2 t > 0

This case turns out to be the same as the N even one: only Tr is broken, because of the
ferromagnetic coupling.

5 Low-energy Field Theory

The model becomes gapless at ∆= 0:

H0 = −t
∑

j

(c†
j+1c j + h.c.) + (c→ c̃) . (33)

We will assume t > 0. At this point, the Hamiltonian is simply free JW-fermions hopping on the
chains and no symmetries are broken. The TR symmetry fixes the chemical potential at 0, i.e.
half-filling; so kF =

π
2 . Further interactions can be incorporated by bosonization. However,

one must keep in mind that c and c̃ are highly non-local in terms of physical fermions. In
the following we will work out the bosonized theory for this gapless point. Of particular
importance is how the low-energy fields transform under the global symmetries, and how
physical fermions are represented in the low-energy theory.
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∆

t

Tr and Tt are broken
while Tr Tt is unbroken

Only Tr is broken

Figure 2: Phase diagram of the model Hamiltonian Eq. (6). The symmetry breaking
pattern only depends on the sign of t.

5.1 Bosonization

Following the standard bosonization prescription, we linearize the spectrum around the two
Fermi points ±π2 , and define chiral fields:

ckF+k = cR,k, c−kF+k = cL,k , (34)

where R/L stand for right/left moving. Introduce a continuum field ψ(x)∼ cx , we can write

ψ(x) = ei π2 xψR(x) + e−i π2 xψL(x) , (35)

where the chiral fields are defined as

ψR/L(x)∼
1
p

N

∑

k

eikx cR/L,k . (36)

There is a similar field ψ̃ on the other chain. In the large size limit we see
{ψ(x),ψ†(y)} = 2πδ(x − y) = {ψ̃(x), ψ̃†(y)} while fields from different chains commute
i.e [ψ(x), ψ̃(y)] = [ψ(x), ψ̃†(y)] = 0.

Now we can bosonize the fields [42]:

ψL/R(x)∼ ei[θ (x)±φ(x)] , (37)

where the bosonic fields satisfy the canonical commutation relation
[φ(x),∂yθ (y)] = iπδ(x − y). θ̃ , φ̃ are similarly defined. Note that in our definition φ,θ
and φ̃, θ̃ commute, reflecting the fact that our JW fermions from different chains commute.
Anti-commutation betweenψ and ψ̃ can be re-enforced by introducing Klein factors, but they
are not necessary for our purpose. The non-interacting Hamiltonian can be expressed in terms
of the bosonic fields Φ= (φ,θ , φ̃, θ̃ )T :

H =
v

2π

∫

d x [(∂xφ)
2 + (∂xθ )

2] +
v

2π

∫

d x [(∂x φ̃)
2 + (∂x θ̃ )

2] , (38)

where v = ta0. The theory is a c = 2 Luttinger liquid. The Luttinger parameter is 1 in the free
theory, and can be tuned to other values when density-density interactions are included.
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While the bosonization is fairly straightforward, an important ingredient of the low-energy
theory is how physical electrons are represented, which determine the allowed operator con-
tent. In terms of the bosonic fields, physical fermions are given by attaching the JW string to
ψ(x) and ψ̃(x):

e±iφ̃±φ±θ , e±iφ±φ̃±θ̃ . (39)

Their combinations give all physical operators. This is a nontrivial requirement, forbiding
operators like ψ†ψ̃. One may understand the constraints as a gauge symmetry, which has
important consequences for boundary conditions. One can show that a general vertex operator
eilTΦ is physical if and only if both l1+ l2+ l4 and l3+ l2+ l4 are even integers. Furthermore, if
eilTΦ is a bosonic operator, then l1 + l2 + l3 + l4 must be even, so l1, l3 and l2 + l4 are all even.

5.2 Symmetry transformations of Φ

What distinguishes the field theory from an ordinary 1D quantum wire is their anomalous
transformation properties under the symmetries. The lattice model has translation whose
generator we denote by t, and time-reversal symmetry generated by r. Notice that r2 = 1 and
r t = t r. In addition, the model also has U(1) charge conservation, but it is not relevant.

From the lattice model (See Appendix C for derivation)

Tr :

�

ck,L/R
c̃k,L/R

�

→

�

c†
k,R/L

−c̃†
k,R/L

�

, (40)

so our fields transform as

Tr

�

ψL/R

ψ̃L/R

�

→

�

ψ†
R/L

−ψ̃†
R/L

�

⇒ Tr :









φ

θ

φ̃

θ̃









→









−φ
θ

−φ̃
θ̃ +π









. (41)

Our bosonization procedure (definitions of L/R moving fields etc) has assumed t > 0 but
one can study the t < 0 using the same conventions as Sec. 5.1 by mapping t → −t via the
unitary transformation

�

ci , c̃i

�

→
�

(−1)ici , (−1)i c̃i

�

. Note that boundary terms transform like
c†

N c1→ (−1)N−1c†
N c1. For N odd, we see that the boundary condition is flipped in addition to

the sign of t.
With this in mind we can work out the translation transformation properties of Φ given

Tt : f̃i → fi etc. Recall that

ci ∼ e−i π2 x ei(θ+φ) + ei π2 x ei(θ−φ),

c̃i ∼ e−i π2 x ei(θ̃+φ̃) + ei π2 x ei(θ̃−φ̃).
(42)

For t > 0, ci → c̃i+1 and c̃i → ci under Tt gives

Tt :









φ

θ

φ̃

θ̃









→









φ̃ − π
2

θ̃

φ

θ









. (43)

For t < 0, ci →−c̃i+1 and c̃i → ci giving

Tt :









φ

θ

φ̃

θ̃









→









φ̃ − π
2

θ̃ +π
φ

θ









. (44)
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We have suppressed the coordinate change associated with the translation.
Notice that in all cases we have T2

r and T4
t acting as the identity on bosonic fields. However,

Tr and Tt do not commute when acting on Φ, which seems to contradict the fact that the
symmetry group is ZT2 × Z4. The reason for the inconsistency is because φ,θ , φ̃ and θ̃ are
not local fields. As we will see below, when acting on local degrees of freedom Tt and Tr do
represent the group faithfully.

5.3 K matrix formulation

We have derived a low-energy theory from the lattice model. Here we discuss an alternative
formulation using K matrix [43–48], which has the advantage that only physical degrees of
freedom (allowing chiral ones) appear. First we give a brief overview of K matrix theory. A
general (chiral or non-chiral) Luttinger liquid is described by the following Lagrangian:

L= 1
4π

∑

I J

KI J∂tφI∂xφJ −
1

4π

∑

I J

VI J∂xφI∂xφJ − · · · (45)

Here K is a symmetric integer matrix, which determines the commutation relations between
fields: [φI(y),∂xφJ (x)] = 2πi(K−1)I Jδ(y − x). Since we are considering an edge of a short-
range entangled bulk without fractionalized excitations, we require det K = ±1. For such uni-
modular K matrices, all excitations eiφi are physical. The non-universal V matrix determines
velocities of bosonic modes as well as scaling dimensions of operators.

A general symmetry transformation Tg takes the following form

T−1
g φI Tg =

∑

j

(Wg)I JφJ + (δφg)I . (46)

To preserve the commutation relations the integer matrix Wg must satisfy

Wg K−1W T
g = ±K−1, (47)

+/− for unitary/anti-unitary transformations. In addition, they must obey group multiplica-
tion laws: WgWh =Wgh,

The K matrix for a Luttinger liquid is generally not uniquely defined because one can make a
change of variable: φI =

∑

J WI Jφ
′
J , where W is an invertible integer matrix (i.e. |det W |= 1).

For the new fields, the K matrix becomes K̃ ′ =W T KW , and

W ′
g =W−1WgW,δφ′g =W−1δφg . (48)

To obtain such a description, we first find a basis for local operators in the theory. They
can be chosen as φI = lT

I Φ with

l1 = (1,1, 1,0),

l2 = (1,0, 1,1),

l3 = (−1, 1,1, 0),

l4 = (1,0,−1,1).

(49)

Their commutation relations are given by the following K matrix:

K =







1 −1 0 1
−1 1 1 0
0 1 −1 −1
1 0 −1 −1






. (50)
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Symmetry properties can be readily obtained from Eq. (41) and (43). We find that under TR
symmetry

Wr =







0 −1 1 1
−1 0 1 1
1 −1 0 1
−1 1 1 0






,δφr =







0
π

0
π






, (51)

and under lattice translation:

Wt =







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0






,δφt = −

π

2







1
1
−1
1






. (52)

We can further simplify the K matrix. A change of variables φ =Wφ′ with

W =







1 0 0 0
1 0 1 −1
0 0 0 1
1 1 0 −1






, (53)

brings K into the standard diagonal form:

W T KW =

�

σz 0
0 σz

�

. (54)

This is expected from the general classification of non-chiral, unimodular K matrices. Using
Eq. (48) we obtain

W ′
r =







0 1 −1 1
1 0 1 −1
1 1 0 −1
1 1 −1 0






,δφ′r =







0
π

π

0






, (55)

and

W ′
t =







1 0 1 −1
0 1 −1 1
1 1 −1 0
1 1 0 −1






,δφ′t =

π

2







−1
1
1
1






. (56)

Using the matrix representations, one can check that T2
r = T4

t = 1, Tr Tt = Tt Tr and T2
t 6= 1, P

where P is the global fermion parity, which shows that the symmetry group is indeed ZT2 ×Z4.
While the K matrix now is the same as the one for free fermions, we emphasize that it does

not mean the theory is free after the basis transformation, because the symmetry transforma-
tions become complicated. For a free theory, we expect that a n-body operator remains n-body
under symmetry transformations, which is not the case for W ′

r and W ′
t : for example, they map

a 1-body operator to a 3-body one. One can further check that no other basis transformations
can bring Wt and Wr into a form expected for a free theory, while keeping K the same.

It is crucial that the K matrix is 4×4, which allows non-trivial transformations such as W ′
r

and W ′
t . We show in the appendix that 2× 2 K matrix can not describe such an edge. In fact,

we prove that within the K matrix framework, there are no nontrivial fermionic SPT phases
with 2× 2 K matrix. Therefore the theory found here is in some sense “minimal".

Although we have provided a completely local description of the effective theory, in the
following we will still work with the formulation given in Sec. 5.2, as it is easier to relate to
the lattice model.
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5.4 Gapped phases in the bosonic field theory

With a complete low-energy gapless theory, we can explore effects of more complicated inter-
actions to understand its stability. Here we first consider the stability with respect to gapping
perturbations of null-vector type [44]. For U(1) bosons, generic local interactions are given by
vertex operators of the form eilTΦ, where l is an integer vector. Given that we are working with
non-local variables, additional constraints must be placed on l to ensure locality, as discussed
in Sec. 5.1.

In an effort to gap out the theory we can consider adding Higgs terms of the form [25,
44–46, 49]

∑

a Ua cos (lT
aΦ−αa) with la ∈ Z4. Restricting our attention to the gapping terms

which respect time reversal and translation symmetry provides a verification of the robustness
of the gapless edge and the nontrivial symmetry-protected topological order of the bulk. To
gap out the edge modes, it is sufficient to choose {la} as a set of linearly independent null
vectors, namely they satisfy

[lT
aΦ, lT

bΦ] = 0 (57)

for all a, b. Then in the limit of large Ua, all lT
aΦ simultaneously acquire finite expectation

values to minimize the cosine potentials. Since there are two conjugate pairs of bosonic fields,
two null vectors are needed to freeze all degrees of freedom.

Our basic tactic is the following: consider a set of symmetry-preserving, independent gap-
ping terms {cos (lT

aΦ−αa)} for a set of null vectors la. We then check whether there exists
any local, elementary field vTΦ that acquires a finite expectation value in the ground state
(meaning that a certain linear combination of la ’s is a multiple of v). If these fields transform
non-trivially under the symmetry transformations, then the ground state spontaneously breaks
the symmetry. A more systematic treatment can be found in Ref. [50].

5.4.1 Continuum limit of the solvable model

Before considering general gapping terms, let us analyze the continuum limit of the pairing
term in the lattice model [51]:

∑

j

∆c j+1c j + h.c.∼∆
∫ L

0

d x [ψ(x + a)ψ(x) + h.c]

=∆

∫ L

0

d x [e−i π2 ei2θ (x) + h.c.] .

(58)

Here a is the short-distance cutoff.
So the superconducting term−∆(c j+1c j+c̃ j+1 c̃ j)+h.c. becomes∆(sin 2θ+sin2θ̃ ). Without

loss of generality, assume ∆ > 0. In the large L limit, θ is pinned at the minima of ∆ sin2θ ,
namely θ = −π4 or 3π

4 . Recall though that the physical ground states should have definite total

fermion parity. One can check that P1 = ei
∫ L

0 ∂x φ̃ and P2 = ei
∫ L

0 ∂xφ , thus:

P = exp

�

i

∫ L

0

∂x φ̃ + ∂xφ

�

. (59)

From the bosonic commutation relations we see

Pθ P−1 = θ +π, Pθ̃ P−1 = θ̃ +π . (60)

The Hamiltonian conserves both P1 and P2.
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We know the parity of our ground state from the lattice model but it is useful to derive it
from the field theory. The physical fermion ei(φ̃+φ+θ ) satisfies PBC, which means

ei[φ̃(L)+φ(L)+θ (L)] = ei[
∫ L

0 ∂x (φ̃+φ+θ )+(φ̃(0)+φ(0)+θ (0))]

= −ei
∫ L

0 ∂x (φ̃+φ+θ )ei[φ̃(0)+φ(0)+θ (0)] .
(61)

Because in the ground state manifold θ is pinned, we see that the BC is −P1P2. Thus we find
P = P1P2 = −1. (For t > 0 and odd N , it is the opposite). Similarly we find

ψL/R(L) = −ei(
∫ L

0 d x∂xθ±
∫ L

0 d x∂xφ)ψL/R(0)

= −P2ψL/R(0),
(62)

in accordance with the lattice result cN+1 = P1c1.
Now we work out the ground states for the field theory and check the symmetry breaking

pattern. For the sake of explicitness consider chain 2. We can form the parity (i.e. P2) eigen-
states |±〉2 =

�

�

−π
4

�

2 ±
�

�

3π
4

�

2, where P2 |±〉2 = ±|±〉2. The analysis of chain 1 is identical. The
ground state space of the full chain is spanned by |±〉1 |±〉2, subject to the constraint of a fixed
total fermion parity. For t > 0, we have shown that P = −1, so the two states are |+〉1 |−〉2
and |−〉1 |+〉2. It is convenient to form the following superpositions:

|±〉= |+〉1 |−〉2 ± |−〉1 |+〉2 . (63)

In terms of θ , θ̃ eigenstates:

|+〉=
�

�

�

−π
4

E

1

�

�

�

−π
4

E

2
−
�

�

�

�

3π
4

·

1

�

�

�

�

3π
4

·

2

|−〉=
�

�

�

�

3π
4

·

1

�

�

�

−π
4

E

2
−
�

�

�

−π
4

E

1

�

�

�

�

3π
4

·

2
.

(64)

Now
Tr : (θ , θ̃ )→ (θ , θ̃ +π)

meaning Tr : |±〉 → −|∓〉 suggesting Tr is broken.
The symmetry breaking can also be detected by an order parameter. In this case, the order

parameter is just cos
�

θ − θ̃
�

, which is odd under Tr but invariant under Tt . Its expectation
value on |±〉 is ±1. On the other hand, sin

�

θ − θ̃
�

is also odd under translation but its expec-
tation value vanishes.

In the lattice theory Tt breaking depended on the sign of t so we should expect the same
behavior in the field theory. Recall

Tt : (θ , θ̃ )→

¨

(θ̃ ,θ ) t > 0

(θ̃ +π,θ ) t < 0
. (65)

We can see that the field theory reproduces the symmetry breaking properties of the lattice.
The same result is seen in the odd case with the small adjustment that in the t > 0 case our
P = 1 ground states are given by |±〉= |+〉1 |+〉2 ± |−〉1 |−〉2.

5.4.2 General gapping terms

With the above special case worked out we can now consider general gapping terms. We
will focus on the t > 0 phase and results for the t < 0 phase are very similar. Recall how Φ
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transforms under Tr and Tt :

Tt :









φ

θ

φ̃

θ̃









→









φ̃ + π
2

θ̃

φ

θ









and Tr :









φ

θ

φ̃

θ̃









→









−φ
θ

−φ̃
θ̃ +π









. (66)

As discussed already, if our goal is to investigate the gapability of the model we need to
consider something like δL = U1 cos (lT

1Φ−α1) + U2 cos (lT
2Φ−α2). Verifying that any sym-

metry allowed gapping term introduces spontaneous breaking or gapless modes amounts to
working through all the allowed cases. We give a proof of the all the cases in Appendix D.
Here we will show a few examples to demonstrate the approach.

Let us first consider the case in which each gapping term transforms trivially under both
of the symmetries:

T−1
g cos (lTΦ−α)Tg = cos (lTΦ−α), g = t/r , (67)

let lT = (a, b, c, d), then acting with symmetry operators on cos (aφ + bθ + cφ̃ + dθ̃ −α) one
can derive constraints on the vector l. It follows, via Tt symmetry, that a = ±c for example.
We summarize these constraints in the following table:

Symmetry Vector constraint Phase constraint
Tt a = ±c and b = ±d a ∈ 4Z
Tr a, c = 0 or b, d = 0 d ∈ 2Z

From the table one has gapping terms of the form cos (4n(φ ± φ̃)) or cos (2m(θ ± θ̃ ))
which condense. Some fraction of these correspond to physical operators which break Tt and
Tr respectively. For example; for cos 4n(φ± φ̃), the order parameter cos2(φ± φ̃) has a finite
expectation value and breaks translation symmetry.

Now consider the situation in which Tt exchanges the gapping terms and Tr does not. We
have an interaction of the form

U1[cos (aφ + bθ + cφ̃ + dθ̃ −α) + cos (cφ + dθ + aφ̃ + bθ̃ +
aπ
2
−α)]. (68)

There are only two Higgs terms so acting with Tt twice must generate a phase of 2nπ.

Symmetry Vector constraint Phase constraint
Tt a+ c ∈ 4Z
Tr a, c = 0 or b, d = 0 b, d ∈ 2Z

If a, c = 0, because both b and d are even we write b = 2m, d = 2n. Then
δL ∼ cos (2(mθ + nθ̃ )−α) + cos (2(nθ +mθ̃ )−α). For m = ±n these two terms collapse
into a single one, meaning the edge has a gapless mode. Otherwise, we can combine the two
arguments to get 2(m+ n)(θ + θ̃ ). So there is a symmetry-breaking order parameter (θ + θ̃ ).

If b, d = 0 we have a similar scenario: a+ c ∈ 4Z plus the locality constraint means both a
and c are even. If a = ±c then there is just a single term cos[a(φ±φ̃)], and we require a ∈ 4Z.
As we will show below, translation symmetry is broken by the order parameter 2(φ + φ̃). For
a 6= ±c, we can combine the two arguments to form (a + c)(φ + φ̃), which again gives the
order parameter 2(φ + φ̃).

Details of the remaining cases are given in Appendix D. It follows that general symmetry
allowed gapping terms always lead to spontaneous symmetry breaking. Thus the edge theory
describes a non-trivial SPT phase.
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5.5 The bulk-edge correspondence

Our low-energy edge theory is derived from a microscopic construction of the weak topologi-
cal superconductor. The connection with the Z4×ZT2 FSPT phase has been somewhat implicit,
only established through the general correspondence between topological phases with crsy-
talline and internal symmetries discussed in Sec. 2.2. In this section we directly show that
the edge theory captures correctly the anomaly expected for boundary states of the Z4 × ZT2
FSPT phase. We provide two arguments for the bulk-edge correspondence. The arguments
also provide evidence for stability of the gapless edge against the most general types of per-
turbations beyond those of null-vector type, since it is known that gapping terms which do not
obey null-vector conditions can still open a gap [52,53].

5.5.1 Domain wall structure

As reviewed in Sec 2, the ground state wavefunction of a Z4×ZT2 fermionic SPT phase can be
understood using a decorated domain wall picture. While in the bulk domain walls are closed,
they can terminate on the edge and a fermionic zero mode appears at the end point due to the
decoration. This can be taken as a defining feature of the edge states: a Z4 domain wall binds
a fermionic zero mode protected by the ZT2 symmetry.

We will now show that the edge theory does have the right domain wall structure. We
first construct a gapping term which leads to spontaneous breaking of Tt while preserving Tr .
Consider a gapping term U(cos4φ+cos 4φ̃), with U < 0, which condensesφ and φ̃ at minima
of the cosine potential πm

2 with m ∈ Z. From the derived conditions on physical operators one
can see that 2φ and 2φ̃ are physical but φ and φ̃ are not. The Tt symmetry cycles through
the ground state space

�

2φ
2φ̃

�

:

�

0
0

�

Tt−→
�

π

0

�

Tt−→
�

π

π

�

Tt−→
�

2π
π

�

Tt−→
�

0
0

�

, (69)

while Tr is unbroken.
Suppose we are in the state (denoted by |0→ π〉) with a domain wall at x separating

the

�

0
0

�

state (denoted by |0→ 0〉) and the

�

π

0

�

state. Note the following specific bosonic

commutation relation

e±i θ (y)2 2φ(x)e∓i θ (y)2 = 2φ(x) +

¨

±π 0< x < y

0 x > y
. (70)

We can create the domain wall configuration from a uniform ground state in two ways: two
states

|0→ π〉± = e±i θ (x)2 |0→ 0〉 (71)

are degenerate since they are related by the TR transformation. They have the same domain

wall at x , separating the

�

0
0

�

and

�

π

0

�

states, but differ in local properties. Notice that while

eiθ (x)/2 is non-local, in a closed system one always creates domain walls in pairs by applying
exp

� i
2

∫ x1

x0
∂xθd x

�

, which is a physical string-like operator. If we look at the charge densities,

ρ±(y) =
1
π 〈0→ π|∂yφ(y) |0→ π〉±, of the two states we see that

ρ+(y)−ρ−(y) = δ(y − x). (72)

.
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2φ

ρ

Figure 3: Degenerate domain wall states differ in their charge densities.

The degenerate kinked states differ in local charge ∆Q = 1, suggesting the presence of a
fermionic zero mode, as the only charge-1 local excitations in our system are physical fermions.
In fact, an operator toggling between the two states is ei(φ+φ̃+θ ) (note thatφ and φ̃ condense).
These two states are related by the TR transformation, protecting the degeneracy.

5.5.2 Gauging fermion parity

An alternative way to characterize the bulk SPT phase is through the symmetry properties of
a fermion parity flux. In a nontrivial fermionic SPT phase, a fermion parity flux transforms
projectively under the global symmetry group. In Ref. [54], a classification of 2D fermionic SPT
phases was derived using these ideas. Mathematically, projective representation carried by a
fermion parity flux is characterized by a 2-cocycle in H2[G,Z2], which agrees with the group
super-cohomology classification. We briefly summarize these facts about general classification
of 2D FSPT phases in Appendix A.

We will directly couple the SPT phase to a Z2 gauge field, sourced by fermions. We will
first carry out the gauging construction for the bulk theory. To this end, let us write down a
topological field theory for the bulk:

L=
∑

I J

KI J

4π
aI ∧ daJ + · · · (73)

Here aI are compact U(1) gauge fields, and the K matrix is given in Eq. (54). The same K
matrix appears in the bulk Chern-Simons theory and the edge chiral boson theory following
from the general bulk-boundary correspondence. da is the fermion current in the bulk. Under
symmetries, the gauge field transforms as:

Tg : aI →
∑

I J

(Wg)I J aJ , (74)

where Wg is given in Eqs. (55) and (56).
Now we couple the bulk to a Z2 gauge field A:

1
2π
(a1 + a2 − a3 − a4)dA+

1
π

BdA . (75)

The Z2 gauge theory is described by the mutual Chern-Simons term 1
πBdA (corresponding to

a K matrix

�

0 2
2 0

�

. B can be thought of as a Higgs field that Higgs the U(1) gauge structure

of A down to Z2, and it couples to vortex current.
Here we choose a1 + a2 − a3 − a4 because this combination preserves Tt , and under Tr it

becomes minus itself. Therefore We let T−1
t ATt = A, T−1

r ATr = A, and T−1
r BTr = −B. We then

integrate out A, which leads to a constraint a1 + a2 − a3 − a4 + 2B = 0. It can be resolved by
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writing










a1
a2
a3
a4
B











=











1 0 0 0
−1 1 0 0
0 1 1 1
0 0 −1 1
0 0 0 −1

















ã1
ã2
ã3
ã4






. (76)

In fact, one can view the upper 4× 4 block as the (non-invertible) similarity transformation
between a and ã. We will denote it by U , with det U = 2. In terms of the new variables
(ã1, ã2, ã3, ã4), the K matrix reads







0 1 0 0
1 0 1 1
0 1 0 2
0 1 2 0






. (77)

This K matrix describes a Z2 topological order, as expected. Symmetry transformations are
given by W̃g = U−1Wg U ,δφ̃g = U−1δφg . The commutator between Tt and Tr acts on the
corresponding edge fields as

Φ̃→ Φ̃+







0
0
π

π






. (78)

Notice that eiφ̃3 are eiφ̃4 are the two fermion parity fluxes, so they do transform projectively
under Tt and Tr , corresponding to the nontrivial cohomology class in H2[Z4 ×ZT2 ,Z2]. Phys-
ically, a fermion parity flux has a two-fold degeneracy protected by the symmetry.

6 Conclusion

In this work we find that edge modes of an intrinsically interacting FSPT phase can be described
by a Luttinger liquid theory. It is possible that the same is true for all 2D FSPT phases in the
group super-cohomology construction. We have proved that within K matrix theory, 4× 4 is
the minimal dimension required for the Z4 × ZT2 FSPT phase. An interesting question to ask
is whether this c = 2 edge theory is the “minimal" (as measured by central charge) among all
conformal field theories with the quantum anomaly. Another example of interacting 2D FSPT
phase was found in Ref. [15], with symmetry group Z f

4×Z4×Z4. Here the physics is somewhat
different from the example discussed in this work: in the decorated domain wall construction,
the state can be obtained by decorating Z4 domain walls with 1D Z f

4 × Z4 FSPT states. As
mentioned in the introduction, the 1D FSPT phase itself can only exist in the presence of
strong interactions, so is the 2D phase. It will be very interesting to construct a gapless edge
theory for this interacting FSPT phase.

An important open problem is to understand the edge physics of intrinsically interacting
FSPT phases beyond group super-cohomology [18, 19, 54]. An example of such phases in 2D
arises with Z8×ZT2 symmetry. If the Z8 symmetry is replaced by translation, the bulk is a stack
of Majorana chains, and the edge is a 1D chain with one Majorana per unit cell. The simplest
Hamiltonian must involve four-site interactions. An example is the following Hamiltonian
studied recently in Ref. [55]:

H = g
∑

i

γiγi+1γi+3γi+4 . (79)
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Remarkably, such a Hamiltonian is actually integrable [55], and realizes a gapless phase with a
dynamical exponent z = 3/2. The nature of this phase is not fully understood. An interesting
future direction is to construct other gapless theories, in particular conformal field theories,
and develop field-theoretical descriptions.

Intrinsically interacting fermionic SPT phases also exist in three spatial dimensions [17–
19]. Recent works have found general conditions on gapped surface topological order in the
group super-cohomology cases [40,56]. It will be interesting to explore gapless surface theo-
ries in these systems.

Acknowledgements

J.S. acknowledges discussions with Aris Alexandradinata, Nick Bultinck, Judith Höller, Thomas
Veness and Dominic Williamson. M.C. thanks Dominic Williamson and Chenjie Wang for con-
versations and collaborations on related topics, and Dave Aasen for pointing out a mistake in
the draft.

Funding information MC acknowledges support from Alfred P. Sloan Foundation and the
NSF under grant No. DMR-1846109.

A Group super-cohomology classification

Suppose the symmetry group is G = Z f
2 × Gb, where Gb denotes the “bosonic” part of the

symmetry group. In the group super-cohomology classification, 2D FSPT phases are labeled
by a pair (ν,ω) where [ν] ∈H2[Gb,Z2] and ω ∈ C3[Gb,U(1)]. Here [·] denotes cohomology
class. The Z2-valued 2-cocycle ν’s are responsible for all the “intrinsically” FSPT phases. Note
that ν needs to satisfy an obstruction-free condition, see Ref. [57] for a recent summary.

There are two ways to understand the physical meaning of ν. First, in a decorated domain
wall construction, domain walls are labeled by g ∈ Gb. At a junction of three domain walls g,h
and gh, one has a fermion mode whose occupation is determined by ν. Denote Z2 additively
as {0,1}, then the occupation number is just ν(g,h). Therefore ν determines the complex
fermion decoration on domain wall junctions.

Alternatively, let us consider inserting a superconducting vortex into the FSPT phase. More
precisely, such a vortex is a π flux for fermions, i.e. a fermion picks up −1 phase factor when
moving around the π flux. Since the π flux is not a local object, the symmetry group can
be represented projectively on the flux. The projective representation, or more precisely the
factor set, is given by (−1)ν.

Let us work this out for Gb = Z4 × ZT2 . The second cohomology group H2[Gb,Z2] = Z2.
The nontrivial element of the Z2 corresponds to a two-dimensional projective representation,
on which the generators of Z4 and ZT2 anticommute. In other words, the π flux in the FSPT
phase carries this projective representation.

B 2× 2 K matrix

We show that a 2×2 K matrix can not describe the edge. For a non-chiral fermionic system, the
K matrix can be fixed to be K = σz . Then it is straightforward to show that the only invertible
similarity transformations that leave σz invariant are 1 and σz . Similarly, the only ones that
take σz to −σz are σx and σ y .
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The time-reversal symmetry squaring to the identity is then implemented by σx . Because
the Z4 generator Wt has to commute with both K and the time-reversal transformation, only
Wt = 1 is allowed. At this point, notice that within 2× 2 K matrix, the theory can be realized
by free fermions.

We have found that the two symmetry transformations are given by

Tr : Wr = σ
x ,δφr =

�

α

−α

�

, (80)

and

Tt : Wt = 1,δφt =
π

2

�

n1
n2

�

, n1,2 ∈ {0,1, 2,3}. (81)

Further requiring Z4 commuting with T fixes n1 = n2.
With these transformations, the following perturbation is allowed cos(φL −φR −α), which

fully gaps out the edge without breaking symmetries.

C Symmetry actions on various operators

Let us work out how Tr and Tt act on the fermionic operators. From Eq. (12) we see

Tr : ci −→ (−1)i
i
∏

j=1

(1− 2 f̃ †
j f̃ j) f

†
i = (−1)ic†

i ,

Tr : c̃i −→ (−1)i−1
i
∏

j=1

(1− 2 f †
j f j) f̃

†
i = (−1)i−1 c̃†

i .

(82)

It should be noted also that Tr : Pi −→ (−1)N Pi . Under translation our physical fermions
transform trivially as fi → fi+1, adapting this to our partitioning of the even and odd sites
gives fi → f̃i+1 and f̃i → fi leading to

Tt : ci →
i
∏

j=1

(1− 2 f †
j f j) f̃ j+1 =c̃i+1

Tt : c̃i →
i−1
∏

j=1

(1− 2 f̃ †
j+1 f̃ j+1) fi = ci .

(83)

Recalling ck =
1p
M

∑M
j=1 e−ik jc j we can use the transformation properties derived above to

see what happens in the momentum basis.

Tr : ck −→
1
p

N

N
∑

j=1

eik j(−1) jc†
j =

1
p

N

N
∑

j=1

ei(k+π) jc†
j

= c†
k+π .

Similarly, Tr : c̃k −→−c̃†
k+π. For translation, using 83 we see

Tt : ck −→
1
p

N

N
∑

j=1

eik j c̃ j+1 = e−ik c̃k

Tt : c̃k −→
1
p

N

N
∑

j=1

eik jc j = ck .

(84)
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D Perturbative stability of the edge theory

Here we give a proof via exhaustion that symmetry allowed Higgs terms push the edge theory
away from a trivial phase. If we wish to gap out the system we must have exactly two linearly
independent Higgs terms: δL = U1 cos (lT

1Φ−α1) + U2 cos (lT
2Φ−α2). We will focus on the

t > 0 phase, the proof for the t < 0 phase follows in the same way. Recall how Φ transforms
under Tr and Tt :

Tt :









φ

θ

φ̃

θ̃









→









φ̃ + π
2

θ̃

φ

θ









and Tr :









φ

θ

φ̃

θ̃









→









−φ
θ

−φ̃
θ̃ +π









(85)

a particular symmetry may act internally on each Higgs terms or it may exchange them. We
will consider all the cases and show in each instance gapless modes or SSB are present.

No exchange

Consider the case in which each gapping term transforms trivially under both of the symme-
tries:

T−1
g cos (lTΦ−α)Tg = cos (lTΦ−α), g = t/r , (86)

let lT = (a, b, c, d), then acting with symmetry operators on cos (aφ + bθ + cφ̃ + dθ̃ −α) we
arrive at the following constraints:

Symmetry Vector constraint Phase constraint
Tt a = ±c and b = ±d a ∈ 4Z
Tr a, c = 0 or b, d = 0 d ∈ 2Z

If we explicitly consider some specific allowed term we can derive constraints on α (e.g some-
thing like cos (2n(θ + θ̃ )−α) is symmetry allowed for any α but Tt constrains α in a term like
cos (2n(θ − θ̃ )−α) to be 0,π.) but this will not influence the presence of symmetry breaking
behavior so we will ignore working these constraints out in general. From the table one has
gapping terms of the form cos (4n(φ ± φ̃)) or cos (2m(θ ± θ̃ )) which condense. Some fraction
of these correspond to physical operators which break Tt and Tr respectively.

Tr exchange

Now consider the case in which time reversal exchanges the two Higgs terms: explicitly this
has the form

δL = U1[ cos (aφ + bθ + cφ̃ + dθ̃ −α)

+ (−1)dπ cos (−aφ + bθ − cφ̃ + dθ̃ −α)] .
(87)

Recall that if we are to condense the gapping terms the operators lT
1Φ, lT

2Φmust commute with
themselves and with each other. Suppose Tt does not exchange the terms. One can check that
the requirement that liK

−1l j = 0 for i, j = 1,2 is met only iff a = 0 or b = 0. We summarize
the constraints in the following table

Symmetry Vector constraint Phase constraint
Tt a = ±c and b = ±d a ∈ 4Z

lT
i K−1l j = 0 a = 0 or b = 0
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Note now that T−1
r (φ ± φ̃)Tr ∼ a(φ ± φ̃) and T−1

r (θ ± θ̃ )Tr ∼ b(θ ± θ̃ ). We are back to the
previous case.

In the case where Tt exchanges the Higgs terms we get:

Symmetry Vector constraint Phase constraint
Tt a = ±c and b = ∓d a ∈ 4Z

lT
i K−1l j = 0 a = 0 or b = 0

Again, the two gapping terms turn out to be proportional, and there is a symmetry breaking.

Tt exchanges

Finally, consider the last case in which Tt exchanges the Higgs terms and Tr does not. We have
an interaction of the form U1[cos (aφ + bθ + cφ̃ + dθ̃ −α)+cos (cφ + dθ + aφ̃ + bθ̃ + aπ

2 −α)].
There are only two Higgs terms so acting with Tt twice must generate a phase of 2nπ.

Symmetry Vector constraint Phase constraint
Tt a+ c ∈ 4Z
Tr a, c = 0 or b, d = 0 b, d ∈ 2Z

If a, c = 0 then δL ∼ cos (2(nθ +mθ̃ )−α)+cos (2(mθ + nθ̃ )−α) and there is either a gapless
mode (if n = ±m) or a physical fraction of nθ + mθ̃ , mθ + nθ̃ and/or (n + m)θ + (m + n)θ̃
breaks symmetry.

If b, d = 0 we have a similar scenario: a+ c ∈ 4Z, together with the locality constraint we
find that a, c are both even, and we have the same situation as the a, c = 0 case treated just
above.
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