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Abstract

We consider uncharged fluids without any boost symmetry on an arbitrary curved back-
ground and classify all allowed transport coefficients up to first order in derivatives.
We assume rotational symmetry and we use the entropy current formalism. The curved
background geometry in the absence of boost symmetry is called absolute or Aristotelian
spacetime. We present a closed-form expression for the energy-momentum tensor in
Landau frame which splits into three parts: a dissipative (10), a hydrostatic
non-dissipative (2) and a non-hydrostatic non-dissipative part (4), where in parenthesis
we have indicated the number of allowed transport coefficients. The non-hydrostatic
non-dissipative transport coefficients can be thought of as the generalization of coeffi-
cients that would vanish if we were to restrict to linearized perturbations and impose the
Onsager relations. For the two hydrostatic and the four non-hydrostatic non-dissipative
transport coefficients we present a Lagrangian description. Finally when we impose scale
invariance, thus restricting to Lifshitz fluids, we find 7 dissipative, 1 hydrostatic and 2
non-hydrostatic non-dissipative transport coefficients.
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1 Introduction

Hydrodynamics arises as the universal description of interacting systems near local thermal
equilibrium in the long wavelength limit, which makes hydrodynamics indispensable as an
effective theory for a broad class of physical phenomena. Once a hydrodynamic description is
established for a system, its evolution is governed by the hydrodynamic equations of motion,
which express the conservation of currents such as the energy-momentum tensor. The relevant
currents are parametrized in terms of fluid variables such as temperature, fluid velocity and
chemical potential via the constitutive relations – see e.g. [1,2].

In the standard treatment of hydrodynamical frameworks some type of boost symmetry
is assumed, namely Galilean boost symmetry for non-relativistic hydrodynamics and Lorentz
boost symmetry for its relativistic counterpart. Consequently, these symmetries are present in
the well-known Navier-Stokes equations [1] and relativistic hydrodynamics [2] or magneto-
hydrodynamics [3–6] respectively. While these boost symmetries are conventionally assumed,
there is no a priori reason to require any type of boost symmetry in the formulation of hy-
drodynamics.1 From a theoretical point of view they are not necessary as the hydrodynamic
equations generally follow from conservation of energy/momentum and other charges, which
in turn are connected to time/space translations and possible extra global symmetries. Boost
symmetries, on the other hand, provide relations between components of the various currents,
and are as such not an essential ingredient, though they are reflected as extra symmetries of
the resulting hydrodynamic equations. In fact, as we will return to in more detail shortly,
there exist many physical systems that do not exhibit boost symmetry. In particular, as soon
as there is a preferred reference frame, i.e. a medium with respect to which the fluid moves,

1Assuming spatial rotational symmetry is not necessary either, though often taken as an extra symmetry as is
also the case in the present work. Hydrodynamics for anisotropic systems has been studied in several places, e.g.
in [7,8].
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this symmetry will be broken. Moreover, breaking of boost symmetry also occurs in critical
systems with scaling symmetry characterized by a generic dynamical exponent z, i.e. systems
with Lifshitz symmetry. Importantly, the no-go theorem of [9] says that, when z 6= 1,2, such
systems cannot exhibit boost symmetry if they allow for a fluid description. A similar no-go
theorem was found in Ref. [10] from a field theoretic point of view.

A systematic treatment of perfect fluids with translation and rotation symmetries, appli-
cable in the absence of any type of boost symmetry was first given in [9]. In a subsequent
work [11] the first-order hydrodynamics and transport for these perfect fluids was studied
when linearizing around a zero velocity background.

The primary aim of this paper is to complete this first-order analysis, as announced in
[11], by extending it to the full non-linear level. In particular, we will analyze such fluids
up to first order in derivatives for arbitrary fluid velocity backgrounds on curved absolute
spacetime and find all dissipative and non-dissipative transport coefficients. Moreover, among
the latter we will identify those that are hydrostatic and those that are not. We remark that,
following the works [9, 11], first-order corrections to non-boost invariant hydrodynamics on
flat space were also pursued in Ref. [12] (which also includes a U(1) current).2 Furthermore,
hydrodynamics of systems without boosts has been addressed previously (see e.g. [13, 14]
and [15–17]) but our starting point, the perfect fluid thermodynamics introduced in [9], differs
from these works.

Our hydrodynamic description starts from the perfect fluid energy-momentum tensor for
non-boost invariant systems obtained in Ref. [9]. This includes a new thermodynamic vari-
able, the kinetic mass density ρ, which is the thermodynamic dual of the magnitude of the
fluid velocity squared, v2. Furthermore, as an immediate consequence of the absence of boost
symmetry, all extensive thermodynamic quantities now also depend on the extra intrinsic ther-
modynamic quantity v. The analysis of [9] shows that this more general class of perfect fluids
leads to corrections to the Euler equations, which might be observable in hydrodynamic fluid
experiments. One also finds new expressions for the speed of sound in perfect fluids, reducing
to known results when boost symmetry is present. A concrete realization of this framework
can be obtained by considering an ideal gas of Lifshitz particles, enabling for example to obtain
expressions for the speed of sound for corresponding classical and quantum Lifshitz gases [9].
Furthermore, the linearized first-order analysis in [11] has provided novel expressions for the
linearized Navier–Stokes equation including new dissipative and non-dissipative first order
transport coefficients.

As is well known, in order to account for dissipative effects, the conserved currents enter-
ing the effective description are expanded to a given order in derivatives of the hydrodynamic
fields under the assumption that these derivative corrections are small compared to some in-
trinsic length scale of the microscopic system (e.g. the mean free path). In the currents – and
therefore also in the resulting hydrodynamic equations of motion – each independent deriva-
tive correction term is multiplied by a transport coefficient, such as viscosity and conductivity.
The values of these coefficients are constrained by the requirement that the divergence of the
entropy current is non-negative and, additionally, by the Onsager relations (or, rather, their
appropriate generalization: absence of anti-symmetric transport) in systems with time reversal
symmetry. For systems with a microscopic description, the specific form of certain transport
coefficients can be determined via Kubo formulae. If a system admits a gravitational dual, fur-
ther relations abound: notably, it has been shown via the AdS/CFT correspondence that shear
viscosity divided by entropy density is equal to 1

4π for a strongly coupled plasma in N = 4

2At the level of constitutive relations the present work agrees with [12]. However comparing the implications
of the non-negativity of entropy production and the properties of the non-dissipative transport coefficients re-
quires one to extract the necessary details from the accompanying Mathematica notebooks of Ref. [12], making it
challenging to perform an extensive mapping of our final results.
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supersymmetric Yang–Mills theory [18].
To obtain the first-order hydrodynamics for non-boost invariant systems3 following the

paradigm reviewed above, the analysis of this paper makes crucially use of the geometry that
is connected to non-boost invariant fluids along with the power of hydrostatic partition func-
tions and the entropy current formalism. The geometry on which non-boost invariant fluids
live is the geometry that realizes (locally) only translational (space and time) and rotational
symmetries.4 These symmetries are sometimes called Aristotelian and the corresponding ge-
ometry is that of curved absolute spacetime, which thus can also be referred to as Aristotelian
geometry.

An interesting feature of non-boost invariant fluids is the appearance of non-dissipative
transport coefficients at first order, alongside dissipative transport coefficients [11, 12]. By
applying the entropy current constraint to the full non-linear constitutive relations we show
in this paper that there are 10 dissipative transport coefficients and 6 non-dissipative ones.
We also show that the number of transport coefficients is unaffected by the introduction of
background curvature to first order in derivatives. Following [25,26], one can further separate
the non-dissipative ones into two types, hydrostatic and non-hydrostatic, which in the present
case turns out to be 2 and 4 transport coefficients, respectively. For the case of Lifshitz fluids,
these numbers become 7, 1 and 2, respectively. We will show that both the hydrostatic and non-
hydrostatic transport coefficients can be obtained using Lagrangian methods. The hydrostatic
transport coefficients feature in the non-canonical part of the entropy current and coincide
with contributions that can be computed using an action principle obtained by allowing for
time dependence in the hydrostatic partition function, see e.g. [27, 28] and the earlier works
[29, 30]. Furthermore, we find that when restricting to linearized perturbations all the non-
hydrostatic transport coefficients vanish due to the Onsager relations.

We now return to a brief discussion of the physical relevance of non-boost invariant hy-
drodynamics, before presenting an outline of the paper.

Relevance of non-boost invariant hydrodynamics

As remarked above, for many systems in nature one does not have the luxury of assuming
boost symmetry. In condensed matter, for example, one can study critical points where boost
symmetries are absent [31]. The Lifshitz critical point [32] is an example of this and related
recent papers include quantum critical transport in strange metals, see e.g. [33], electrons in
graphene [34] and viscous electron fluids [35]. With this application in mind, it is shown
in the original Refs. [9, 11] how the framework of non-boost invariant hydrodynamics can
be adapted to (non-relativistic) scale invariant fluids with critical exponent z. This includes
particular expressions for the speed of sound in generic z Lifshitz fluids as well as specific re-
sults for the first-order transport coefficients in the linearized case. In particular, it was shown
that the sound attenuation constant depends on both shear viscosity and thermal conductivity.
The framework was also recently used in [36] to study out-of-equilibrium energy transport
in a quantum critical fluid with Lifshitz scaling symmetry following a local quench between
two semi-infinite fluid reservoirs. It is also interesting to note that Lifshitz hydrodynamics is
relevant in connection with non-AdS holographic realizations of systems with Lifshitz thermo-
dynamics [23,37–40], see also [41–45].

More generally non-boost invariant hydrodynamics is of relevance to any system with a
reference frame, such as æther theories or in various active matter systems exhibiting e.g.

3In the way we set up our calculations, we consider fluids which could have relativistic or Galilean boosts. The
Carrollian boost invariant fluid as realized in e.g. [9,19] will not be considered in the present work. This specific
situation will be treated in [20].

4Similarly, non-relativistic (Galilean) fluids live on the geometry that locally realizes these symmetries and in
addition Galilean boosts, i.e. Newton-Cartan geometry. This was used in e.g. [19,21–24].
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flocking behavior, see e.g. [46] and [47] for a recent example. General active matter systems
typically do not have conserved energy or momentum as the divergence of the energy and
momentum currents is equal to ‘driving’ terms. Non-boost invariant hydrodynamics is only
an approximate description for configurations that are close to equilibrium configurations at
‘cruising speed’ where the driving terms vanish.

Assuming that the fundamental laws of physics are Lorentz invariant, the necessity of some
type of reference frame to obtain a system with broken boosts is obvious. Dispersion relations
which are non-analytic and incompatible with boost invariance, such as those of capillary
waves and domain-wall fluctuations in superfluid interfaces (ripplons), see for example [48],
do indeed describe the propagation of particular fluctuations with respect to a medium. But
in order to have a hydrodynamic description of excitations with respect to a medium, we also
need that energy and momentum of these excitations are approximately conserved. This is
a non-trivial requirement, and requires a relatively weak coupling of the excitations to the
medium. In addition, in order to be in the hydrodynamic regime, the interaction times and
length scales of the excitations with themselves must be much smaller than those of the excita-
tions with the medium. For example, for electrons in a crystal, the electron-electron scattering
rate must be much higher than the rate for scattering of impurities and phonons in order to
possibly have hydrodynamic flow [34]. Obviously, it is an extremely interesting question to
find physical systems where all these conditions apply, which we will not address in this paper.

It is of separate interest to understand systems with broken boost symmetry from an effec-
tive field theory point of view. Here, the boost breaking arises because we integrate out the
degrees of freedom of the medium in a state which breaks the boost symmetry, for example be-
cause the medium has a fixed density or particle number. In [49] a classification of condensed
matter systems that break boost symmetry but preserve rotation and translation invariance
was presented. The simplest possibility presented there was a so-called type I framid, which
is a system where the unbroken spacetime translation and rotation generators are unmodified
in the presence of a boost-breaking state. Curiously, this possibility does not seem to be real-
ized in nature, which was also seen in a recent analysis of the structure of Goldstone bosons
associated to boost breaking [50]. In such a putative type I framid the expectation value of
the energy-momentum tensor must be proportional to the metric with the sum of the energy
density and the pressure equal to zero. This is similar to the effective energy-momentum ten-
sor one can associate to a cosmological constant, and also the form of the energy-momentum
tensor in the presence of additional ‘Carroll’ boost invariance [9]. It is unclear whether any
systems in nature properly realize Carroll symmetry and this observation may be in fact equiv-
alent to the non-existence of type I framids. For a more detailed discussion of systems with
(approximate) Carroll symmetry, we refer the reader to [20].

A simple example which gives rise to a system without boost invariance and which does
appear in nature is a superfluid with a spontaneously broken U(1) symmetry of the type con-
sidered in [51]. These systems contain a coupling

∫

dd+1 xAµJµ where Jµ is the current as-
sociated to the global U(1) symmetry and Aµ acquires an expectation value Aµ = λδ0

µ. This
is reminiscent of a chemical potential and we assume that at finite λ the ground state breaks
the global U(1) symmetry. If λ is constant the system remains invariant under translations
and rotations. Our hydrodynamical description will still be a good approximation as long as
|∂µλ| � |λ| so that energy and momentum are approximately conserved. To find the energy-
momentum tensor of the theory, it is convenient to use vielbeins to convert curved into flat
indices, and to assume that Aa = λδ0

a. This is now a scalar and not a tensor from the space-
time point of view, and one can obtain a conserved stress-tensor by varying with respect to
the vielbeins as described in e.g. [52]. The result of this computation is a new stress tensor of
the form Tnew

µν ∼ T old
µν + JµAν which is clearly not symmetric and therefore incompatible with

boost invariance. Moreover it shows that the new generator of time translations is a linear
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combination of the old generator plus the U(1) current. As described in detail in [49], other
breaking patterns are also possible.

Outline

The paper is organized in the following way. In Section 2, we recap and establish facts about
perfect boost-agnostic5 fluids and Aristotelian geometry. Next, in Section 3, we formulate the
entropy current on curved spacetime and define three sectors of transport: hydrostatic non-
dissipative, non-hydrostatic non-dissipative and dissipative transport. Subsequently, in Section
4, we present a Lagrangian description of both hydrostatic and non-hydrostatic transport and
furthermore we connect the Lagrangian formulation to the non-canonical contributions to
the entropy current. Finally, in Section 5 we obtain and combine all first order transport
coefficients using constitutive relations. We end with a discussion and outlook in Section
6. Two appendices are included. Appendix A presents the features of hydrodynamic frame
transformations from a generic frame to the Landau frame. Appendix B presents the details of
the derivation of the non-canonical entropy current by using constitutive relations (as opposed
to an action formulation as dones in Section 4).

2 Non-boost invariant perfect fluids and geometry

2.1 Perfect fluids on flat spacetime

Consider a charged perfect fluid in (d+1)-dimensions, which has spatial rotational invariance
and translational invariance in both time and space, as was studied in [9,11]. One can choose
the fluid variables to be chemical potential µ, temperature T and fluid velocity v i . These
variables are allowed to depend on space and time. It is assumed, however, that locally there
exists a thermodynamic equilibrium. We furthermore assume pressure P to be a function of µ,
T and v2. In other words, we assume the equation of state to be of the form P ≡ P(T,µ, v2).
Through the Gibbs-Duhem relation,

dP = sdT + ndµ+
1
2
ρdv2 , (2.1)

we can express entropy density s, charge density n and kinetic mass density ρ in terms of the
fluid variables. Finally, we have the Euler relation

E = −P + sT +µn+ρv2 , (2.2)

which expresses the total energy density E in terms of the fluid variables. In the presence of a
boost symmetry, the corresponding Ward identity implies that the term containing kinetic mass
density in (2.1) and (2.2) can be absorbed into the other fluid variables [9,11]. This leads to
velocity independent thermodynamic relations – a hallmark of boost invariant systems.

The conserved currents, energy-momentum tensor Tµν and charge current Jµ can all be
expressed as functions of the fluid variables in a derivative expansion, the form of which is
dictated by the symmetry of the problem. The divergence of these conserved currents gives
rise to the dynamics of the fluid. The most general homogeneous and isotropic perfect fluid,
i.e. at zeroth order in derivatives, is characterized by [9,11]

T0
0 = −E , T i

0 = − (E + P) v i , T0
j = ρv j , T i

j = Pδi
j +ρv i v j , (2.3)

5We sometimes use the terminology ‘boost-agnostic’ (instead of non-boost invariant) to highlight the fact that
the analysis holds in principle for any fluid regardless of whether it has boost symmetries or not.
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J0 = n , J i = nv i . (2.4)

Here we presented the fluid written in the LAB frame, in which the observer is at rest. For
fluids without boost symmetries, it is useful to define the internal energy

Ẽ = E −ρv2 , (2.5)

in terms of which the Euler and Gibbs-Duhem relations read

Ẽ + P = Ts+µn, dẼ + 1
2
ρdv2 = T ds+µdn, dP = sdT + ndµ+

1
2
ρdv2 . (2.6)

In the subsequent analysis, we will drop the charge current.

2.2 Curved geometry for non-boost invariant fluids

Fluids without boosts live on the geometry of absolute spacetime, which, due to Penrose, is
sometimes referred to as Aristotelian geometry [53]. This geometry locally realizes Aristotelian
symmetries consisting of translations in time and space along with rotations.

We define an Aristotelian geometry in terms of a 1-form τµ (clock-form), along with a
symmetric covariant tensor hµν (spatial metric), where, notably, neither field has been assigned
any local tangent space transformations. The signature of hµν is (0,1, . . . , 1). We emphasize
that this is different from (torsional) Newton–Cartan geometry (see e.g. [54–56]), in which hµν
is endowed with transformation properties corresponding to local Galilean boosts. Likewise,
in Carrollian geometry (see for example [57]), it is τµ – but not hµν – that transforms under
local Carrollian boosts. In the more familiar case of Lorentzian geometry, both τµ and hµν
transform under local Lorentz transformations in such a way that γµν = −τµτν+hµν remains
invariant.

In this way, Galilean6, Carrollian, and Lorentzian geometries all arise as special cases of
Aristotelian geometry via the imposition of specific local tangent space transformations on the
geometric data τµ and hµν.

Because of the signature of hµν, we can decompose it into vielbeins in the following manner

hµν = δabea
µeb
ν , (2.7)

where a = 1, . . . , d and µ takes d + 1 values. The spatial vielbeins ea
µ transform under local

SO(d) transformations. Note that the square matrix (τµ, ea
µ) is invertible with inverse denoted

by (vµ, eµa ) – these objects satisfy the following orthonormality relations

vµτµ = −1 , vµea
µ = 0 , eµaτµ = 0 , eµa eb

µ = δ
b
a . (2.8)

Furthermore, these fields satisfy the completeness relation

−vµτν + eµa ea
ν = δ

µ
ν . (2.9)

The determinant of (τµ, ea
µ) will be denoted by e, i.e.

e = det(τµ, ea
µ) . (2.10)

For completeness, we remark that it is in general possible to choose an affine connection Γλµν
that obeys

∇µτν = 0 , ∇µhνρ = 0 . (2.11)

6We remark that in order to obtain torsional Newton–Cartan geometry from Aristotelian geometry, we need an
extra gauge field. See e.g. [56,58] and references therein.
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Let us make the following ansatz for Γλµν:

Γλµν = −vλ∂µτν +
1
2

hλκ
�

∂µhνκ + ∂νhµκ − ∂κhµν
�

− hλκτνKµκ + Cλµν , (2.12)

where we introduced the extrinsic curvature

Kµν = −
1
2
Lvhµν . (2.13)

The extrinsic curvature is purely spatial,

vµKµν = 0 , (2.14)

and its trace satisfies

K := hµνKµν = −e−1∂µ(evµ) , hµν = δabeµa eνb . (2.15)

The equations (2.11) are obeyed if we take

Cλµντλ = 0 , Cλµνhλρ + Cλµρhνλ = 0 . (2.16)

We can for example choose a connection with Cλµν = 0. This connection has non-zero torsion
given by

Γλ[µν] = −
1
2

vλτµν +
1
4

hλκτνLvhµκ −
1
4

hλκτµLvhνκ , (2.17)

where we defined the torsion 2-form

τµν = ∂µτν − ∂ντµ . (2.18)

We have included the discussion of the connection for completeness. However, we will
never use any particular connection in this paper. Up to first order in derivatives we can make
do with Lie derivatives, exterior derivatives and divergences. At second order in the derivative
expansion, however, a choice must be made in order to write down curvatures.

Finally, we remark that flat Aristotelian spacetime in Cartesian coordinates corresponds to

τµ = δ
0
µ, hµν = δ

i
µδ

i
ν, vµ = −δµ0 , hµν = δµi δ

ν
i , (2.19)

where we split the spacetime index µ= (0, i) into temporal and spatial directions.

2.3 Perfect fluids on a curved background

Consider a perfect fluid living on an Aristotelian geometry described by {τµ , hµν} with fluid
velocity uµ satisfying

uµτµ = 1 . (2.20)

On flat space, uµ = (1, v i), and the curved space analogue of v2 is u2 = hµνu
µuν. When

combined with the completeness relation (2.9) this implies the following decomposition of
the fluid velocity uµ,

uµ = −vµ + hµρhρνu
ν , (2.21)

in terms of timelike and spacelike components, respectively. The perfect fluid energy-momentum
tensor (2.3) generalized to a curved background reads [9] (see also Section 4.2)

Tµν = −
�

Ẽ + P +ρu2
�

uµτν +ρuµuρhρν + Pδµν . (2.22)
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Using the property (2.20), this can also be written as

Tµν = uµuρ
�

−
�

Ẽ + P +ρu2
�

τρτν +ρhρν
�

+ Pδµν . (2.23)

It is furthermore useful to express the energy-momentum tensor Tµν as

Tµν = −Tµτν + Tµρhρν , (2.24)

where

Tµ = Euµ + Phµρhρνu
ν , (2.25)

Tµν = Phµν +ρuµuν , (2.26)

are the energy current and momentum-stress tensor, respectively.
If we are dealing with a theory on a generic curved Aristotelian background for which

there is an action principle, then diffeomorphism invariance implies the following conservation
equation for the energy-momentum tensor7

e−1∂µ
�

eTµρ
�

+ Tµ∂ρτµ −
1
2

Tµν∂ρhµν = 0 . (2.27)

This will be shown in Section 4.2. When we are dealing with an on-shell theory (as we are
in the case of dissipative fluids) then we simply impose (2.27) as the correct conservation
equation. This is the analogue of declaring ∇µTµν = 0 to be the conservation equation in the
relativistic case. Notice that in flat space (in Cartesian coordinates), Eq. (2.27) reproduces the
usual divergence of the energy-momentum tensor, as it is supposed to. The first term expresses
the usual divergence of the energy-momentum tensor, while the remaining terms are currents
contracted with their sources, on which a derivative acts. It thus takes the standard form
of a divergence of a current being equal to the sum of the responses times the derivative
of the sources. For completeness, we remark that the equation of motion (2.27) admits the
covariantization

∇µTµρ + Tµ∇ρτµ −
1
2

Tµσ∇ρhµσ −
�

Γµµσ − e−1∂σe
�

Tσρ + 2Γλ[µρ]T
µ
λ = 0 , (2.28)

for any choice of connection Γρµν.
It is useful to recast the equation of motion (2.27) for the perfect fluid (2.25)–(2.26), using

the thermodynamic relations (2.6), in the following form

0 = Lβ s+
s
2

hµν
�

Lβhµν − hµσuσLβτν − hνσuσLβτµ
�

, (2.29)

0 = Πρνhρλ
�

−sThλµLβτµ + uλLβρ

+
ρ

2

�

uµhκλ + uκhµλ + uλhµκ
� �

Lβhκµ − hκσuσLβτµ − hµσuσLβτκ
�

i

, (2.30)

where we introduced the spatial projector

Πρµ = δ
ρ
µ − uρτµ , (2.31)

7Contracting (2.27) with a vector kρ, we get

0= e−1∂µ
�

ekρTµρ
�

+ TµLkτµ −
1
2

TµνLkhµν ,

so if kρ is Killing (cf. Eqs. (4.2) and (4.3)), we find that 0 = e−1∂µ
�

ekρTµρ
�

, that is to say, kρTµρ is a conserved
current.
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which satisfies

Πρµuµ = 0= Πρµτρ , ΠµαΠ
α
ν = Π

µ
ν . (2.32)

Furthermore, the Lie-derivative Lβ in (2.29) and (2.30) is defined with respect to the vector

βµ = uµ/T . (2.33)

In the remainder of this section we establish some identities that will be crucial later on.
Equation (2.29) expresses entropy conservation and (2.30) represents conservation of mo-
mentum. Using that s and ρ can both be thought of as functions of T and u2 along with the
identities

uµLβτµ = −
1
T2

uµ∂µT , (2.34)

uµuνLβhµν =
1
T

uµ∂µu2 − 2
u2

T2
uµ∂µT , (2.35)

where u2 = hµνu
µuν, we can view the perfect fluid equation as providing Lβτρ in terms of

Lβhµν − hµσuσLβτν − hνσuσLβτµ, i.e.

Lβτρ =
1
2

Xρ
µν(Lβhµν − hµσuσLβτν − hνσuσLβτµ) , (2.36)

where Xρ
µν is given by

Xρ
µν =

1
sT
Πσρ

�

2
�

∂ P
∂ u2

�

s
hσλuλhµν + 2

�

∂ ρ

∂ u2

�

s
hσλuλuµuν +ρ

�

uµδνσ + uνδµσ
�

�

+τρ
1
T

�

uµuν
�

∂ ρ

∂ s

�

u2
+ hµν

�

∂ P
∂ s

�

u2

�

. (2.37)

The expression in parentheses on the RHS of (2.36) has the nice property that

Lβhµν − hµσuσLβτν − hνσuσLβτµ =
1
T

�

Luhµν − hµσuσLuτν − hνσuσLuτµ
�

, (2.38)

so that these are Lie derivatives along velocity with, notably, an absence of T derivatives.
Finally, we remark that on flat space (cf. Eq. (2.19)), this special combination reduces to

Lβhµν − hµσuσLβτν − hνσuσLβτµ
flat
→

1
T

�

hµσ∂νu
σ + hνσ∂µuσ

�

, (2.39)

which will be useful in Section 5, where – after setting up the general problem of first-order
corrections to non-boost invariant fluids – we specialize to flat space.

3 Entropy current

Going beyond perfect fluids means moving away from local thermodynamic equilibrium and
requires derivative corrections to be added to the energy-momentum tensor. We will work up
to first order in derivatives. The goal will be to identify all allowed tensorial structures whose
coefficients are known as transport coefficients. By ‘allowed’ we mean ‘allowed by symmetry’
and furthermore ‘allowed by entropy considerations’. We will impose that the fluid locally
obeys the second law of thermodynamics, and hence there must exist an entropy current Sµ

with non-negative divergence

e−1∂µ (eSµ)≥ 0 . (3.1)
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By the entropy current we mean the most general current, constructed from the fluid variables,
up to first order in derivatives such that it reduces to suµ for a perfect fluid and such that its
divergence is non-negative for all fluid configurations. The requirement that the divergence
of the entropy current is non-negative constrains the transport coefficients appearing in the
expansion of the energy-momentum tensor. In this section, we elucidate the structure of the
entropy current beyond perfect fluid order and, in particular, show that the appropriate fluid
variables on curved space involve Lie derivatives of the geometric objects τµ and hµν along

βµ = uµ
T .

The canonical part of the entropy current is obtained by covariantizing (see e.g. [2]) the
thermodynamic Euler relation (2.6)

s =
1
T
Ẽ + 1

T
P , (3.2)

leading to

Sµcan = −Tµνβ
ν + Pβµ , (3.3)

such that τµSµcan = s for a perfect fluid. However, there are generically terms present in the
entropy current that do not arise in this way: such terms form the non-canonical piece of the
entropy current, Sµnon, and we may in general write

Sµ = Sµcan + Sµnon = −Tµνβ
ν + Pβµ + Sµnon . (3.4)

Using the decomposition of the entropy current (3.4), we can recast the LHS of the second law
(3.1) as

e−1∂µ (eSµ) =
�

Tµ − Tµ(0)
�

Lβτµ −
1
2

�

Tµν − Tµν(0)
�

Lβhµν + e−1∂µ
�

eSµnon

�

, (3.5)

where we used the Gibbs-Duhem relation (2.1) as well as

−Tµ(0)Lβτµ +
1
2

Tµν(0)Lβhµν = e−1∂µ (ePβµ) , (3.6)

with the perfect fluid energy-momentum tensors Tµ(0) and Tµν(0) given in Eqs. (2.25) and (2.26).
Here, the subscript (0) indicates that these terms are zeroth order in derivatives and thus
correspond to the perfect fluid contributions.

Following the classification in refs. [25,26], we split the currents Tµ− Tµ(0) and Tµν− Tµν(0) ,
which are at least first order in derivatives, into dissipative and non-dissipative parts. The
latter are further subdivided into hydrostatic (HS) terms and non-hydrostatic (NHS) terms, to
be defined shortly, so that we find

Tµ − Tµ(0) = TµD + TµHS + TµNHS , (3.7)

Tµν − Tµν(0) = TµνD + TµνHS + TµνNHS . (3.8)

We will now define these three contributions separately. They should be thought of as inde-
pendent contributions to the energy-momentum tensor and they all have the same symmetry
properties with respect to rotations (and boosts or scale symmetries if these are present). For
example spatial rotational symmetries dictate that TµνD , TµνHS and TµνNHS are all separately sym-
metric under the interchange of µ and ν.

The dissipative terms produce entropy,

e−1∂µ (eSµ) = TµDLβτµ −
1
2

TµνD Lβhµν ≥ 0 , (3.9)
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with equality holding if and only if TµD = TµνD = 0, while the non-dissipative NHS terms by
definition obey,

TµNHSLβτµ −
1
2

TµνNHSLβhµν = 0 . (3.10)

These terms thus make a vanishing contribution to the divergence of the canonical entropy
current. Finally, the non-dissipative HS terms are defined to cancel the divergence of the non-
canonical entropy current,

e−1∂µ
�

eSµnon

�

= −TµHSLβτµ +
1
2

TµνHSLβhµν , (3.11)

and will play a major role in the next section. Note that (3.10) implies that the HS energy-
momentum tensor is only defined up the addition of NHS terms, since they will leave (3.11)
invariant. This is analogous to what happens when solving inhomogeneous differential equa-
tions, where any solution of the homogeneous equation can be added to a particular solution
of the inhomogeneous equation to obtain a new solution of the inhomogeneous equation. Be-
cause of this, there is an inherent ambiguity in HS transport. We will make a specific choice
that fixes this ambiguity as will be detailed in Sec. 4, where we construct actions for HS and
NHS transport respectively.

The goal of this work will be to classify the allowed terms appearing in the three parts: D,
HS and NHS of the energy-momentum tensor. We will start this analysis with a detailed study
of the HS and NHS terms for which it is possible to write down a Lagrangian.

4 Non-dissipative transport

In this section we study Lagrangian descriptions of non-dissipative transport. We will see in
Section 5 and Appendix B, by looking at constitutive relations, that at first order in derivatives
all non-dissipative transport coefficients can be obtained from an action. We start with the
hydrostatic partition function for fluids in thermal equilibrium. This requires curved back-
grounds admitting a Killing vector that generates time translations. We will then relax the
condition that there is a Killing vector, moving away from thermal equilibrium. This leads to
an action for HS transport. The relaxation of the presence of a Killing vector allows for more
terms to be added to the action. These extra terms all correspond to NHS transport as we will
show in the last subsection of this section.

4.1 Hydrostatic partition function

If we assume a stationary curved background MS with a time-translation symmetry generated
by H, we can write down the thermal partition function

Z = Tr
�

e−H/T
�

, (4.1)

which, provided the Aristotelian background curves sufficiently weakly compared to the mean
free path, is known as the hydrostatic partition function or the equilibrium partition function
[27,28] (see also [21] for the construction of the hydrostatic partition function in the context of
Newton–Cartan backgrounds). The time-translation symmetry implies that (4.1) gives rise to
static responses. Phrased in the language of geometry, we take the time-translation symmetry
of the background, which is described by τµ and hµν, to be generated by a timelike Killing
vector βµ, where βµ = (1,0, . . . , 0) in suitable coordinates. Timelike (and future pointing)
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means that τµβ
µ > 0. The Killing equations for an Aristotelian geometry are8

Lβτµ = 0 , (4.2)

Lβhµν = 0 . (4.3)

These conditions imply equilibrium via (2.36) as they trivially solve the leading order equations
of motion. The vector βµ leads to a preferred choice of local temperature and velocity given
by

T = 1/(τµβ
µ) (4.4)

uµ = Tβµ , (4.5)

where the velocity uµ satisfies τµuµ = 1, cf. (2.20). We see that the requirement of positive
temperature is equivalent to the requirement that βµ is future-pointing timelike, i.e. τµβ

µ > 0.
To make contact with the thermal partition function (4.1), we need to analytically continue

‘time’, which we identify with the affine parameter λt along integral curves of βµ, λt →−iλE
t .

We then compactify this to the ‘thermal circle’ by identifying λE
t ∼ λ

E
t + 1/T . In this way,

a functional integral over the Euclideanized manifold will return the partition function Z in
(4.1). Now, Z itself can be written in a derivative expansion, and by writing

SHPF = −i logZ , (4.6)

we can now also expand SHPF in derivatives

SHPF =
∑

n

S(n)HPF , (4.7)

where S(n)HPF takes the form of an integral over MS built from objects with n derivatives. With
a slight abuse of terminology, we will refer to SHPF as the hydrostatic partition function.

In order to construct the hydrostatic partition function explicitly, we need to identify the
allowed terms up to first order in derivatives taking into consideration the conditions of ther-
mal equilibrium on a curved background imposed by the Killing equation. The first Killing
equation (4.2) can be written as

T−1∂µT − uν
�

∂ντµ − ∂µτν
�

= 0 , (4.8)

while the second Killing equation (4.3) can be written as

Luhµν −
uρ

T
hρν∂µT −

uρ

T
hρµ∂νT = 0 . (4.9)

By contracting (4.8) with uµ and vµ we obtain

0 = uµ∂µT , (4.10)

0 = T−1vµ∂µT + uµLvτµ . (4.11)

Contracting (4.9) with vµvν gives nothing as a result of the fact that hµν has one zero eigen-
value with eigenvector vµ. Contracting with uµuν, vµuν and hµν leads to

0 = uµ∂µu2 , (4.12)

8The field hµν is constrained to have one zero eigenvalue, so one can write it as hµν = δabea
µ
eb
ν

in terms of
unconstrained spatial vielbeins. Since the latter transform under local rotations, the Killing vector equation (4.3)
can equivalently be written as

Lβ ea
µ
= λa

beb
µ

,

where λa
b = −λb

a is an infinitesimal local rotation.
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0 =
1
2

vµ∂µu2 −
1
2

uµuνLvhµν + u2uµLvτµ , (4.13)

0 = e−1∂µ (euµ) , (4.14)

where we defined u2 = hµνu
µuν.

In order to construct the hydrostatic partition function SHPF, we write down the most gen-
eral expansion in derivatives of the background fields τµ and hµν under the assumption that
the Killing equations (4.2) and (4.3) are obeyed. At zeroth order in derivatives, we can build
two scalars,

T , u2 . (4.15)

At first order, taking into account the relations (4.10)–(4.14), there are two independent one-
derivative scalars, which we can take to be

vµ∂µT , vµ∂µu2 . (4.16)

Scalars such as uµ∂µT , uµ∂µu2, e−1∂µ (euµ), uµLvτµ, uµuνLvhµν are either zero or related to
(4.16) via the relations (4.10)–(4.14), possibly using partial integration. Furthermore, scalars
such as hµνu

µLvuν, hµνLuhµν and hµνLvhµν do not lead to anything new as they can be rewrit-
ten in terms of (4.16). Up to first order, we therefore obtain

SHPF =

∫

dd+1 xe
�

P(T, u2) + F1(T, u2)vµ∂µT + F2(T, u2)vµ∂µu2
�

+O(∂ 2) , (4.17)

where the functions P, F1 and F2 are all arbitrary functions of T and u2.
Since the background is stationary we can use adapted coordinates (known as ‘static gauge’

in [21]), where we choose a time direction t such that the Killing vector βµ is given by βµ = δµt .
As βµ is Killing, the tensors τµ and hµν are independent of t. Thus, in these coordinates the
fluid velocity uµ is given by9 uµ = T (x)δµt , where the temperature T only depends on x i with
i = 1, . . . , d and not on t.

The Euclideanized background has the structure of a fiber bundle, where the thermal circle
is fibered over the spatial base (see also [21]). We can then perform a timelike Kaluza–Klein
reduction of our Aristotelian geometry to arrive at SHPF in terms of fields that are uncon-
strained by the Killing equations. In particular, in our adapted coordinates τµ and hµν can be
parameterized as

τµd xµ = N(d t − Aid x i) , (4.18)

hµνd xµd xν = σi j

�

d x i + X i(d t − A)
� �

d x j + X j(d t − A)
�

. (4.19)

The metricσi j is invertible and has signature (1, . . . , 1). This parameterization makes manifest
that hµν has one zero eigenvalue. The integration measure e is e = N

p
σ where σ = detσi j .

Further, the 1-form A= Aid x i is a Kaluza–Klein type gauge connection in that δt = Λ(x) and
δAi = ∂iΛ leave the parameterization invariant. The other fields N , X i and σi j , which depend
on x i but not on t, are thus all gauge invariant. Since τµuµ = 1 with uµ = T (x)δµt it must be
that T = N−1. Finally, the vector vµ satisfying τµvµ = −1 is given by

vµ = −N−1δ
µ
t + N−1X i

�

δ
µ
i + Aiδ

µ
t

�

. (4.20)

We can now ask again what are the invariant scalars up to first order in derivatives. These
have to be gauge invariant under the Kaluza–Klein gauge transformation δAi = ∂iΛ. At zeroth

9Note that since uµ∝ δ
µ
t , we are in a comoving frame.
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order in derivatives, we find N and X 2 = σi jX
iX j , so that at first order in derivatives we can

build two scalars
X i∂iN , X i∂iX

2 . (4.21)

We thus obtain the hydrostatic partition function

S =

∫

Σ

dd x
p
σ
�

P̃(N , X 2) + G1(N , X 2)X i∂iN + G2(N , X 2)X i∂iX
2
�

. (4.22)

A term such as G3(N , X 2)∂i

�p
σX i

�

can be absorbed into the G1 and G2 terms after partial
integration. Likewise, a term such as G4(N , X 2)

p
σσi jLXσi j , where σi j is the inverse of σi j ,

can be written as 2G4(N , X 2)∂i

�p
σX i

�

so that this, too, is nothing new. Thus we see that
this line of reasoning leads to the same hydrostatic partition function as in (4.17). For ease of
comparing (4.22) and (4.17) we note that the vanishing of uµ∂µT , uµ∂µu2 and ∂µ (euµ) follows
immediately from the t-independence of the fields involved in the Kaluza–Klein reduction.
Furthermore one observes that evµ∂µF =

p
σX i∂i F where F is any function of T = N−1 and

u2 = N−2X 2. We can now set (4.22) and (4.17) equal to each other and in principle read off
the 1-1 relation between the sets of functions {P, F1, F2} and {P̃, G1, G2}.

4.2 Action for hydrostatic non-dissipative transport

In order to compute transport coefficients using (4.17), we will drop the restriction to station-
ary configurations – that is to say, we relax the requirement that βµ is Killing. This will lead
to an action for the hydrostatic non-dissipative transport coefficients10 This is related to the
discussion below equation (3.7) in the following way. As we will show, the energy-momentum
tensor obtained by varying the geometric variables in the action that follows from the hydro-
static partition function without the condition that βµ is Killing, is equal to the HS part of the
energy-momentum tensor as defined in equation (3.11).

We now have geometric variables τµ and hµν and fluid variables βµ. However as shown
in [26] we cannot freely vary βµ. Instead we think of it as being described in terms of funda-
mental variables whose variation is such that we vary βµ under a diffeomorphism. We thus
obtain the fluid equations of motion via diffeomorphism invariance, i.e.

δξSHS =

∫

M
dd+1 x e

�

−Tµδξτµ +
1
2

Tµνδξhµν + Fµδξβ
µ

�

= 0 . (4.23)

Here SHS is the same action as in (4.17) except that now βµ is no longer a Killing vector, and
Fµ is the response to varying βµ under diffeomorphisms. Setting the diffeomorphism variation
to zero for any ξµ leads to the off-shell diffeomorphism Ward identity,

e−1∂µ
�

eTµρ
�

+ Tµ∂ρτµ −
1
2

Tµν∂ρhµν = Fµ∂ρβ
µ + e−1∂µ(eFρβ

µ) , (4.24)

where we recall Tµν = −Tµτν+Tµρhρν. Using that the fluid equations of motion follow from
a diffeomorphism transformation of βµ we see that on shell the left- and right-hand side vanish
separately. We conclude that in order to compute the energy-momentum tensor we vary τµ
and hµν keeping βµ fixed, and furthermore that the on-shell energy-momentum conservation
equation is given by

e−1∂µ
�

eTµρ
�

+ Tµ∂ρτµ −
1
2

Tµν∂ρhµν = 0 , (4.25)

10In terms of the classification of [25, 26], the non-dissipative transport coefficients considered in this section
are class L= HS ∪ H̄S , i.e. those that have a Lagrangian description.
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as stated before in Eq. (2.27).
We now first show that we can reproduce the perfect fluid equations of motion on an

arbitrary curved background as discussed in Section 2.3. To this end we consider the action
up to zeroth order in derivatives, i.e.

S(0) =

∫

M
dd+1 x eP(T, u2) , (4.26)

with P the pressure as we will see a posteriori. Since we vary the background sources keeping
βµ fixed, we have δT = −Tuµδτµ and δuµ = −uµuρδτρ. Using further that
δe = e

�

−vµδτµ +
1
2hµνδhµν

�

. We then find

Tµ(0) = Pvµ +
�

∂ P
∂ T

�

u2
Tuµ + 2

�

∂ P
∂ u2

�

T
u2uµ , (4.27)

Tµν(0) = Phµν + 2
�

∂ P
∂ u2

�

T
uµuν . (4.28)

Using the thermodynamic relations
�

∂ P
∂ T

�

u2 = s,
�

∂ P
∂ u2

�

T =
1
2ρ, sT = Ẽ+P as well as the relation

(2.21) between vµ and uµ, we recover the perfect fluid energy-momentum tensor (2.25) and
(2.26).

Let us next consider the first order derivative terms in (4.17). We will denote the first order
part of the action by S(1), i.e.

S(1) =

∫

dd+1 xe
�

F1(T, u2)vµ∂µT + F2(T, u2)vµ∂µu2
�

. (4.29)

We thus have SHS = S(0) + S(1).
It is well known that when we introduce derivative corrections, the notion of temperature

and velocity can undergo field redefinitions whereby two equally valid definitions of tempera-
ture and velocity can differ by derivatives of the fluid variables. Such redefinitions are known
as hydrodynamical frame transformations and choosing a certain set of fluid variables corre-
sponds to choosing a hydro frame. We will present our final results in Landau frame, which is
defined by declaring that the full (all order in derivatives) energy-momentum tensor is such
that

Tµνu
ν = −Ẽuµ , (4.30)

where −Ẽ is the unique negative eigenvalue of the energy-momentum tensor which is taken
to be equal to its perfect fluid value. The corresponding eigenvector uµ is used to define the
velocity. This equation does not fix the normalization of uµ. The choice of eigenvalue and of
eigenvector (up to rescaling) are thus d +1 conditions that can be used to fix the definition of
T and uµ. As in (2.20), we will choose the normalization τµuµ = 1.

When including the first order derivatives in the action SHS and computing the energy-
momentum tensor by variation, we do not end up with a Landau frame expression. We will
refer to the frame in which SHS is written as the Lagrangian frame, and to indicate this frame
dependence we will write the variation of S(1) as

δS(1) =

∫

M
dd+1 x e

�

−T µ(1)δτµ +
1
2
T µν(1) δhµν

�

, (4.31)

i.e. we denote the responses with calligraphic T . The total energy-momentum tensor must be
frame-independent, so we have the equation

T µ(0) + T µ(1) = Tµ(0) + Tµ(1)HS , (4.32)
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T µν(0) + T µν(1) = Tµν(0) + Tµν(1)HS , (4.33)

where the left hand side is in Lagrangian frame and is computed by variation of the action,
while the right-hand side is in any frame – for example in Landau frame. The right hand side
is computed by applying a frame transformation to the left hand side and arranging the result
according to the number of derivatives. At perfect fluid order the expressions look the same,
but they are written with respect to different choices of T and uµ.

Let us next compute the variation of the first derivative terms in the action (4.29). Using
δvλ = vλvµδτµ − hλ(µvν)δhµν, we obtain

T µ(1) = uµ
��

∂ F1

∂ u2

�

T
−
�

∂ F2

∂ T

�

u2

�

(2u2vλ∂λT − T vλ∂λu2) + uµK(T F1 + 2u2F2) ,(4.34)

T µν(1) =
�

hµνvλ − hλµvν − hλνvµ
� �

F1∂λT + F2∂λu2
�

+2
��

∂ F1

∂ u2

�

T
−
�

∂ F2

∂ T

�

u2

�

uµuνvλ∂λT + 2F2Kuµuν , (4.35)

where K is the trace of the extrinsic curvature defined in equation (2.15). Combining these
according to T µ(1)ν = −T

µ

(1)τν + T µρ(1) hρν yields the first order part of the energy-momentum
tensor in Lagrangian frame,

T µ(1)ν =
�

2vλuµhσρΠ
σ
νu
ρ

��

∂ F1

∂ u2

�

T
−
�

∂ F2

∂ T

�

u2

�

+ 2F1v[λhµ]ρhρν

�

∂λT

+
�

vλuµτνT
��

∂ F1

∂ u2

�

T
−
�

∂ F2

∂ T

�

u2

�

+ 2F2v[λhµ]ρhρν

�

∂λu2

−TuµτνF1K + 2F2KuµΠσνhσρuρ . (4.36)

This should be added to the perfect fluid energy-momentum tensor

T µ(0)ν = −
�

Ẽ + P +ρu2
�

uµτν +ρuµuρhρν + Pδµν , (4.37)

coming from the variation of S(0).
In Appendix A we work out the transformation from any frame to Landau frame, indicated

by primed variables. Using the results from that appendix we obtain in Landau frame that

Tµ(1)HSν = Tµρ(1)HShρσΠ
′σ
ν , (4.38)

where we remind the reader that Tµρ(1)HS is computed using (4.33). This gives

Tµρ(1)HS = T κ(1)λΠ
′σ
κ

u′λ

s′T ′

�

ρ′
�

u′µδρσ + u′ρδµσ
�

+ 2u′σ

�

hµρ
�

∂ P ′

∂ u′2

�

s′
+ u′µu′ρ

�

∂ ρ′

∂ u′2

�

s′

��

+ T µρ(1) + T σ(1)ντσ
u′ν

T ′

�

u′µu′ρ
�

∂ ρ′

∂ s′

�

u′2
+ hµρ

�

∂ P ′

∂ s′

�

u′2

�

,

(4.39)
with the prime denoting Landau frame fluid variables. We defined u′σ = hσκu′κ. Terms such
as T µρ(1) are given in (4.35), but where we must replace the T and uµ by T ′ and u′µ.

We will drop the primes and use the relations

∂µT = −T2Lβτµ − Tuρτµρ , (4.40)

∂µu2 = Tuν
�

Lβhµν − uµLβτν − uνLβτµ
�

− u2uρτµρ − uρωρµ , (4.41)

where τµν is the torsion 2-form defined in (2.18) and where ωρµ = ∂ρuµ − ∂µuρ. Using the
equations of motion (2.37) to eliminate Lβτµ derivatives, allows us to write

Tµν(1)HS =
1
2
η
µναβ
HS

�

Lβhαβ − uαLβτβ − uβLβτα
�

+
1
2
η
µναβ
tor ταβ
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+
1
2
η
µναβ
rot ωαβ +

1
2
η
µναβ
ext Kαβ , (4.42)

where Kαβ is the extrinsic curvature introduced in (2.13). In obtaining this result we have
also used the following relation

vµωµν = T vµ
�

Lβhµν − uµLβτν − uνLβτµ
�

− uνu
ρvµτµρ − 2uρKνρ .

(4.43)

This was done in order to make ηµναβrot = −ηµνβαrot spatial in its last two indices (to avoid
ambiguities among some of the η tensors as a result of (4.43)), i.e. ταη

µναβ
rot = 0.

The ηµναβHS tensor that features in (4.42) can be written as11

η
µναβ
HS = J1hµνhαβ +J2uµuνuαuβ + 4J3v(µhν)(αvβ) +

1
2
J4(h

µνuαuβ + hαβuµuν)

+J5(h
µνu(αvβ) + hαβu(µvν)) +J6(u

µuνu(αvβ) + uαuβu(µvν))

+2J7(v
(µhν)(αuβ) + v(αhβ)(µuν)) +

1
2
A1(h

µνuαuβ − hαβuµuν)

+A2(h
µνu(αvβ) − hαβu(µvν)) +A3(u

µuνu(αvβ) − uαuβu(µvν))

+2A4(v
(µhν)(αuβ) − v(αhβ)(µuν)) , (4.44)

where the eleven scalars J1,...,7,A1,2,3,4 are given by

J1 =
T
s

F1

�

s
�

∂ P
∂ s

�

u2
− 2u2

�

∂ P
∂ u2

�

s

�

, (4.45)

J2 =
2
s

F2

�

s
�

∂ ρ

∂ s

�

u2
− 2u2

�

∂ ρ

∂ u2

�

s
− 2ρ

�

+
4u2

s
fA

�

∂ ρ

∂ u2

�

s

−
2
s

fB

�

s
�

∂ ρ

∂ s

�

u2
− 2ρ

�

, (4.46)

J3 = −T F2 , (4.47)

J4 =
T
s

F1

�

s
�

∂ ρ

∂ s

�

u2
− 2u2

�

∂ ρ

∂ u2

�

s
− 2ρ

�

,

+
2
s
(F2 − fB)

�

s
�

∂ P
∂ s

�

u2
− 2u2

�

∂ P
∂ u2

�

s

�

, (4.48)

J5 =
T
s

F1

�

2
�

∂ P
∂ u2

�

s
−ρ

�

+ 2F2

��

∂ P
∂ s

�

u2
+ T

�

− 2 fA

�

∂ P
∂ s

�

u2
, (4.49)

J6 =
2T
s

F1

�

∂ ρ

∂ u2

�

s
+

2
s

F2

�

s
�

∂ ρ

∂ s

�

u2
−ρ

�

− 2 fA

�

∂ ρ

∂ s

�

u2
+

2ρ
s

fB , (4.50)

J7 =
ρT
s

F1 − T F2 , (4.51)

A1 = −
4ρ
s

F1

�

∂ P
∂ s

�

u2
+

T F1

s

�

s
�

∂ ρ

∂ s

�

u2
− 2u2

�

∂ ρ

∂ u2

�

s
− 2ρ

�

+
4u2

s
F1

��

∂ P
∂ u2

�

s

�

∂ ρ

∂ s

�

u2
−
�

∂ ρ

∂ u2

�

s

�

∂ P
∂ s

�

u2

�

+
2
s
(F2 + fB)

�

s
�

∂ P
∂ s

�

u2
− 2u2

�

∂ P
∂ u2

�

s

�

, (4.52)

A2 = −
F1

s

�

ρT + 2ρ
�

∂ P
∂ s

�

u2
+ 2T

�

∂ P
∂ u2

�

s

�

+ 2F2

��

∂ P
∂ s

�

u2
+ T

�

11Note that Tµν(1)HS in (4.42) is only defined up to terms proportional to vµvν, since vµvνδhµν = 0.
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−2 fA

�

∂ P
∂ s

�

u2
, (4.53)

A3 = −2
F1

s

�

ρ

�

∂ ρ

∂ s

�

u2
+ T

�

∂ ρ

∂ u2

�

s

�

+ 2F2

�

∂ ρ

∂ s

�

u2
+

2ρ
s

F2 − 2 fA

�

∂ ρ

∂ s

�

u2

+
2ρ
s

fB , (4.54)

A4 = J7 , (4.55)

where we defined the recurring combinations

fA := T
��

∂ F2

∂ T

�

u2
−
�

∂ F1

∂ u2

�

T

�

, fB := T
��

∂ F2

∂ T

�

u2
−
�

∂ F1

∂ T

�

u2

�

. (4.56)

The coefficients Ji make up the symmetric part of ηµναβHS under the interchange of µν and αβ

while the coefficients Ai make up the anti-symmetric part of ηµναβHS . The remaining η tensors
in (4.42) are given by

η
µναβ
tor = 2

�

1
T

�

T F1 + 2u2F2

�

��

∂ P
∂ s

�

u2
+ T

�

−
2u2

T

�

∂ P
∂ s

�

u2
fA

�

hµνu[αvβ]

+
2
T

�

�

T F1 + 2u2F2

�

�

∂ ρ

∂ s

�

u2
− 2u2

�

∂ ρ

∂ s

�

u2
fA− 2T fB

�

uµuνu[αvβ]

+4(T F1 + u2F2)v
(µhν)[αuβ] − 4F2v(µuν)u[αvβ] (4.57)

η
µναβ
rot = −4F2v(µhν)[αhβ]σhσκuκ , (4.58)

η
µναβ
ext = −2

�

F1

�

∂ ρ

∂ s

�

u2
− 2F2

�

uµuνhαβ − 2F1

�

∂ P
∂ s

�

u2
hµνhαβ + 8F2v(µhν)(αuβ)

−
4
T

�

F2

��

∂ P
∂ s

�

u2
+ T

�

− fA

�

∂ P
∂ s

�

u2

�

hµνuαuβ

−
4
T
(F2 − fA)

�

∂ ρ

∂ s

�

u2
uµuνuαuβ . (4.59)

An important consistency check for these results is performed in Section 5.6, where we
show that these expressions recover the results of [11] in the limit of linearized perturbations
around a fluid at rest. Equation (4.42) is the main result of this subsection. We will next discuss
how this is related to the non-canonical entropy current as it should via the frame-independent
definition (3.11).

4.3 Non-canonical entropy current

In the previous subsection, we obtained explicit expressions for the contributions to the energy-
momentum tensor that arise from the action SHS. As discussed in Section 3, the HS part of the
energy-momentum tensor is related to the divergence of the non-canonical part of the entropy
current, cf. (3.11). The goal of this subsection is to show that there exists a non-canonical
entropy current whose divergence obeys (3.11) where the energy-momentum tensor is the one
we just obtained. The result for the non-canonical entropy current is given in equation (4.72)
where we used the definitions (4.68) and (4.69).

In Appendix B we show that the converse is also true, i.e. starting from the most general
non-canonical entropy current and demanding that its divergence obeys (3.11), where the
energy-momentum tensor is the most general one allowed by symmetries, we find (using only
on-shell relations) that the non-canonical entropy current is (up to terms that are identically
conserved) precisely of the form as given in (4.70) and (4.72). The analysis in Appendix B has
been restricted to flat space but we expect the result to generalize to any curved background.
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In the Lagrangian frame, the divergence of the non-canonical entropy current (3.11) must
obey

e−1∂µ

�

eSµ(1)non

�

= −T µ(1)Lβτµ +
1
2
T µν(1) Lβhµν , (4.60)

where T µ(1) and T µν(1) are given in (4.34) and (4.35). This can be solved for Sµ(1)non up to iden-
tically conserved currents, leading to

Sµ(1)non = −
1
T

vµF1uρ∂ρT +
1
T

uµF1vρ∂ρT −
1
T

vµF2uρ∂ρu2 +
1
T

uµF2vρ∂λu2 . (4.61)

The total entropy current (3.4) in the Lagrangian frame can be written as
Sµ = suµ − T µ(1)νβ

ν + Sµ(1)non where we have split the contributions from the zeroth order
derivative terms, which is just the perfect fluid result suµ, from the terms containing first order
derivatives. Substituting the result obtained in the previous subsection for T µ(1)ν (see equation
(4.36)) and using (4.61) we obtain for the full entropy current in Lagrangian frame,

Sµ = suµ − uµF1e−1∂ρ (evρ) + uµ
�

∂ F2

∂ T
−
∂ F1

∂ u2

�

vρ∂ρu2 . (4.62)

One may at this point object that the full entropy current could also receive contributions from
the dissipative sector of transport. We will show next that in the Lagrangian frame only the
HS sector contributes to the entropy current.

To show this we first observe that in Landau frame (denoted here by a prime just like in
Apppendix A) the total entropy current (3.4) is given by

Sµ = s′u′µ + Sµ(1)non , (4.63)

simply because Landau frame is equivalent to demanding that the canonical entropy current is
that of a perfect fluid, i.e. Tµ(1)νβ

ν ∼ Tµ(1)νu
ν = 0 by definition. If we next take the Lagrangian

frame result (4.62) and we transform it to Landau frame using (A.8) and (A.9) we obtain
(4.63) with Sµ(1)non as given in (4.61) (written in terms of primed variables). In other words
the Lagrangian frame entropy current is the same as the total entropy current (4.63) and so
since the total entropy current is frame independent it must be that (4.62) equals the total
entropy current.

In Landau frame the right hand side of equation (3.11) can be written as

e−1∂µ

�

eSµ(1)non

�

=
1

2T
Tµν(1)HS

�

Luhµν − uνLuτµ − uµLuτν
�

, (4.64)

where uµ = hµνu
ν and where Tµν(1)HS is the Landau frame expression for the HS contributions

to Tµν(1) . This was computed in the previous subsection in (4.39). As a consistency check we
will explicitly verify that this is indeed the case.

To first order in derivatives, we can rewrite the right hand side of (4.60) in terms of u′

rather than u, and using the relation

−T µ(1) = T µ(1)νu
′ν − T µρ(1) hρνu

′ν , (4.65)

we find that

e−1∂µ

�

eSµ(1)non

�

= T µ(1)ρu′ρLβ ′τµ +
1
2
T µν(1)

�

Lβ ′hµν − hνρu′ρLβ ′τµ − hµρu′ρLβ ′τν
�

. (4.66)

Dropping the prime and using the perfect fluid equations of motion in the form (2.36), we can
replace the Lβτµ by Lβhµν − hνρuρLβτµ − hµρuρLβτν terms, so that we obtain (4.64) with

Tµν(1)HS = T µν(1) + T ρ(1)σuσXρ
µν , (4.67)
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where Xρ
µν is given in (2.37) and where Tµν(1)HS is in Landau frame as can be seen by comparing

to (4.39).
In Appendix B we start with a constitutive relation for the non-canonical entropy current

as well as the energy-momentum tensor on flat space and we work entirely on shell. We then
show that without making any assumptions about the nature of the non-canonical entropy
current and the energy-momentum tensor other than their constitutive relations that equation
(3.11) forces the non-canonical entropy current to be of the same form as derived in this
subsection. In Appendix B the functions F1 and F2 are replaced by F and G which are defined
as

F1 = T
�

∂ G
∂ T

�

u2
, (4.68)

F2 = T
�

∂ G
∂ u2

�

T
+

T
u2

F . (4.69)

This allows us to write (4.61) as

Sµ(1)non = (−vµuρ + uµvρ)
�

∂ρG +
1
u2

F∂ρu2
�

. (4.70)

Using that

e−1∂ρ [e (−vµuρ + uµvρ)G] = Ge−1∂ρ [e (−vµuρ + uµvρ)] + (−vµuρ + uµvρ)∂ρG , (4.71)

is identically conserved, we find

Sµ(1)non = Ge−1∂ρ [e (v
µuρ − uµvρ)]−

1
u2

F (vµuρ − uµvρ)∂ρu2 . (4.72)

The flat space version of this is precisely equation (B.17).

4.4 Action for non-hydrostatic non-dissipative transport

In Section 4.2 we dropped the condition that βµ is a Killing vector and used the hydrostatic
partition function to find an action for hydrostatic non-dissipative transport. Once we drop
the condition that βµ is Killing we can add more terms to the action at first order in derivatives
because we can no longer use the Killing equations to relate various derivatives. These extra
terms can be obtained by looking at all scalars one can construct from the Lie derivatives of τµ
and hµν. These are listed in equations (4.10)–(4.14). We can multiply each of these scalars by
an arbitrary function forming new scalar terms that can be added to the action SHS. Using the
freedom to perform partial integrations we can drop the last term of the form F̃ e−1∂µ (euµ).
This leads to 4 additional terms each multiplied by one of the functions F3 to F6. The full first
order action becomes

S(1) =

∫

dd+1 x e
�

F1vµ∂µT + F2vµ∂µu2 + F3uµ∂µT + F4uµ∂µu2 + F5uµLvτµ

+F6uµuνLvhµν
�

. (4.73)

The additional contributions to the energy current and stress tensor (in Lagrangian frame)
due to the novel F3 to F6 contributions to the action are

T µF1
=

�

∂ F1

∂ u2

�

T
uµ(2u2vλ∂λT − T vλ∂λu2) + T F1uµK , (4.74)

T µF2
= −

�

∂ F2

∂ T

�

u2
uµ(2u2vλ∂λT − T vλ∂λu2) + 2u2F2uµK , (4.75)
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T µF3
= F3(u

µ + vµ)uρ∂ρT − T F3uµe−1∂ρ(euρ)

−
�

∂ F3

∂ u2

�

T
uµ(Tuρ∂ρu2 − 2u2uρ∂ρT ) , (4.76)

T µF4
= F4(u

µ + vµ)uρ∂ρu2 − 2u2F4uµe−1∂ρ(euρ)

+
�

∂ F4

∂ T

�

u2
uµ(Tuρ∂ρu2 − 2u2uρ∂ρT ) , (4.77)

T µF5
= uµuσvρτρσ

�

T
�

∂ F5

∂ T

�

u2
+ 2u2

�

∂ F5

∂ u2

�

T
+ F5

�

− F5Kuµ

−F5e−1∂ρ (euρ) vµ − F5Luvµ + uµvρ∂ρF5 − vµuρ∂ρF5 , (4.78)

T µF6
= −2uµuρuσKρσ

�

T
�

∂ F6

∂ T

�

u2
+ 2u2

�

∂ F6

∂ u2

�

T
+ 2F6

�

, (4.79)

T µνF1
= F1

�

hµνvλ − hλµvν − hλνvµ
�

∂λT + 2
�

∂ F1

∂ u2

�

T
vλ∂λTuµuν , (4.80)

T µνF2
= F2

�

hµνvλ − hλµvν − hλνvµ
�

∂λu2 + 2F2Kuµuν − 2
�

∂ F2

∂ T

�

u2
vλ∂λTuµuν , (4.81)

T µνF3
=

�

F3hµν + 2
�

∂ F3

∂ u2

�

T
uµuν

�

uρ∂ρT , (4.82)

T µνF4
= F4hµνuρ∂ρu2 − 2

�

∂ F4

∂ T

�

u2
uµuνuρ∂ρT − 2F4uµuνe−1∂ρ(euρ) , (4.83)

T µνF5
= F5uσ (hµνvρ − hρµvν − hρνvµ)τρσ + 2

�

∂ F5

∂ u2

�

T
uµuνuσvρτρσ , (4.84)

T µνF6
= −2F6hµνuρuσKρσ − 4

�

∂ F6

∂ u2

�

T
uµuνuρuσKσρ − 2F6hλ(µvν)

�

∂λu2 − 2uσLuhσλ
�

+4F6u(µLuvν) + 2
�

2uλu(µvν) − uµuνvλ
�

��

∂ F6

∂ T

�

u2
∂λT +

�

∂ F6

∂ u2

�

T
∂λu2

�

+4F6u(µvν)e−1∂λ(euλ) + 2F6uµuνK , (4.85)

where for completeness we have included the F1 and F2 parts as well. These were already
derived earlier in equations (4.34) and (4.35). In writing the F6 part of T µν we used the
freedom to remove a term proportional to vµvν.

We will next rewrite these expressions by writing them in terms of Lβhµν and Lβτµ. Using
equations (4.40), (4.41), (4.43) and

e−1∂µ(euµ) =
T
2

hρσ
�

Lβhρσ − 2uρLβτσ
�

, (4.86)

Luvµ = uµuρvντνρ − Thµνvρ
�

Lβhνρ − uνLβτρ
�

, (4.87)

where we remind the reader that uµ = hµνu
ν and ωµν = ∂µuν−∂νuµ. In general, T µ and T µν

take the following form

T µ = χµνLβτν +
1
2
ΣµνρLβhνρ +

1
2
Σ
µνρ
ext Kνρ , (4.88)

T µν =∆µνρLβτρ +
1
2
η̃µνρσLβhρσ +

1
2
η̃
µνρσ
rot ωρσ +

1
2
η̃
µνρσ
ext Kρσ +

1
2
η̃
µνρσ
tor τρσ , (4.89)

where Σµνρ = Σµρν, ∆µνρ = ∆νµρ, η̃µνρσ = η̃νµρσ = η̃µνσρ and similarly for the other
tensors. We find that

Σ
µνρ
ext = 2

�

T F1 − F5 + 2u2F2

�

uµhνρ

−4
�

T
∂

∂ T
(F2 + F6)−

∂

∂ u2

�

T F1 − F5 − 2u2F6

�

�

uµuνuρ , (4.90)
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η̃
µνρσ
rot = 4(F2 + F6)v

(µhν)[σhρ]λhλκuκ , (4.91)

η̃
µνρσ
ext = 4(F2 + F6)

�

2v(µhν)(ρuσ) + uµuνhρσ − hµνuρuσ
�

, (4.92)

η̃
µνρσ
tor = 4

�

T
∂

∂ T
(F2 + F6)−

∂

∂ u2
(T F1 − F5 − 2u2F6)

�

uµuνv[ρuσ] + 4(F2 + F6)u
(µvν)v[ρuσ]

−2
�

T F1 − F5 + 2u2F2

�

hµνv[ρuσ] + 4
�

T F1 − F5 + u2(F2 − F6)
�

v(µhν)[ρuσ] , (4.93)

where as usual we dropped vµvν terms and where we defined η̃µνρσrot = −η̃µνσρrot such that
τρη̃

µνρσ
rot = 0 in order that (4.43) does not lead to any ambiguities among the various tensors.

Furthermore we find that

χµν = 2T
�

F5 + T
�

∂ F5

∂ T

�

u2
+ 2u2

�

∂ F5

∂ u2

�

T
− 2u2F4 − T F3

�

v[µuν] , (4.94)

η̃µνρσ − η̃ρσµν = 4T (F2 − F6)
�

hµνu(ρvσ) − hρσu(µvν)
�

+4T (3F6 − F2)
�

v(µhν)(ρuσ) − v(ρhσ)(µuν)
�

+4T F4 (h
µνuρuσ − hρσuµuν)

+16T
�

∂ F6

∂ u2

�

T

�

uρuσu(µvν) − uµuνu(ρvσ)
�

, (4.95)

η̃µνρσ + η̃ρσµν = 4T (F2 + F6)
�

− 2v(µhν)(ρvσ) +
�

hµνv(ρuσ) + hρσu(µvν)
�

−
�

v(µhν)(ρuσ) + v(ρhσ)(µuν)
�

�

, (4.96)

∆µνρ −Σρµν = 2T
�

T F1 − F5 + u2(F2 − F6)
�

hρ(µvν) − T
�

T F1 − F5 + 2u2F2

�

vρhµν

+2T (F2 + F6)(v
ρ + uρ)u(µvν) + 2T2 ∂

∂ T
(F2 + F6)

�

vρuµuν − 2uρu(µvν)
�

−2T
∂

∂ u2
(T F1 − F5 − 2u2F6)

�

vρuµuν − 2uρu(µvν)
�

, (4.97)

∆µνρ +Σρµν = 2T
�

T F1 + F5 + 2u2F2 − u2(F2 + F6)
�

hρ(µvν) − T
�

T F1 + F5 + 2u2F2

�

vρhµν

+2T (F2 + F6)v
ρu(µvν) − 2T (T F3 + 2u2F4)u

ρhµν

+4T
�

F4 + T
�

∂ F4

∂ T

�

u2
− T

�

∂ F3

∂ u2

�

T

�

uρuµuν

+2T
�

−
∂

∂ u2

�

T F1 + F5 − 2u2F6

�

+ T
∂

∂ T
(F2 + F6) + 2F4

�

vρuµuν

+2T
�

−2
∂

∂ u2

�

T F1 − F5 + 2u2F6

�

+ 2T
∂

∂ T
(F2 − F6) + F2 + F6

�

uρu(µvν) ,

(4.98)

where we have discarded terms in T µν proportional to vµvν.
As we have seen in Section 3 the NHS terms are defined as those contributions to the

energy-momentum tensor for which

−T µLβτµ +
1
2
T µνLβhµν = 0 . (4.99)

Using equations (4.88) and (4.89) we can see that for this to be the case it is necessary that
Σ
µνρ
ext , η̃µνρσrot , η̃µνρσext and η̃µνρσtor all vanish. The χµν is anti-symmetric so there are no Lβτµ

squared contributions to (4.99). The condition η̃µνρσ + η̃ρσµν = 0 guarantees that the η̃µνρσ

is anti-symmetric under the interchange of the first pair of symmetric indices with the second
pair of symmetric indices ensuring that there are no Lβhµν squared contributions to (4.99).
Finally, cancellation of the cross terms LβhµνLβτρ requires that we set ∆µνρ −Σρµν = 0. As
one can see by inspection all of these conditions will be obeyed provided we set

F1 =
1
T

�

F5 + 2u2F6

�

, F2 = −F6 . (4.100)

23

https://scipost.org
https://scipost.org/SciPostPhys.9.2.018


SciPost Phys. 9, 018 (2020)

We thus conclude that when (4.100) holds, equation (4.99) holds off shell. Setting F1 and F2
equal to their NHS values we obtain the following action for pure NHS transport at first order

SNHS =

∫

dd+1 xe
�

F3uµ∂µT + F4uµ∂µu2 − T F5vµLβτµ − 2T F6uµvνLβhµν
�

. (4.101)

The NHS currents are then schematically

T µNHS =
6
∑

i=1

T µFi
|F1=T−1F5+2T−1u2F6 ; F2=−F6

, (4.102)

T µνNHS =
6
∑

i=1

T µνFi
|F1=T−1F5+2T−1u2F6 ; F2=−F6

. (4.103)

On shell and in Landau frame we have for T µ =
∑6

i=1 T
µ

Fi
and T µν =

∑6
i=1 T

µν
Fi

that

TµνHS + TµνNHS = T µν + T ρσuσXρ
µν − T ρXρ

µν =
1
2
ηµναβ

�

Lβhαβ − uαLβτβ − uβLβτα
�

+
1
2
η
µναβ
rot ωαβ +

1
2
η
µναβ
ext Kαβ +

1
2
η
µναβ
tor ταβ , (4.104)

where we remind the reader that Tµν is defined in equation (4.33). In here the tensors are
given by

ηµναβ = η̃µναβ +
�

−Σραβ + η̃ρσαβuσ
�

Xρ
µν + (∆µνρ + η̃µνρσuσ)Xρ

αβ

+
�

−χρσ +
�

∆ρλσ −Σρλσ
�

uλ + η̃
ρκσλuκuλ

�

Xρ
µνXσ

αβ , (4.105)

η
µναβ
rot = η̃

µναβ
rot + η̃ρσαβrot uσXρ

µν , (4.106)

η
µναβ
ext = η̃

µναβ
ext + η̃ρσαβext uσXρ

µν −Σραβext Xρ
µν , (4.107)

η
µναβ
tor = η̃

µναβ
tor + η̃ρσαβtor uσXρ

µν . (4.108)

The pure NHS part in Landau frame is given by

TµνNHS =
1
2
η
µναβ
NHS

�

Lβhαβ − uαLβτβ − uβLβτα
�

, (4.109)

where ηµναβNHS = −η
αβµν
NHS is obtained by substituting (4.100) into (4.105).

One might wonder what the expression for the pure HS part is. However, for the HS sector
it is only the symmetric part of ηµναβ as well as the objects ηµνρσrot , ηµνρσext and ηµνρσtor that are
uniquely determined. These all depend on two functions F2+ F6 and T F1− F5+2u2F2. There
is no unique HS expression for the remaining four functions in the action. The reason behind
this is that we know that

−T µHSLβτµ +
1
2
T µνHS Lβhµν = e−1∂µ

�

eSµnon

�

, (4.110)

but this only uniquely fixes the symmetric part of ηµνρσ as well as the extrinsic, torsion and
rotation η-tensors. The anti-symmetric part cannot be fixed. This freedom is precisely en-
coded by the NHS terms. In a sense the HS coefficients belong to the ‘quotient space’ of non-
dissipative transport coefficients modulo the NHS ones. Hence two HS transport coefficients
are equivalent if they differ by an NHS term. In Section 4.2 we picked a representative of the
HS sector by setting F3 = F4 = F5 = F6 = 0.
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The second line in (4.105) is anti-symmetric under interchanging the pair µν with αβ as
can be seen from the fact that

−χρσ +
�

∆ρλσ −Σρλσ
�

uλ + η̃
ρκσλuκuλ =

2T

�

2Tu2
�

∂ F6

∂ T

�

u2
− 2T F1 − 2u2F6 + 2F5 + 4u2

�

∂ F5

∂ u2

�

T
+ T

�

∂ F5

∂ T

�

u2

�

u[ρvσ] .

(4.111)

This means that the symmetric part of ηµναβ does not contain terms that are quadratic in
Xρ
µν. This explains why the J coefficients in (4.44) do not contain product of ρ and P

and/or derivatives thereof, while the A coefficients do admit such terms.

5 First order corrections

This section can be viewed as a continuation of Section 3, in which we use constitutive relations
and non-negativity of entropy production to find all the allowed first order corrections to the
boost-agnostic perfect fluid energy-momentum tensor. We already dealt with the constitutive
relations for the HS sector in Appendix B and so we will only be concerned with the constitutive
relations for NHS and dissipative transport. We also show how to recover Lifshitz fluids as well
as Lorentz boost invariant fluids from our general framework. Finally, we consider the limit of
small fluid velocity and show how our formalism recovers the results of [11].

5.1 Constitutive relations

Using our result (4.64), the relation (A.11) tells us that to second order in derivatives and in
Landau frame,

e−1∂µ (eSµ) = −
1

2T

�

Tµν(1) − Tµν(1)HS

�

�

Luhµν − hρνu
ρLuτµ − hµρuρLuτν

�

, (5.1)

where Tµν(1)HS is the Landau frame hydrostatic contribution as defined in (3.8), and Tµν(1) is the
full energy-momentum tensor in Landau frame.

Since the divergence of the entropy current is a quadratic form in the derivatives of the
fluid variables, equation (5.1) tells us which derivatives we should use to write the constitutive
relations for the energy-momentum tensor. The fluid variables are Luτµ and Luhµν, and we
may thus write the following constitutive relation for the part of the energy-momentum tensor
that is not of hydrostatic origin12

Tµν(1) − Tµν(1)HS =
1
2
ηµνρσLuhρσ + ζ̃

µνρLuτρ . (5.2)

By redefining ζ̃µνρ, this can be written equivalently as

Tµν(1) − Tµν(1)HS =
1
2
ηµνρσ

�

Luhρσ − hκσuκLuτρ − hρκuκLuτσ
�

+ ζµνρLuτρ . (5.3)

Upon substituting the constitutive relations into the right hand side of (5.1) we obtain a
quadratic form. Non-negative entropy production will restrict the form of the ηµνρσ tensor,
and it tells us that ζµνρ must vanish. This is because there are no Luτρ squared terms in
(5.1). Furthermore, terms involving the anti-symmetric combination of velocity derivatives

12The η-tensor in (5.2) should not be confused with the η-tensor that appears in the context of Lagrangian
transport in (4.104).
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(analogous to the ηµνρσrot term in (4.42)) are also explicitly forbidden by the requirement that
the divergence of the entropy current is a quadratic form. We thus conclude that

Tµν(1) − Tµν(1)HS =
1
2
ηµνρσ

�

Luhρσ − hκσuκLuτρ − hρκuκLuτσ
�

, (5.4)

so that all that is left is to classify all the allowed terms that make up ηµνρσ. This can be
achieved by looking at the symmetries of the fluid.

In addition to the SO(d) Ward identity (which is manifest in the symmetry of Tµν) the
energy-momentum tensor must respect the symmetries of the thermal state around which we
expand. In the absence of boost symmetries the thermal state spontaneously breaks the SO(d)
symmetry down to the SO(d−1) subgroup that preserves the velocity hµρhρνu

ν. In flat space
these are the rotations preserving v i . In other words, different absolute values of velocities
correspond to different thermodynamic states of the theory.

Therefore, the natural tensor structures are the SO(d − 1) invariant tensors vµ as well as

Pµν = hµν − nµnν , nµ =
hµνhνρuρ
p

u2
, (5.5)

where nµnνhµν = 1. The tensor Pµν is a projector onto the space orthogonal to the unit vector
nµ. In terms of these tensor structures, the constitutive relation takes the form13,14

ηµνρσ =t
�

PµρPνσ + PµσPνρ −
2

d − 1
PµνPρσ

�

+
4s1

u2
v(µnν)n(ρvσ) + s2nµnνnρnσ + s3PµνPρσ

+
4 f1
u2

v(µPν)(ρvσ) + f2 (P
µρnνnσ + Pνρnµnσ + Pµσnνnρ + Pνσnµnρ)

+ s6 (P
ρσnµnν + Pµνnρnσ)− sNHS

3 (Pρσnµnν − Pµνnρnσ)

−
4 f3p

u2

�

v(µPν)(ρnσ) + n(µPν)(ρvσ)
�

−
4 f NHS

p
u2

�

v(µPν)(ρnσ) − n(µPν)(ρvσ)
�

−
2s5p

u2

�

v(µnν)Pρσ + Pµνn(ρvσ)
�

−
2sNHS

1p
u2

�

v(µnν)Pρσ − Pµνn(ρvσ)
�

−
2s4p

u2

�

v(µnν)nρnσ + nµnνn(ρvσ)
�

−
2sNHS

2p
u2

�

v(µnν)nρnσ − nµnνn(ρvσ)
�

, (5.6)

leading to a total of 14 transport coefficients. The f1 term in was also observed in [13].
We see that the η-tensor has a part that is anti-symmetric under interchanging the pairs of
symmetric indices. This is related to non-hydrostatic non-dissipative transport and is the topic
of Section 5.2. This leaves 10 coefficients that could contribute to dissipative transport. The
normalization of the 14 coefficients has been chosen such that all coefficients have the same
scaling dimension which is d, the number of spatial dimensions. We note that hµν will be
assigned a scaling dimension of 2 while vµ and uµ will have scaling dimension z.

A unique feature of Landau frame is that the derivative corrections to the energy cur-
rent is given entirely in terms of the (2, 0) momentum-stress tensor (cf. the second rela-
tion in (A.6)), which in turn means that the (1, 1) energy-momentum tensor (2.24) at first

13We remark again that this object has two redundancies: we can add to ηµνρσ any term of the form vµvνY ρσ

or vρvσZµν for arbitrary Y µν and Zµν without changing Tµν.
14The rationale behind the naming scheme we have adopted for the transport coefficients will become apparent

in the next section (see in particular Eq. (5.22)), where we show that in the expression for the divergence of the
entropy current, the coefficients {s1, s2 . . . } multiply scalar structures, the coefficients { f1, f2, . . . } multiply vector
structures, while, finally, the coefficient t multiplies a single tensor structure.
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order can be constructed from the (2,0) momentum-stress tensor. More precisely, defining
Tµν(1)D,NHS := Tµν(1)D + Tµν(1)NHS = Tµν(1) − Tµν(1)HS, where each term is a symmetric tensor, we have

(T(1)D,NHS)
µ
ν =

1
2

�

−ηµρκλuρτν +η
µρκλhρν

�

(Luhκλ − uκLuτλ − uλLuτκ) , (5.7)

where we have used the relation (2.24). On flat space (2.19), where uµ = (1, v i), the energy-
momentum tensor – and by extension the tensor ηµνρσ – may be further decomposed as,

(T(1)D,NHS)
0

j =
1
2
η jkl

�

∂kv l + ∂l v
k
�

+ κ jk∂t v
k , (5.8)

(T(1)D,NHS)
i
j =

1
2
ηi jkl

�

∂kv l + ∂l v
k
�

+κi jk∂t v
k , (5.9)

where the flat space tensors κ jk, η jkl , κ
i jk are given by

κ jk = η
0 j0k , η jkl = η

0 jkl , κi jk = ηi jk0 , (5.10)

which means that

κ jk =
f1
v2

Pjk +
s1

v2
n jnk , (5.11)

η jkl =
f3 + f NHS

p
v2

�

P jknl + P jl nk
�

+
s5 + sNHS

1p
v2

Pkl n j +
s4 + sNHS

2p
v2

n jnknl , (5.12)

κi jk =
f3 − f NHS

p
v2

�

P jkni + P ikn j
�

+
s5 − sNHS

1p
v2

P i jnk +
s4 − sNHS

2p
v2

nin jnk , (5.13)

ηi jkl = t

�

P ikP jl + P il P jk −
2

d − 1
P i j Pkl

�

+ s3P i j Pkl

+ f2
�

P ikn jnl + P jkninl + P il n jnk + P jl nink
�

+ s2nin jnknl

+s6

�

Pkl nin j + P i jnknl
�

+ sNHS
3

�

P i jnknl − Pkl nin j
�

, (5.14)

where the result has been written in terms of

ni =
v i

p
v2

, P i j = δi
j −

v i v j

v2
= δi

j − nin j , (5.15)

which are the flat space versions of (5.5).

5.2 Non-hydrostatic non-dissipative transport & Onsager relations

The subsector of transport obtained by isolating the anti-symmetric part ofη, i.e. ηµνρσA ⊂ ηµνρσ

with ηµνρσA = −ηρσµνA , corresponds to the non-hydrostatic (NHS) non-dissipative transport.
By using (5.7) and (5.1), such terms trivially produce no entropy. The constitutive relations
tell us that there are at most 4 transport coefficients of this type. In Section 4.4 we found pre-
cisely 4 terms in the action that corresponded to the NHS sector. Extracting the anti-symmetric
part of (5.6), we get

η
µνρσ
A =

4 f NHS

p
u2

�

n(µPν)(ρvσ) − n(ρPσ)(µvν)
�

+
2sNHS

1p
u2

�

Pµνn(ρvσ) − Pρσn(µvν)
�

+
2sNHS

2p
u2

�

nµnνn(ρvσ) − nρnσn(µvν)
�

+ sNHS
3 (Pµνnρnσ − Pρσnµnν) . (5.16)

Demanding the absence of NHS transport is, at linear order, equivalent to the Onsager
relations [59,60], which express the fact that there are no anti-symmetric contributions to the
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η-tensor in systems with time-reversal symmetry. More explicitly, consider linearized pertur-
bations around global thermal equilibrium (T0, v i

0) in flat space,

v i = v i
0 +δv i , T = T0 +δT ,

where δv i and δT are the fluctuations. The resulting change in the energy-momentum tensor
to first order in fluctuations is

δTµν(1) =
1
2
η
µνρσ
0 (∂ρδuσ + ∂σδuρ) ,

where δuµ = (0,δv i) and indices are lowered by hµν = δi
µδ

i
ν. The Onsager relations then tell

us that15

η
µνρσ
0 = ηρσµν0 ,

which is the linearized version of the general requirement of symmetry, ηµνρσ = ηρσµν.
Imposing symmetry on the η-tensor is equivalent to the vanishing of all NHS coefficients,

f NHS = sNHS
1 = sNHS

2 = sNHS
3 = 0 . (5.17)

Hence, ignoring the NHS sector, we obtain the following constitutive relations for the dissipa-
tive sector

κ jk =
f1
v2

Pjk +
s1

v2
n jnk , (5.18)

κi jk =
f3p
v2

�

P jkni + P ikn j
�

+
1
p

v2
s5P i jnk +

1
p

v2
s4nin jnk , (5.19)

ηi jkl = t

�

P ikP jl + P il P jk −
2

d − 1
P i j Pkl

�

+ f2
�

P ikn jnl + P jkninl + P il n jnk + P jl nink
�

+s3P i j Pkl + s6

�

Pkl nin j + P i jnknl
�

+ s2nin jnknl , (5.20)

leaving us with 10 candidate coefficients for dissipative transport. Note that in the absence of
NHS terms we have the identity η jkl = η0 jkl = ηkl j0 = κkl j (cf. (5.10) and (5.11)–(5.14)).
For the remainder of this section we will be working in flat space. In the next subsection
we will show that all these coefficients contribute to dissipation provided they obey suitable
inequalities.

5.3 Dissipative transport

In this section, we derive additional constraints on the dissipative transport coefficients from
the requirement of positivity of entropy production. Using our results (5.18)–(5.20), the diver-
gence of the entropy current in Landau frame (5.1) on flat space along with the requirement
that it be positive definite for the dissipative sector reads

−T∂µSµ =
1
4
ηi jkl

�

∂i v
j + ∂ j v

i
� �

∂kv l + ∂l v
k
�

+ κi j∂t v
i∂t v

j

+κi jk
�

∂i v
j + ∂ j v

i
�

∂t v
k ≤ 0 , (5.21)

with equality if and only if all the dissipative coefficients are zero.

15 One way to see this is because 〈∂µδuν(t)δTµν(1) (0)〉 = 〈∂µδuν(0)δTµν(1) (t)〉, which is a direct result of time
reversal symmetry.
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It is useful to decompose the expression (5.21) into scalar, vector and tensor sectors,

~b(S)T A(S)(3×3)
~b(S) + ~b(V )i

T A(V )(2×2)
~b(V )i + t A(T ) ≤ 0 , (5.22)

where the basis vector of scalars is

~b(S) =





1
2

1
v2 ∂t v

2

nin j∂i v
j

P i j∂i v
j



 , (5.23)

with the associated quadratic form

A(S)(3×3) =





s1 s4 s5
s4 s2 s6
s5 s6 s3



 . (5.24)

The basis vector of vectors is

~b(V )i =

� 1p
v2
∂t v

i

P i jnk(∂ j v
k + ∂kv j)

�

, (5.25)

which has the associated quadratic form

A(V )(2×2) =

�

f1 f3
f3 f2

�

. (5.26)

The single tensor structure is described by

A(T ) =
�

P ikP jl + P il P jk −
2

d − 1
P i j Pkl

�

�

∂i v
j + ∂ j v

i
� �

∂kv l + ∂l v
k
�

. (5.27)

Positivity of entropy production must hold for all fluid configurations and thus for each of the
three sectors separately.

The tensor contribution requires that

t≤ 0 . (5.28)

The quadratic form of the vector sector must be negative definite, i.e. all its eigenvalues must
be negative, which is the case if and only if

f1 ≤ 0 , f2 ≤ 0 , det A(V )(2×2) = f1 f2 − f 2
3 ≥ 0 . (5.29)

Finally, the quadratic form of the scalar sector must be negative definite as well, which gives
the conditions

s1 ≤ 0 , s2 ≤ 0 , s3 ≤ 0 , (5.30)

s1s2 − s2
4 ≥ 0 , s1s3 − s2

5 ≥ 0 , s3s2 − s2
6 ≥ 0 , (5.31)

det A(S)(3×3) = s1s2s3 − s3s2
4 − s2s2

5 + 2s4s5s6 − s1s2
6 ≤ 0 . (5.32)
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5.4 Scale invariance: Lifshitz fluid dynamics

If our fluid enjoys scale symmetry with dynamical exponent z, the following Ward identity
must be satisfied (see also [9] for more details)

zT0
0 + T i

i = 0 . (5.33)

Using the constitutive relations for the dissipative sector (5.18)–(5.20), this gives rise to the
following relations at first order

zv jκ jk = δi jκ
i jk , zv jη jkl = δi jη

i jkl , (5.34)

which amounts to

zs5 = (d − 1)s3 + s6 ,

zs4 = (d − 1)s6 + s2 ,

zs1 = (d − 1)s5 + s4 . (5.35)

Hence, if we impose scale symmetry, the 6 dissipative scalar transport coefficients get reduced
by 3, while the 3 vector and 1 tensor transport coefficients are unaffected. In other words,
uncharged Lifshitz hydrodynamics has 7 dissipative transport coefficients at first order. We
note that the inequality type constraints for Lifshitz fluids are obtained by substituting the
relations (5.35) into (5.30)–(5.32).

We furthermore remark that since all transport coefficients that appear in the η-tensor
(5.6) are functions of T and v2 and have scaling dimension d, they must be of the form

T d/z f (α) , α= v2T
2
z−2 , (5.36)

for some unknown function f , where α has no scaling dimension.
Turning to the NHS sector, which is described by (5.16), we find that scale symmetry gets

rid of two coefficients. It sets sNHS
2 = −(d − 1)sNHS

1 and sNHS
3 = −zsNHS

1 and leaves f NHS free.
Furthermore, scale symmetry reduces the number of hydrostatic transport coefficients from
two to one. This can be seen as follows. The z-trace Ward identity on curved space reads

−zvντµTµν + hµρhρνTµν = −zτµTµ + hµνTµν = 0 . (5.37)

If we substitute (4.34) and (4.35) as well as (4.37) into this Ward identity we find that (by
looking at the terms proportional to the trace of the extrinsic curvature)

F1 = −2F2
u2(z − 1)

zT
. (5.38)

The rest of the terms in (5.37) then tell us that

P(T, u2) = T1+ d
z p(α) , F2(T, u2)T2− 2

z = T
d
z q(α) , (5.39)

where p(α) and q(α) are arbitrary functions of α which is the scale invariant combination
α= u2T

2
z−2. We can then write the hydrostatic partition function (4.17) as

SHS(Lif) =

∫

dd+1 xe
�

T1+ d
z p(α) + T

d
z q(α)vµ∂µα

�

+O(∂ 2) . (5.40)

The same can be done for the action (4.101) describing NHS transport, which for Lifshitz
scaling takes the form

SNHS(Lif) =

∫

dd+1 xe
�

T
d
z r1(α)u

µ∂µα+ T
d−2z+2

z r2(α)u
µvνLβhµν

�

+O(∂ 2) , (5.41)

exhibiting two NHS transport coefficients in agreement with the statement above.
All together for an uncharged Lifshitz fluid we find 7 dissipative, 1 HS and 2 NHS transport

coefficients.
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5.5 Lorentz boost invariance

What we have obtained is the most general set of first order transport coefficients without
assuming boost invariance. In this subsection, we show how to recover relativistic first order
hydrodynamics from our results. In Landau frame and on Minkowski spacetime the relativistic
energy-momentum tensor is described by (see e.g. [2] for a review of relativistic hydrodynam-
ics)

Tµν = ẼUµUν + PΠµν − ζΠµν∂ρUρ −ηΠµρΠνσΣρσ , (5.42)

where ζ and η are the bulk and shear viscosity terms, respectively, which are independent of
v2 in the Lorentzian case. A relativistic fluid is characterized by a velocity

Uµ = γ(1, v i), Uµ = γ(−1, v i) , (5.43)

where γ= (1−v2)−1/2. In writing the relativistic energy-momentum tensor (5.42), we defined
the projector Πµν = δ

µ
ν + UµUν, while the shear tensor Σρσ is given by

Σρσ = ∂ρUσ + ∂σUρ −
2
d
ηρσ∂λUλ , (5.44)

where ηµν = diag(−1, 1, . . . , 1) is the d-dimensional Minkowski metric.
A necessary condition for this to be recovered from our general framework is the boost

Ward identity, T0
(1)i = −T i

(1)0, where T i
(1)0 = −v j T i

(1) j in Landau frame. Using (5.8) and (5.9)
we see that this translates into the requirements

v jηi jkl = κkli , v jκi jk = κik . (5.45)

This implies the relations

f3 = v2 f2, f1 = v2 f3, s5 = v2s6, s4 = v2s2, s1 = v2s4 . (5.46)

Hence in Landau frame it is sufficient to compare our expression for T i
(1) j with (5.42) at first

order. A tedious calculation shows that the two expressions agree if and only if

s3 = −ζγ−
2

d(d − 1)
ηγ ,

s6 = −ζγ3 +
2
d
ηγ3 ,

s2 = −ζγ5 − 2ηγ5 +
2
d
ηγ5 ,

f2 = −ηγ3 ,

t = −ηγ , (5.47)

so that we recover the standard transport coefficients ζ and η. In this way, it is also possible
to recover (massless) Galilean invariant fluids, although we refrain from giving the details.

5.6 Small velocity limit

We will assume that the transport coefficients are functions of T and v2 which admit a Taylor
expansion in v2. Demanding that the tensors κ jk, η jkl , η

i jkl and κi jk have a regular limit for
v2 = 0 leads to the conditions

f1 = O(v2) ,

s1 − f1 = O(v4) ,
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f3 = O(v2) ,

f NHS = O(v2) ,

s5 = O(v2) ,

sNHS
1 = O(v2) ,

s4 = O(v2) ,

sNHS
2 = O(v2) ,

t = O(1) ,

s3 −
2

d − 1
t = O(1) ,

f2 − t = O(v2) ,
2

d − 1
t− s3 + s6 = O(v2) ,

sNHS
3 = O(v2) ,

s2 − s6 − 2 f2 = O(v2) . (5.48)

In obtaining these expressions, we have used that if A+ B = O(v2) and A = O(v2), then
B =O(v2).

Substituting these results into the relations (5.11)–(5.14) leads to

κ jk =
f1
v2
δ jk +O(v2) , ηi jkl = t(δilδ jk +δikδ jl) +

�

s3 −
2t

d − 1

�

δi jδkl +O(v2) , (5.49)

and η jkl = κi jk = 0, where it is particularly noteworthy that all NHS transport drops out. We
further remark that the Lorentzian case – which we recovered from our general framework
in Section 5.5 – satisfies these conditions, and in particular some of these coefficients exhibit
small-v2 behavior involving even higher powers of velocity, e.g. f1 =O(v4).

It is interesting to look at the leading order terms in the expansion of T0
(1) j and T i

(1) j in

powers of v2, where v2 is small compared to the speed of sound. These terms are t, s3
2 −

t
d−1

and f1. These are the shear and bulk viscosity and a new transport coefficient$ (denoted by
π in [11]), i.e.

t= −η+O(v2) ,
s3

2
−

t

d − 1
=

1
d
η−

1
2
ζ+O(v2) , f1 = −$v2 +O(v4) . (5.50)

Hence to leading order in v i we find

T0
(1) j = −$∂t v

j + . . . , (5.51)

T i
(1) j = −ζδi j∂kvk −η(∂i v j + ∂ j vi −

2
d
δi

j∂kvk) + . . . , (5.52)

where ζ, η and $ are non-negative (as follows from the results of Section 5.3). Thus, we
recover the results of [11].

In order to make further contact with the results of [11], we turn to the hydrostatic sector
– in particular, the transport coefficients$ and ζ that appear in (5.51) and (5.52) can be split
into dissipiative and hydrostatic non-dissipative parts16,

$=$D +$HS, ζ= ζD + ζHS . (5.53)

16Since we showed in (5.49) that all NHS transport drops out in the limit of small background velocity, we ignore
that sector in the split.
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Using our result (4.42), we see that only the terms involving J1, J7 and J3 survive the small
velocity limit. Via the relation (2.21), we find that the terms involving F2 in J7 and J3 cancel.
Thus, when expanding around v i = δv i on a flat background, we find that

T0
(1)HSi = −

ρ0F1(T0)
s0

∂tδv i = −$HS∂tδv i , (5.54)

T i
(1)HS j = δi

j F1(T0)
∂ P0

∂ s0
∂kδvk = −ζHSδ

i
j∂kδvk , (5.55)

where the subscript ‘0’ – e.g. in T0 – denotes the value of the corresponding variable in the
global equilibrium around which we expand. In [11], it is shown that

$HS = −aT
ρ0T0

s0
, (5.56)

ζHS = aT T0
∂ P0

∂ s0
, (5.57)

where aT is the derivative with respect to temperature of a certain hydrostatic transport co-
efficient a that was identified in [11]. Comparing these with our expressions in (5.54) and
(5.55) gives the relation

F1(T0) = −aT T0 , (5.58)

thereby identifying F1 with the function a used in [11].

6 Discussion and outlook

In this paper we presented the complete first-order energy-momentum tensor for a boost-
agnostic fluid in curved spacetime, going beyond the linearized results obtained in [11]. Im-
plementing the constraint of non-negativity of the divergence of the entropy current, we find
10 dissipative, 2 hydrostatic non-dissipative and 4 non-hydrostatic non-dissipative transport
coefficients. In the linearized regime the latter four coefficients vanish as a result of imple-
menting the Onsager relations.

Using the curved spacetime formulation we explicitly obtained all non-dissipative trans-
port coefficients, notably both in Landau frame and Lagrangian frame, by using a Lagrangian
whose form was derived by starting with the hydrostatic partition function. Furthermore, we
checked that our final results reproduce the well-known relativistic first-order transport coef-
ficients when Lorentz boost symmetries are present. We also treated the special case when
the hydrodyanmic theory exhibits an additional Lifshitz scale invariance, in which case there
are 7 dissipative, 1 hydrostatic non-dissipative and 2 non-hydrostatic non-dissipative transport
coefficients. We also studied the small velocity limit, reproducing the results of [11].

With the full geometrical information at our disposal, we can now for example compute
Kubo formulae and relate individual transport coefficients to a particular linear response. Con-
sider for example the response of the system in flat space to a purely time-dependent pertur-
bation δhµν. The perfect fluid equations of motion (2.27) remain valid to first order if we also
impose δP = δ(eρ) = 0, together with

δv i = −δh0i − v jδh ji , (6.1)

δ(eE) = 1
2

T00δh00 −
1
2

T i jδhi j . (6.2)
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This induces a certain change δTµν which evaluates to

δT i j = −Pδhi j −
1
2
δhkkρv i v j −ρv iδh0 j −ρv jδh0i −ρv i vkδhk j −ρv j vkδhki , (6.3)

δT i0 = −
1
2
δhkkρv i −ρδh0i −ρv jδhi j , (6.4)

δT00 = −
1
2
δhkkρ . (6.5)

From these variations one can read off that there are leading order contributions to the two-
point function 〈TµνTρσ〉 which are ω-independent. If we substract these leading order con-
tributions, we find from (5.4) that we expect a contribution proportional to ωηµνρσ to the
two-point function, and hence a Kubo formula of the type η∼ limω→0

1
ω(〈T T 〉 − 〈T T 〉leading).

This is not yet the complete answer though. First of all, the leading order change in v i is also
relevant and using the explicit expression one can show that while at first order 〈TµνT00〉 is
indeed proportional to ηµν00, 〈TµνT0i〉 does not contain any contribution of η, and

〈TµνT i j〉(1) ∼ ηµνi j −ηµν0(i v j) . (6.6)

In addition, we have not yet included the hydrostatic contribution to the stress tensor. These
contributions can in principle be extracted from the analysis in Section 4. Alternatively, one
can also try to derive Kubo formulae for the HS coefficients directly from the partition function,
which in particular guarantees that the stress tensor will be covariantly conserved [61]. We
leave a more detailed analysis of all these issues to future work.

Besides the application to Kubo formulae, the geometrical formulation based on Aris-
totelian (or absolute) spacetime also paves the way for computing hydrodynamic modes –
our framework provides the ideal starting point for such an analysis. One is now provided
with the tools to answer questions regarding the stability of the hydrodynamical spectrum at
first order in curved spacetime, as was studied for boost invariant systems in [19,62]. Another
extension of this work is to consider the inclusion of a U(1) charge current as was initiated
in [11,12]. The case of Carroll hydrodynamics requires special treatment and will be the topic
of future work [20].

Another worthwhile open direction is to consider the relation to holography for the case
of Lifsthiz fluids, for which we have identified the reduced set of first-order transport coef-
ficients. Such fluids were discussed in a holographic context in Refs. [23, 41–44]. Following
these works, it would be interesting to study hydrodynamic modes of Lifshitz fluids using quasi-
normal modes in order to find the extra dissipative and non-dissipative transport coefficients,
as was done in [45]. It would furthermore be interesting to see if a damping/overdamping
transition as reported in [63, 64] could be reproduced. More generally, addressing the ques-
tion of universal properties obeyed by transport coefficients in holographic setups and the
development of a full-fledged fluid/gravity correspondence would be relevant to pursue in
this case.

In another direction, it would be worthwhile to examine submanifolds and fluids living
on them in the spirit of [24]. In particular, it was shown in the context of Newton–Cartan
geometry that the normal projection of vµ can be interpreted as the transverse velocity of the
submanifold. In the absence of boost symmetry, the role of such a velocity might be more
prominent.

Finally, as discussed in the introduction, one often finds broken translation symmetry when
considering systems where boosts are absent. Assuming there is a hierarchy of (the absence
of) these symmetries, one can apply the results presented in this work. It would be important
and interesting to apply the formalism developed in this paper to describe particular physical
phenomena in concrete systems that do not exhibit boost symmetries.

34

https://scipost.org
https://scipost.org/SciPostPhys.9.2.018


SciPost Phys. 9, 018 (2020)

Acknowledgements

We especially thank Stefan Vandoren for discussions and collaboration on non-boost invari-
ant hydrodynamics. We also thank Nick Poovuttikul and Lárus Thorlacius for useful discus-
sions. JdB is supported by the European Research Council under the European Unions Sev-
enth Framework Programme (FP7/2007-2013), ERC Grant agreement ADG 834878. JH is
supported by the Royal Society University Research Fellowship “Non-Lorentzian Geometry
in Holography” (grant number UF160197). EH is supported by the Royal Society Research
Grant for Research Fellows 2017 “A Universal Theory for Fluid Dynamics” (grant number
RGF\R1\180017) and gratefully acknowledges the hospitality of Nordita while part of this
work was undertaken. NO is supported in part by the project “Towards a deeper understanding
of black holes with non-relativistic holography” of the Independent Research Fund Denmark
(grant number DFF-6108-00340) and by the Villum Foundation Experiment project 00023086.
WS is supported by the Icelandic Research Fund (IRF) via a Personal Postdoctoral Fellowship
Grant (185371-051).

A Hydrodynamic frame transformations & Landau frame

This appendix briefly discusses the general features of hydrodynamic frame transformations.
Consider the energy-momentum tensor to first order, which in a generic frame takes the form,

Tµν = −
�

Ẽ + P +ρu2
�

uµτν +ρuµuρhρν + Pδµν − Tµ(1)τν + Tµρ(1) hρν . (A.1)

Redefining T and uµ as
T = T ′ +δT , uµ = u′µ +δuµ , (A.2)

with τµδuµ = 0 (in order to preserve the normalization τµuµ = 1), leads to an energy-
momentum tensor of the form

Tµν = −
�

Ẽ ′ + P ′ +ρ′u′2
�

u′µτν +ρ
′u′µu′ρhρν + P ′δµν − T̃µ(1)τν + T̃µρ(1) hρν , (A.3)

where Ẽ ′ = Ẽ(T ′, u′2) etc., and where

T̃µ(1) = Tµ(1) +
�

δẼ +δP +ρ′δu2 + u′2δρ
�

u′µ +
�

Ẽ ′ + P ′ +ρ′u′2
�

δuµ +δPvµ , (A.4)

T̃µρ(1) = Tµρ(1) +ρ
′u′µδuρ +ρ′u′ρδuµ + u′µu′ρδρ +δPhµρ . (A.5)

The defining condition for the transformed energy-momentum tensor (A.3) to be in Landau
frame is

u′νTµν = −Ẽ ′u′µ ⇔ T̃µ(1) = T̃µρ(1) hρνu
′ν ⇔ T̃µ(1)νu

′ν = 0 , (A.6)

where T̃µ(1)ν = −T̃µ(1)τν + T̃µρ(1) hρν which will be the case provided we have

Tµ(1)νu
′ν =

�

δẼ + 1
2
ρ′δu2

�

u′µ +
�

Ẽ ′ + P ′
�

δuµ . (A.7)

This can be solved for δs and δuµ (by contracting with τµ and hµρu′ρ) to give

u′µδs+ s′δuµ = Tµ(1)ν
u′ν

T ′
, (A.8)

s′δuµ = Tσ(1)νΠ
′µ
σ

u′ν

T ′
, (A.9)
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where Π′µσ = δ
µ
σ − u′µτσ, and where we used δẼ + 1

2ρ
′δu2 = T ′δs and Ẽ ′ + P ′ = T ′s′.

In Landau frame, it follows from (A.6) that the divergence of the entropy current (3.5)
reads

e−1∂µ (eSµ) =
1
T

Tµν(1)hνρuρLuτµ −
1

2T
Tµν(1)Luhµν + e−1∂µ

�

eSµ(1)non

�

, (A.10)

which we can equivalently express as

e−1∂µ (eSµ) = −
1

2T
Tµν(1)

�

Luhµν − hρνu
ρLuτµ − hµρuρLuτν

�

+ e−1∂µ

�

eSµ(1)non

�

. (A.11)

This was used to rewrite the divergence of the entropy current in Section 5.

B Non-canonical entropy current from constitutive relations

In this appendix, we derive the form of the non-canonical entropy current from its constitutive
relations on flat space.

In Landau frame the divergence of the non-canonical entropy current must obey

e−1∂µ
�

eSµnon

�

=
1

2T
TµνHS

�

Luhµν − hρνu
ρLuτµ − hµρuρLuτν

�

. (B.1)

On flat space and in Cartesian coordinates, τµ, hµν and their inverses vµ and hµν are constant
and furthermore we can write

∂µSµnon =
1
T

TµHSν∂µuν =
1

2T
TµνHS

�

∂µuν + ∂νuµ
�

, (B.2)

where we defined uν = hνρuρ, which is a purely spatial object. The hydrostatic part of the
energy-momentum tensor must obey all the usual properties the full energy-momentum tensor
obeys. In particular, it must be symmetric in its spatial indices. To avoid clutter, we will drop
the subscript HS in this appendix.

The constitutive relations for the non-canonical entropy current and the hydrostatic momentum-
stress tensor Tµν take the form

Sµ(1)non = χµνρ∂νuρ , (B.3)

Tµν(1) =
1
2
ηµνρσ

�

∂ρuσ + ∂σuρ
�

+
1
2
η
µνρσ
rot

�

∂ρuσ − ∂σuρ
�

, (B.4)

at first order in derivatives (compare with (4.42) and note that the additional terms due to
torsion and extrinsic curvature are absent on flat space). The decomposition of the tensors
can be performed with the help of the tensors vµ, hµκuκ and hµν. We find

χµνρ = e1vµhνρ + e2vµhνκhρλuκuλ + e3vµvνhρσuσ + e4hµνhρσuσ + e5hµρhνσuσ
+e6hµρvν + e7hµσhνρuσ + e8hµκhνλhρσuκuλuσ + e9hµκvνhρσuκuσ , (B.5)

η
µνρσ
rot = c1 (v

µhνρhσκuκ + vνhµρhσκuκ − vµhνσhρκuκ − vνhµσhρκuκ)

+c2

�

hµκhνρhσλuκuλ + hνκhµρhσλuκuλ − hµκhνσhρλuκuλ − hνκhµσhρλuκuλ
�

.

(B.6)

In deriving the constitutive relation for η
µνρσ
rot , we used the fact that17

vρ
�

∂ρuσ − ∂σuρ
�

= vρ
�

∂ρuσ + ∂σuρ
�

so that we can choose the last two indices of ηµνρσrot

17This is a consequence of being on flat space, since vµ∂νuµ = uµ∂νvµ = 0.
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to be spatial. We will leave ηµνρσ unspecified, but it admits the same decomposition as in
Section 5.

Equation (B.2) can be written as

χµνρ∂µ∂νuρ =
1

4T
ηµνρσ

�

∂µuν + ∂νuµ
� �

∂ρuσ + ∂σuρ
�

+
1

4T
η
µνρσ
rot

�

∂µuν + ∂νuµ
� �

∂ρuσ − ∂σuρ
�

−
�

∂µχ
µνρ

�

∂νuρ . (B.7)

We would like to solve this equation on shell. By ‘solving’ we mean finding expressions for the
coefficients e1 to e9. The left hand side only contains second order derivative terms, while the
right hand side only contains products of first order derivative terms. However, on shell these
are not independent, as we now discuss.

On flat space the equation of motion of the perfect fluid part, see equations (2.36), can be
written as

∂ρ log T = −
1
2

Xρ
µν
�

∂µuν + ∂νuµ
�

, (B.8)

where Xρ
µν is defined in (2.37). If we differentiate both sides with respect to ∂σ and anti-

symmetrize in ρ and σ, we obtain a relation among second order derivatives and products of
first order derivatives. We seek a scalar equation like the left hand side of (B.7), and the only
way to obtain such an expression is to contract the curl of (B.8) with vρuσ. This leads to

Y µνρ∂µ∂νuρ =
1
2

vρuσ
�

∂ρXσ
µν − ∂σXρ

µν
� �

∂µuν + ∂νuµ
�

, (B.9)

where Y µνρ is defined by
Y µνρ = (vσuµ − vµuσ)Xσ

νρ . (B.10)

The condition that (B.7) does not contain any second order derivatives can be fulfilled in
two different ways. The first is to take χµνρ proportional to Y µνρ. The second option is to
take a χµνρ that is anti-symmetric in its first two indices χµνρ = −χνµρ. Using (B.5) the latter
is of the form

χµνρ = 2e1v[µhν]ρ + 2e2v[µhν]κhρλuκuλ + 2e5hρ[µhν]κuκ , (B.11)

where we have set the symmetric part χ(µν)ρ = 0. This latter condition leads to e6 = −e1,
e3 = e4 = e8 = 0, e7 = −e5 and e9 = −e2. We thus conclude that at this stage the most general
form of χµνρ is

χµνρ = f Y µνρ + 2e1v[µhν]ρ + 2e2v[µhν]κhρλuκuλ + 2e5hρ[µhν]κuκ , (B.12)

where f is an arbitrary function. Compared to (B.5) we are now using a slightly different
parameterization, namely the right hand side of (B.5) has been applied to χµνρ− f Y µνρ after
which we impose that the result is antiysmmetric in µ and ν. We hope that this will not cause
any confusion.

Equation (B.7) has now been reduced to an equation involving only products of first order
derivatives and can be written as

0 = −
f
2

vρuσ
�

∂ρXσ
µν − ∂σXρ

µν
� �

∂µuν + ∂νuµ
�

+
1

4T
ηµνρσ

�

∂µuν + ∂νuµ
� �

∂ρuσ + ∂σuρ
�

+
1

4T
η
µνρσ
rot

�

∂µuν + ∂νuµ
� �

∂ρuσ − ∂σuρ
�

−
�

∂µχ
µνρ

�

∂νuρ . (B.13)

The first three terms do not contain any term of the form Xµνρσ
�

∂µuν − ∂νuµ
� �

∂ρuσ − ∂σuρ
�

,
where Xµνρσ is purely spatial, i.e. all contractions with τµ give zero. Any such term arising
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from
�

∂µχ
µνρ

�

∂νuρ must therefore have a vanishing coefficient. Such a term does indeed
arise: its coefficient is e5, and so we conclude that e5 = 0.

Using that e5 = 0 and the form of χ derived in (B.12), we conclude that at this stage the
most general allowed non-canonical entropy current (B.3) is

Sµ(1)non =
�

f Y µνρ + 2e1v[µhν]ρ + 2e2v[µhν]κhρλuκuλ
�

∂νuρ . (B.14)

Using equations (B.10) and (B.8), this can also be written as

Sµ(1)non =
f
T
(vµuν − vνuµ)∂νT + e1∂ν (v

µuν − vνuµ) +
e2

2
(vµuν − vνuµ)∂νv2 , (B.15)

where we also used that uµ = −vµ+hµκuκ and that the background tensors are assumed to be
constant. Moreover, we remind the reader that uµ = (1, v i), so that we may write u2 = v2. We
now use the freedom that we can add an identically conserved current to the entropy current,
as we are not classifying such terms. We can thus write

Sµ(1)non =
f
T
(vµuν − vνuµ)∂νT + e1∂ν (v

µuν − vνuµ) +
e2

2
(vµuν − vνuµ)∂νv2

+∂ν [g (v
µuν − vνuµ)] , (B.16)

for any function g. If we then choose g such that ∂ g
∂ T = −

f
T we obtain the non-canonical

entropy current

Sµ(1)non = G∂ν (v
µuν − vνuµ)−

F
v2
(vµuν − vνuµ)∂νv2 , (B.17)

where G = e1 + g and F = − v2e2
2 − v2 ∂ g

∂ v2 . We thus recover the result (4.72) written in flat
space.

The divergence of (B.17) must obey

∂µSµ(1)non =
1

4T
ηµνρσ

�

∂µuν + ∂νuµ
� �

∂ρuσ + ∂σuρ
�

+
1

4T
η
µνρσ
rot

�

∂µuν + ∂νuµ
� �

∂ρuσ − ∂σuρ
�

.

(B.18)
We can solve this equation for the coefficients c1 and c2 in (B.6) as well as for those that appear
in the symmetric part of ηµνρσ = ηρσµν in terms of F and G, but we will refrain from giving
the explicit result. Instead we refer to Section 4 for such expressions.
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11, 170 (2016), doi:10.1007/JHEP11(2016)170.

[45] M. Garbiso and M. Kaminski, Dispersion relations in non-relativistic two-dimensional ma-
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