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Abstract

We propose a toy model for holographic duality. The model is constructed by embed-
ding a stack of N D2-branes and K D4-branes (with one dimensional intersection) in a 6d
topological string theory. The world-volume theory on the D2-branes (resp. D4-branes)
is 2d BF theory (resp. 4D Chern-Simons theory) with GLN (resp. GLK ) gauge group. We
propose that in the large N limit the BF theory on R2 is dual to the closed string theory
on R2 × R+ × S3 with the Chern-Simons defect on R × R+ × S2. As a check for the du-
ality we compute the operator algebra in the BF theory, along the D2-D4 intersection –
the algebra is the Yangian of glK . We then compute the same algebra, in the guise of
a scattering algebra, using Witten diagrams in the Chern-Simons theory. Our computa-
tions of the algebras are exact (valid at all loops). Finally, we propose a physical string
theory construction of this duality using a D3-D5 brane configuration in type IIB – using
supersymmetric twist and Ω-deformation.
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1 Introduction and Summary

Holography is a duality between two theories, referred to as a bulk theory and a boundary
theory, in two different space-time dimensions that differ by one [1–3]. A familiar manifesta-
tion of the duality is an equality of the partition function of the two theories - the boundary
partition function as a function of sources, and the bulk partition function as a function of
boundary values of fields. This in turns implies that correlation functions of operators in the
boundary theory can also be computed in the bulk theory by varying boundary values of its
fields [2,3]. This dictionary has been extended to include expectation values of non-local oper-
ators as well [4–7]. This is a strong-weak duality, relating a strongly coupled boundary theory
to a weakly coupled bulk theory. As is usual in strong-weak dualities, exact computations on
both sides of the duality are hard. Topological theories have provided interesting examples of
holographic dualities where exact computations are possible [8–13].

Recently, it has been shown that some instances of holography can be described as an
algebraic relation, known as Koszul duality, between the operator algebras of the two dual
theories [14,15]. It was previously known that the algebra of operators restricted to a line in
the holomorphic twist of 4d N = 1 gauge theory with the gauge group GLK is the Koszul dual
of the Yangian of glK [16]. In light of the connection between Koszul duality and holography,
this result suggests that if there is a theory whose local operator algebra is the Yangian of glK
then that theory could be a holographic dual to the twisted 4d theory. Since the inception of
holography, brane constructions played a crucial role in finding dual theories. It turns out that
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the particular twisted 4d theory is the world-volume theory of K D4-branes1 embedded in a
particular 6d topological string theory [18]. Since the operators whose algebra is the Koszul
dual of the Yangian lives on a line, it is a reasonable guess that we need to include some other
branes that intersect this stack of D4-branes along a line. Beginning from such motivations we
eventually find (and demonstrate in this paper) that the correct choice is to embed a stack of N
D2-branes in the 6d topological string theory so that they intersect the D4-branes along a line.
The world-volume theory of the D2-branes is 2d BF theory with GLN gauge group coupled to
a fermionic quantum mechanics along the D2-D4 intersection. The algebra of gauge invariant
local operators along this D2-D4 intersection is precisely the Yangian of glK .

This connected the D2 world-volume theory and the D4 world-volume theory via hologra-
phy in the sense of Koszul duality. The connection between these two theories via holography
in the sense of [2, 3] was still unclear. In this paper we begin to establish this connection.
We take the D2-brane world-volume theory to be our boundary theory. This implies that the
closed string theory in some background, including the D4-brane theory should give us the
dual bulk theory. In the boundary theory, we consider the OPE (operator product expansion)
algebra of gauge invariant local operators, we argue that this algebra can be computed in the
bulk theory by computing a certain algebra of scatterings from the asymptotic boundary in the
limit N !∞. Our computation of the boundary local operator algebra using the bulk theory
follows closely the computation of boundary correlation functions using Witten diagrams [3].

The Feynman diagrams and Witten diagrams we compute in this paper have at most two
loops, however, we would like to emphasize that the identification we make between the op-
erator algebras and the Yangian is true at all loop orders. In the boundary theory (D2-brane
theory) this will follow from the simple fact that, for the operator product that we shall com-
pute, there will be no non-vanishing diagrams beyond two loops. In the bulk theory this
follows from a certain classification of anomalies in the D4-brane theory [19] and indepen-
dently from the very rigid nature of the deformation theory of the Yangian. We explain some
of these mathematical aspects underlying our results in appendix B – we begin the appendix
with motivations for and a light summary of the purely mathematical results to follow.

We note that there is a long history of studying links between quantum integrable systems
soluble by Yangians and quantum affine algebras on one hand and supersymmetric gauge
theory dynamics in the vacuum sector on the other hand – including early pioneering work [20]
and subsequent developments [21–25]. In this paper we study particular examples of (quasi)
topological gauge theories with similar connection to Yangins, the novelty is that we propose
a certain holographic duality linking the theories.

A particular motivation for studying these topological/holomorphic theories and their du-
ality is that these theories can be constructed from certain brane setup in a physical 10d string
theory. In particular, we can identify these theories as certain supersymmetric subsectors of
some theories on D-branes in type IIB string theory by applying supersymmetric twists and
Ω-deformation.

The organization of the paper is as follows. In §2 we describe, in general terms, how
holographic duality in the sense of [2,3] leads to the construction of two isomorphic algebras
from the two dual theories. In §3 we start from a brane setup involving N D2-branes and K
D4-branes in a 6d topological string theory and describe the two theories that we claim to be
holographic dual to each other. In §4 we compute the local operator algebra in the D2-brane
theory, this algebra will be the Yangian Y (glK) in the limit N ! ∞. In §5 we show that
the same algebra can be computed using Witten diagrams in the D4-brane theory. In the last
section, §6, we propose a physical string theory realization of the duality.

1We are following the convention of [17], according to which, by a Dp-brane in topological string theory we
mean a brane with a p-dimensional world-volume. In §6 when we discuss branes in type IIB string theory, we of
course use the standard convention that a Dp-brane refers to a brane with (p+ 1)-dimensional world-volume.
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Relevant New Literature. Since the preprint of this paper appeared online, there has
been a series of interesting developments exploring the idea of topological holography – also
referred to as twisted holography – we mention the ones we found conceptually related to this
paper. In [26] the authors studied the holographic duality between a gauged βγ system and a
Kodaira-Spencer theory on the SL(2,C) manifold (the deformed conifold) – emphasizing the
role of global symmetry matching. Authors of [27] studied a twisted holography closely related
to AdS3/CFT2 duality, they highlight in particular the link to Koszul duality and contains a rare
(in physics literature) introduction to Koszul duality. [28] computes certain operator algebra
of a topological quantum mechanics living at the intersection of M2 and M5 branes in an Ω-
deformed M-theory using Feynman diagram techniques similar to the ones we shall use in our
computations. In this setup the M2 and M5 branes play roles analogous to certain D3 and D5
branes that we shall study in §6. The M5 brane world-volume theory in the Ω-background
is the 5d Chern-Simons theory, a close cousin of the 4d Chern-Simons theory we are going
to study. This M2-M5 brane setup in Ω-deformed M-theory is also studied in [29, 30] in the
context of twisted holography.

2 Isomorphic algebras from holography

In [2,3], two theories, Tbd and Tbk were considered on two manifolds M1 and M2 respectively,
with the property that M1 was conformally equivalent to the boundary of M2. The theory
Tbd was considered with background sources, schematically represented by φ. The theory Tbk
was such that the values of its fields at the boundary ∂M2 can be coupled to the fields of Tbd,
then Tbk was quantized with the fields φ as the fixed profile of its fields at the boundary ∂M2.
These two theories were considered to be holographic dual when their partition functions were
equal:

Zbd(φ) = Zbk(φ) . (1)

This equality leads to an isomorphism of two algebras constructed from the two theories,
as follows. Consider local operators Oi in Tbd with corresponding sources φ i . The partition
function Zbd(φ) with these sources has the form:

Zbd(φ) =

∫

DX exp

�

−
1
ħh

Sbd +
∑

i

Oiφ
i

�

, (2)

where X schematically represents all the dynamical fields in Tbd. Correlation functions of the
operators Oi can be computed from the partition function by taking derivatives with respect
to the sources:

〈O1(p1) · · ·On(pn)〉=
1

Zbd(φ)
δ

δφ1(p1)
· · ·

δ

δφn(pn)
Zbd(φ)

�

�

�

�

φ=φ0

. (3)

We can consider the algebra generated by the operators Oi using operator product expansion
(OPE). However, this algebra is generally of singular nature, due to its dependence on the
location of the operators and the possibility of bringing two operators too close to each other.
In specific cases, often involving supersymmetry, we can consider sub-sectors of the operator
spectrum that can generate algebras free from such contact singularity, so that a position in-
dependent algebra can be defined.2 Suppose the set {Oi} represents such a restricted set with
an algebra:

OiOj = Ck
i jOk . (4)

2Various chiral rings, for example.
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Let us call this algebra AOp(Tbd). In terms of the partition function and the sources the relation
(4) becomes:

δ

δφ i

δ

δφ j
Zbd(φ)

�

�

�

�

φ=0
= Ck

i j
δ

δφk
Zbd(φ)

�

�

�

�

φ=φ0

. (5)

The statement of duality (1) then tells us that the above equation must hold if we replace Zbd
by Zbk:

δ

δφ i

δ

δφ j
Zbk(φ)

�

�

�

�

φ=0
= Ck

i j
δ

δφk
Zbk(φ)

�

�

�

�

φ=φ0

. (6)

This gives us a realization of the operator algebra AOp(Tbd) in the dual theory Tbk.
This suggests a check for holographic duality. The input must be two theories, say Tbd and

Tbk, with some compatibility:

• Tbd can be put on a manifold M1 and Tbk can be put on a manifold M2 such that
∂M2

∼= M1, where equivalence between ∂M2 and M1 must be equivalence of whatever
geometric/topological structure is required to define Tbd.3

• Quantum numbers of fields of the two theories are such that the boundary values of the
fields in Tbk can be coupled to the fields in Tbd.4

Suppose Tbd has a sub-sector of its operator spectrum that generates a suitable algebra5

AOp(Tbd). We denote the operators in this algebra by {Oi} with corresponding sources φ i .
According to the first compatibility condition these sources can be thought of as boundary val-
ues for the fields in Tbk, so that we can quantize Tbk by fixing the values of the fields at the
boundary to be φ. Then, we can define another algebra by taking functional derivatives of
the partition function of Tbk with respect to φ, as in (6). Let’s call this algebra the scattering
algebra, ASc(Tbk). Now a check of holographic duality is the following isomorphism:

AOp(Tbd)∼=ASc(Tbk) . (7)

This is the general idea that we employ in this paper to check holographic duality. The operator
algebra AOp(Tbd) can be computed in perturbation theory using Feynman diagrams and we
can use Witten diagrams, introduced in [3], to compute the scattering algebra ASc(Tbk). We
will do this concretely in the rest of this paper.

3 The dual theories

3.1 Brane construction

The quickest way to introduce the theories we claim to be holographic dual to each other is to
use branes to construct them. Our starting point is a 6d topological string theory, in particular,
the product of the A-twisted string theory on R4 and the B-twisted string theory on C [18].
The brane setup is the following:

Rv Rw Rx Ry Cz No. of branes
D2 0 × × 0 0 N
D4 0 0 × × × K

(8)

3In case of AdS/CFT, it is conformal equivalence, perfect for defining the CFT. In this paper we shall only be
concerned with topology.

4To clarify, this is merely a compatibility condition for the duality, the two dual theories are not supposed to be
coupled, they are supposed to be alternative descriptions of the same dynamics.

5Ideally we should consider the OPE algebra of all the operators, but if that is too hard, we can restrict to smaller
sub-sectors which may still provide a non-trivial check.
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The subscripts denote the coordinates we use to parameterize the corresponding directions,
and it is implied that the complex direction is parameterized by the complex variable z, along
with its conjugate variable z.

Our first theory, denoted by Tbd, is the theory of open strings on the stack of D2-branes. This
is a 2d topological gauge theory with the complexified gauge group GLN [18]. The intersection
of the D2-branes with the D4-branes introduces a line operator in this theory. We describe this
theory in §3.3.

Next, we consider the product of two theories, open string theory on the stack of D4-
branes, and closed string theory on the 6d background sourced by the stack of D2-branes. The
theory on the stack of D4-branes is a 4d analogue of Chern-Simons (CS) gauge theory with the
complexified gauge group GLK [18]. As it does in the theory on the D2-branes, the intersection
between the D2 and the D4-branes introduces a line operator in this theory as well. This line
sources a flux supported on the 3-sphere linking the line. Our bulk theory is the Kaluza-Klein
compactification of the total 6d theory – 6d closed string theory coupled to 4d CS theory – on
the 3-sphere. We describe the 4d CS theory in §3.4. Let us describe the closed sting theory in
the next section.

3.2 The closed string theory

The closed string theory, denoted by Tcl, is a product of Kodaira-Spencer (also known as BCOV)
theory [31, 32] on C and Kähler gravity [33] on R4, along with a 3-form flux sourced by the
stack of D2-branes.6 Fields in this theory, including ghosts and anti-fields, are given by:

Set of fields, F := Ω•(R4)⊗Ω•,•(C) , (9)

i.e., the fields are differential forms on R4 and (p, q)-forms on C.7 The linearized BRST dif-
ferential acting on these fields is a sum of the de Rham differential on R4 and the Dolbeault
differential on C, leading to the following equation of motion:

�

dR4 + ∂ C
�

α= 0 , α ∈ F . (10)

The background field sourced by the D2-branes, let it be denoted by F3 ∈ F , measures the
flux through a topological S3 surrounding the D2-branes, it can be normalized as:

∫

S3

F3 = N . (11)

Note that the S3 is only topological, i.e., continuous deformation of the S3 should not affect the
above equation. This is equivalent to saying that, the 3-form must be closed on the complement
of the support of the D2-branes:

dR4×CF3(p) = 0 , p 6∈ D2 . (12)

Here the differential is the de Rham differential for the entire space, i.e., dR4×C = dR4+∂ C+∂C.
Moreover, as a dynamically determined background it is also constrained by the equation of
motion (10). In addition to satisfying these equations, F3 must also be translation invariant
along the directions parallel to the D2-branes. The solution is:

F3 =
iN

2π(v2 + y2 + zz)2
(v dy ∧ dz ∧ dz − y dv ∧ dz ∧ dz − 2z dv ∧ dy ∧ dz) . (13)

6This flux is analogous to the 5-form flux sourced by the stack of D3-branes in Maldacena’s setup of AdS/CFT
duality between N = 4 super Yang-Mills and supergravity on AdS5 × S5 [1].

7We are not being careful about the degree (ghost number) of the fields since this will not be used in this paper.
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In general, a closed string background like this might deform the theory on a brane, however,
the pullback of the form (13) to the D4-branes vanishes:

ι∗F3 = 0 , (14)

where ι : R2
x ,y ×Cz ,! R4

v,w,x ,y ×Cz is the embedding of the D4-branes into the entire space.
So the closed string background leaves the D4-brane world-volume theory unaffected.8 Such
a lack of backreaction is a rather drastic simplification of the holographic setup which can
occur in a topological setting such as ours (see also [15]) but this is not a general feature. For
examples of topological holography with nontrivial backreaction see [26,27].

The flux (13) signals a change in the topology of the closed string background:

R4
v,w,x ,y ×Cz ! R2

w,x ×R+ × S3 , (15)

where the R+ is parameterized by r :=
p

v2 + y2 + zz. This change follows from requiring
translation symmetry in the directions parallel to the D2-branes and the existence of an S3

supporting the flux F3. This S3 is analogous to the S5 in the D3-brane geometry supporting
the 5-form flux sourced by the said D3-branes in Maldacena’s AdS/CFT [1]. The coordinate
r measures distance from the location of the D2-branes. In the absence of a metric we can
only distinguish between the two extreme limits r! 0 and r!∞. The r! 0 region would
be analogous to Maldacena’s near horizon geometry. In our topological setting there is no
distinction between near and distant, and we treat the entire R2

w,x ×R+ × S3 as analogous to
the near horizon geometry. This makes R2

w,x ×R+ analogous to the AdS geometry. We recall
that, in the AdS/CFT correspondence the location of the black branes and the boundary of AdS
correspond to two opposite limits of the non-compact coordinate transverse to the branes. In
our case r = 0 corresponds to the location of the D2-branes, and we treat the plane at r =∞,
namely:

R2
w,x × {∞} , (16)

as analogous to the asymptotic boundary of AdS.
The D4-branes in (8) appear as a defect in the closed string theory, they are analogous

to the D5-branes that were considered in [34] in Maldacena’s setup of AdS/CFT, where they
were presented as holographic duals of Wilson loops in 4d N = 4 super Yang-Mills. For the
world-volume of these branes, the transformation (15) corresponds to:

R2
x ,y ×Cz ! Rx ×R+ × S2 , (17)

where the R+ direction is parameterized by r ′ :=
p

y2 + zz. The intersection of the boundary
plane (16) and this world-volume is then the line:

Rx × {∞}, (18)

at infinity of r ′. We draw a cartoon representing some aspects of the brane setup in figure 1.
We can now talk about two theories:

1. The 2d world-volume theory of the D2-branes. This is our analogue of the CFT (with a
line operator) in AdS/CFT.

8The flux (13) is the only background turned on in the closed string theory. This can be argued as follows: The
D2-branes introduce a 4-form source (the Poincaré dual to the support of the branes) in the closed string theory.
This form can appear on the right hand side of the equation of motion (10) only for a 3-form field α, which can
then have a non-trivial solution, as in (13). Furthermore, since the equation of motion (10) is free, the non-trivial
solution for the 3-form field does not affect any other field.
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2. The effective9 3d theory on world-volume R2
w,x×R+ with a defect supported on Rx×R+.

This is our analogue of the gravitational theory in AdS background (with defect) in
AdS/CFT.

To draw parallels once more with the traditional dictionary of AdS/CFT [1–3], we should
establish a duality between the operators in the D2-brane world-volume theory and varia-
tions of boundary values of fields in the “gravitational" theory on R2

w,x ×R+ (the boundary is
Rw,x ×{∞}). Both of these surfaces have a line operator/defect and this leads to two types of
operators, ones that are restricted to the line, and others that can be placed anywhere. Local
operators in a 2d surface are commuting, unless they are restricted to a line. Therefore, in both
of our theories, we have non-commutative associative algebras whose centers consist of oper-
ators that can be placed anywhere in the 2d surface. For this paper we are mostly concerned
with the non-commuting operators:

1. Operators in the world-volume theory of the D2-branes that are restricted to the D2-D4
intersection.

2. Variations of boundary values of fields in the effective theory along the intersection (18)
of the boundary R2

w,x × {∞} and the defect on Rx ×R+.

In physical string theory, the analogue of the D4-branes would be coupled to the closed string
modes. In an appropriate large N low energy limit such gravitational couplings can be ignored,
leading to the notion of rigid holography [35]. Since we are working with topological theory
at large N , we are assuming such a decoupling.

The computations in the “gravitational" side will be governed by the effective dynamics on
the defect on Rx ×R+. This is the Kaluza-Klein compactification of the world-volume theory
of the D4-branes (with a line operator due to D2-D4 intersection). This 4d theory (which
we describe in §3.4) is familiar from previous works such as [19]. Therefore we use the 4d
dynamics, instead of the effective 2d one for our computations. In terms of Witten diagrams
(which we compute in §5) this means that while we have a 1d boundary, the propagators are
from the 4d theory and the bulk points are integrated over the 4d world-volume R2 ×C. We
take the boundary line to be at y =∞ with some fixed coordinate z in the complex direction.
In future we shall refer to this line as `∞(z):

`∞(z) := Rx × {y =∞}×{z} . (19)

A cartoon of our setup

Let us make a diagrammatic summary of our brane setup in Fig 1. In the figure we draw the
non-compact part, namely R2

w,x ×R+, of the closed string background (the right hand side of
(15)). We identify the location of the 2d black brane and the defect D4-branes, the asymptotic
boundary R2

w,x × {∞}, and the intersection between the boundary and the defect. At the top
of the picture, parallel to the asymptotic boundary, we also draw the D2-branes. We draw the
D2-branes independently of the rest of the diagram because the D2-branes do not exist in the
backreacted bulk, they become the black brane. However, traditionally, parallels are drawn
between the asymptotic boundary and the brane sourcing the bulk (the D2-brane in this case).
The dots on the asymptotic boundary represent local variations of boundary values of fields in
the bulk theory Tbk. The corresponding dots on the D2-brane represent the local operators in
the boundary theory Tbd that are dual to the aforementioned variations. By the duality map in
the figure we schematically represent boundary excitations in the bulk theory corresponding
to some local operators in the dual description of the same dynamics in terms of the boundary
theory.

9Effective, in the sense that this is the Kaluza-Klein reduction of a 6d theory with three compact directions,
though we don’t want to lose any dynamics, i.e., we don’t throw away massive modes.
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2d black brane

R2
w,x × {∞}

D2-brane

D4-brane

`∞(z)

Belongs to the
center.

Duality map

w

x
r

•

•

Figure 1: D2-brane, and the non-compact part of the backreacted bulk.

3.3 BF: The theory on D2-branes

This is a 2d topological gauge theory on the stack of N D2-branes (see (8)), supported on R2
w,x ,

with complexified gauge group GLN . The field content of this theory is:

Field Valued in
B Ω0(R2)× glN
A Ω1(R2)× glN

. (20)

A is a Lie algebra valued connection and B is a Lie algebra valued scalar, both complex. The
curvature of the connection is denoted as F= dA+A∧A. The action is given by:

SBF :=

∫

R2
w,x

trN(BF) , (21)

where the trace is taken in the fundamental representation of glN .
We consider this theory in the presence of a line operator supported on Rx × {0}, caused

by the intersection of the D2 and D4-branes. The line operator is defined by a fermionic
quantum mechanical system living on it.10 The fields in the quantum mechanics (QM) are K
fundamental (of glN ) fermions and their complex conjugates:

Field Valued in
ψi Ω0(Rx)×N
ψi Ω0(Rx)×N

, i ∈ {1, · · · , K} , (22)

where N refers to the fundamental representation of glN and N to the anti-fundamental. The
fermionic system has a global symmetry GLN × GLK . These fermions couple naturally to the
glN connection A of the BF theory. The action for the QM is given by:

SQM :=

∫

Rx

�

ψidψ
i +ψiAψ

i +ψ jA
j
iψ

i
�

, (23)

where we have introduced a background glK -valued gauge field A∈ Ω1(Rx)×glK . Note that the
terms in the above action are made glN invariant by pairing up elements of N with elements
of the dual space N.

10This closely resembles the D3-D5 system in type IIB string theory considered in [34], there too a fermionic
quantum mechanics lived on the intersection, giving rise to Wilson lines upon integrating out the fermions. Note
that we could have considered bosons, instead of fermions, living on the line, without any significant change to
our following computations. This would be similar to the D3-D3 system considered in [34,36].
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Our first theory is this BF theory with the line operator, schematically:

Tbd := BFN ⊗N QMN×K , (24)

where the subscripts on BF and QM refer to the symmetries (GLN and GLN ×GLK respectively)
of the respective theories and the subscript on ⊗ implies that the GLN is gauged. There are
two types of gauge (glN ) invariant operators in the theory:11

for n ∈ N≥0 ,
operators restricted to Rx : Oi

j[n] := 1
ħhψ jB

nψi ,
operators not restricted to Rx : O[n] := 1

ħh trNB
n .

(25)

Unrestricted local operators in two topological dimensions can be moved around freely, imply-
ing that for any n≥ 0, the operator O[n] commutes with all of the operators defined above.12

The operator algebra of the 2d BF theory consists of all theses operators but in this paper we
focus on the non-commuting ones, in other words we, focus on the quotient of the full operator
algebra of the boundary theory by its center.13 We shall compute their Lie bracket in §4, which
will establish an isomorphism with the Yangian. Had we included the commuting operators
as well we would have found a central extension of the Yangian. In sum, the operator algebra
we construct from the theory Tbd is:

AOp(Tbd) :=
�

Oi
j[n], O[n]

�

/(O[n]) . (26)

By the notation (x , y, · · · ) we mean the algebra generated by the set of operators {x , y, · · · }
over C.

Remark 1 (A speculative link). Note that it is possible to lift our D2 and D4 branes to type IIB
string theory while maintaining a one dimensional intersection. This results in a D3-D5 setup
(studied in particular in [34]) where on the D3 brane we find the N = 4 Yang-Mills theory with
a Wilson line.14 In [38–40], the authors considered local operators in the N = 4 Yang-Mills
that are restricted to certain Wilson lines. With the proper choice of Wilson lines, Localization
reduces this setup to 2d Yang-Mills theory with Wilson lines – local operator insertions along
the Wilson lines in 4d reduce to local operator insertions along the Wilson lines in 2d [41]. 2d
BF theory is the zero coupling limit of 2d Yang-Mills theory. We therefore expect the algebra
constructed in this section to be related to the algebra constructed in the aforementioned
references, at least in some limit.15 The algebra in [40] would correspond to the K = 1
instance of our algebra, it may be an interesting check to compute the analogue of the algebra
in [40] for higher K . 4

3.4 4d Chern-Simons: The theory on D4-branes

This is a 4d gauge theory on the stack of K D4-branes, supported on R2
x ,y ×Cz with the line

L := Rx × (0,0, 0) removed and with the (complexified) gauge group GLK . The notation of
distinguishing directions by R and C is meant to highlight the fact that observables in this
theory depend only on the topology of the real directions and depend holomorphically on
the complex direction. In particular, they are independent of the coordinates x and y that
parameterize the R2, and depend holomorphically on z which parameterizes the C. Due to
the removed line, we can represent the topology of the support of this theory as (c.f. (17)):

M := R×R+ × S2 . (27)

11The ħh−1 appears in these definitions because the action (23) will appear in path integrals as exp
�

−ħh−1SQM

�

,
which means functional derivatives with respect to Ai

j inserts operators that carry ħh−1.
12These operators are represented by the red dot on the D2-brane in figure 1.
13We shall similarly quotient out the center in the bulk theory as well.
14It is also interesting to note that the D5 brane in an Omega background reproduces the 4d CS theory [37].
15We thank Shota Komatsu for pointing out this interesting possibility.
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The field of this theory is just a connection:

Field Valued in

A Ω1(R2×C\L)
(dz) ⊗ glK

. (28)

The above notation simply means that A is a glK -valued 1-form without a dz component. The
theory is defined by the action:16

SCS :=
i

2π

∫

M
dz ∧CS(A) , (29)

where CS(A) refers to the standard Chern-Simons Lagrangian:

CS(A) = trK

�

A∧ dA+
2
3

A∧ A∧ A
�

, (30)

where the trace is taken over the fundamental representation of glK . This theory is a 4d
analogue of the, perhaps more familiar, 3d Chern-Simons theory. We shall therefore refer to it
as the 4d Chern-Simons theory and sometimes denote it by CS4

K or just CS.
The removal of the line L from R2 × C is caused by the D2-D4 brane intersection. Note

that from the perspective of the CS theory, the D2-D4 intersection looks like a Wilson line.
This means that we should be quantizing the CS theory on M with a background electric flux
supported on the S2 inside M . Alternatively, we can quantize the CS theory on R2 ×C with a
Wilson line inserted along L.17 The choice of representation for the Wilson line is determined
by the number, N , of D2-branes – let us denote this representation as % : glK ! End(V ). With
this choice, the Wilson line is defined as the following operator:

W%(L) := P exp

�∫

L
%(A)

�

, (31)

where P exp implies path ordered exponentiation, made necessary by the fact that the expo-
nent is matrix valued. The above operator is valued in End(V ). This in general means that the
following expectation value:




W%(L)
�

=

∫

DAW%(L)exp
�

−1
ħhSCS

�

∫

DA exp
�

−1
ħhSCS

� , (32)

is valued in Hom(H−∞ ⊗ V,H+∞ ⊗ V ), where H±∞ are the Hilbert spaces of the CS4
K theory

on the Cauchy surfaces perpendicular to L at x = ±∞, in the absence of the Wilson line.
However, for the particular CS theory, these Hilbert spaces are trivial and we end up with a
map that transports vectors in V from x = −∞ to x = +∞:




W%(L)
�

: V−∞! V+∞ . (33)

In picture this operator may be represented as:




W%(L)
�

:
W%(L)

V V

x = −∞ x = +∞

. (34)

16This theory was proposed in [42] to explain the representation theory of quantum affine algebras and more
recently studied in [16,19,43,44] as a way of producing integrable lattice models using Wilson lines.

17Recall that in case of the BF theory the line operator at the D2-D4 intersection was described by a fermionic
QM. We could do the same in this case. However, in this case it proves more convenient to integrate out the
fermion, leaving a Wilson line in its place. The mechanism is the same that appeared for intersection of D3 and
D5-branes in physical string theory [34].
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The CS theory is quantized with some fixed boundary profile of the connection along the
boundary Rx×{∞}×S2.18 To express the dependence of expectation values on this boundary
value we put a subscript, such as




W%(L)
�

A. Since we are essentially interested in the Kaluza-
Klein reduced theory on Rx ×R+ we mostly care about the value of the connection along the
boundary line (defined in (19)) `∞(z) ⊂ Rx × {∞}× S2.

To define our second theory, we start with the product of the closed string theory and the
CS theory, Tcl⊗CS4

K , supported on R2
w,x ×R+× S3 and compactify on S3, our notation for this

theory is the following:
Tbk := πS3

∗

�

Tcl ⊗CS4
K

�

. (35)

We can put the theory Tbd (24) on the plane R2
w,x at infinity of R2

w,x ×R+. This plane has
a distinguished line Rx × {∞} (18) where the D4-brane world volume intersects.19 Along
this line we have the glK gauge field which couples to the fermions of the QM in Tbd (this
coupling corresponds to the last term in (23)). Boundary excitations from arbitrary points on
Rw,x×{∞}will correspond to operators in the BF theory that are commuting, since these local
excitations on a plane are not ordered. The non-commutative algebra we are interested in the
BF theory is the algebra of gauge invariant operators restricted to a particular line. Similarly,
in the “gravitational" side of the setup, we are interested in boundary excitations restricted to
the line `∞(z). Let us look a bit more closely at the coupling between the connection A and
the fermions:

Iz :=
1
ħh

∫

`∞(z)
ψ

i
Aj

iψ j , `∞(z) = Rx × {y =∞}×{z} . (36)

A small variation of z leads to coupling between the fermions and z-derivatives of the connec-
tion:

Iz+δz =
∞
∑

n=0

1
ħh

∫

`∞(z)

(δz)n

n!
ψ

i
∂ n

z Aj
iψ j . (37)

In the BF theory, the field B corresponds to the fluctuation of the D2-branes in the transverse C
direction [18]. Therefore, we can interpret the above varied coupling term as saying that the
operator in the boundary theory Tbd that couples to the derivative ∂ n

z Aj
i is precisely the operator

Oi
j[n] = ħh

−1ψ
i
Bnψ j (c.f. (25), (26)). This motivates us to look at functional derivatives of




W%(L)
�

A with respect to ∂ n
z Aj

i at fixed points along `∞(z), such as:

δ

δ∂
n1

z Aj1
i1
(p1)

· · ·
δ

δ∂
nm

z Ajm
im
(pm)




W%(L)
�

A , p1, · · · , pm ∈ `∞(z) . (38)

Just as the expectation value



W%(L)
�

A is End(V )-valued, these functional derivatives are
End(V )-valued as well. The action is given by applying the functional derivative on




W%(L)
�

A (ψ)
for any ψ ∈ V . Let us denote this operator as

T i
j [n] : `∞(z)× V ! V ,

p ∈ `∞(z) , T i
j [n](p) :ψ 7!

δ

δ∂ n
z Aj

i(p)




W%(L)
�

A (ψ) ,
(39)

18The boundary was chosen to respect the symmetry of the Wilson line along L.
19After aligning the v-coordinates of the plane and the D4-branes.
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which can be pictorially represented by slight modifications of (34):

W%(L)

δ

δ∂ n
z Aj

i

x = p

y = 0, ψ T i
j [n](p)(ψ)

x = −∞ x = +∞
y =∞

. (40)

Composition of these operators, such as T i1
j1
(p1) · · · T

im
jm
(pm), is defined by the expression (38).

A more precise and computable characterization of these operators and their composition in
terms of Witten diagrams [3] will be given in §5 (see (122)). Due to topological invariance
along the x-direction, the operator T i

j [n](p)must be independent of the position p. However,
since these operators are positioned along a line, their product should be expected to depend
on the ordering, leading to a non-commutative associative algebra. We can now define the
second algebra to appear in our example of holography:

ASc(Tbk) :=
�

T i
j [n]

�

, (41)

i.e., the complex algebra generated by the set {T i
j [n]}.

Remark 2 (Center of the algebra). In the BF theory we mentioned gauge invariant operators
that belong to the center of the algebra. Clearly, the holographic dual of those operators do
not come from the CS theory, rather they come from the closed string theory. A 2-form field
φ = φwxdw∧ dx + · · · from the closed string theory deforms the BF theory as:

SBF! SBF +

∫

R2
w,x

dw∧ dx
�

∂ n
z φwx

�

trN (B
n) . (42)

Functional derivatives with respect to the fields ∂ n
z φw,x placed at arbitrary locations on the

asymptotic boundary R2
w,x × {∞} correspond to inserting the operators trNB

n in the BF the-
ory.20 As we did in the BF theory, we are going to ignore these operators now as well. 4

After all this setup, we can present the main result of this paper:

Theorem 1. In the limit N !∞, both the algebra of local operators (26) along the line operator
in the theory Tbd = BFN ⊗N QMN×K , and the algebra of scatterings from a line in the boundary
(41) of the theory Tbk = πS3

∗

�

Tcl ⊗CS4
K

�

are isomorphic to the Yangian of glK , i.e.:

AOp(Tbd)
N!∞∼= Yħh(glK)

N!∞∼= ASc(Tbk) . (43)

The rest of the paper is devoted to the explicit computations of these algebras.

4 AOp (Tbd) from BF⊗QM theory

In this section we prove the first half of our main result (Theorem 1):

Proposition 1. The algebra AOp(Tbd), defined in the context of 2d BF theory with the gauge
group GLN coupled to a 1d fermionic quantum mechanics with global symmetry GLN × GLK , is
isomorphic to the Yangian of glK in the limit N !∞:

AOp(Tbd)
N!∞∼= Yħh(glK) . (44)

20These functional derivatives are represented by the red dot on the asymptotic boundary in figure 1.
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The BF theory coupled to a fermionic quantum mechanics was defined in §3.3, let us repeat
the actions here:

STbd
= SBF + SQM , (45)

where:

SBF =

∫

R2
w,x

trN(BdA+B[A,A]) (46)

and SQM =

∫

Rx

�

ψidψ
i +ψiAψ

i
�

. (47)

We no longer need the source term, i.e., the coupling to the background glK connection (c.f.
(23)). Let us determine the propagators now.

The BF propagator is defined as the 2-point correlation function:

Pαβ(p, q) :=



Bα(p)Aβ(q)
�

. (48)

We choose a basis {τα} of glN which is orthonormal with respect to the trace trN:

trN(τατβ) = δαβ . (49)

Then the two point correlation function becomes diagonal in the color indices:

Pαβ(p, q)≡ δαβP(p, q) . (50)

We shall often refer to just P as the propagator, it is determined by the following equation:21

1
ħh

dP(0, p) = δ2(p)dw∧ dx . (51)

Once we impose the following gauge fixing condition, analogous to the Lorentz gauge:

d ?P(0, p) = 0 , (52)

the solution is (using translation invariance to replace the 0 with an arbitrary point):

P(p, q) =
ħh

2π
dφ(p, q) , (53)

where φ(p, q) is the angle (measured counter-clockwise) between the line joining p-q and
any other reference line passing through p. In Feynman diagrams we shall represent this
propagator as:

P(p, q) = p q . (54)

Similarly, the propagator in the QM is defined by:

1
ħh
∂x2

¬

ψ
a
i (x1)ψ

j
b(x2)

¶

= δa
bδ

j
iδ

1(x1 − x2) , (55)

with the solution:
¬

ψ
a
i (x1)ψ

j
b(x2)

¶

= δa
bδ

j
iħhϑ(x2 − x1) , (56)

where ϑ(x2 − x1) is a unit step function. Anti-symmetry of the fermion fields dictates:
¬

ψ
j
b(x1)ψ

a
i (x2)

¶

= −
¬

ψ
a
i (x2)ψ

j
b(x1)

¶

= −δa
bδ

j
iħhϑ(x1 − x2) . (57)

21A minor technicality: P(p, q) is a 1-form onR2
p×R

2
q and in (51), byP(0, p)we mean the pull-back ofP ∈ Ω2(R4)

by the diagonal embedding R2 ,! R2 ×R2.

14

https://scipost.org
https://scipost.org/SciPostPhys.9.2.017


SciPost Phys. 9, 017 (2020)

We take the step function to be:

ϑ(x) =
1
2

sgn(x) =







1/2 for x > 0
0 for x = 0
−1/2 for x < 0

. (58)

Then we can write:

¬

ψ
a
i (x1)ψ

j
b(x2)

¶

=
¬

ψ
j
b(x1)ψ

a
i (x2)

¶

= δa
bδ

j
i
ħh
2

sgn(x2 − x1) . (59)

This propagator does not distinguish between ψ and ψ and it depends only on the order of
the fields, not their specific positions. In Feynman diagrams we shall represent this propagator
as:

ħh
2

sgn(x2 − x1) = x1 x2
, (60)

where the curved line refers to the propagator itself and the horizontal line refers to the support
of the QM, i.e., the line w= 0. We now move on to computing operator products that will give
us the algebra AOp(Tbd).

Remark 3 (Fermion vs. Boson - Propagator). We might as well have considered a bosonic
QM instead of a fermionic QM. At present, this is an arbitrary choice, however, if one starts
from some brane setup in physical string theory and reduce it to the topological setup we are
considering by twists and Ω-deformations,22 then depending on the starting setup one might
end up with either statistics. Let us make a few comments about the bosonic case. In the first
order formulation of bosonic QM the action looks exactly as in the fermionic action 47 except
the fields would be commuting – let us denote the bosonic counterpart ofψ andψ by φ and φ
respectively. Then, instead of the propagator (59), we would have the following propagator:23

−
¬

φ
a
i (x1)φ

j
b(x2)

¶

=
¬

φ
j
b(x1)φ

a
i (x2)

¶

= δa
bδ

j
i
ħh
2

sgn(x2 − x1) . (61)

Note that the extra sign in the first term (compared to (59)) is consistent with the commuta-
tivity of the bosonic fields:

¬

φ
a
i (x1)φ

j
b(x2)

¶

=
¬

φ
j
b(x2)φ

a
i (x1)

¶

. (62)

The bosonic propagator (61) distinguishes betweenφ andφ, in that, the propagator is positive
if φ(x1) is placed before φ(x2), i.e., x1 < x2, and negative otherwise. 4

4.1 Free theory limit, O(ħh0)

Interaction in the quantum mechanics is generated via coupling to the glN gauge field (see
(47)). Without this coupling, the quantum mechanics is free. In this section we compute the
operator product between Oi

j[m] and Ok
l [n] in this free theory, which will give us the classical

algebra.
Let us denote the operator product by ?, as in:

Oi
j[m] ?Ok

l [n] . (63)

22We describe one such specific procedure in §6.
23We have chosen the overall sign of the propagator to make comparision between Feynman diagrams involving

bosonic operators and fermionic operators as simple as possible. However, the overall sign is not important for the
determination of the algebra. The parameter ħh enters the algebra as the formal variable deforming the universal
enveloping algebra U(glK[z]) to its Yangian, and the sign of ħh is irrelevant for this purpose.
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The classical limit of this product has an expansion in Feynman diagrams where we ignore all
diagrams with BF propagators. Before evaluating this product let us illustrate the computations
of the relevant diagrams by computing one exemplary diagram in detail.

Consider the following diagram:24

G ik
jl [Í ·Î](x1, x2) :=

x1
Oi

j[m]
x2

Ok
l [n]

(64)

We are representing the operator Oi
j[m] =

1
ħhψ

a
j (B

m)baψ
i
b by the symbol where the three

dots represent the three fields ψ
a
j , (B

m)ba , and ψi
b respectively. The coordinate below an op-

erator in (64) represents the position of that operator and the lines connecting different dots
are propagators. Depending on which dots are being connected a propagator is either the BF
propagator (53) or the QM propagator (59). The value of the diagram is then given by:

G ik
jl [Í ·Î](x1, x2) =

1
ħh
ψ

a
j (x1)(B(x1)

m)ba
1
2
ħhδc

bδ
i
l
1
ħh
(B(x2)

n)dcψ
k
d(x2) ,

=
1
2ħh
δi

lψ j(x1)B(x1)
mB(x2)

nψk(x2) . (65)

In the second line we have hidden away the contracted glN indices. In computing the operator
product (63) only the following limit of the diagram is relevant:

lim
x2!x1

G ik
jl [Í ·Î](x1, x2) =

1
2ħh
δi

lψ jB
m+nψk =

1
2
δi

lO
k
j [m+ n] . (66)

We have ignored the positions of the operators, because the algebra we are computing must
be translation invariant. Reference to position only matters when we have different operators
located at different positions.

We can now give a diagramatic expansion of the operator product (63) in the free theory:

Oi
j[m] ?Ok

l [n]
x2!x1
=

x1 x2

+
x1 x2

+
x1 x2

+
x1 x2

.

(67)

We have omitted the labels for the operators in the diagrams. It is understood that the first
operator is Oi

j[m] and the second one is Ok
l [n]. Summing these four diagrams we find:

Oi
j[m] ?Ok

l [n] = Oi
j[m]O

k
l [n] +

1
2
δi

lO
k
j [m+ n]−

1
2
δk

j O
i
l [m+ n] +

1
4
δi

lδ
k
j trNB

m+n . (68)

The product in the first term on the right hand side of the above equation is a c-number product,
hence commuting. The sign of the third term comes from the first diagram in the second line
in (67). In short, this comes about by commuting two fermions, as follows:

lim
x2!x1

G ik
jl [Î ·Í](x1, x2) =

1
2ħh
δk

jψ
iBm+nψl = −

1
2ħh
δk

jψlB
m+nψi = −

1
2
δk

j O
i
l [m+ n] . (69)

24The reader can ignore the elaborate symbols (triangles and as such) that we use to refer to a diagram. They
are meant to systematically identify a diagram, but for practical purposes the entire expression can be thought of
as an unfortunately long unique symbol assigned to a diagram, just to refer to it later on.
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Using (68) we can compute the Lie bracket of the algebra AOp(Tbd) in the classical limit:
�

Oi
j[m], Ok

l [n]
�

?
= δi

lO
k
j [m+ n]−δk

j O
i
l [m+ n] . (70)

This is the Lie bracket in the loop algebra glK[z].25

Remark 4 (Fermion vs. Boson - Classical Algebra). How would the bracket (70) be affected if
we had a bosonic QM? It would not. The first and the fourth diagrams from (67) would still
cancel with their counterparts when we take the commutator. The value of the second diagram,
(66), remains unchanged. In computing the value of the third diagram (see (69)) we get an
extra sign compared to the fermionic case because we don’t pick up any sign by commuting
bosonos, however, we pick up yet another sign from the propagator relative to the fermionic
propagator (see Remark 3 – compare the bosonic (61) and fermionic (59) propagators).

4.2 Loop corrections from BF theory

Interaction in the BF theory comes from the following term in the BF action (46):

fαβγ

∫

R2

BαAβ ∧Aγ , (72)

where the structure constant fαβγ comes from the trace in our orthonormal basis (49):

fαβγ = trN(τα[τβ ,τγ]) . (73)

In Feynman diagrams this interaction will be represented by a trivalent vertex with exactly 1
outgoing and 2 incoming edges. Including the propagators for the edges, such a vertex will
look like:

q2,β

q3,γ q1,α

p =
ħh2

(2π)3
f αβγ

∫

p∈R2

dq1
φ(p, q1)∧ dq2

φ(p, q2)∧ dq3
φ(p, q3) ,

=: Vαβγ(q1, q2, q3) .

(74)

We have given the name Vαβγ to this vertex function.
Possibilities of Feynman diagrams are rather limited in the BF theory. In particular, there

are no cycles.26 This means that there is only one possible BF diagram that will appear in our
computations, which is the following:

. (75)

25The isomorphism is given by: Oi
j[m] 7! zme j

i , where e j
i are the elementary matrices of dimension K × K

satisfying the relation:
[e j

i , el
k] = δ

l
i e

j
k −δ

j
kel

i . (71)

26By cycle we mean loop in the sense of graph theory. In this paper when we write loop without any explanation,
we mean the exponent of ħh, as is customary in physics. This exponent is related but not always equal to the number
of loops (graph theory). Therefore, we reserve the word loop for the exponent of ħh, and the word cycle for what
would be loop in graph theory.

Let us illustrate why there are no cycles in BF Feynman diagrams. Consider the cycle . The three propa-

gators in the cycle contribute the 3-form dφ1∧dφ2∧dφ3 to a diagram containing the cycle, where the φ’s are the
angles between two successive vertices. However, due to the constraint φ1 +φ2 +φ3 = 2π, only two out of the
three propagators are linearly independent. Therefore, their product vanishes.
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The middle operator looks slightly different because this operator involves the connection A
and an integration, as opposed to just the B field, to be specific,

=
1
ħh

∫

R
ψiAψ

i . (76)

This term is the result of the insertion of the term coupling the fermions to the glN connection in
the QM action (47). In doing the above integrationoverRwe shall takeψ andψ to be constant.
In other words, we are taking derivatives of the fermions to be zero. The reason is that, the
equations of motion for the fermions (derived from the action (47)), namely dψi = −Aψi and
dψi = Aψi , tell us that derivatives of the fermions are not gauge-invariant quantities – and
we want to expand the operator product of gauge invariant operators in terms of other gauge
invariant operators only.27

In the following we shall consider the diagram (75) with all possible fermionic propagators
added to it.

4.2.1 0 fermionic propagators

We are mostly going to compute products of level 1 operators, i.e., Oi
j[1], this is because

together with the level 0 operators, they generate the entire algebra. Without any fermionic
propagators, we just have the diagram (75):

G ik
jl [··](x1, x2) :=

x1
Oi

j[1]
x

1
ħh

∫

ψAψ
x2

Ok
l [1]

. (77)

In future, we shall omit the labels below the operators to reduce clutter. In terms of the BF
vertex function (74), the above diagram can be expressed as:

G ik
jl [··](x1, x2) =

1

ħh3ψ jταψ
iψτβψψlτγψ

k

∫

Rx

Vαβγ(x1, x , x2) . (78)

We have used the expansions of B = Bατα and A = Aβτβ in the orthonormal glN basis
{τα}. As defined in (74), the vertex function Vαβγ is a 2d integral of a 3-form, therefore, the
integration of the vertex function on a line gives us a number. It will be convenient to divide
up the integral of the vertex function into three integrals depending on the location of the
point x relative to x1 and x2:

∫

Rx

Vαβγ(x1, x , x2) = Vαβγ·|| (x1, x2) +Vαβγ|·| (x1, x2) +Vαβγ||· (x1, x2) , (79)

where,

Vαβγ·|| (x1, x2) :=

∫

x<x1

Vαβγ(x1, x , x2) =
ħh2

24
f αβγ , (80a)

Vαβγ|·| (x1, x2) :=

∫

x1<x<x2

Vαβγ(x1, x , x2) =
ħh2

24
f αβγ , (80b)

Vαβγ||· (x1, x2) :=

∫

x2<x
Vαβγ(x1, x , x2) =

ħh2

24
f αβγ . (80c)

27An alternative, and perhaps more streamlined, way to say this would be to formulate all the theories in the
BV/BRST formalism, where operators are defined, a priori, to be in the cohomology of the BRST operator, which
would exclude derivatives of the fermions to begin with.
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We evaluate these integrals in Appendix §A. Adding them up and substituting in (78) we get
from the diagram (77):

G ik
jl [··](x1, x2)

x1!x2=
1
8ħh
ψ jταψ

iψτβψψlτγψ
k f αβγ . (81)

Since the glN indices are all contracted, we can choose a particular basis to get an expression
independent of any reference to glN . Choosing the elementary matrices as the basis we get
the following expression:

G ik
jl [··] =

π2

2ħh
ψ je

a
bψ

iψec
dψψle

e
fψ

k f bd f
ace . (82)

Using the definition of the elementary matrices
�

ea
b

�c
d = δa

dδ
c
b we get

ψ je
a
bψ

i =ψ
d
j

�

ea
b

�c
dψ

i
c =ψ

a
jψ

i
b and in this basis the structure constant is:

f bd f
ace = δ

d
aδ

f
c δ

b
e −δ

b
c δ

d
e δ

f
a . (83)

Using these expressions in (82) we get:

G ik
jl [··] =

1
8ħh

�

ψ jψ
mψmψ

kψlψ
i −ψlψ

mψmψ
iψ jψ

k
�

,

=
1
8
ħh2
�

Om
j [0]O

k
m[0]O

i
l [0]−Om

l [0]O
i
m[0]O

k
j [0]

�

. (84)

The above expression is anti-symmetric under the exchange (i, j)↔ (k, l), therefore, the con-
tribution of this diagram to the Lie bracket (70) is twice the value of the diagram.

4.2.2 1 fermionic propagator

We have the following six diagrams:

G ik
jl [·Í ·Î] = , G ik

jl [·Î ·Í] = ,

G ik
jl [Í ·Î ·] = , G ik

jl [Î ·Í ·] = ,

G ik
jl [Í · ·Î] = , G ik

jl [Î · · Í] = .

(85)

In all the above diagrams, the left and the right most operators are Oi
j[1] and Ok

l [1] respec-
tively, and all the graphs are functions of x1 and x2, where these two operators are located.
Let us explain the evaluation of the top left diagram in detail. Written explicitly, this diagram
is:

G ik
jl [·Í ·Î](x1, x2) =

1

ħh3

∫

Rx

ψ j(x1)ταψ
i(x1)ψ

a
m(x)

�

τβ
�b

a

¬

ψm
b (x)ψ

c
l (x2)

¶

×
�

τγ
�d

c ψ
k
d(x2)V

αβγ(x1, x , x2) , (86)
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where the two point correlation function is the QM propagator (59). The integrand above
depends on the position only to the extend that they depend on the ordering of the positions,
since we are only quantizing the constant modes of the fermions.28 The propagator between
the two fermions gives a propagator which depends on the sign of x2 − x (see (59), (60)),
since we are integrating over x , this propagator will change sign depending on whether x is
to the left or to the right of x2.29 Therefore, we can write this graph as:

G ik
jl [·Í ·Î] =

1

ħh2ψ jταψ
iψlτβτγψ

k
�

Vαβγ·|| +Vαβγ|·| −Vαβγ||·

�

,

=
1
24
ψ jταψ

iψlτβτγψ
k f αβγ =

1
24
ψ jταψ

iψlτδψ
k f δ
βγ f αβγ . (87)

Due to the symmetry f δ
βγ

f αβγ = f α
βγ

f δβγ, the above expression is symmetric under the
exchange (i, j) ↔ (k, l), therefore this diagram does not contribute to the Lie bracket (70).
The diagrams G ik

jl [·Î ·Í], G ik
jl [Í ·Î ·], and G ik

jl [Î ·Í ·] do not contribute to the Lie bracket for
exactly the same reason. The remaining two diagrams evaluate to the following expressions:

G ik
jl [Í · ·Î] =

1
8ħh

f αβγδi
lψ jτατγψ

kψτβψ , (88a)

G ik
jl [Î · · Í] = −

1
8ħh

f αβγδk
jψlτγταψ

iψτβψ . (88b)

Their sum is symmetric under the exchange (i, j)↔ (k, l),30 and therefore these diagrams do
not contribute to the Lie bracket either.

None of the diagrams with one fermionic propagator contributes to the Lie bracket.

4.2.3 2 fermionic propagators

There are nine ways to join two pairs of fermions with propagators:

G ik
jl [Í·ÎÏ·È] G ik

jl [ÈÍ·Î·Ï] G ik
jl [Î·Ï·ÈÍ]

G ik
jl [Î·ÈÍ·Ï] G ik

jl [ÎÏ·Í·È] G ik
jl [Í·È·ÎÏ]

(89)

G ik
jl [ÈÍ·ÎÏ·]

G ik
jl [ÈÍ··ÎÏ]

G ik
jl [·ÈÍ·ÎÏ]

28Derivatives of the fermions are not gauge invariant.
29This is the reason why we computed the integrals (80) separately depending on the position of x .
30The opposite ordering of τα and τγ cancels the sign, using the anti-symmetry of the indices on the structure

constant.
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The left and the right most operators in all of the above diagrams are Oi
j[1] and Ok

l [1] respec-
tively.

All three of the diagrams in the bottom line vanish. This is because joining all the fermions
in two operators with propagators introduces a trace trN(τατβ) of glN generators when the
same color indices, α and β in this case, are contracted with the structure constant coming
from the BF interaction vertex, as in trN(τατβ) f αβγ. Since the trace is symmetric and the
structure constant is anti-symmetric, these three diagrams vanish.

Computation also reveals the following relations among the four diagrams at the top right
2× 2 corner of (89):

G ik
jl [È Í ·ÎÏ] = G ik

jl [Î ·Ï ·È Í] , G ik
jl [ÎÏ · Í ·È] = G ik

jl [Í ·È ·ÎÏ] , (90)

together with the fact that G ik
jl [È Í ·Î ·Ï] + G ik

jl [ÎÏ ·Í ·È] is symmetric under the exchange
(i, j) ↔ (k, l). The above relations and symmetry implies that when anti-symmetrized with
respect to (i, j)↔ (k, l), the sum of the four diagrams appearing in the above relations vanish.
In a similar vein, the sum G ik

jl [Í ·ÎÏ·È]+G ik
jl [Î·È Í ·Ï] also turns out to be symmetric under

(i, j)↔ (k, l) and therefore these two diagrams do not contribute to the Lie bracket either.
None of the diagrams with two fermionic propagators contributes to the Lie bracket.

4.2.4 3 fermionic propagators

There are two ways to join all the fermions with propagators:

, (91)

As before, the left and the right most operators are Oi
j[1] and Ok

l [1] respectively. Both of

these diagrams are proportional to δi
lδ

k
j , in particular, they are symmetric under the exchange

(i, j)↔ (k, l), and therefore do not contribute to the Lie bracket.

4.2.5 Lie bracket

Since only the diagram with zero fermionic propagator (84) survives the anti-symmetrization,
the Lie bracket (70) up to O(ħh2) corrections becomes:
�

Oi
j[1], Ok

l [1]
�

?
= δi

lO
k
j [2]−δ

k
j O

i
l [2] + G ik

jl [··]− Gki
l j [··] ,

= δi
lO

k
j [2]−δ

k
j O

i
l [2] +

ħh2

4

�

Om
j [0]O

k
m[0]O

i
l [0]−Om

l [0]O
i
m[0]O

k
j [0]

�

. (92)

Though we have only computed up to 2-loops diagrams, this result is exact, because there are
no more non-vanishing Feynman diagrams that can be drawn.

Since (92) is not among the standard relations of the Yangian that are readily available in
the literature, we shall now make a change of basis to get to a standard relation. First note
that, the product of operators in the right hand side of the above equation is not the operator
product, this product is commutative (anti-commutative for fermions) and therefore we can
write it in an explicitly symmetric form, such as:

Om
j [0]O

k
m[0]O

i
l [0] =

¦

Om
j [0], Ok

m[0], Oi
l [0]

©

, (93)
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where the bracket means complete symmetriazation, i.e., for any three symbols O1, O2 and O3
with a product we have:

{O1, O2, O3}=
1
3!

∑

s∈S3

Os(1)Os(2)Os(3) , (94)

where S3 is the symmetric group of order 3!. With this symmetric bracket, let us now define:

Qik
jl := f iun

jvm f vpq
uor f r tk

qsl

¦

Om
n [0], Oo

p[0], Os
t [0]

©

, (95)

where f i jk
lmn are the glK structure constants in the basis of elementary matrices. Using the form

of the gl structure constant in the basis of elementary matrices (c.f. (83)) we can write:

Qik
jl = 3

¦

Oi
l , Om

j , Ok
m

©

− 3
¦

Ok
j , Om

l , Oi
m

©

+δk
j

�

Om
l , On

m, Oi
n

	

−δi
l

¦

Om
j , On

m, Ok
n

©

. (96)

We have ignored to write the [0] for each of the operators. Using the above expression we can
re-write (92) as:

�

Oi
j[1], Ok

l [1]
�

?
= δi

l
eOk

j [2]−δ
k
j
eOi

l [2] +
ħh2

12
Qik

jl , (97)

with the redefinition:

eOk
j [2] := Ok

j [2]−
ħh2

12

¦

Om
j , On

m, Ok
n

©

. (98)

Note that,
¦

Om
j , On

m, Ok
n

©

does indeed transform as an element of glK , since it only has a pair of

fundamental-anti-fundamental glK indices free. This makes the redefinition of Ok
j [2] possible.

The Lie bracket (97) is how the Yangian was presented in [19].

Remark 5 (Fermion vs. Boson - Quantum Algebra). In Remark 4 we pointed out that the
classical part of the algebra (97) remains unchanged if we replace the fermionic QM on the
defect with a bosonic QM. This remains true at the quantum level – though a bit tedious, it can
be readily verified by using the bosonic propagator (61) and keeping track of signs through
the computations of this section without any other modifications. 4

4.3 Large N limit: The Yangian

In (97) we have already found a defining relation for the Yangian, and this relation holds at
finite N . However, for finite N there can be extra relations among the operators Oi

j[m]. For

example, for finite N , B is a finite dimensional (namely N × N) matrix and therefore BN can
be written as a linear combination of Bm with m < N . This can lead to relations among the
operators Oi

j[m]. To find all the relations precisely one must quantize the BF theory taking the

direction of the 1d defect to be time and establish the relations among the operators Oi
j[m]

on the resulting Hilbert space. Any such relation reduces the operator algebra to a quotient
of the Yangian. This will be done in a future work, for now we note that we can avoid these
incidental relations by taking the large N limit where all matrices are infinite dimensional.
In this limit we therefore have the standard Yangian, as opposed to some quotient of it. This
concludes our proof for Proposition 1.

5 ASc(Tbk) from 4d Chern-Simons Theory

In this section we prove the second half of our main result (Theorem 1):
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Proposition 2. The algebra ASc(Tbk), defined in (41) in the context of 4d Chern-Simons theory,
is isomorphic to the Yangian Yħh(glK):

ASc(Tbk)
N!∞∼= Yħh(glK) . (99)

The 4d Chern-Simons theory with gauge group GLK , also denoted by CS4
K , is defined by

the action (29), which we repeat here for convenience:

SCS :=
i

2π

∫

R2
x ,y×Cz

dz ∧ trK

�

A∧ dA+
2
3

A∧ A∧ A
�

. (100)

The trace in the fundamental representation defines a positive-definite metric on glK , more-
over, we choose a basis of glK , denoted by {tµ}, in which the metric becomes diagonal:

trK(tµ tν)∝ δµν . (101)

We consider this theory in the presence of a Wilson line in some representation% : glK ! End(V ),
supported along the line L defined by y = z = 0:

W%(L) = P exp

�∫

L
%(A)

�

. (102)

Consideration of fusion of Wilson lines to give rise to Wilson lines in tensor product repre-
sentation shows that it is not only the connection A that couples to a Wilson line but also its
derivatives ∂ n

z A [19]. Furthermore, gauge invariance at the classical level requires that ∂ n
z A

couples to the Wilson line via a representation of the loop algebra glK[z]. So the line operator
that we consider is the following:

P exp

�

∑

n≥0

%µ,n

∫

L
∂ n

z Aµ
�

, (103)

where the matrices %µ,n ∈ End(V ) satisfy:
�

%µ,m,%ν,n

�

= f ξ
µν %ξ,m+n . (104)

The structure constant f ξ
µν is that of glK . In particular, we have %µ,0 = %(tµ).

In (28), A was defined to not have a dz component. The reason is that, due to the appear-
ance of dz in the above action (100), the dz component of the connection A never appears in
the action anyway.31

Though the theory is topological, in order to do concrete computations, such as imposing
gauge fixing conditions, computing propagator, and evaluating Witten diagrams etc. we need
to make a choice of metric on R2

x ,y ×Cz , we choose:32

ds2 = dx2 + dy2 + dzdz . (107)

31Had we defined the space of connections to be Ω1(R2
x ,y ×Cz)⊗ glK , then, in addition to the usual GLK gauge

symmetry, we would have to consider the following additional gauge transformation:

A! A+ f dz , (105)

for arbitrary function f ∈ Ω0(R2 ×C). We could fix this gauge by imposing:

Az = 0 . (106)

This would get us back to the space
�

Ω1(R2
x ,y ×Cz)/(dz)

�

⊗ glK .
32For this theory we follow the choices of [19] whenever possible.
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For the GLK gauge symmetry we use the following gauge fixing condition:

∂xAx + ∂yAy + 4∂zAz = 0 . (108)

The propagator is defined as the two-point correlation function:

Pµν(v1, v2) := 〈Aµ(v1)A
ν(v2)〉 . (109)

Since in the basis of our choice the Lie algebra metric is diagonal (101), this propagator is
proportional to a Kronecker delta in the Lie algebra indices:

Pµν(v1, v2) = δ
µνP(v1, v2) , (110)

where P is a 2-form on R4
v1
× R4

v2
. We can fix one of the coordinates to be the origin, this

amounts to taking the projection:

$ : R4
v1
×R4

v1
! R4

v , $ : (v1, v2) 7! v1 − v2 =: v . (111)

Due to translation invariance, P can be written as a pullback of some 2-form on R4 by$, i.e.,
P =$∗P for some P ∈ Ω2(R4). The propagator P can be characterized as the Green’s function
for the differential operator i

2πħhdz∧d that appears in the kinetic term of the action SCS. For P
this results in the following equation:

i
2πħh

dz ∧ dP(v) = δ4(v)dx ∧ dy ∧ dz ∧ dz , (112)

The propagator P, and in turns P, must also satisfy the gauge fixing condition (108):

∂x P x + ∂y P y + 4∂z Pz = 0 . (113)

The solution to (112) and (113) is given by:

P(x , y, z, z) =
ħh

2π
x dy ∧ dz + y dz ∧ dx + 2z dx ∧ dy

(x2 + y2 + zz)2
. (114)

The propagator P(v1, v2) will be referred to as the bulk-to-bulk propagator, since the points
v1 and v2 can be anywhere in the world-volume R2

x ,y ×Cz of CS theory. To compute Witten di-
agrams we also need a boundary-to-bulk propagator. We will denote it as Kµ(v, x)≡ K(v, x)tµ,
where v ∈ R2

x ,y ×Cz and x ∈ `∞(z) is restricted to the boundary line. The boundary-to-bulk
propagator is a 1-form defined as a solution to the classical equation of motion:

dzv ∧ dvK(v, x) = 0 , (115)

and by the condition that when pulled back to the boundary, in this case `∞(z), it must become
a delta function supported at x:

ε∗K(x ′, x) = δ1(x ′ − x)dx ′ , x ′ ∈ `∞(z) , (116)

where ε : `∞(z) ,! R2×C is the embedding of the line in the larger 4d world-volume. As our
boundary-to-bulk propagator we choose the following:

K(v, x) = dvθ (xv − x) = δ1(xv − x)dxv , (117)

where xv refers to the x-coordinate of the bulk point v. The function θ is the following step
function:

θ (x) =







1 for x > 0
1/2 for x = 0
0 for x < 0

. (118)
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Note that we have functional derivatives with respect to ∂ n
z A for n ∈ N≥0. The propagator

(117) corresponds to the functional derivative with n = 0. Let us denote the propagator
corresponding to δ

δ∂ n
z A, more generally, as Kn, and for n ≥ 0, we modify the condition (116)

by imposing:
lim

v!x ′
ε∗∂ n

z K(v, x) = δ1(x ′ − x)dx ′ , x ′ ∈ `∞(z) . (119)

This leads us to the following generalization of (117):

Kn(v, x) = zn
vδ

1(xv − x)dxv . (120)

Apart from the two propagators, we shall need the coupling constant of the theory to
compute Witten diagrams. The coupling constant of this theory can be read off from the
interaction term in the action SCS, it is:

i
2πħh

f ξ
µν dz . (121)

Now we can give a diagrammatic definition of the operators in the algebra ASc(Tbk),
namely the ones defined in (39), and their products:

Tµ1
[n1](p1) · · · Tµm

[nm](pm) =
∞
∑

l=1

∑

ji≥0
· · ·

· · ·

%ν1, j1
q1

%νl , jl
ql

j1 jl

p1
µ1, n1

pm
µm, nm

· · ·

· · ·

. (122)

Let us clarify some points about the picture. We have replaced the pair of fundamental-anti-
fundamental indices on T with a single adjoint index. The bottom horizontal line represents
the boundary line `∞(z), and the top horizontal line represents the Wilson line in representa-
tion % : glK ! V at y = 0. The sum is over the number of propagators attached to the Wilson
line and all possible derivative couplings. The orders of the derivatives are mentioned in the
boxes. The points q1 ≤ · · · ≤ ql on the Wilson line are all integrated along the line without
changing their order. The gray blob represents a sum over all possible graphs consistent with
the external lines. We use different types of lines to represent different entities:

Bulk-to-bulk propagator, P(v1, v2) = v1 v2 ,

Boundary-to-bulk propagator, K(v, x) = v x ,

The boundary line `∞(z) : ,

Wilson line : .

(123)

The labels µi , ni below the points along the boundary line implies that the corresponding
boundary-to-bulk propagator is Kni

= zniK and that it carries a glK -index µi . Finally, the
jth derivative of Aν couples to the Wilson line via the matrix %ν, j . Such a diagram with m
boundary-to-bulk propagators and l bulk-to-bulk propagators attached to the Wilson lines will
be evaluated to an element of End(V ) which will schematically look like:

(Γm!l)
µ1···µl
ν1···νm

%µ1, j1 · · ·%µl , jl , (124)

where (Γm!l)
µ1···µm
ν1···νl

is a number that will be found by evaluating the Witten diagram. Since
the bulk-to-bulk propagator (114) is proportional to ħh and the interaction vertex (121) is
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proportional to ħh−1, each diagram will come with a factor of ħh that will be related to the Euler
character of the graph.33 In the following we start computing diagrams starting from O(ħh0)
and up to O(ħh2), by the end of which we shall have proven the main result (Proposition 2) of
this section.

Remark 6 (Diagrams as m ! l maps, and deformation). Each m ! l Witten diagram that
appears in sums such as (122) can be interpreted as a map whose image is the value of the
diagram:

Γm!l :
m
⊗

i=1

zniglK !
l
⊗

i=1

z jiglK ! End(V ) ,

Γm!l :
m
⊗

i=1

zni tµi
7! (Γm!l)

µ1···µl
ν1···νm

%µ1, j1 · · ·%µl , jl .

(125)

As we shall see explicitly in our computations, diagrams in (122) without loops (diagrams of
O(ħh0)) define an associative product that leads to classical algebras such as U(glK[z]). How-
ever, there are generally more diagrams in (122) involving loops (diagrams of O(ħh) and higher
order) that change the classical product to something else. Since loops in Witten or Feynman
diagrams are the essence of the quantum interactions, classical algebras deformed by such
loop diagrams are aptly called quantum groups (of course, why they are called groups is a
different story entirely [45].) 4

5.1 Relation to anomaly of Wilson line

As we shall compute relevant Witten diagrams of the 4d Chern-Simons theory in detail in later
sections, we shall find that the computations are essentially similar to the computations of
gauge anomaly of the Wilson line [19] in this theory. This of course is not a coincidence. To
see this, let us consider the variation of the expectation value of the Wilson line,




W%(L)
�

A, as
we vary the connection A along the boundary line `∞(z):

δ



W%(L)
�

A =
∞
∑

n=0

∫

p∈`∞(z)

δ

δ∂ n
z Aµ(p)




W%(L)
�

Aδ∂
n

z Aµ(p) . (126)

Let us make the following variation:

δ∂zAµ(x) = δ1(x − p)ηµ = dxθ (x − p)ηµ , (127)

for some fixed Lie algebra element ηµ tµ ∈ glK . Then we find:

δ



W%(L)
�

A =
δ

δ∂zAµ(p)




W%(L)
�

Aη
µ . (128)

An exact variation of the boundary value of the connection is like a gauge transformation that
does not vanish at the boundary. In [19] it was proved that such a variation of the connection
leads to a variation of the Wilson line which is a local functional supported on the line:

δ



W%(L)
�

A =
��

%µ,1,%ν,1

�

+Θµ,1,ν,1

�

∫

L
∂zAµ∂zc

ν , (129)

33In a Feynman diagram all propagators are proportional to ħh and the power of ħh of a diagram relates simply
to the number of faces of the diagram, which is why ħh is called the loop counting parameter. In a Witten diagram
the boundary-to-bulk propagators do not carry any ħh and therefore the power of ħh depends also on the number of
boundary-to-bulk propagators. However, we are going to ignore this point and simply refer to the power of ħh in a
diagram as the loop order of that diagram.
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where c was the generator of the gauge transformation:

∂zdcµ = δ∂zAµ , (130)

%µ,1 ∈ End(V ) is part of the representation of glK[z] that couples ∂zAµ to the Wilson line (see
(103)), and Θµ,1,ν,1, which is anti-symmetric in µ and ν, is a matrix that acts on V . Variations
such as the above measure gauge anomaly associated to the line, though in our case it is
not an anomaly since we are varying the connection at the boundary, and such “large gauge"
transformations are not actually part of the gauge symmetry of the theory. The matrix Θµ,1,ν,1
which signals the presence of anomaly is not an arbitrary matrix and in [19], all constraints on
this matrix were worked out, we shall not need them at the moment. Comparing with (127)
we see that for us ∂zcµ(x) = θ (x − p)ηµ, which leads to:

δ



W%(L)
�

A =
�

f ξ
µν %ξ,2 +Θµ,1,ν,1

�

∫

x>p
∂zAµην , (131)

where we have used the fact that the matrices %µ,1 satisfy the loop algebra (104). The integral
above is along L. The connection A above is a background connection satisfying the equation
of motion, i.e., it is flat. Since the D4 world-volume, even in the presence of a Wilson line, has
no non-contractible loop, all flat connections are exact. Symmetry of world-volume dictates
in particular that the connection must also be translation invariant along the direction of the
Wilson line L. By considering the integral of A along the following rectangle:

dA= 0

y = 0

y =∞

x =∞x = p

`∞(z)

L

(132)

and using translation invariance in the x-direction along with Stoke’s theorem, we can change
the support of the integral in (131) from L to `∞(z), to get:

δ



W%(L)
�

A =
�

f ξ
µν %ξ,2 +Θµ,1,ν,1

�

∫

`∞(z)3x>p
∂zAµην . (133)

Comparing with (128) we find:

δ

δ∂zAν(p)




W%(L)
�

A =
�

f ξ
µν %ξ,2 +Θµ,1,ν,1

�

∫

x>p
∂zAµ , (134)

where the integral is now along the boundary line `∞(z). This leads to the following relation
between our algebra and anomaly:

�

Tµ[1], Tν[1]
�

= lim
ι!0

�

δ

δ∂zAµ(p+ ι)
δ

δ∂zAν(p)
−

δ

δ∂zAν(p)
δ

δ∂zAµ(p+ ι)

�




W%(L)
�

A

= f ξ
µν %ξ,2 +Θµ,1,ν,1 . (135)

The first term with the structure constant gives us the loop algebra glK[z], which is the
classical result. The anomaly term is the result of 2-loop dynamics [19], i.e., it is proportional
to ħh2. This term gives the quantum deformation of the classical loop algebra. This also explains
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why our two loop computation of the algebra is similar to the two loop computation of anomaly
from [19].

At this point, we note that we can actually just use the result of [19] to find out whatΘµ,1,ν,1
is and we would find that the deformed algebra of the operators Tµ[n] is indeed the Yangian
Yħh(glK). However, we think it is illustrative to derive this result from a direct computation of
Witten diagrams.

5.2 Classical algebra, O(ħh0)

5.2.1 Lie bracket

We denote a diagram by Γ d
n!m when there are n boundary-to-bulk propagators, m propagators

attached to the Wilson line, and the diagram is of order ħhd . If there are more than one such
diagrams we denote them as Γ d

n!m,i with i = 1, · · · .
Our aim in this section is to compute the product Tµ[m](p1)Tν[n](p2) and eventually the

commutator
�

Tµ[m], Tν[n]
�

:= lim
p2!p1

�

Tµ[m](p1)Tν[n](p2)− Tν[n](p1)Tµ[m](p2)
�

, (136)

at 0-loop.34

We have the following two 2! 2 diagrams:

Γ 0
2!2,1

� p1
µ,m ; p2

ν,n
�

=

p1
µ,m

p2
ν,n

q1 q2
m n

, Γ 0
2!2,2

� p1
µ,m ; p2

ν,n
�

=

p1
µ,m

p2
ν,n

q2 q1
n m

, (137)

where a label m in a box on the Wilson line refers to the coupling between the Wilson line and
the mth derivative of the connection. The first diagram evaluates to (note that p1 < p2 and
q1 < q2):

Γ 0
2!2,1

� p1
µ,m ; p2

ν,n
�

=

∫

q1<q2

dq1dq2δ
1(q1 − p1)δ

1(q2 − p2)%
µ
m%

ν
n

= %µ,m%ν,n , (138)

and the second one (with p1 < p2 and q1 > q2):

Γ 0
2!2,2

� p1
µ,m ; p2

ν,n
�

=

∫

q1>q2

dq2dq1δ
1(q1 − p1)δ

1(q2 − p2)%ν,n%µ,m

= 0 . (139)

Therefore their contribution to the commutator is:
�

Tµ[m], Tν[n]
�

= lim
p2!p1

�

Γ 0
2!2,1

� p1
µ,m ; p2

ν,n
�

− Γ 0
2!2,1

� p1
ν,n ; p2

µ,m
�

�

=
�

%µ,m,%ν,n

�

= f ξ
µν %ξ,m+n = f ξ

µν Tξ[m+ n] , (140)

34
�

Tµ[m](p1), Tν[n](p1)
�

may be a more accurate notation but this algebra must be position invariant and there-
fore we shall ignore the position. Reference to the position only matters when different operators are positioned
at different locations.
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where the last equality is established by evaluating the diagram:

m+ n

p
ξ,m+n

. (141)

The bracket (140) is precisely the Lie bracket in the loop algebra glK[z]. Note in passing
that had we considered the same diagrams as the ones in (137) except with different derivative
couplings at the Wilson line then the diagrams would have vanished, either because there
would be more z-derivatives than z, or there would be less, in which case there would be z’s
floating around which vanish along the Wilson line located at y = z = 0.

There is one 2! 1 diagram as well:

p1
µ,m

p2
ν,n

m+ n

, (142)

however, since the two boundary-to-bulk propagators are two parallel delta functions, i.e.,
their support are restricted to x = p1 and x = p2 respectively with p1 6= p2, they never meet
in the bulk and therefore the diagram vanishes. There are no more classical diagrams, so the
Lie bracket in the classical algebra is just the bracket in (140).

5.2.2 Coproduct

Apart from the Lie algebra structure, the algebra ASc(Tbk) also has a coproduct structure. This
can be seen by considering the Wilson line in a tensor product representation, say U⊗V . Such
a Wilson line can be produced by considering two Wilson lines in representations U and V
respectively and bringing them together, and asking how Tµ[n] acts on U ⊗ V . Since there
are going to be multiple vector spaces in this section, let us distinguish the actions of Tµ[n]
on them by a superscript, such as, T U

µ [n], T V
µ [n], etc. At the classical level the answer to the

question we are asking is simply given by computing the following diagrams:

U
V

p
µ,m

m

+
U
V

p
µ,m

m

. (143)

Evaluation of these diagrams is very similar to that of the diagrams in (137) and the result is:

T U⊗V
µ [m] = T U

µ [m]⊗ idV + idU ⊗ T V
µ [m] . (144)

This is the same coproduct structure as that of the universal enveloping algebra U(glK[z]).
Combining the results of this section and the previous one we find that, at the classical level

we have an associative algebra with generators Tµ[n] with a Lie bracket and coproduct given
by the Lie bracket of the loop algebra glK[z] and the coproduct of its universal enveloping
algebra. This identifies ASc(Tbk), clasically, as the universal enveloping algebra itself:

Lemma 1. The large N limit of the algebra ASc(Tbk) at the classical level is the universal envelop-
ing algebra U(glK[z]):

ASc(Tbk)/ħh
N!∞∼= U(glK[z])∼= Yħh(glK)/ħh . (145)
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The reason why we need to take the large N limit is that, the operators Tµ[m] acts on a
vector space which is finite dimensional for finite N . This leads to some extra relations in the
algebra, which we can get rid of in the large N limit. A similar argument was presented for
the operator algebra coming from the BF theory in §4.3 and the argument in the context of
the CS theory will be explained in more detail in §5.4.

5.3 Loop corrections

5.3.1 1-loop, O(ħh)

Now we want to compute 1-loop deformation to both the Lie algebra structure and the co-
product structure of ASc(Tbk).

Lie bracket. The 2! 1 diagrams at this loop order are:35

, , , . (146)

All of these vanish due to Lemma 6 of §C.1.
The 2! 2 diagrams at this loop order are:

+ . (147)

Note that, since the bulk points are being integrated over, crossing the boundary-to-bulk prop-
agators does not produce any new diagram, it just exchanges the two diagrams that we have
drawn:

crossing
−−−−! = . (148)

For this reason, in future we shall only draw diagrams up to crossing of the boundary-to-bulk
propagators that are connected to bulk interaction vertices.

Now let us comment on the evaluation of the diagrams in (147). We start by doing inte-
gration by parts with respect the differential corresponding to either one of the two boundary-
to-bulk propagators. As mentioned in §C.2, this gives two kinds of contributions, one coming
from collapsing a bulk-to-bulk propagator, the other coming from boundary terms. Collapsing
any of the bulk-to-bulk propagators leads to a configuration which will vanish due to Lemma
7 (§C.1). Therefore, doing integration by parts will only result in a boundary term. Recall
from the general discussion in §C.2 that only the boundary component of the integrals along
the Wilson line can possibly contribute. Since there are two points on the Wilson line, let us
call them p1 and p2, the domain of integration is:

∆2 = {(p1, p2) ∈ R2 | p1 < p2} . (149)

35Sometimes we ignore to specify the derivative couplings at the Wilson line, when the diagrams we draw are
vanishing regardless.
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The boundary of this domain is:

∂∆2 = {(p1, p2) ∈ R2 | p1 = p2} . (150)

Once restricted to this boundary, both of the diagrams in (147) will involve a configuration
such as the following:

, (151)

which vanishes due to Lemma 6.36 The diagrams (147) thus vanish.
There are four other 2! 2 diagrams at 1-loop, they can be generated by starting with:

, (152)

and then

1. Permuting the two points on the Wilson line.

2. Permuting the two points on the boundary.

3. Simultaneously permuting the two points on the Wilson line and the two points on the
boundary.

All of these diagrams vanish due to Lemma 6.
There are also six 2! 3 diagrams. All of these can be generated from the following:

, (153)

by permuting the points along the Wilson line and the boundary. However, due to Lemma 7,
all of these diagrams vanish.

There are no more 2! m diagrams at 1-loop. Thus, we conclude that there is no 1-loop
contribution to the Lie bracket in ASc(Tbk).

Coproduct. We use the same superscript notation we used in §5.2.2 to distinguish between
the actions of Tµ[m] on different vector spaces. The 1-loop diagram that deforms the classical
coproduct is the following:

Γ 1
1!2

� p
µ,1

�

=

p
µ,1

U
V

(154)

Happily for us, precisely this diagram was computed in eq. 5.6 of [19] to answer the ques-
tion “how does a background connection couple to the product Wilson line?". The result of

36These diagrams actually require a UV regularization due to logarithmic divergence coming from the two points
on the Wilson line being coincident. To regularize, the domain of integration needs to be restricted from ∆2 to
e∆2 := {(p1, p2) ∈ R2 | p1 ≤ p2−ε} for some small positive number ε, which leads to the modified boundary equation
p1 = p2 − ε, however, this does not affect the arguments presented in the proof of Lemma 6 (essentially because
ε is a constant and dε = 0, resulting in no new forms other than the ones considered in the proof), and therefore
we are not going to describe the regularization of these diagrams in detail.
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that paper involved an arbitrary background connection where we have our boundary-to-bulk
propagator, so we just need to replace that with K1(v, p) = zvδ

1(xv − p) and we find:

Γ 1
1!2

� p
µ,1

�

= −
ħh
2

f νξ
µ T U

ν [0]⊗ T V
ξ [0] . (155)

This deforms the classical coproduct (144) as follows:

T U⊗V
µ [1] = T U

µ [1]⊗ idV + idU ⊗ T V
µ [1]−

ħh
2

f νξ
µ T U

ν [0]⊗ T V
ξ [0] . (156)

The exact same computation with K0 instead of K1 shows that Γ 1
1!2

� p
µ,0

�

= 0, i.e., the classical
algebra of the 0th level operators remain entirely undeformed at this loop order.37

Thus we see that at 1-loop, the Lie algebra structure in ASc(Tbk) remains undeformed,
but there is a non-trivial deformation of the coalgebra structure. At this point, there is a
mathematical shortcut to proving that the algebra ASc(Tbk), including all loop corrections, is
the Yangian. The proof relies on a uniqueness theorem (Theorem 12.1.1 of [45]) concerning
the deformation of U(glK[z]). Being able to use the theorem requires satisfying some technical
conditions, we discuss this proof in Appendix B. This proof is independent of the rest of the
paper, where we compute two loop corrections to the commutator (140) which will directly
show that the algebra is the Yangian.

5.3.2 2-loops, O(ħh2)

The number of 2-loop diagrams is too large to list them all, and most of them are zero. Instead
of drawing all these diagrams let us mention how we can quickly identify a large portion of
the diagrams that end up being zero.

Consider the following transformations that can be performed on a propagator or a vertex
in any diagram:

! , ! ,

! , ! , ! .
(157)

All these transformations increase the order of ħh by one, however, all the diagrams constructed
using these modifications are zero due to Lemma 6. We will therefore ignore such diagrams.
Let us now identify potentially non-zero 2! m diagrams at 2-loops.

All 2-loop 2! 1 diagrams are created from lower order diagrams using modifications such
as (157). All of them vanish.

For 2 ! 2 diagrams, ignoring those that are results of modifications such as (157) or
that are product of lower order vanishing diagrams, we are left with the sum of the following

37Note that the 0th level operators form a closed algebra which is nothing but the Lie algebra glK . Reductive Lie
algebras belong to discrete isomorphism classes and therefore they are robust against continuous deformations. So
the algebra of Tµ[0] will in fact remain undeformed at all loop orders. We will not make more than a few remarks
about them in the future.
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diagrams:

Γ 2
2!2,1 = , Γ 2

2!2,2 = ,

Γ 2
2!2,3 = , Γ 2

2!2,4 = .

(158)

Let us first consider the first two diagrams Γ 2
2!2,1 and Γ 2

2!2,2. Collapsing any of the bulk-to-bulk
propagators will result in a configuration where either Lemma 6 or 7 is applicable. Therefore,
when we do integration by parts with respect to the differential in one of the two boundary-
to-bulk propagators we only get a boundary term. The boundary corresponds to the boundary
of ∆2 (defined in (149)), and when restricted to this boundary, the integrand vanishes due to
Lemma 7, in the same way as for the diagrams in (147).38

The diagrams Γ 2
2!2,3 and Γ 2

2!2,4 are symmetric under the exchange of the color labels
associated to the boundary-to-bulk propagators, for a proof see the discussion following (239).
So these diagrams don’t contribute to the anti-symmetric commutator we are computing.

Now we come to the most involved part of our computations, 2! 3 diagrams at 2-loops.
We have the sum of the following diagrams:

Γ 2
2!3,1 = , Γ 2

2!3,2 = , Γ 2
2!3,3 = ,

Γ 2
2!3,4 = , Γ 2

2!3,5 = , Γ 2
2!3,6 = .

(159)

All of these diagrams are in fact non-zero. We proceed with the evaluation of the diagram
Γ 2

2!3,1:

Γ 2
2!3,1

� p1
µ,1 ; p2

ν,1

�

=

p1
µ,m

p2
ν,n

v1 v2
v3

q1 q2 q3

(160)

The glK factor of the diagram is easily evaluated to be:

f ξo
µ f πρ

ξ
f σ
νπ %(to)%(tρ)%(tσ) . (161)

The numerical factor takes a bit more care. Each of the bulk points vi = (x i , yi , zi , z i) is
integrated over M = R2 × C and the points qi on the Wilson line take value in the simplex

38These diagrams are linearly divergent when the two points on the Wilson line are coincident and they require
similar UV regularization as their 1-loop counterparts.
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∆3 = {(q1, q2, q3) ∈ R3 |q1 < q2 < q3}. For the sake of integration we can partially compactify
the bulk to M = R× S3. So the domain of integration for this diagram is:

M3 ×∆3 . (162)

However, this domain needs regularization due to UV divergences coming from the points qi
all coming together. As in [19], we use a point splitting regulator, by restricting integration to
the domain:

e∆3 := {(q1, q2, q3) ∈∆3 |q1 < q3 − ε} , (163)

for some small positive number ε. We are not going to discuss the regulator here, as it would
be identical to the discussion in [19]. We shall now do integration by parts with respect to the
differential in the propagator connecting p1 and v1. Note that collapsing any of the bulk-to-
bulk propagators leads to a configuration where the vanishing Lemma 7 applies. Therefore,
contribution to the integral only comes from the boundary M3 × ∂ e∆3. The boundary of the
simplex has three components, respectively defined by the constraints q1 = q2, q2 = q3, and
q1 = q3 − ε. However, when q1 = q2 or q2 = q3, we can use the vanishing Lemma 6 and
the integral vanishes. Therefore the contribution to the diagram comes only from integration
over:

M3 × {(q1, q2, q3) ∈ e∆3 |q1 = q3 − ε} . (164)

Further simplification can be made using the fact that the propagator connecting p2 and v3 is
zδ1(x3 − p2). This restricts the integration over v3 to {p2} × S3. However, using translation
symmetry in the x-direction we can fix the position of q1 at (0, 0,0, 0) and allow the integration
of v3 over all of M . However, due to the presence of the delta function δ1(x3 − p2) in the
boundary-to-bulk propagator, x3 and p1 = p2 − δ are rigidly tied to each other. This way, we
end up with the following integration for the numerical factor:39

1
2

�

i
2πħh

�3
∫

0<q2<ε
v1,v2,v3

dq2d4v1d4v2d4v3θ (x1 − x−3 )z1z3P(v2, v1)

× P(v3, v2)P(q1, v1)P(q2, v2)P(q3, v3) ,

(165)

where q1 = (0,0, 0,0), q2 = (p2, 0, 0, 0), q3 = (ε, 0, 0, 0), and x−3 := x3 − δ, and since all the
forms that appear are even we have ignored the wedge product symbols to be economic.

Before evaluating the above integral, we note that the diagram Γ 2
2!3,4 evaluates to the

same color factor and almost same numerical factor, except for a different step function:

1
2

�

i
2πħh

�3
∫

0<q2<ε
v1,v2,v3

dq2d4v1d4v2d4v3θ (x3 − x−1 )z1z3P(v2, v1)

× P(v3, v2)P(q1, v1)P(q2, v2)P(q3, v3) .

(166)

Since we have to sum over all the diagrams, we use the fact that:

lim
δ!0

�

θ (x1 − x−3 ) + θ (x3 − x−1 )
�

= 1 , (167)

to write:

lim
p2!p1

�

Γ 2
2!3,1

� p1
µ,1 ; p2

ν,1

�

+ Γ 2
2!3,4

� p1
µ,1 ; p2

ν,1

�

�

= f ξo
µ f πρ

ξ
f σ
νπ %(to)%(tρ)%(tσ)

�

i
2πħh

�3 1
2

∫

0<q2<ε
v1,v2,v3

dq2d4v1d4v2d4v3

× z1z3P(v2, v1)P(v3, v2)P(q1, v1)P(q2, v2)P(q3, v3) .

(168)

39The factor of 1/2 comes from diagram automorphisms.
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Let us refer to the above integral by ħh2 I1, so that we can write the right hand side of the above
equation as:

ħh2 f ξo
µ f πρ

ξ
f σ
νπ %(to)%(tρ)%(tσ) I1 . (169)

Similar considerations for the rest of the diagrams in (159) lead to similar expressions:

lim
p2!p1

�

Γ 2
2!3,2

� p1
µ,1 ; p2

ν,1

�

+ Γ 2
2!3,5

� p1
µ,1 ; p2

ν,1

�

�

= ħh2 f ξo
µ f πρ

ξ
f σ
νπ %(tρ)%(to)%(tσ) I2 , (170a)

lim
p2!p1

�

Γ 2
2!3,2

� p1
µ,1 ; p2

ν,1

�

+ Γ 2
2!3,5

� p1
µ,1 ; p2

ν,1

�

�

= ħh2 f ξo
µ f πρ

ξ
f σ
νπ %(to)%(tσ)%(tρ) I3 , (170b)

for two integrals I2 and I3 that are only slightly different from I1.40 To get the 2-loop contri-
butions to the commutator

�

Tµ[1], Tν, [1]
�

we need only to anti-symmetrize the expressions
(169), (170). Putting them together with the classical result (140) we get the Lie bracket up
to 2-loops:

�

Tµ[1], Tν, [1]
�

= f ξ
µν Tξ[2] + 2ħh2 f ξo

[µ f πρ

ξ
f σ
ν]π

�

To[0]Tρ[0]Tσ[0] I1

+ Tρ[0]To[0]Tσ[0] I2 + To[0]Tσ[0]Tρ[0] I3

�

,
(171)

where we have replaced matrix products such as %(tρ)%(to)%(tσ) with Tρ[0]To[0]Tσ[0]
which is accurate up to the loop order shown. Thus we see that quantum corrections deform
the classical Lie algebra of glK[z].

5.4 Large N limit: The Yangian

The deformed Lie bracket (171) may not look quite like the standard relations of the Yangian
found in the literature, but we can choose a different basis to get to the standard relations,
which we shall do momentarily.41 However, for finite N , our algebra has more relations. Recall
that the generators Tµ[1] act on the space V where classically V is a representation space,
% : glK[z] ! End(V ), of the loop algebra glK[z] and the representation % was determined
by the number N . The representation % depends on N because % is the representation that
couples the glK connection A to the Wilson line generated by integrating out N × K fermions.
The representation is found by integrating out the fermions that define the line defect (23).42

The important point for us is that, for finite N , % is finite dimensional. This implies that
the generators Tµ[1] satisfy degree d polynomial equations where d = dim(V ). In the limit
N !∞ these relations disappear and we have our isomorphism with the Yangian Y (glK).43

40These integrals can be performed and their values are I2 = I3 =
1

72

�

2− 3
π2

�

, I1 =
1
36

�

1+ 3
π2

�

though we
postpone computing them until we no longer need to compute them.

41We can also appeal to the uniqueness theorem 12.1.1 of [45], in conjunction with the result of Appendix B, to
conclude that the deformed algebra must be the Yangian Yħh(glK).

42By integrating out the fermions from the action (23) we get the holonomy of the connection (A, A) ∈ glN ⊕glK
in the following representation [34]:

⊕

Y

Y T
N ⊗ Y K , (172)

where the sum is over all possible Young tableaux. Y T is the tableau we get by transposing the tableau Y (i.e.,
turning rows into columns). Y T

N is the representation of GLN denoted by the tableau Y T , and Y K is the representa-
tion of GLK dual to the representation (of GLK) denoted by Y . Had we started with a bosonic quantum mechanics
instead, integrating out the bosons would result in a holonomy in the following representation [34]:

⊕

Y

YN ⊗ Y K . (173)

An important difference between (172) and (173) is that while the former is finite dimensional for finite N and K ,
the latter is always infinite dimensional.

43In the case of bosonic quantum mechanics the representation % is actually infinite dimensional, however, for
finite N our Witten diagram computations can not be trusted, as the decoupling between closed string modes and
defect (4d Chern-Simons) modes that we have assumed relies on the large N limit [35].
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The Yangian in a more standard basis

To get to a standard defining bracket for the Yangian, we change basis as follows. There is an
ambiguity in Tξ[2]. In (140) it was equal to %ξ,2 at the classical level, but it can be shifted at
2-loops (i.e., by a term proportional to ħh2) by the image ϑ(tξ) for an arbitrary glK -equivariant
map ϑ : glK ! End(V ). This shift simply corresponds to a different choice for the counterterm
that couples ∂ 2

z Aξ to the Wilson line. Using this freedom we want to replace products such as
%(to)%(tρ)%(tσ) with the totally symmetric product

�

%(to),%(tρ),%(tσ)
	

(defined in (94)).
To this end, Consider the difference:

∆µν := 2ħh2 f ξo
[µ f πρ

ξ
f σ
ν]π

�

%(to)%(tρ)%(tσ)−
�

%(to),%(tρ),%(tσ)
	�

. (174)

The square brackets around µ and ν in the above equation implies anti-symmetrization with
respect to µ and ν. The difference ∆µν can be viewed as the image of the following glK -
equivariant map:

∆ : ∧2glK ! End(V ) , ∆ : tµ ∧ tν 7!∆µν . (175)

We now propose the following lemma:

Lemma 2. The map ∆ factors through glK , i.e., ∆ : ∧2glK ! glK ! End(V ).

The proof of this lemma involves some algebraic technicalities which we relegate to the
Appendix §D. The utility of this lemma is that, it establishes the difference (174) as the image
of an element of glK which, according to our previous argument, can be absorbed into a re-
definition of %ξ,2 (equivalently Tξ[2]). Therefore, with a new Tnew

ξ
[2] we can rewrite (171)

as:
�

Tµ[1], Tν, [1]
�

= f ξ
µν Tnew

ξ [2] +ħh2(I1 + I2 + I3)Qµν , (176)

where we have also defined:

Qµν := 2 f ξo
[µ f πρ

ξ
f σ
ν]π

�

To[0], Tρ[0], Tσ[0]
	

. (177)

The reason why we have postponed presenting the evaluations of the individual integrals I1,
I2, and I3 is that we don’t need their individual values, only the sum, and precisely this sum
was evaluated in eq. (E.23) of [19] with the result:

I1 + I2 + I3 =
1
12

. (178)

We can therefore write (ignoring the “new" label on Tξ[2]):

�

Tµ[1], Tν[1]
�

= f ξ
µν Tξ[2] +

ħh2

12
Qµν . (179)

This is the relation for the Yangian that was presented in §8.6 of [19] and how to relate this
to other standard relations of the Yangian was also discussed there. This is also the exact
relation we found in the boundary theory (c.f. (97)). Note furthermore that, if we had used
the relation between our algebra and anomaly (135) to derive the algebra Lie bracket, we
would have arrived at precisely the same conclusion, as the second term in (179) is indeed the
anomaly of a Wilson line (c.f. eq. (8.35) of [32]).

Thus we see that the algebra ASc(Tbk), defined in (41), at 2-loops, is the Yangian Yħh(glK):

ASc(Tbk)/ħh3
N!∞∼= Yħh(glK)/ħh3 . (180)

The two loop result in the BF theory was exact. The above two loop result is exact as well.
Though we do not prove this by computing Witten diagrams, we can argue using the form
of the algebra in terms of anomaly (135). In [19] it was shown that there are no anomalies
beyond two loops. This concludes our second proof of Proposition 2.44

44The first one, which is significantly more abstract, being in Appendix B.
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6 Physical String Theory Construction of The Duality

The topological theories we have considered so far can be constructed from a certain brane
setup in type IIB string theory and then applying a twist and an Ω-deformation. This brane
construction will show that the algebras we have constructed are in fact certain supersymmet-
ric subsectors of the well studied N = 4 SYM theory with defect and its holographic dual. We
note that the idea of embedding Chern-Simons type theories inside 1 and 2 higher dimensional
supersymmetric gauge theories as (quasi)-topological subsectors can be traced back to [46].

A Caveat. The most transparent way of probing (quasi) topological subsectors of the
relevant physical (defect) AdS/CFT correspondence would be to apply twist and deformation
to 4d N = 4 SYM with a domain wall on one hand and to AdS5 × S5 supergravity with D5-
brane probes on the other hand. Localization in the AdS background is yet to be developed
and this is not what we do in this section. We apply twist and deform the gauge theories that
appear in a certain D3-D5 brane configuration in flat background and argue that we end up
with the topological brane setup of section 3.1. Thus in making the claim that our topological
holography embeds into physical holography we are relying on the assumption that the process
of twist and deformation commutes with taking the decoupling limit.

We describe our construction below.

6.1 Brane Configuration

Our starting brane configuration involves a stack of N D3 branes and K D5 branes in type IIB
string theory on a 10d target space of the form R8 × C where C is a complex curve which we
take to be just the complex plane C. The D5 branes wrap R4 × C and the D3 branes wrap an
R4 which has a 3d intersection with the D5 branes. Let us express the brane configuraiton by
the following table:

0 1 2 3 4 5 6 7 8 9
R4 C R4

D5 × × × × × ×
D3 × × × ×

(181)

The world-volume theory on the D5 branes is the 6d N = (1,1) SYM theory coupled to a 3d
defect preserving half of the supersymmetry. Similarly, the world-volume theory on the D3
branes is the 4d SYM theory coupled to a 3d defect preserving half of the supersymmetry. To
this setup we apply a particular twist, i.e., we choose a nilpotent supercharge and consider its
cohomology.

6.2 Twisting Supercharge

6.2.1 From the 6d Perspective

We use Γi with i ∈ {0, · · · , 9} for 10d Euclidean gamma matrices. We also use the notation:

Γi1···in := Γi1 · · · Γin . (182)

Type IIB has 32 supercharges, arranged into two Weyl spinors of the same 10 dimensional
chirality – let us denote them as Q l and Qr . A general linear combination of them is written as
εLQ l +εRQr where εL and εR are chiral spinors parameterizing the supercharge. The chirality
constraints on them are:

iΓ0···9εL = εL , iΓ0···9εR = εR . (183)

We shall discuss constraints on the supercharge by describing them as constraints on the pa-
rameterizing spinors.
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The supercharges preserved by the D5 branes are constrained by:

εR = iΓ012345εL . (184)

This reduces the number of supercharges to 16. The D3 branes imposes the further constraint:

εR = iΓ0237εL . (185)

This reduces the number of supercharges by half once more. Therefore the defect preserves
just 8 supercharges. Since εR is completely determined given εL , in what follows we refer to
our choice of supercharge simply by referring to εL .

We want to perform a twist that makes the D5 world-volume theory topological along R4

and holomorphic along C . This twist was described in [37]. Let us give names to the two
factors of R4 in the 10d space-time:

M := R4
0123 , M ′ := R4

6789 . (186)

The spinors in the 6d theory transform as representations of Spin(6) under space-time rota-
tions. N = (1,1) algebra has two left handed spinors and two right handed spinors trans-
forming as 4l and 4r respectively. There are two of each chirality because the R-symmetry is
Sp(1) × Sp(1) = Spin(4)M ′ such that the two left handed spinors transform as a doublet of
one Sp(1) and the two right handed spinors transform as a doublet of the other Sp(1). The
subgroup of Spin(6) preserving the product structure R4 × C is Spin(4)M ×U(1). Under this
subgroup 4l and 4r transform as (2,1)−1⊕ (1,2)+1 and (2,1)+1⊕ (1,2)−1 respectively, where
the subscripts denote the U(1) charges. Rotations along M ′ act as R-symmetry on the spinors
– the spinors transform as representations of Spin(4)M ′ such that 4+ transforms as (2,1) and
4− transforms as (1,2). In total, under the symmetry group Spin(4)M ×U(1)× Spin(4)M ′ the
16 supercharges of the 6d theory transform as:

((2,1)−1 ⊕ (1,2)+1)⊗ (2,1)⊕ ((2,1)+1 ⊕ (1,2)−1)⊗ (1,2) . (187)

The twist we seek is performed by redefining the the space-time isometry:

Spin(4)M   Spin(4)new
M ⊆ Spin(4)M × Spin(4)M ′ , (188)

where the subgroup Spin(4)new
M of Spin(4)M × Spin(4)M ′ consists of elements (x ,θ (x)) which

is defined by the isomorphism θ : Spin(4)M
∼
−! Spin(4)M ′ . More, explicitly, the isomorphism

acts as:
θ (Γµν) = Γµ+6,ν+6 , µ,ν ∈ {0,1, 2,3} . (189)

The generators of the new Spin(4)new
M are then:

Γµν + Γµ+6,ν+6 . (190)

After this redefinition, the symmetry Spin(4)M ×U(1)×Spin(4)M ′ of the 6d theory reduces to
Spin(4)new

M ×U(1) and under this group the representation (187) of the supercharges becomes:

2(1,1)−1 ⊕ (3,1)−1 ⊕ (1,3)−1 ⊕ 2(2,2)+1 . (191)

We thus have two supercharges that are scalars along M , both of them have charge −1 under
the U(1) rotation along C . We take the generator of this rotation to be −iΓ45, then if ε is one
of the scalar (on M) supercharges that means:

iΓ45ε= ε . (192)
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We identify the supercharge ε by imposing invariance under the new rotation generators on
M , namely (190):

(Γµν + Γµ+6,ν+6)ε= 0 . (193)

The constraints (184) and (185) put by the D-branes and the U(1)-charge on C (192) together
are equivalent to the following four independent constraints:

iΓµ,µ+6ε= ε , µ{0,1, 2,3} . (194)

Together with the chirality constraint (183) in 10d we therefore have 5 equations, each re-
ducing the number degrees of freedom by half. Since a Dirac spinor in 10d has 32 degrees of
freedom, we are left with 32×2−5 = 1 degree of freedom, i.e., we have a unique supercharge,45

which we call Q. It was shown in [37] that the supercharge Q is nilpotent:

Q2 = 0 , (195)

and the 6d theory twisted by this Q is topological along M – which is simply a consequence
of (193) – and it is holomorphic along C . The latter claim follows from the fact that there is
another supercharge in the 2d space of scalar (on M) supercharges in the 6d theory, let’s call
it Q′, which has the following commutator with Q:

{Q,Q′}= ∂z , (196)

where z = 1
2(x

4 − i x5) is the holomorphic coordinate on C . This shows that z-dependence is
trivial (Q-exact) in the Q-cohomology.

6.2.2 From the 4d Perspective

What is new in our setup compared to the setup considered in [37] is the stack of D3 branes.
We can figure out what happens to the world-volume theory of the D3 branes – we get the
Kapustin-Witten (KW) twist [47], as we now show. The equations (194) can be used to to get
the following six (three of which are independent) equations:

(Γ02 + Γ68)ε= 0 , (Γ03 + Γ69)ε= 0 , (Γ23 + Γ89)ε= 0 ,

(Γ07 + Γ16)ε= 0 , (Γ27 + Γ18)ε= 0 , (Γ37 + Γ19)ε= 0 .
(197)

These are in fact the equations that defines a scalar supercharge in the KW twist of N = 4
theory onR4

0237 for a particular homomorphism from space-time ismoetry to the R-symmetry.46

Space-time isometry of the theory on R4
0237 acts on the spinors as Spin(4)iso, generated by the

six generators:
Γµν , µ,ν ∈ {0, 2,3, 7} and µ 6= ν . (198)

Rotations along the transverse directions act as R-symmetry, which is Spin(6), though the
subgroup of the R-symmetry preserving the product structure C × R4

1689 is U(1) × Spin(4)R.
The KW twist is constructed by redefining space-time isometry to be a Spin(4) subgroup of
Spin(4)iso × Spin(4)R consisting of elements (x ,ϑ(x)) where ϑ : Spin(4)iso

∼
−! Spin(4)R is an

isomorphism. The particular isomorphism that leads to the equations (197) is:

Γ02 7! Γ68 , Γ03 7! Γ69 , Γ23 7! Γ89 ,

Γ07 7! Γ16 , Γ27 7! Γ18 , Γ37 7! Γ19 .
(199)

45Note that without using the constraint put by the D3 branes we would get two supercharges that are scalars
on M , i.e., there are two superhcarges in the 6d theory (by itself) that are scalars on M .

46Note that we are using subscripts simply to refer to particular directions.
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Remark 7 (A member of a CP1 family of twists). In [47] it was shown that there is a family of
KW twists parameterized by CP1. The unique twist (by the supercharge Q) we have found is
a specific member of this family. Let us identify which member that is.

The CP1 family comes from the fact that there is a 2d space of scalar (on M) supercharges
(in (191)) in the twisted theory.47 Also note from the original representation of the spinors
(187) that the two scalar supercharges come from spinors transforming as (1,2) and (2,1)
under the original isometry Spin(4)old.48 Let us choose two Spin(4)new scalar spinors with
opposite Spin(4)old chiralities and call them εl and εr . The Spin(4)old chirality operator is
Γ old := Γ0237. Let us choose εl and εr in such a way that they are related by the following
equation:

εr = Nεl where N =
1
4
(Γ06 + Γ28 + Γ39 + Γ17) . (200)

This relation is consistent with the spinors being Spin(4)new invariant because N anti-commutes
with Spin(4)new (thus invariant spinors are still invariant after being operated with N), as well
as with Γ old (changing Spin(4)old chirality). An arbitrary scalar supercharge in the twisted the-
ory is a complex linear combination of εl and εr , such as αεl +βεr , however, since the overall
normalization of the spinor is irrelevant, the true parameter identifying a spinor is the ratio
t := β/α ∈ CP1. Furthermore, due to the equations (197), N2 acts as −1 on any Spin(4)new

scalar, leading to:
εl = −Nεr . (201)

To see the value of the twisting parameter t for the supercharge identified by the equations
(194) (in addition to the 10d chirality (183)), we first pick a linear combination ε := εl + tεr
with t ∈ CP1. Then using (201) and (194) we get:

−iε= Nε= εr − tεl , (202)

where the first equality follows from (194) and the second from (201). Equating the two sides
we find the twisting parameter:

t = i . (203)

4

6.2.3 From the 3d Perspective

Finally, at the 3 dimensional D3-D5 intersection lives a 3d N = 4 theory consisting of bifunda-
mental hypermultiplets coupled to background gauge fields which are restrictions of the gauge
fields from the D3 and the D5 branes [48]. Considering Q-cohomology for the 3d theory re-
duces it to a topological theory as well. To identify the topological 3d theory we note that for
the twisting parameter t = i, the 4d theory is an analogue of a 2d B-model49 [47] and this can
be coupled to a 3d analogue of the 2d B-model50 – a B-type topological twist of 3d N = 4 is
called a Rozansky-Witten (RW) twist [49]. The flavor symmetry of the theory is U(N)×U(K)
which acts on the hypers and is gauged by the background connections.

We can reach the same conclusion by analyzing the constraints on the twisting super-
charge viewed from the 3d point of view. The bosonic symmetry of the 3d theory includes

47Though we began the discussion with a view to identifying topological-holomorphic twist of 6d N = (1,1)
theory, what we found in the process in particular are supercharges that are scalars on M . If we forget that we had
a 6d theory on M ×C and just consider a theory on M with rotations on C being part of the R-symmetry then, first
of all, we find a N = 4 SYM theory on M and the twist we described is precisely the KW twist.

48We are writing Spin(4)old instead of Spin(4)M since the support of the 4d theory is not M ≡ R4
0123 but R4

0237.
49In particular, the 4d Theory on R2 × T 2 can be compactified on the two-torus T 2 to get a B-model on R2.
50We want to be able to take the 3d theory on R2 × S1 and compactify it on S1 to get a B-model on R2. If we

have a 4d theory on R2 × T 2 coupled to a 3d theory on R2 × S1, compactifying on T 2 should not make the two
systems incompatible.
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SU(2)iso×SU(2)H ×SU(2)C where SU(2)iso is the isometry of the space-time R3
023, SU(2)C are

rotations in R3
689, and SU(2)H are rotations in R3

145. The hypers in the 3d theory come from
strings with one end attached to the D5 branes and another end attached to the D3 branes.
Rotations in R3

145 – the R-symmetry SU(2)H – therefore act on the hypers. This means that
SU(2)H acts on the Higgs branch of the 3d theory. This leaves the other R-symmetry group
SU(2)C which would act on the coulomb branch of the theory if the theory had some dynam-
ical 3d vector multiplets. We now note that the topological twist, from the 3d perspective,
involves twisting the isometry SU(2)iso with the R-symmetry group SU(2)C , as evidenced ex-
plicitly by the three equations in the first line of (197). This particular topological twist (as
opposed to the topological twist using the other R-symmetry SU(2)H) of 3d N = 4 is indeed
the RW twist [50].

To summerize, taking cohomology with respect to the supercharge Q leaves us with the
KW twist (twisting parameter t = i) of N = 4 SYM theory on R4 with gauge group U(N)
and a topological-holomorphic twist of N = (1, 1) theory on R4 × C with gauge group U(K),
and these two theories are coupled via a 3d RW theory of bifundamental hypers with flavor
symmetry U(N)×U(K) gauged by background connections.51 Note that we have not described
the effect of the twist on the closed string theory. This is because we are assuming a decoupling
between the closed string modes and the D5-defect modes in the large N limit (referred to as
rigid holography in [35]) and therefore, the operator algebra that we will concern ourselves
with will be insensitive to the closed string modes.52 We will ignore the closed string modes
moving forward as well.

6.3 Omega Deformation

We start by noting that the dimensional reduction of the topological-holomorphic 6d theory
from R4 × C to R4 reduces it to the KW twist of N = 4 SYM on the R4.53 This observation
allows us to readily tailor the results obtained in [37] about Ω-deformation of the 6d theory
to the case of Ω-deformation of 4d KW theory.

The fundamental bosonic field in the 10d N = 1 SYM theory is the connection AI where
I ∈ {0, · · · , 9}. When dimensionally reduced to 6d, this becomes a 6d connection AM with
M ∈ {0, · · · , 5} and four scalar fieldsφ0,φ1,φ2, andφ3 which are just the remaining four com-
ponents of the 10d connection. The Spin(4)M space-time isometry acts on the first four com-
ponents of the connection, namely A0, A1, A2, and A3 via the vector representation. The four
scalars – φ0,φ1,φ2, and φ3 – transform under the vector representation of the R-symmetry
Spin(4)M ′ . Once twisted according to (188), only the diagonal subgroup
Spin(4)new

M of Spin(4)M × Spin(4)M ′ acts on the fields, under which the first four components
of the connection and the four scalars transform in the same way – apart from the inhomo-
geneous transformation of the connection – and therefore we can package them together into
one complex valued gauge field:

Aµ := Aµ + iφµ , µ ∈ {0,1, 2,3} . (204)

We also write the remaining components of the connection in complex coordinates on C:

Az := A4 + iA5 and Az := A4 − iA5 . (205)

It was shown in [37] that this topological-holomorphic 6d theory can be viewed as a 2d
gauged B-model on R2

23 where the fields are valued in maps Map(R2
01 × C,glK). This is a

51Though it is customary to decouple the central U(1) subgroup from the gauge groups as it doesn’t interact with
the non-abelian part, our computations look somewhat simpler if we keep the U(1).

52This is the same argument we used in §3.2.
53Both the 6d N = (1,1) SYM and the 4d N = 4 SYM are dimensional reductions of the 10d N = 1 SYM and

dimensional reduction commutes with the twisting procedure.
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vector space which plays the role of the Lie algebra of the 2d gauge theory. From the 2d
point of view A2 and A3 are part of a connection on R2

23 and there are four chiral multiplets
with the bottom components A0,A1, Az , and Az . The 2d theory consists of a superpotential
which is a holomorphic function of these chiral multiplets – the superpotential can be written
conveniently in terms of a one form eA :=A0dx0+A1dx1+Azdz+Azdz on R2

01×C consisting
of these chiral fields:54

W (A0,A1, Az , Az) =

∫

R2
01×C

dz ∧ tr
�

eA∧ d eA+ 2
3
eA∧ eA∧ eA

�

. (206)

The superpotential is the action functional of a 4d CS theory on R2
01×C for the connection eA.

One of the results of [37] is the following: Ω-deformation55 applied to this topological-
holomorphic 6d theory with respect to rotation on R2

23 reduces the theory to a 4d CS theory
on R2

01 × C with complexified gauge group GLK .
The twisted 4d theory (the D3 world-volume theory) wraps the plane R2

23 as well and
therefore is affected by the Ω-deformation. By noting that the 4d theory is a dimensional
redcution of the 6d theory from R4 × C to R4 and assuming that Ω-deformation commutes
with dimensional reduction,56 we can deduce what the Ω-deformed version of the twisted 4d
theory is. This will be a 2d gauge theory with complexified gauge group GLN and the action
will be the dimensional reduction of the 4d CS action (206) from R2×C to R2 – this is the 2d
BF theory where Az plays the role of the B field:

∫

R2×C
dz ∧CS(AR2×C)

Reduce on C
−−−−−−!

∫

R2

trAz

�

dAR2 +
1
2

AR2 ∧ AR2

�

=

∫

R2

trAz F(AR2) ,
(207)

where, as before, z is the anti-holomorphic coordinate on C .
Finally, it was shown in [52] that the RW twist of a 3d N = 4 theory on R2

Ω ×R with only
hypers reduces, upon Ω-deformation with respect to rotation in the plane R2

Ω, to a free quan-
tum mechanics on R. A slight modification of this result, involving background connections
gauging the flavor symmetry of the hypers leads to the result that the omega deformed theory
is a gauged quantum mechanics, the kind of theory we have considered on the defect in the
2d BF theory.57

6.4 Takeaway from the Brane Construction

Via supersymmetric twists and Ω-deformation, we have made contact with precisely the setup
we have considered in this paper. We have a 4d CS theory with gauge group GLK and a 2d BF
theory with gauge group GLN and they intersect along a topological line supporting a gauged
quantum mechanics with GLK×GLN symmetry. We thus claim that the topological holographic
duality that we have established in this paper is indeed a topological subsector of the standard
holographic duality involving defect N = 4 SYM.

54Up to some overall numerical factors.
55Introduced for the first time in [51] in the context of 4d N = 2 gauge theories on R2 × R2. The relevant

space-time rotation in that case was a U(1) × U(1) action rotating the two planes – which ultimately localized
the 4d theory to a 0d matrix model. Analogously, Ω-deformation with respect to rotation on a plane localizes our
6d/4d/3d theory to a 4d/2d/1d theory.

56Alternatively, one can redo the localization computations of [37] for the 4d case, confirming thatΩ-deformation
does indeed commute with dimensional reduction.

57The bosonic version, which leads to the same Yangian with minor modifications to the computations as re-
marked in 3, 4, and 5.
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7 Concluding Remarks and Future Works

In the previous sections we have been able to exactly (at all loops) match a subsector of the op-
erator algebra in the 2d BF theory with a line defect, with a subsector of the scattering algebra
in a 3d closed string theory with a surface defect. The subsectors of operators we focused on
are restricted to the defects on both sides of the duality. This matching provides a non-trivial
check of the proposed holographic duality. Furthermore, we have shown that this holographic
duality between topological/holomorphic theories is in fact a supersymmetric subsector of the
more familiar AdS5/CFT4 duality. From the considerations of this paper several immediate
questions and new directions arise that we have not yet addressed. Let us comment on a few
such issues that we think are interesting topics to pursue for future research.
Central extensions on two sides of the duality: To ease computation we restricted our
attention to the quotients of the full operator algebra and scattering algebra by their centers.
The inclusion of the central operators will change the associative structure of the algebras. A
stronger statement of duality will be to compare the centrally extended Yangians coming from
the boundary and the bulk theory.
Brane probes: Using branes in the bulk to probe local operators in the boundary theory has
been a useful tool [53, 54]. In our setup, a brane must be Lagrangian in the A-twisted R4

directions. Looking at the brane setup (8) (which we reproduce in (209) for convenience)
we see that the real directions of the D2 and D4 branes are Lagrangian with respect to the
following symplectic form:

dv ∧ dx + dw∧ dy . (208)

This leaves the possibility of two more different embeddings for D2-branes:

Rv Rw Rx Ry Cz

D2 0 × × 0 0
D4 0 0 × × ×
D2′ × 0 0 × z
D2′′ × × 0 0 z

(209)

The D2′-branes are Wilson lines in the CS theory on the D4-branes perpendicular to the original
Wilson line at thte D2-D4 intersection. Such crossing Wilson lines were studied in [19, 44]
with the result that this corssing (of two Wilson lines carrying representations U and V of glK
respectively) inserts an operator TV U(z) : U ⊗ V ! V ⊗ U in the CS theory which solves the
Yang-Baxter equation, which is described more easily with diagrams:

V V V
U

U

U

W

W

W

TUV (z10) TW V (z20)

TW U(z21)

z0

z1 z2

=

V V V
W

W

W

U

U

U

TW V (z20) TUV (z10)

TW U(z21)

z0

z2z1

, (210)

where z1, z2, and z3 are the spectral parameters (location in the complex plane) of the lines
carrying representations V , U , and W respectively, and z21 := z2 − z1 and so on. Solutions
of the above equation are closely tied to Quantum Groups. The operators TUV (z), which are
commonly referred to as R-matrices, can be explicitly constructed using Feynman diagrams
[19]. When the complex directions of the theory are parameterized by C (as in our case),
these R-matrices are rational functions of z. If we choose U and W to be the fundamental
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representation of glK , then by providing an incoming and an outgoing fundamental state, we
can view 〈 j|TKV (z)|i〉 as a map Ti

j(z) : V ! V which has an expansion is z−1:

Ti
j(z) = idV δ

i
j −ħh

∑

n≥0

�

−z−1
�n+1

T i
j [n] , (211)

where the T i
j [n] are precisely the operators that generate the scattering algebra ASc(Tbk) (see

(39) and (41)). This suggests that in the dual picture we should be able to interpret the D2′

branes as a generating function for the operators Oi
j[n].

The interpretations of the D2′′ branes are missing on both sides of the duality.
Finite N duality: We considered the large N limit to decouple the closed string modes from
the defect (CS) mode in the bulk side of the duality and to eliminate any relations among our
operators that would arise from having finite dimensional matrices (see §4.3 and §5.4). It
would of course be a stronger check if we could match the algebras at finite N , when they can
be quotients of the Yangian by some extra relations.
Duality for other quantum groups: In [19, 44] it was shown that by replacing our complex
directionCwith the punctured planeC× or an elliptic curve, we can get, instead of the Yangian,
the trigonometric or elliptic solutions to the Yang-Baxter equation (210). It will be interesting
to have an analogous analysis of holographic duality for the corresponding quantum groups
as well.

Acknowledgements

We are grateful to Kevin Costello, Davide Gaiotto, Jaume Gomis, Shota Komatsu, Natalie Pa-
quette, and Masahito Yamazaki for valuable discussions and feedbacks on the manuscript. We
specially thank Kevin Costello, whose works and ideas have directly motivated and guided this
project.

Funding information All authors are supported by Perimeter Institute for Theoretical Physics.
Research at Perimeter Institute is supported by the Government of Canada through Industry
Canada and by the Province of Ontario through the Ministry of Research and Innovation.

A Integrating the BF interaction vertex

In this appendix we evaluate the integrals in (80).

φ2

φ

φ1 ,
φ2

φφ1

. (212)

We split up each integral into two, based on whether the bulk point is above or below the
line operator. We use angular coordinates defined as in the above diagrams. One subtlety is
that, from the definition of the propagators in the Cartesian coordinate we can see that the
integrand (including the measure) is even under reflection with respect to the line. So, we just
have to make sure that when we divide up the integral in the aforementioned way, even when
written in angular coordinates, the integrand does not change sign under reflection. With this
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in mind, the integrals we have to evaluate are:

Vαβγ·|| (x1, x2) =
ħh2

(2π)3
f αβγ

∫ 2π

0

dφ1

∫ π

φ1

dφ2

�

∫ φ1+π

π

dφ +

∫ φ1−π

π

dφ

�

,

Vαβγ|·| (x1, x2) =
ħh2

(2π)3
f αβγ

∫ 2π

0

dφ1

∫ π

φ1

dφ2

�

∫ φ2+π

φ1+π
dφ +

∫ φ2−π

φ1−π
dφ

�

,

Vαβγ||· (x1, x2) =
ħh2

(2π)3
f αβγ

∫ 2π

0

dφ1

∫ π

φ1

dφ2

�

∫ 2π

φ2+π
dφ +

∫ 0

φ2−π
dφ

�

.

All three terms are equal to ħh
2

24 f αβγ.

B Yangian from 1-loop Computations

At the end of §5.3.1, by computing 1-loop diagrams, we concluded that quantum corrections
deform the coalgebra structure of the classical Hopf algebra U(glK[z]). Since ASc(Tbk) is an
algebra to begin with, we conclude that at one loop, we have a deformation of the classical
algebra as a Hopf algebra. We are using the term “deformation" (alternatively, “quantization")
in the sense of Definition 6.1.1 of [45], which essentially means that:

• ASc(Tbk) becomes the classical algebra U(glK[z]) in the classical limit ħh! 0.

• ASc(Tbk) is isomorphic to U(glK[z])JħhK as a CJħhK-module.

• ASc(Tbk) is a topological Hopf algebra (with respect to ħh-adic topology).

The reason that we adhere to these conditions is that, there is a well known uniqueness the-
orem (Theorem 12.1.1 of [45]) which says that the Yangian is the unique deformation of
U(glK[z]) in the above sense. Therefore, if we can show that our algebra ASc(Tbk) satisfies all
these conditions and it is a nontrivial deformation of U(glK) then we can conclude that it is the
Yangian. From 1-loop computations we already know that it is a non-trivial deformation. That
the first condition in the list above is satisfied is the content of Lemma 1. The second condition
is satisfied because ħh acts on the generators of our algebra by simply multiplying the external
propagators by ħh in the relevant Witten diagrams, this action does not distinguish between
classical diagrams and higher loop diagrams. Satisfying the last condition is less trivial. While
it seems known to people working in the field, we were unable to find a reference to cite,
therefore, for the sake of completion, we provide a proof in this appendix, that the algebra
ASc(Tbk) is indeed an (ħh-adic) topological Hopf algebra.

We shall prove this by reconstructing the algebra ASc(Tbk) from its representations. As
mentioned in §3.4, representations of this algebra are carried by Wilson lines, which form an
abelian monoidal category. A morphism between two representations V and U in this category
is constructed by computing the expectation value of two Wilson lines in representations U
and V∨ and providing a state at one end of each of the lines. For example, if % and %′ are
two homomorphisms from glK to End(U) and End(V∨) respectively, then for two lines L and
L′ in the topological plane of the CS theory and any ψ⊗ χ∨ ∈ U ⊗ V∨, the expectation value



W%(L)W%′(L′)
�

is valued in End(U) ⊗ End(V∨) and plugging in states we find a morphism



W%(L)W%′(L′)
�

(ψ⊗χ∨) : V ! U .
Classically, these same Wilson lines carry representations of the classical algebra U(glK[z]).

When viewed as representations of the deformed (alternatively, quantized) algebra ASc(Tbk),
we shall call the category of Wilson lines the quantized category and viewed as representations
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of U(glK[z]) we shall refer to the category as the classical category. Given any two Wilson lines
U and V , any non-trivial morphism between them in the quantized category is a quantization
of a non-trivial morphism in the classical category. As we mentioned, a morphism between two
Wilson lines is the expectation value of the lines provided with states at one end. A classical
morphism is computed with classical diagrams and its quantization amounts to adding loop
diagrams. A zero morphism is constructed by providing zero states, this is independent of
quantization, i.e., a quantized morphism is zero, if the provided states are zero, but then
so is the original classical morphism. There is in fact a one-to-one correspondence between
morphisms between two lines in the classical category and the morphisms between the same
lines in the quantized category.

For the sake of proof, let us abstract the information we have. We start with aC-linear rigid
abelian monoidal category C = RepC(H)which is the representation category of a Hopf algebra
H. We then find aCJħhK-linear abelian monoidal category Cħh, whose objects are representations
of some, yet unknown, Hopf algebra Hħh, with the following properties:

• ob(Cħh) = ob(C) ,

• HomCħh(U , V )∼= HomC(U , V )JħhK as CJħhK-modules .

Given this information we shall now prove that Hħh is unique and that it is topological with
respect to ħh-adic topology. Then specializing to the case H = U(glK[z]) completes the proof of
ASc(Tbk) being topological.

B.1 Tannaka formalism

The aim of this formalism is to realize certain abelian rigid monoidal categories as the repre-
sentation (or corepresentation) categories of Hopf algebras (possibly with extra structures).
To avoid running into some subtlety in the beginning (we shall explain the subtlety later in
this section), we first consider the reconstruction from the category of corepresentations.

Reconstruction from corepresentation. Let k be a field, C an abelian (resp. abelian
monoidal and End(1) = k) category such that morphisms are k-bilinear, and let R be a com-
mutative algebra over k – if there is an exact faithful (resp. monoidal) functor ω from C to
Mod f (R)58 such that the image of ω is inside the full subcategory Proj f (R)

59, then we shall
say that C has a fiber functor ω to Mod f (R).

Theorem 2 (Tannaka Reconstruction for Coalgebra and Bialgebra). With the notation above,
if moreover R is a local ring or a PID60, then there exists a unique flat R-coalgebra (resp. R-
bialgebra) A, up to unique isomorphism, such that A represents the endomorphism of ω in the
sense that ∀M ∈ IndProj f (R)

61

HomR(A, M)∼= Nat(ω,ω⊗M) .

Moreover, there is a functor φ : C! CorepR(A) which makes the following diagram commutative

C CorepR(A)

Mod f (R)

ω

φ

f or get

58finitely generated modules of R
59finitely generated projective modules of R
60PID=Principal Ideal Domain
61IndProj f (R) means category of inductive limit of finite projective R-modules, which is equivalent to category

of flat R-modules.
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and φ is an equivalence if R= k.

Our strategy in proving this theorem basically follows [55]. First of all, we need the fol-
lowing

Lemma 3. C is both Noetherian and Artinian.

Proof. Take X ∈ ob(C), and an ascending chain X i of subobjects of X , apply the functor
ω to this chain, so that ω(X i) is an ascending chain of finitely generated projective sub-
modules of finitely generated projective module ω(X ), thus there is an index j such that
rank(ω(X j)) = rank(ω(X )). Now the quotient of ω(X ) by ω(X j) is ω(X/X j), which is again
finitely generated projective, so it has zero rank, hence trivial. Faithfulness of ω implies that
X/X j is zero, i.e. X = X j , so C is Noetherian. It follows similarly that C is Artinian as well.

Next, we define a functor

⊗ : Proj f (R)× C! C

by sending (Rn, X ) to X n, recall that every finitely generated projective module over a local
ring or a PID is free, thus isomorphic to Rn for some n. Define Hom(M , X ) to be M∨ ⊗ X . For
V ⊂ M and Y ⊂ X , we define the transporter of V to Y to be

(Y : V ) := Ker(Hom(M , X )! Hom(V, X/Y )) .

We now have the following:

Lemma 4. Take the full abelian subcategory CX of C generated by subquotients of X n, consider
the largest subobject PX of Hom(ω(X ), X ) whose image in Hom(ω(X )n, X n) under diagonal em-
bedding is contained in (Y :ω(Y )) for all subobjects Y of X n and all n. Then the Theorem (2) is
true for CX with coalgebra defined by AX :=ω(PX )∨.

Proof. PX exists because C is Artinian. Notice that ω takes Hom(M , X ) to HomR(M , X ) and
(Y : V ) to (ω(Y ) : V ), so it takes PX , which is defined by

⋂
�

Hom(ω(X ), X )∩ (Y :ω(Y ))
�

to
⋂

(EndR(ω(X ))∩ (ω(Y ) :ω(Y ))) .

Henceω(PX ) is the largest subring of EndR(ω(X )) stabilizingω(Y ) for all Y ⊂ X n and all n. It’s
a finitely generated projective R module by construction, and so is AX . Note that only finitely
many intersection occurs because Hom(ω(X ), X ) is Artinian.

Next, take any flat R module M ,62 since CX is generated by subquotients of X , an element
λ ∈ Nat(ω,ω ⊗ M) is completely determined by it is value on X , so λ ∈ EndR(ω(X )) ⊗ M .
Since −⊗R M is an exact functor, we have:

⋂

(HomR(ω(X ),ω(X )⊗R M)∩ (ω(Y )⊗R M :ω(Y )))

=
�
⋂

(EndR(ω(X ))∩ (ω(Y ) :ω(Y )))
�

⊗R M .

This follows because there are only finitely many intersections and finite limit commutes with
tensoring with flat module. Therefore,

λ ∈ω(PX )⊗
R

M .

62Recall that a R module is flat if and only if it is a filtered colimit of finitely generated projective modules.
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Conversely, every element inω(PX )⊗R M gives rise to a natural transform in the way described
above. Hence we establish the isomorphism

Nat(ω,ω⊗M)∼=ω(PX )⊗R M ∼= HomR(AX , M) .

AX is unique up to unique isomorphism (as a flat R module) because it represents the functor
M 7! Nat(ω,ω⊗M).

Next, we shall define a co-action of AX onω, a counit and a coproduct on AX which makes
AX an R-coalgebra and ω a corepresentation:

ρ ∈ Nat(ω,ω⊗ AX )∼= EndR(AX )

corresponds to the identity map of AX , and

ε ∈ HomR(AX , R)∼= Nat(ω,ω)

corresponds to Idω. The co-action ρ tensored with IdAX
gives a natural transform between

ω⊗AX andω⊗AX ⊗AX , whose composition with ρ gives the following commutative diagram:

ω ω⊗ AX

ω⊗ AX ⊗ AX

ψ

ρ

ρ⊗IdAX
.

Take ∆ to be the image of ψ in HomR(AX , AX ⊗R AX ). It follows from definition that AX is
counital and ρ :ω!ω⊗AX is a corepresentation. It remains to check that∆ is coassociative.

Observe that the essential image of ω⊗ AX is a subcategory of the essential image of ω,
hence every functor that shows up here can be restricted to ω ⊗ AX , in particular, ρ, whose
restriction to ω⊗ AX is obviously ρ ⊗ IdAX

. It follows from the definition that

(ρ ⊗ IdAX
) ◦ρ = (Idω ⊗∆) ◦ρ ∈ Nat(ω,ω⊗ AX ⊗ AX ) .

Restrict this equation to ω⊗ AX and we get

(ρ ⊗ IdAX
⊗ IdAX

) ◦ (ρ ⊗ IdAX
) = (Idω ⊗ IdAX

⊗∆) ◦ (ρ ⊗ IdAX
) .

Composing withρ, the LHS corresponds to (∆⊗IdAX
)◦∆ and the RHS corresponds to (IdAX

⊗∆)◦∆
whose equality is exactly the coassociativity of AX .

It follows that ∀Z ∈ CX ,
ρ(Z) :ω(Z)!ω(Z)⊗R AX

gives ω(Z) a AX corepresentation structure and this is functorial in Z , thus ω factors through
a φ : CX ! CorepR(AX ).

Back to the uniqueness of AX . It has been shown that it is unique up to unique isomor-
phism as a flat R module. Additionally, if φ : AX ! A′X is an isomorphism such that it induces
identity transformation on the functor M 7! Nat(ω,ω⊗ M) then, φ automatically maps the
triple (∆,ε,ρ) to (∆′,ε′,ρ′), so φ is a coalgebra isomorphism.

Finally, it remains to show that when R= k, φ is essentially surjective63 and full:

63In fact, φ is essentially surjective even without the assumption that R= k.
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• Essentially Surjective: If M ∈ Corepk(AX ), then define

eM := Coker(M ⊗ω(PX )⊗ PX ⇒ M ⊗ PX ) ,

where two arrows are ω(PX ) representation structure of M and PX respectively, then

ω( eM) = M ⊗
ω(PX )

ω(PX ) = M .

• Full: If f : M ! N is a AX -corepresentation morphism, then by the k-linearlity of CX , f
lifts to morphisms

f ⊗ IdPX
: M ⊗ PX ! N ⊗ PX ,

and
f ⊗ Idω(PX ) ⊗ IdPX

: M ⊗ω(PX )⊗ PX ! N ⊗ω(PX )⊗ PX .

Thus, passing to cokernel gives rise to ef : eM ! eN which is mapped to f by ω.

Next we move on to recover the category C by its subcategories CX . Define an index cat-
egory I such that its objects are isomorphism classes of objects in C, denoted by X i for each
index i, and a unique arrow from i to j if X i is a subobject of X j . I is directed because for any
two objects Z and W , they are subobjects of Z ⊕W . Observe that if X is a subobject of Y , then
CX is a full subcategory of CY , so a functorial restriction

HomR(AY , M)∼= Nat(ωY ,ωY ⊗M)! Nat(ωX ,ωX ⊗M)∼= HomR(AY , M) ,

gives rise to a coalgebra homomorphism AX ! AY . Futhermore, this homomorphism is injec-
tive because ω(PY )!ω(PX ) is surjective, otherwise Coker(ω(PY )!ω(PX )) will be mapped
to the zero object in CorepR(AY ), which contradicts with ω being faithful.

Lemma 5. Define the coalgbra

A := lim−!
i∈I

AX i
,

then it is the desired coalgebra in Theorem 2.

Proof. A is flat because it is an inductive limit of flat R modules. Moreover

HomR(A, M) = lim −
i∈I

HomR(AX i
, M)∼= lim −

i∈I

Nat(ωX i
,ωX i

⊗M) = Nat(ω,ω⊗M) ,

which gives the desired functorial property and this implies that A is unique up to unique iso-
morphism. Finally, when R= k, the functorφ is defined and it is fully faithful because it is fully
faithful on each subcategory CX i

. It’s also essentially surjective because every corepresentation
V of A comes from a corepresentation of a finite dimensional sub-coalgebra of A,64 and A is a
filtered union of sub-coalgebras AX i

, so V comes from a corepresentation of some AX i
.

Proof of Theorem 2. It remains to prove the theorem when C is monoidal. This amounts to
including m : C � C ! C and e : 1! C with associativity and unitarity constrains, where 1 is

64Take a basis {ei} for V , the co-action ρ takes ei to
∑

j e j ⊗ a ji , then it is easy to see that span{a ji} is a finite
dimensional sub-coalgebra of A.
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the trivial tensor category with objects {0, 1} and only nontrivial morphisms are End(1) = k.
Using the isomorphism:

HomR(A⊗R A, A⊗R A)∼= Nat(ω�ω,ω�ω⊗ A⊗R A) ,

we get a homomorphism

τ : HomR(A⊗R A, M)! Nat(ω�ω,ω�ω⊗M) .

It is an isomorphism because for each pair of subcategories (CX ,CY )

HomR(AX ⊗R AY , M)∼= HomR(AX , R)⊗R HomR(AY , M)
∼= Nat(ωX ,ωX )⊗R Nat(ωY ,ωY ⊗M)
∼= Nat(ωX �ωY ,ωX �ωY ⊗M)

and it is compatible with the homomorphism given above, so after taking limit, τ is an iso-
morphism. We also have a homomorphism:

Nat(ω,ω⊗M)! Nat(ω�ω,ω�ω⊗M) ,

by taking anyα ∈ Nat(ω,ω⊗M), and composing with the isomorphismω�ω(X�Y )∼=ω(X⊗Y ).
This homomorphism in turn becomes a homomorphism

µ : A⊗R A! A .

And the obvious isomorphism

HomR(R, M) = M ! Nat(ω1,ω1 ⊗M) ,

together with the unit functor e : 1! C give a homomorphism

ι : R! A .

All of the homomorphisms are functorial with respect to M so µ and ι are homomorphisms
between coalgebras. Now the associativity and unitarity of monoidal category C translates
into associativity and unitarity of µ and ι, which are exactly conditions for A to be a bialgebra.
This concludes the proof of Theorem 2.

Remark 8. In the statement of Theorem 2, it is assumed that R is a local ring or a PID, for the
following technical reason: we want to introduce the functor

⊗ : Proj f (R)× C! C ,

which is defined by sending (Rn, X ) to X n. This is feasible only if every finite projective module
is free, which is not always true for an arbitary ring. Nevertheless, this is true when R is local
or a PID. It is tempting to eliminate this assumption when C is rigid, since we only use the
Hom(ω(X ), X ) to define the crucial object PX , and there is no need to define a Hom when the
category is rigid. In fact, there is no loss of information if we define PX by

⋂
�

Hom(X , X )∩ (Y : Y )
�

,

then the fiber functor ω takes PX to
⋂

(EndR(ω(X ))∩ (ω(Y ) :ω(Y ))) ,

since ω is monoidal by definition and a monoidal functor between rigid monoidal categories
preserves duality and thus preserves inner Hom. 4
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Following the above remark, we drop the assumption on ring R and state the following
version of Tannaka reconstruction for Hopf algebras:

Theorem 3 (Tannaka Reconstruction for Hopf Algebra). Let R be a commutative k-algebra, C
a k-linear abelian rigid monoidal category (resp. abelian rigid braided monoidal) with a fiber
functorω to Mod f (R), then there exists a unique flat R-Hopf algebra A (resp. R-coquasitriangular
Hopf algebra), up to unique isomorphism, such that A represents the endomorphism of ω in the
sense that ∀M ∈ IndProj f (R)

HomR(A, M)∼= Nat(ω,ω⊗M) .

Moreover, there is a functor φ : C! CorepR(A) which makes the following diagram commutative:

C CorepR(A)

Mod f (R)

ω

φ

f or get

and φ is an equivalence if R= k.

Sketch of proof. The idea of proof basically follows [56]. Accoring to Remark 8 and Theorem
2, there exists a bialgebra A which satisfies all conditions in the theorem, so it remains to prove
that there are compatible structures on A when C has extra structures.

(a) C is rigid. This means that there is an equivalence between k-linear abelian monoidal
categories

σ : C! Cop ,

by taking the right dual of each object, so it turns into an isomophism between R modules

σ : Nat(ω,ω⊗M)! Nat(ωop,ωop ⊗M) .

According to the functoriality of the construction of the bialgebra A, there is a bialgebra
isomorphism:

S : A! Aop ,

put it in another way, a bialgebra anti-automorphism of A. To prove that it satisfies the
required compatibility:

µ ◦ (S ⊗ Id) ◦∆= ι ◦ ε= µ ◦ (Id⊗S) ◦∆ ,

we observe that ι ◦ ε gives the natural transformation

Id⊗ρω(1) :ω(X ) =ω(X )⊗ω(1) 7!ω(X )⊗ρ(ω(1)) ,

but 1 is the trivial corepresentation of A, so ρ(ω(1)) is canonically identified with ω(1),
so ι ◦ ε is just the identity morphism on ω(X ). On the other hand, µ ◦ (S ⊗ Id) ◦ ∆
corresponds to the homomorphism

ω(X )!ω(X )⊗ω(X )∨ ⊗ω(X )!ω(X )⊗ω(X∨ ⊗ X )!ω(X )⊗ω(1) =ω(X ) ,

which is identity by the rigidity of C, hence µ ◦ (S ⊗ Id) ◦∆ = ι ◦ ε. The other equation
is similiar.
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(b) C is rigid braided. This means that there is a natural transformation:

r :ω�ω!ω�ω ,

which gives the braiding. This corresponds to a homomorphism of R-modules

R : A⊗ A! R ,

let’s define it to be the universal R-matrix. The fact that r is a natural transformation is
equivalent to the diagram below being commutative

ω(U)⊗ω(V ) ω(U)⊗ω(V )⊗ A⊗ A ω(U)⊗ω(V )⊗ A

ω(V )⊗ω(U) ω(V )⊗ω(U)⊗ A⊗ A ω(V )⊗ω(U)⊗ A

ρ⊗ρ

r

Id⊗Id⊗µ

r⊗Id

ρ⊗ρ Id⊗Id⊗µ

,

which in turn translates to the following equation of R:

R12 ◦µ24 ◦ (∆⊗∆) =R23 ◦µ13 ◦τ13 ◦ (∆⊗∆) ,

where τ : A⊗ A! A⊗ A sends x ⊗ y to y ⊗ x . The compactibility of r with the identity

ω(X ) ω(X )⊗ω(1)

ω(X ) ω(1)⊗ω(X )

Id r ,

translates to R ◦ (IdA⊗ 1) = ε. And symmetrically R ◦ (1⊗ IdA) = ε.

Finally, the hexagon axiom of braiding:

(ω(X )⊗ω(Y ))⊗ω(Z)

(ω(Y )⊗ω(X ))⊗ω(Z) ω(X )⊗ (ω(Y )⊗ω(Z))

ω(Y )⊗ (ω(X )⊗ω(Z)) (ω(Y )⊗ω(Z))⊗ω(X )

ω(Y )⊗ (ω(Z)⊗ω(X ))

r⊗1

r

1⊗r

,

translates to the commutativity of the diagram

A⊗ A⊗ A A⊗ A⊗ A⊗ A

A⊗ A R

Id⊗Id⊗∆

µ⊗Id R13·R24

R

,

and the same hexagon but with r−1 instead of r gives another one:
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A⊗ A⊗ A A⊗ A⊗ A⊗ A

A⊗ A R

∆⊗Id⊗Id

Id⊗µ R14·R23

R

.

So we end up confirming all the properties that universal R-matrix should satisfy, and
we conclude that A is indeed a coquasitriangular Hopf algebra.

Reconstruction from representation It is tempting to dualize everything above to formal-
ize the Tannaka reconstruction for the category of representations. In other words, we can
take the dual of A instead of A itself, and a corepresentation becomes the representaion, and
when the category has extra structures, those structures will be dualized, for example, when C
is a k-linear abelian rigid braided monoidal category, it should come from the representation
category of a flat R-quasitriangular Hopf algebra, since the dual of those diagrams involved in
the proof of Theorem 3 are exactly properties of universal R-matrix of a quasitriangular Hopf
algebra.

This is naive because the statement:

HomR(U , V ⊗ A)∼= HomR(U ⊗ A∗, V ) ,

is not true in general, since A can be infinite dimensional, thus the naive dualizing procedure is
not feasible. To resolve this subtlety, we observe that A is constructed from a filtered colimit of
finite projective R-modules, each is an R-coalgebra, and any finitely generated corepresentation
of A comes from a corepresentation of a finite coalgebra, so it is natural to define the action
of A∗ on those modules by factoring through some finite quotient A∗X for some X ∈ ob(C).
Similiarly, the multiplication structure on A∗ can be defined by first projecting down to some
finite quotient and taking multiplication

A∗ ⊗ A∗ = lim −
i∈I

AX i
⊗ lim −

i∈I

AX i
! AX i

⊗ AX i
! AX i

which is compatible with transition map AX j
! AX i

then taking the inverse limit gives the
multiplication of A∗. For antipode S, its dual is a map A∗! A∗.

On the other hand, the comultiplication on A∗, is still subtle. If we dualize the multiplica-
tion of A, cut-off at some finite submodule

AX i
⊗ AX j

! A ,

we only get an inverse system of morphisms from A∗ to A∗X i
⊗A∗X j

and the latter’s inverse limit is

A∗b⊗A∗, instead of A∗ ⊗ A∗. So we actually get a topological Hopf algebra with topological basis

Ni := ker(A∗! A∗X i
) ,

so that the comultiplication is continuous. Similiarly the counit, multiplication, and anipode
are continuous as well. Finally when C is braided, there exists an invertible elementR ∈ A∗b⊗A∗,
and the dual of the structure homomorphism in A is exactly the condition that R is the uni-
versal R-matrix of a topological quasitriangular Hopf algebra.

So we can restate Theorem 3 in terms of representations of topological Hopf algebras:
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Theorem 4. Let R be a commutative k-algebra, C a k-linear abelian rigid monoidal category
(resp. abelian rigid braided monoidal) with a fiber functor ω to Mod f (R), then there exists a
unique topological R-Hopf algebra H (resp. R-quasitriangular Hopf algebra) which is an inverse
limit of finite projective R-modules endowed with discrete topology, up to unique isomorphism,
such that H represents the endomorphism of ω in the sense that

H ∼= Nat(ω,ω) .

Moreover, there is a functor φ : C ! RepR(H) which sends an object in C to a continuous repre-
sentation of H and makes the following diagram commutative:

C RepR(H)

Mod f (R)

ω

φ

f or get ,

and φ is an equivalence if R= k.

Application to Quantization We now consider the case that we have a category Cħh, which
is a quantization of the category of representations of some Hopf algebra H over C. The
quantization, namely Cħh, of RepC(H) is a C-linear abelian monoidal category which has the
same set of generators as RepC(H), together with a fiber functorωħh : Cħh!Mod f (CJħhK)which
acts on generators of RepC(H) by tensoring with CJħhK, and

HomCħh(X , Y )∼= HomCħh(X , Y )/ħh= HomRepC(H)(X , Y )

for any pair of generators X and Y . For example, the classical algebra of local observables
in 4d Chern-Simons theory is U(g[z]), the universal enveloping algebra of Lie algebra g[z],
which has the category of representations generated by classical Wilson lines. Quantized Wil-
son lines naturally generated a C-linear abelian monoidal category.

Applying Theorem 4, (Cħh,ωħh) gives us a (topological) CJħhK-Hopf algebra Hħh. Since Cħh
and C shares the same set of generators, and the construction of those Hopf algebras as CJħhK-
modules only involves generators of corresponding categories, so Hħh is isomorphic to the com-
pletion of H ⊗CJħhK in the ħh-adic topology:

Hħh := lim −
i∈I

HX i
⊗CJħhK∼= lim −

i∈I

lim −
n

HX i
⊗C[ħh]/(ħhn)

∼= lim −
n

lim −
i∈I

HX i
⊗C[ħh]/(ħhn)

∼= lim −
n

H ⊗C[ħh]/(ħhn) .

For the same reason, tensor product of two copies of Hħh and completed in the inverse limit
topology is isomorphic to the completion of Hħh ⊗CJħhK Hħh in the ħh-adic topology:

Hħhb⊗Hħh ∼= lim −
n

Hħh ⊗CJħhK Hħh/(ħhn) .

From the construction of those Hopf algebras and the condition that a morphism in Cħh modulo
ħh is a morphism in RepC(H), it is easy to see that modulo ħh respects all structure homomor-
phisms, thus Hħh modulo ħh and H are isomorphic as Hopf algebras. Finally, structure homo-
morphisms of Hħh are continuous in the ħh-adic topology because they are ħh-linear. Thus we
conlude that:
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Theorem 5. Hħh is a quantization of H in the sense of Definition 6.1.1 of [45], i.e. it is a topo-
logical Hopf algebra over CJħhK with ħh-adic topology, such that

(i) Hħh is isomorphic to HJħhK as a CJħhK-module;

(ii) Hħh modulo ħh is isomorphic to H as Hopf algebras.

In our case, H = U(g[z]) for g = glK[z], so Hħh is a quantization of U(glK[z]), and according
to Theorem 12.1.1 of [45], this is unique up to isomorphisms. This proves Proposition (2).

C Technicalities of Witten Diagrams

C.1 Vanishing lemmas

We introduce some lemmas to allow us to readily declare several Witten diagrams in the 4d
Chern-Simons theory to be zero.

Lemma 6. The product of two or three bulk-to-bulk propagators vanish when attached cyclically,
diagrammatically this means:

v0v1 = v0

v1

v2

= 0 . (213)

Proof. Two propagators: We can choose one of the two bulk points, say v0, to be at the origin
and denote v1 simply as v. This amounts to taking the projection (111), namely:
R4

v0
×R4

v1
3 (v0, v1) 7! v1 − v0 =: v ∈ R4. Then the product of the two propagators become:

P(v0, v1)∧ P(v1, v0) 7! P(v)∧ P(−v) = −P(v)∧ P(v) . (214)

This is a four form at v, however, P does not have any dz component, therefore the four form
P(v)∧ P(v) necessarily contains repetition of a one form and thus vanishes.

Three propagators: By choosing v0 to be the origin of our coordinate system we can turn
the product to the following:

P(v1)∧ P(v2)∧ P(v1, v2) . (215)

We now need to look closely at the propagators (see (111) and (114)):

P(vi) =
ħh

2π
x i dyi ∧ dz i + yi dz i ∧ dx i + 2z i dx i ∧ dyi

d(vi , 0)4
, (216a)

P(v1, v2) =
ħh

2π
x12 dy12 ∧ dz12 + y12 dz12 ∧ dx12 + 2z12 dx12 ∧ dy12

d(v1, v2)4
, (216b)

where vi := (x i , yi , zi , z i), x i j := x i − x j , yi j := yi − y j , · · · , and d(vi , v j)2 := (x2
i j + y2

i j + zi jz i j).
Since the propagators don’t have any dz component the product (215) must be proportional
to ω :=

∧

i∈{1,2} dx i ∧dyi ∧dz i . In the product there are six terms that are proportional to ω.

For example, we can pick dx1 ∧ dy1 from P(v1), dz2 ∧ dx2 from P(v2) and dy12 ∧ dz12 from
P(v1, v2), this term is proportional to:

dx1 ∧ dy1 ∧ dz2 ∧ dx2 ∧ dy12 ∧ dz12 = −dx1 ∧ dy1 ∧ dz2 ∧ dx2 ∧ dy2 ∧ dz1 = +ω . (217)
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The other five such terms are:

dy1 ∧ dz1 ∧ dz2 ∧ dx2 ∧ dx12 ∧ dy12 = −ω ,

dy1 ∧ dz1 ∧ dx2 ∧ dy2 ∧ dz12 ∧ dx12 = +ω ,

dz1 ∧ dx1 ∧ dy2 ∧ dz2 ∧ dx12 ∧ dy12 = +ω ,

dz1 ∧ dx1 ∧ dx2 ∧ dy2 ∧ dy12 ∧ dz12 = −ω ,

dx1 ∧ dy1 ∧ dy2 ∧ dz2 ∧ dz12 ∧ dx12 = −ω .

(218)

These signs can be determined from a determinant, stated differently, we have the following
equation:

det





dy1 ∧ dz1 dz1 ∧ dx1 dx1 ∧ dy1
dy2 ∧ dz2 dz2 ∧ dx2 dx2 ∧ dy2

dy12 ∧ dz12 dz12 ∧ dx12 dx12 ∧ dy12



= −6ω , (219)

where the product used in taking determinant is the wedge product. The above equation
implies that in the product (215) the coefficient of −ω is given by the same determinant if we
replace the two forms with their respective coefficients as they appear in (216). Therefore,
the coefficient is:

1
8π3d(v1, 0)4d(v2, 0)4d(v1, v2)4

det





x1 y1 z1
x2 y2 z2
x12 y12 z12



= 0 . (220)

The determinant vanishes because the three rows of the matrix are linearly dependent. Thus
we conclude that the product (215) vanishes.

Lemma 7. The product of two bulk-to-bulk propagators joined at a bulk vertex where the other
two endpoints are restricted to the Wilson line, vanishes, i.e., in any Witten diagram:

v

p1 p2

= 0 . (221)

Proof. This simply follows from the explicit form of the bulk-to-bulk propagator. Computation
verifies that:

ι∂x1
∧∂x2
(P(v, p1)∧ P(v, p2)) = 0 , (222)

where x1 and x2 are the x-coordinates of the points p1 and p2 respectively.

The world-volume on which the CS theory is defined is R2
x ,y ×Cz , which in the presence

of the Wilson line at y = z = 0 we view as Rx ×R+ × S2. When performing integration over
this space we approximate the non-compact direction by a finite interval and then taking the
length of the interval to infinity. In doing so we introduce boundaries of the world-volume,
namely the two components B±D := {±D} ×R+ × S2 at the two ends of the interval [−D, D].
Our next lemma concerns some integrals over these boundaries.

Lemma 8. The integral over a bulk point vanishes when restricted to the spheres at infinity, in
diagram:

lim
D!∞

∫

v0∈B±D

v1

vn

...v0 = 0 . (223)
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Proof. Symbolically, the integration can be written as:

lim
D!∞

∫

B±D

dvolB±D
ι∂y∧∂z

(P(v0, v1)∧ · · · ∧ P(v0, vn)) , (224)

where y and z are coordinates of v0. Note that the dz required for the volume form on B±D
comes from the structure constant at the interaction vertex, not from the propagators. In the
above integration the x-component of v0 is fixed at ±D, which introduces D dependence in
the integrand. The bulk-to-bulk propagator has the following asymptotic scaling behavior:65

P((D, y, z, z), v j)
D!∞∼ D−2 +O(D−3) . (225)

The integration measure on B±D is independent of D, therefore the integral behaves as D−2n

for large D, and consequently vanishes in the limit D!∞.

C.2 Comments on integration by parts

Finally, let us make a few general remarks about the integrals involved in computing Witten
diagrams. Since the boundary-to-bulk propagators are exact and the bulk-to-bulk propagators
behave nicely when acted upon by differential (see (112)), we want to use Stoke’s theorem to
simplify any given Witten diagram. Suppose we have a Witten diagram with m propagators
connected to the boundary, n propagators connected to the Wilson line, and l bulk points.
Let us denote the bulk points by vi for i = 1, · · · , l, the points on the Wilson line by p j for
j = 1, · · · , n, and the points on the boundary as xk for k = 1, · · · , m. The domain of integration
for the diagram is then M l ×∆n, where M = R×R+× S2 and ∆n is an n-simplex defined as:

∆n := {(p1, · · · , pn) ∈ Rn | p1 ≤ p2 ≤ · · · ≤ pn} . (226)

This domain may need to be modified in some Witten diagrams due to the integral over this
domain having UV divergences. UV divergences can occur when some points along the Wilson
line collide with each other. To avoid such divergences we shall use a point splitting regulator,
i.e., we shall cut some corners from the simplex ∆n. Let us denote the regularized simplex
as e∆n. The exact description of e∆n will vary from diagram to diagram, and we shall describe
them as we encounter them.

When we do integration by parts with respect to the differential in a boundary-to-bulk
propagator, we get the following three types of terms:

1. A boundary term. Boundaries of our integration domain comes from boundaries of M
and e∆n. For M we get:

∂M = B+∞ t B−∞ . (227)

Due to Lemma 8, integrations over ∂M will vanish. Therefore, nonzero contribution
to the boundary integration, when we do integration by parts, will only come from the
boundary of the regularized simplex, namely ∂ e∆n. Schematically, the appearance of
such a boundary integral will look like:

∫

M l×e∆n

dθ ∧ (· · · ) =
∫

M l×∂ e∆n

θ ∧ (· · · ) + · · · . (228)

2. The differential acts on a bulk-to-bulk propagator. Due to (112), this identifies the two
end points of the propagator, schematically:

b ∈ {0,1} ,
∫

M l×∂ b e∆n

dθ ∧ P ∧ (· · · ) =
∫

M l−1×∂ b e∆n

θ ∧ (· · · ) + · · · . (229)

65Keep in mind that ħh has a (length) scaling dimension 1.
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3. The differential acts on a step function left by a previous integration by parts. This does
not change the domain of integration.

The third option does not to lead a simplification of the domain of integration. Therefore, at the
present abstract level, our strategy to simplify an integration is: first go to the boundary of the
simplex, and then keep collapsing bulk-to-bulk propagators until we have no more differential
left or when no more bulk-to-bulk propagator can be collapsed without the diagram vanishing
due the vanishing lemmas from §C.1.

D Proof of Lemma 2

All the diagrams that we draw in this section only exist to represent color factors, their nu-
merical values are irrelevant. Which is why we also ignore the color coding we used in the
diagrams in the main body of the paper.

We start with yet another lemma:

Lemma 9. The color factor of any Witten diagram with two boundary-to-bulk propagators con-
nected by a single bulk-to-bulk propagator, that is any Witten diagrams with the following con-
figuration:

...
...

µ ν

(230)

upon anti-symmetrizing the color labels of the boundary-to-bulk propagators, involves the follow-
ing factor:

f ξ
µν Xξ , (231)

for some matrix Xξ that transforms under the adjoint representation of glK . In particular, this
color factor is the image in End(V ) of some element of glK where V is the representation of some
distant Wilson line.

Proof. The two bulk vertices in the diagram results in the following product of structure con-
stants: f π

µo f o
νρ where the indices π and ρ are contracted with the rest of the diagram.

Anti-symmetrizing the indices µ and ν we get f π
µo f o

νρ − f π
νo f o

µρ , which using the Jacobi
identity becomes − f o

µν f π
ρo . Once π and ρ are contracted with the rest of the diagram we

get an expression of the general form (231). Furthermore, any expression of the form (231) is
an image in End(V ) of some element in glK , since the structure constant f ξ

µν can be viewed
as a map:

f : ∧2glK ! glK , f : tµ ∧ tν 7! f ξ
µν tξ . (232)

Now composing the above map with a representation of glK on V gives the aforementioned
image.

Let us now look at the color factor (161) of the diagram (160), both of which we repeat
here:

µ ν

, f ξo
µ f πρ

ξ
f σ
νπ %(to)%(tρ)%(tσ) . (233)
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By commuting %(to) and %(tρ) in the color factor we create a difference which is the color
factor of the following diagram:

µ ν

. (234)

The key feature of the above diagram is the loop with three propagators attached to it. Such
a loop produces a color factor which is a glK -invariant inside (glK)

⊗3, explicitly we can write
a loop and its associated color factor respectively as:

µ

ν

ξ

and f π
µo f o

νρ f ρ

ξπ
. (235)

The color factor is glK -invariant since the structure constant itself is such an invariant. To find
the invariants in (glK)

⊗3 we start by writing glK as:

glK = slK ⊕C , (236)

where by slK we mean the complexified algebra sl(K ,C). This gives us the decomposition

(glK)
⊗3 = (slK)

⊗3 ⊕ · · · , (237)

where the “· · · " contains summands that necessarily include at leas one factor of the center
C. However, none of the three indices that appear in the diagram in (235) can correspond
to the center, because each of these indices belong to an instance of the structure constant,
which vanishes whenever one of its indices correspond to the center.66 This means that the
glK invariant we are looking for must lie in (slK)⊗3. For K > 2, there are exactly two such
invariants [57], one of them is the structure constant itself, which is totally anti-symmetric.
The other invariant is totally symmetric. However the structure constant is even (invariant)
under the Z2 outer automorphism of slK whereas the symmetric invariant is odd. Since our
theory has this Z2 as a symmetry, only the structure constant can appear as the invariant in
a diagram.67 This means, as far as the color factor is concerned, we can collapse a loop such
as the one in (235) to an interaction vertex. As soon as we do this operation to the diagram
(234), Lemma 9 tells us that the color factor of the diagram is an image in End(V ) of an
element in glK . This shows that we can swap the positions of any of the two pairs of the
adjacent matrices in the color factor in (233) and the difference we shall create is an image of
a map glK ! End(V ). To achieve all permutations of the three matrices wee need to be able
to keep swaping positions, let us therefore keep looking forward.

Suppose we commute %(to) and %(tρ) in (233), then we end up with the color factor of the
diagram (159). Now if we commute %(to) and %(tσ), we create a difference that corresponds
the color factor of the following diagram:

µ ν

. (238)

66In other words, the central abelian photon in glK interacts with neither itself nor the non-abelian gluons and
therefore can not contribute to the diagrams we are considering.

67This is also apparent from the way this invariant is written in (235), since the structure constant is invariant
under this Z2, certainly a product of them is invariant as well.
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The key feature of this diagram is a loop with four propagators attached to it. The loop and
its associated color factor can be written as:

µξ

ν o

, f τ
µπ f σ

oτ f ρ
νσ f π

ξρ . (239)

As before, the color factor is a glK -invariant in (glK)⊗4. This time, it will be more convenient
to write the color factor as a trace. Noting that the structure constants are the adjoint repre-
sentations of the generators of the algebra we can write the above color factor as:

trad(tµ to tν tξ) . (240)

The adjoint representation of glK factors through slK , and the adjoint representation of slK has
a non-degenerate metric with which we can raise and lower adjoint indices. Suitably changing
positions of some of the indices in the color factor we can conclude:

trad(tµ to tν tξ) = trad(tµ tξ tν to) . (241)

Using the cyclic symmetry of the trace we then find that the color factor is symmetric under
the exchange of µ and ν, therefore when we anti-symmetrize the diagram with respect to µ
and ν it vanishes.

In summary, starting from the color factor in (233), we can keep swapping any two adjacent
matrices and the difference can always be written as an image of some map glK ! End(V ).
The same argument applies to the color factors of all the diagrams in (159). This proves the
lemma.
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