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Abstract

McMule is a framework for fully differential higher-order QED calculations of scattering
and decay processes involving leptons. It keeps finite lepton masses, which regularises
collinear singularities. Soft singularities are treated with dimensional regularisation and
using FKS` subtraction. We describe the implementation of the framework in Fortran 95,
list the processes that are currently implemented, and give instructions on how to run
the code. In addition, we present new phenomenological results for muon-electron scat-
tering and lepton-proton scattering, including the dominant NNLO corrections. While
the applications presented focus on MUonE, MUSE, and P2, the code can be used for a
large number of planned and running experiments.
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1 Introduction

Perturbation theory is a well-established tool to provide accurate theoretical descriptions of
many scattering and decay processes. In fact, it is often the case that the coupling (either
electromagnetic, strong, or electroweak) is small enough to facilitate a perturbative treatment
and non-perturbative effects are either subdominant or can be isolated and modelled to a suffi-
cient precision. Hence, there has been a huge effort and impressive progress in computational
techniques for higher-order perturbative calculations.

While most of the effort of the community is geared towards high-energy colliders, there
is also a very important low-energy programme ongoing. For example elastic electron-proton
scattering at the Jefferson Laboratory lead to a determination of the weak charge of the proton
by QWeak [1] or allowed PRad [2] to provide crucial input towards the solution of the proton
radius puzzle [3,4]. The same process has been measured at MAMI by the A1 collaboration [5]
to determine form factors and will be studied again at MESA, where P2 [6] aims at a precise
determination of the weak mixing angle through an asymmetry measurement at a small beam
energy of 155MeV. A similar approach but using electron-electron scattering is pursued by the
Moller experiment [7].

Two planned experiments for which we provide new results are MUonE [8] and MUSE [9].
The idea of MUonE is to use a 150GeV muon beam at CERN to measure the differential cross
section for elastic muon-electron scattering at a centre-of-mass energy of

p
s ∼ 400MeV. This

is motivated by the connection [10] of hadronic vacuum polarisation (HVP) effects with the
anomalous magnetic moment of leptons. From the shape of the muon-electron cross section it is
possible to extract the effective electromagnetic coupling and, hence, to obtain an independent
determination of the leading hadronic contribution. The idea of MUSE is to measure simul-
taneously electron-proton and muon-proton scattering, for positively and negatively charged
leptons. The experiment will be carried out at the Paul Scherrer Institut with lepton momenta
O(100MeV) and will shed further light on the proton radius puzzle and two-photon exchange
contributions.

Bhabha scattering is a further example which has been studied extensively [11] in connec-
tion with luminosity measurements. Finally, we mention muon and tau decay processes that
can be described through QED corrections in the Fermi theory. This list is tailored towards
the applications discussed in this paper and is by no means complete. But it shows that there
is a demand for precise higher-order QED calculations for low-energy scattering and decay
processes involving leptons. It is the aim of McMule (Monte Carlo for MUons and other LEp-
tons) to provide a Monte Carlo code that can be used to obtain precise theoretical predictions
for a wide range of low-energy processes dominated by QED effects, with a particular focus
on processes involving muons. More precisely, McMule is an integrator that allows to obtain
histograms for arbitrary, fully differential observables.

QED calculations are typically simpler than QCD computations. First, due to the abelian
nature of QED, the algebra is less involved. A more important aspect is the simplified structure
of infrared singularities in QED, which reduces the complexity of the divergent phase-space
integrations. Generally, it is a highly non-trivial problem to move from matrix elements to
fully differential physical observables. However, the abelian gauge structure of QED leads to a
simple Yennie-Frautschi-Suura (YFS) exponentiation of multiple soft singularities [12]. Also,
in QED collinear singularities are only possible if a gauge boson (photon) becomes collinear to
a fermion. These singularities can be regularised through non-vanishing fermion masses.

The relative simplicity of QED might well be responsible for a remarkable divide in the
computational techniques that are used in the QED and QCD community. Typically, scatter-
ing processes in QED are computed using an infinitesimal photon mass to regularise infrared
singularities and using a slicing method to extract the infrared-divergent part of phase-space
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integrations. In McMule we follow more closely techniques familiar from QCD calculations
and therefore use dimensional regularisation and a subtraction scheme. In this context, the
simplicity of the infrared structure of QED has been exploited in [13], where a subtraction
scheme at next-to-next-to leading order (NNLO) and beyond has been developed that allows
to obtain arbitrary fully exclusive quantities as soon as the matrix elements are known.

Despite the simplicity of QED, there is one aspect in which QED computations are more
complicated than QCD calculations. It is related to potentially large logarithms log(m2/Q2)
that are remnants of collinear singularities. Here, Q is a typical scale of the process, which is
often much larger than some of the fermion masses m. In QCD, quantities are usually consid-
ered that are inclusive enough such that final-state collinear singularities cancel. Hence, no
corresponding large logarithms appear in the final result. Initial-state collinear singularities
are factorised into parton distribution functions. Thus, it is possible to set m= 0, often to a very
good approximation. In QED, this is not the case. Many distributions that are measured are
dominated by these logarithms, such that it is often not possible to work with massless leptons.
The dominance of the logarithmic terms can be exploited to obtain approximate expressions
for higher-order corrections, see e.g. [14] for a review. Keeping finite fermion masses is a sub-
stantial complication for the evaluation of virtual corrections. In addition it potentially leads to
numerical problems if a fully differential Monte Carlo approach is taken. Thus, in many cases
QED results cannot be simply extracted from corresponding QCD results, but a dedicated effort
is required.

The Fortran 95 codeMcMule can be downloaded at https://gitlab.com/mule-tools/mcmule,
where also an up-to-date table of implemented processes, a documentation, and some sample
results can be found. At the time of writing, the following processes are implemented:

`→ `′νν̄ NNLO
`→ `′νν̄γ NLO
`→ `′νν̄(l+l−) NLO (1)
`p→ `p NLO and dominant NNLO
``′→ ``′ NLO and dominant NNLO,

where ` and `′ are different leptons and l is either equal to `′ or the third possible lepton. The
lepton decay processes are computed in the Fermi theory. For the processes with a proton p the
approximation is made whereby its interaction is only due to the exchange of a single photon.

In this article we will start in Section 2 by briefly recapitulating the techniques we use to
do fully differential higher-order QED calculations. The structure of the code, which consists
of several modules with a simple, mostly hierarchic structure is described in Section 3. In
Section 4 we perform a basic leading-order (LO) calculation in order to illustrate how to run
the code. The following two sections are devoted to our main new phenomenological results.
We start with MUonE in Section 5. First we explain how to use McMule to reproduce next-
to-leading order (NLO) results available in the literature [15]. Then we present new results
for µ-e scattering, including numerically dominant NNLO corrections. Section 6 is devoted
to lepton-proton scattering. We discuss how to extend the partial NNLO calculation of the
previous section to elastic e-p and µ-p scattering and provide some phenomenological results
adapted to P2 and MUSE. These processes are just the beginning of the McMule programme.
In Section 7 we discuss possible future developments ofMcMule. Finally, the input parameters
used by McMule are listed in Appendix A.
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2 QED corrections as implemented in McMule

As mentioned in the introduction, some of the techniques used within McMule are somewhat
different to what is typically used for higher-order QED calculations. For a start, infrared sin-
gularities due to soft photons are regularised through dimensional regularisation in d = 4−2ε
dimensions. The photon is kept strictly massless also in intermediate steps. However, the
masses of the fermions are always kept at their physical value and not set to zero. This reg-
ularises all collinear singularities in QED and gives rise to terms involving the logarithm of
the fermion mass, log(m2/Q2). Such terms often form the dominant corrections in QED and,
thus, it is essential to keep fermion masses different from zero. This leads to a substantial
complication in the evaluation of virtual corrections. If the two-loop amplitudes are available
only for massless fermions, massification [16–20] can be used. This is a procedure that allows
to obtain the leading mass terms from the corresponding massless amplitudes. Two-loop am-
plitudes obtained this way are suitable for our approach, but result in the neglect of usually
very small power suppressed terms. While it is possible to partially resum logarithmic terms,
at the current stage no effort is made within McMule to do so. Presently, McMule is a strict
fixed-order fully differential particle/parton-level Monte Carlo integrator.

Since we are dealing with low-energy processes we always renormalise the fermion masses
and coupling in the on-shell scheme. The treatment of infrared singularities that occur when
combining real and virtual corrections is coded according to the FKS subtraction method [21,
22] and its generalisation beyond NLO for massive QED, FKS` [13].

The core idea of this method is to render the phase-space integration of a real matrix el-
ement finite by subtracting all possible soft limits. The subtracted pieces are partially inte-
grated over the phase space and combined with the virtual matrix elements to form finite inte-
grands. For a detailed discussion of the method we refer to [13]. Here, we just give a schematic
overview with the basic information required to understand the structure of the code.

The NLO corrections σ(1) to a cross section are split into a n-particle and (n+ 1)-particle
contribution and are written as

σ(1) = σ(1)n (ξc) +σ
(1)
n+1(ξc) , (2a)

σ(1)n (ξc) =

∫

dΦd=4
n

�

M(1)
n + Ê(ξc)M(0)

n

�

=

∫

dΦd=4
n M(1) f

n (ξc) , (2b)

σ
(1)
n+1(ξc) =

∫

dΦd=4
n+1

�

1
ξ1

�

c

�

ξ1 M(0) f
n+1

�

. (2c)

In (2c), ξ1 is a variable of the (n+1)-parton phase space dΦd=4
n+1 that corresponds to the (scaled)

energy of the emitted photon. For ξ1 → 0 the real matrix element (or more precisely the
absolute value squared of the amplitude) M(0) f

n+1 develops a singularity. The superscripts (0)
and f indicate that the matrix element is computed at tree level and is finite, i.e. free of
explicit infrared poles 1/ε. In order to avoid an implicit infrared pole upon integration, the ξ1
integration is modified by the factor ξ1(1/ξ1)c , where the distribution (1/ξ1)c acts on a test
function f (ξ1) as

∫ 1

0

dξ1

�

1
ξ1

�

c
f (ξ1)≡

∫ 1

0

dξ1
f (ξ1)− f (0)θ (ξc − ξ1)

ξ1
. (3)

Thus, for ξ1 < ξc , the integrand is modified through the subtraction of the soft limit f (0). This
renders the integration finite. However, it also modifies the result. The missing piece of the
real corrections can be trivially integrated over ξ1. This results in the integrated eikonal factor
Ê(ξc) times the tree-level matrix element for the n-particle process,M(0)

n . The factor Ê(ξc) has
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an explicit 1/ε pole that cancels precisely the corresponding pole in the virtual matrix element
M(1)

n . Thus, the combined integrand of (2b) is free of explicit poles, hence denoted byM(1) f
n ,

and can be integrated numerically over the n-particle phase space dΦd=4
n .

The parameter ξc that has been introduced to split the real corrections can be chosen
arbitrarily as long as

0< ξc ≤ ξmax = 1−

�∑

i mi

�2

s
, (4)

where the sum is over all masses in the final state. The ξc dependence has to cancel ex-
actly between (2b) and (2c) since at no point any approximation was made in the integration.
Checking this independence is a very useful tool to test the implementation of the method as
well as its numerical stability.

The finite matrix element M(1) f
n is simply the first-order expansion of the general YFS

exponentiation formula [12] for soft singularities

eÊ
∞
∑

`=0

M(`)
n =

∞
∑

`=0

M(`) f
n =M(0)

n +
�

M(1)
n + Ê(ξc)M(0)

n

�

+O(α2) , (5)

where we exploited the implicit factor α in Ê .
As detailed in [13], for QED with massive fermions this scheme can be extended to NNLO

and, in fact, beyond. The NNLO corrections are split into three parts

σ(2)n (ξc) =

∫

dΦd=4
n

�

M(2)
n + Ê(ξc)M(1)

n +
1
2!
M(0)

n Ê(ξc)
2
�

=

∫

dΦd=4
n M(2) f

n (ξc) , (6a)

σ
(2)
n+1(ξc) =

∫

dΦd=4
n+1

�

1
ξ1

�

c

�

ξ1 M(1) f
n+1 (ξc)

�

, (6b)

σ
(2)
n+2(ξc) =

∫

dΦd=4
n+2

�

1
ξ1

�

c

�

1
ξ2

�

c

�

ξ1ξ2 M(0) f
n+2

�

. (6c)

Thus we have to evaluate n-parton contributions, single-subtracted (n+1)-parton contributions,
and double-subtracted (n + 2)-parton contributions. This structure will be mirrored in the
Fortran code. The ξc dependence cancels, once all three contributions are taken into account.
An example of this will be shown in Figure 6.

The method described above has actually already been used for several processes. The
radiative [23] and rare decay [24] of the muon and tau [25] have been implemented at NLO
in the Fermi theory in a fully differential code. In addition, the Michel decay of the muon has
been added at NNLO [13]. These results have been verified by comparison to more analytic
and more inclusive computations [26–30]. Thus, the method is fully established andMcMule
can be seen as a natural extension of these previous computations and a container to include
further phenomenologically relevant processes.

3 Structure of McMule

McMule is written in Fortran 95 with helper and analysis tools written in python1. An online
documentation can be found at the git repository listed in the introduction [31]. The code
is written with two kinds of applications in mind. First, several processes are implemented,
some at NLO, some at NNLO. Since new processes are continuously added, we refer to the

1Additionally to the python tool a Mathematica tool is available.
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online documentation for a list of available processes. For these, the user can define an arbi-
trary (infrared safe), fully differential observable and compute cross sections and distributions.
Second, the program is set up such that additional processes can be implemented by supplying
the relevant matrix elements.

To obtain a copy of McMule we recommend the following approach

$ git clone --recursive https :// gitlab.com/mule -tools/mcmule

To build McMule, a Fortran compiler such as gfortran and a python installation is needed.
The main executable can be compiled by running

$ ./ configure
$ make mcmule

Alternatively, we provide a Docker container [32] for easy deployment and legacy results. In
multi-user environments, udocker [33] can be used instead. In either case, a pre-compiled
copy of the code can be obtained by calling

$ docker pull yulrich/mcmule #requires Docker to be installed
$ udocker pull yulrich/mcmule #requires uDocker to be installed

We provide instructions on how McMule is used in Section 4.
When started, mcmule reads options from stdin as specified in Table 1 of Section 4. The

value and error estimate of the integration is printed to stdout and the full status of the
integration is written in a machine-readable format into a folder called out/ (see below).

McMule consists of several modules with a simple, mostly hierarchic structure. The re-
lation between the most important Fortran modules is depicted in Figure 1. A solid arrow
indicates “using” the full module, whereas a dashed arrow is indicative of partial use. In what
follows we give a brief description of the various modules and mention some variables that play
a prominent role in the interplay between the modules.

global_def: This module simply provides some parameters such as fermion masses that are
needed throughout the code. It also defines prec as a generic type for the precision
used.2 Currently, this simply corresponds to double precision.

functions: This is a library of basic functions that are needed at various points in the code.
This includes dot products, eikonal factors, the integrated eikonal, and an interface for
scalar integral functions among others.

collier: This is an external module [34–37]. It will be linked toMcMule during compilation
and provides the numerical evaluations of the scalar and in some cases tensor integral
functions in functions.

phase_space: The routines for generating phase-space points and their weights are collected
in this module. Phase-space routines ending with FKS are prepared for the FKS subtrac-
tion procedure with a single unresolved photon. In the weight of such routines a factor
ξ1 is omitted to allow the implementation of the distributions in the FKS method, see
(2c). This corresponds to a global variable xiout. This factor has to be included in the
integrand of the module integrands. Also the variable ksoft is provided that corre-
sponds to the photon momentum without the (vanishing) energy factor ξ1. Routines
ending with FKSS are routines with two unresolved photons, see (6c). Correspondingly,
a factor ξ1 ξ2 is missing in the weight. The global variables xiout1 and xiout2 as well
as ksoft1 and ksoft2 are provided.3

2For quad precision prec=16 and the compiler flag -fdefault-real-16 is required.
3In the current version of McMule these variables are called xioutA, xioutB, ksoftA, and ksoftB.
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global_def collier

functions

user

phase_space{pg}_mat_el

{pg}

mat_el

integrands vegas

mcmule test

ksoft

metadata

bin_it

Figure 1: The structure of McMule

{pg}_mat_el: Matrix elements are grouped into process groups such as muon decay (mudec)
or µ-e and µ-p scattering (mue). Each process group contains a mat_el module that
provides all matrix elements for its group. Simple matrix elements are coded directly
in this module. More complicated results are imported from sub-modules not shown in
Figure 1. A matrix element starting with P contains a polarised initial state. A matrix
element ending in av is averaged over a neutrino pair in the final state.

{pg}: In this module the soft limits of all applicable matrix elements of a process group are
provided to allow for the soft subtractions required in the FKS scheme. These limits are
simply the eikonal factor evaluated with ksoft from phase_space times the reduced
matrix element, provided through mat_el.

This module also functions as the interface of the process group, exposing all necessary
functions that are imported by

mat_el, which collects all matrix elements as well as their particle labelling or particle iden-
tification.

user: For a user of the code who wants to run for an already implemented process, this is the
only relevant module. At the beginning of the module, the user has to specify the number
of quantities to be computed, nr_q, the number of bins in the histogram, nr_bins, as
well as their lower and upper boundaries, min_val and max_val. The last three quanti-
ties are arrays of length nr_q. The quantities themselves, i.e. the measurement function,
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is to be defined by the user in terms of the momenta of the particles in quant. Cuts can
be applied by setting the logical variable pass_cut to false4. Some auxiliary functions
like (pseudo)rapidity, transverse momentum etc. are predefined in functions. Each
quantity has to be given a name through the array names.

Further, user contains a subroutine called inituser. This allows the user to read addi-
tional input at runtime, for example which of multiple cuts should be calculated. It also
allows the user to print some information on the configuration implemented.

vegas: As the name suggests this module contains the adaptiveMonte Carlo routine vegas [38].
The binning routine bin_it is also in this module, hence the need for the binning meta-
data, i.e. the number of bins and histograms (nr_bins and nr_q, respectively) as well
as their bounds (min_val and max_val) and names, from user.

integrands: In this module the functions that are to be integrated by vegas are coded.
There are three types of integrands: non-subtracted, single-subtracted, and double-
subtracted integrands, corresponding to the three parts of (6). The matrix elements to
be evaluated and the phase-space routines used are set using function pointers through
a subroutine initpiece. The factors ξi that were omitted in the phase-space weight
have to be included here for the single- and double-subtracted integrands.

mcmule: This is the main program, but actually does little else than read the inputs and call
vegas with a function provided by integrands.

test: For developing purposes, a separate main program exists that is used to validate the
code after each change. Reference values for matrix elements and results of short inte-
grations are stored here and compared against.

The library of matrix elements deserves a few comments. As matrix elements quickly be-
come very large, we store them separately from the main code. This makes it also easy to
extend the program by minimising the code that needs to be changed.

We group the various contributions into process group, generic processes, and generic pieces
as indicated in Figure 2. The generic process is a prototype for the physical process such as
`p → `p (cf. Section 6) where the flavour of the lepton ` is left open. The generic piece
describes a part of the calculation such as the real or virtual corrections, i.e. the different
pieces of (2) (or correspondingly (6) at NNLO), that themselves may be further subdivided
as is convenient. In particular, in some cases a generic piece is split into various phase-space
partitions, as in the example of em2emREE in Figure 2. A more detailed listing of the various
contributions required for µ-e scattering is given in Figure 5.

When running mcmule, the code generates a statefile from which the full state of the
integrator can be reconstructed should the integration be interrupted. This makes the statefile
ideal to also store results in a compact format. To analyse these results, we provide a python
tool pymule, additionally to the main code forMcMule. The tool pymule, which can be found
under tools/pymule, uses numpy [39] for data storage and matplotlib for plotting [40].
While pymule works with any python interpreter, IPython [41] is recommended. A full list
of functions provided can be found in the online manual of pymule [31].

An important issue are numerical instabilities arising in problematic regions of the phase
space. This is typically the case if an emitted photon becomes soft or collinear to a massive, but
light, fermion. For soft photon emission the numerical instability is related to the FKS subtrac-
tion discussed in Section 2. When ξ1 becomes very small, the difference f (ξ1)− f (0)θ (ξc−ξ1)
in (3) becomes potentially troublesome as f (ξ1) can be calculated less precisely than f (0). To

4Technically, pass_cut is a list of length nr_q, allowing to decide whether to cut for each histogram separately.
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McMule

process group mudec

generic process m2enn: µ→ νν̄e, τ→ νν̄e, τ→ νν̄µ
generic piece m2enn0
generic piece m2ennF
generic piece m2ennR

generic process m2enng µ→ νν̄eγ, τ→ νν̄eγ, τ→ νν̄µγ
generic piece m2enng0
generic piece m2enngV
generic piece m2enngC
generic piece m2enngR

generic process m2ennee: µ→ νν̄eee, τ→ νν̄eee, τ→ νν̄eµµ, τ→ νν̄µµµ,
...

generic piece m2ennee0
...

process group mue

generic process em2em: µe→ µe
generic piece em2em0
generic piece em2emFEE
generic piece em2emREE

partition em2emREE15
partition em2emREE35

...
generic process mp2mp: µp→ µp, ep→ ep

generic piece mp2mp0
generic piece mp2mpF
...

...

Figure 2: The structure of process group, generic process, and generic piece as used
by McMule. The suffices 0, V, C, F, R, and others are explained in more detail in
Section 5.

avoid this, we choose a very small softcut, below which we set the integrand directly to
zero. In the collinear case small fermion masses give rise to pseudo-collinear singularities that
further complicate a numerical stable evaluation of the matrix element. McMule addresses
this issue through a dedicated tuning of the phase-space parametrisation to help the vegas
integration find and deal with these problematic regions. In addition, a collcut is applied
if the photon becomes very collinear to a light fermion. During development, softcut and
collcut are varied to make sure that, within the integration error, the cross section is inde-
pendent of the chosen values. Afterwards, a suitable value is chosen and hard-coded. However,
the user retains the ability to modify this in inituser.
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4 Running McMule: double radiative muon decay as an example

In order to provide a simple example with concrete instructions on how to run the code and
to illustrate how it works, we consider the double radiative decay of the muon µ→ e[νν̄]γγ
at leading order. Since the neutrinos are not detected, we average over them, indicated by
the brackets. Hence, we have to be fully inclusive with respect to the neutrinos. But the code
allows to make any cut on the other final-state particles.

To be concrete let us assume we want to compute two distributions, the missing energy
/E ≡ E(µ) − E(e) − E(γ1) − E(γ2) and cosθe, the cosine of the angle between the outgoing
positron and the muon polarisation. Both quantities are determined in the rest frame of the
decaying muon. Of course, /E corresponds to the combined energies of the neutrinos. To avoid
an infrared singularity in the branching ratio, we have to require a minimum energy of the
photons. We choose this to be Eγ ≥ 10 MeV individually for both photons. In addition, we
require for the angle between the two photons θγγ > 15◦.

Asmentioned in Section 3 the quantities are defined in themodule user (file src/user.f95).
At the beginning of the module we set
nr_q = 2
nr_bins = 50
min_val = (/ 0._prec , -1._prec /)
min_val = (/ 50._prec , 1._prec /)

where we have decided to have 50 bins for both distributions and nr_q determines the num-
ber of distributions. The boundaries for the distributions are set as 0 < /E < 50 MeV and
−1≤ cosθe ≤ 1.

The quantities themselves are defined in the function quant. This function takes arguments
q1 to q7. These are the momenta of the particles, arrays of length 4 with the fourth entry the
energy. To figure out which momentum corresponds to which particle the user needs to check
the headers in the module mat_el or in the manual [31]. In our case, we find
!! From file mudec_pm2ennggav.f95
use mudec , only: pm2ennggav!!(p1 , n1 , p2, p3, p4 , p5, p6)
!! mu+(p1) -> e+(p2) \nu_e \bar{\nu}_\mu g(p5) g(p6)
!! mu -(p1) -> e-(p2) \bar{nu}_e \nu_\mu g(p5) g(p6)
!! for massive (and massless) electron
!! average over neutrino tensor taken

Indicating that we have p1 for the incoming µ, p2 for the outgoing e, and p5 and p6 for the
two outgoing photons. The momenta of the neutrinos must be given but do not enter, as we
average over them. Schematically, the function quant might look like

Table 1: The options read from stdin byMcMule. The calls are multiplied by 1000.

Variable name Data type Comment
nenter_ad integer calls / iteration during pre-conditioning
itmx_ad integer iterations during pre-conditioning
nenter integer calls / iteration during main run
itmx integer iterations during main run
ran_seed integer random seed
xinormcut1 real(prec) the 0< ξc ≤ 1 parameter
xinormcut2 real(prec) the second ξc parameter for NNLO (or the δcut)
which_piece char(20) the part of the calculation to perform
flavour char(8) the particles involved
(opt) unknown the user can request further input during userinit
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FUNCTION QUANT(P1,P2,P3,P4 ,P5 ,P6 ,P7)
.
.
pass_cut = .true.
pol1 = (/ 0._prec , 0._prec , 0.85 _prec , 0._prec /)

ez = (/ 0._prec , 0._prec , 1._prec , 0._prec /)

if(p5(4) < 10. _prec .or. p6(4) < 10. _prec) pass_cut = .false.
if(cos_th(p5 ,p6) > 0.965926) pass_cut = .false.

Emiss = p1(4)-p2(4)-p5(4)-p6(4)
names (1) = ’Emiss’
quant (1) = emiss
names (2) = ’CangE’
quant (2) = cos_th(p2 ,ez)

END FUNCTION QUANT

Here, we have used the function cos_th provided by the module functions. This returns the
cosine of the angle between the two momenta given as arguments. We have also specified the
polarisation vector pol1 in accordance with the µ+ beam used by MEG. This polarisation has
been measured [42] to be Pµ = −0.85±0.05. SinceMcMule defines the polarisation through
µ−, the sign has to be changed. The variable pass_cut controls the cuts. Initially it is set to
true, to indicate that the event is kept. Applying a cut amounts to setting pass_cut to false.

All that remains to be done is to prepare the input read by mcmule from stdin, as specified
in Table 1.

To be concrete let us assume we want to use 10 iterations with 1000 × 103 points each
for pre-conditioning and 20 iterations with 5000 × 103 points each for the actual numerical
evaluation. We pick a random seed, say 24225, and for the input variable which_piece we
enter m2enngR. Since the double radiative muon decay is not on the list of processes (1), we
actually compute the real corrections (hence the suffix R) of the generic process µ → eνν̄γ.
The flavour variable is set to mu-e. We could e.g. use tau-e to change from the generic
process µ → eνν̄γ to the process τ → eνν̄γ. This system will be used for other processes as
well. The input variable which_piece determines the generic process and the part of it that is
to be computed (i.e. tree level, real, double-virtual etc.). In a second step, the input flavour
associates actual numbers to the parameters entering the matrix elements and phase-space
generation.

Thus, we run the code by giving the input

$ ./ mcmule
1000
10
5000
20
24225
0.1
0.1
m2ennR
mu -e

In practice the input will typically not be given by hand. We mention a more efficient way in
Section 5 as well as the manual [31]. The two variables xinormcut1 and xinormcut2 have
no effect at all for a tree-level calculation and will be discussed in Section 5.1 in the context
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Figure 3: Results of a short test run for the branching ratio at LO for the double
radiative muon decay µ→ eνν̄γγ, as a function of the missing energy and the angle
of the outgoing positron. For the region /E < 20MeV a tailored run is shown in yellow.

of the NLO and NNLO run for muon-electron scattering. We also ignore the optional input for
the moment.

Alternatively, McMule can be run using Docker or udocker without compiling it first by
running

$ ./ tools/run -docker.sh -i yulrich/mcmule:latest \
-u path/to/user.f95 -r

followed by the same input as above.
Now the mule is ready to trot. After about fifteen minutes on an Intel i5 processor, it returns

the total cross section as5

result , error: { 1.10052E+06, 1.80838E+02 }; chisq: 0.83

which, after adding the factor G2
Fα

2/Γµ results in a branching ratio of B = 2.6611(4) · 10−5.
Here Γµ is the measured width of the muon and GF the Fermi constant as given in the Ap-
pendix A. The error is only the statistical error of the Monte Carlo and not a theory error. In ad-
dition, the two distributions are written into a binary file that contains the full state of the inte-
grator out/m2enngR_mu-e_S0000024225X1.00000D1.00000_ITMX020x005M.vegas.
The corresponding results are shown as green histograms in Figure 3, where dB/d cosθe has
been normalised.

The results have rather poor statistics. In particular the precision in the low-energy tail of
the sharply falling /E distribution is very low since the Monte Carlo generates very few points
there. If the user is interested in this tail it is advisable to perform dedicated runs. This can be
done simply by adding a cut like

if(emiss > 20.) pass_cut = .false.

in quant. The Monte Carlo will then adapt and result in a more precise determination of the
/E distribution in the region /E < 20MeV. For illustration in Figure 3 such a tailored run with
the same statistics is overlayed in yellow to the original run in the plot for /E.

This is all that is required for simply running the code. In what follows we give a brief
outline how the code works. The first step it does in mcmule is to associate the numerical
values of the masses, as specified through flavour. In particular, the generic masses Mm and

5Unless otherwise stated, all numerical results have been obtained by running the code in Docker or udocker.
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Me are set to Mmu and Mel. This is done in initflavour(scms), defined in global_def.
For other processes this might also involve setting e.g. centre-of-mass energies scms to default
values.

Next, the function to be integrated by vegas is determined. This is a function stored
in integrands. There are basically three types of integrands: a standard, non-subtracted
integrand sigma_0, a single-subtracted integrand sigma_1 needed beyond LO, and a double-
subtracted integrand sigma_2 needed beyond NLO. It is the variable which_piece that de-
termines which of the three functions is called. Usually, for a LO case, we only need sigma_0.
However, since the process µ→ eνν̄γγ as such is not implemented in McMule, we compute
it at LO by calling the real corrections of the radiative muon decay µ → eνν̄γ. Thus, from a
technical point of view we call a single-subtracted integrand. The function quant, however, is
constructed such that no subtraction takes place. This is ensured by the demand Eγ > 10MeV.
In addition, which_piece determines ndim, the dimension of the integration (11 in our case),
and the matrix element that needs to be called, Pm2ennggAV(q1,n1,q2...q6). The name
of the function suggests we compute µ(q1, n1) → e(q2)[νν̄]γ(q5)γ(q6) with the polarisation
vector n1 of the initial lepton, and the neutrinos are averaged over. Note that the momenta of
the neutrinos are given as arguments, even if they are redundant. This simplifies the code a
lot because it means that all matrix elements have the same calling convention.

The interplay between the function sigma_1(x,wgt,ndim) and vegas is as usual, through
an array of random numbers x of length ndim. In addition the vegas weight of the event, wgt,
is passed. The function sigma_1 simply evaluates the complete weight wg of a particular event
by combining wgt with the matrix element supplemented by symmetry, flux, and phase-space
factors. In a first step a phase-space routine of phase_space is called. For our calculation
this is the optimised phase space psd6_p_25_26_m50_fks(x,p1,Mm,p2,Me,p3...p6,0.,
weight) generating the momenta with correct masses as well as the phase-space weight
weight. The d in the name of the phase-space routine indicates that we are considering a
decay process (one initial state particle), the 6 indicates the total number of momenta gener-
ated and the meaning of fks will be explained below. The other labels indicate the particular
tuning and partition which are irrelevant in this case. With these momenta the observables to
be computed are evaluated with a call to quant. If one of them passes the cuts, the variable
cuts is set to true. This triggers the computation of the matrix element and the assembly of
the full weight. In a last step, the routine bin_it, stored in vegas, is called to put the weight
into the correct bins of the various distributions. These steps are done for all events and those
after pre-conditioning are used to obtain the final distributions.

Since, technically speaking, we are computing a subtracted matrix element, the code also
generates for each event the associated soft event, i.e. the same event with ξ1 → 0. This is
realised by having a parametrisation of the phase space, such that setting the first entry of x to
0 results in ξ1→ 0. Such a phase-space routine is called FKS compatible and named with the
ending fks. It is then checked whether the subtraction condition ξ1 < ξc , (3), is satisfied. If
yes, quant is evaluated with this new set of momenta, and if the event passes, the soft limit of
the matrix element is evaluated and the subtraction is performed according to (3). The global
variable xiout is required for this, since it is left out of the FKS phase-space weight and has
to be included in the integrand. In our case, the soft event never passes the cuts, due to the
requirement q6(4) > 10. in quant.

To conclude this section, we mention that the process considered here is actually relevant
to searches for lepton-flavour violating decays mediated by a light particle X . Indeed, double
radiative muon decay µ→ eνν̄γγ in the region of very small /E cannot be distinguished from
µ→ eX with X → γγ.

MEG has performed a search for this decay [43]. In order to assess the background from
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Figure 4: Branching ratio at LO for the double radiative muon decay µ→ eνν̄γγ, as
a function of the missing energy, i.e. the energy of the neutrinos.

double radiative muon decay, we have computed the /E distribution, with cuts

Eγ > 10MeV, | cosθγ|< 0.35 , |φγ|>
2π
3

, (7)

adapted to the MEG detector. Here, θγ and φγ are the polar and azimuthal angles of the two
photons. Further, we require that the two photons can be separated in the calorimeter. This is
implemented by specifying them to be δx = 20 cm apart on the detector surface which is at a
radius of R= 67.85cm resulting in

θγγ > tan−1
�

δx
R

�

≈ 16.4◦ . (8)

The results are shown in Figure 4, where special emphasis has been given to the small /E re-
gion. Integrating the differential distribution up to /E = 10MeV yields a branching ratio of
B(/E < 10MeV) = 1.2× 10−14.

5 Muon-electron scattering with McMule

Muon-electron scattering is a classic process which at low energy is completely dominated by
QED. There is renewed interest in this process in connection with the long-standing (3− 4)σ
discrepancy between the anomalous magnetic moment or (g − 2)µ of the muon and its Stan-
dard Model prediction. The theory calculation of (g−2)µ suffers from uncertainties originating
from non-perturbative hadronic corrections. The largest source of this uncertainty is the HVP,
followed by the contribution due to hadronic light-by-light scattering [44]. A better under-
standing of the hadronic contributions is therefore of utmost importance, even more so in light
of the new (g−2)µ experiments at Fermilab [45] and J-Parc [46] that will further increase the
experimental precision achieved by the BNL E831 experiment [47].

The HVP correction can be related to measurement data of electron-positron annihilation
using a dispersive approach [48, 49]. The resulting integrand is, however, highly fluctuating
due to hadronic resonances and threshold effects. This makes the corresponding analysis rather
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challenging. Furthermore, a recent lattice evaluation [50] of the HVP contribution to (g −2)µ
substantially deviates from the dispersive approach.

In this context it has been proposed to extract the HVP corrections from the measurement
of the running of the QED coupling in the space-like region [51]. Contrary to the traditional
time-like approach, the corresponding integrand is smooth and free of resonances. Moreover,
this would yield an independent determination of the HVP contribution resulting, in turn, in a
better understanding of the theory error.

While the original proposal was based on Bhabha scattering [51–53], it was recently estab-
lished that the elastic scattering of muons on atomic electrons could, in principle, be sufficiently
sensitive to reach a competitive precision with this novel approach [54]. This is the objective
of the proposed MUonE experiment [8]. Since in this case the effect of the HVP to the running
of the QED coupling for muon-electron scattering ranges from 10−3 to 10−5, the differential
cross section would have to be measured at a precision of 10 ppm.

The radiative corrections to muon-electron scattering represent one source of systematic
uncertainty that has to be carefully studied [55]. To reach the target precision these corrections
have to be known at a level of 10 ppm as well. The effect of hadronic corrections was recently
addressed in [56,57] using two independent methods. At leading order also Z-exchange has to
be taken into account. The main corrections are, however, due to QED radiation. The minimal
requirement is expected to be the NNLO QED corrections, for which we have to consider up to
two photons in the final state

e−(p1)µ
−(p2)→ e−(p3)µ

−(p4)
�

γ(p5)γ(p6)
	

, (9)

matched to leading-logarithmic resummation. In this section we report on the progress towards
this goal made through McMule.

5.1 Running McMule for muon-electron scattering

The NLO QED corrections to muon-electron scattering have been known for a long time [58,
59]. Motivated by the MUonE experiment, they have been revisited and, together with the
NLO electroweak corrections, implemented in a fully differential Monte Carlo code [15].

As a first step towards a sufficiently precise description of muon-electron scattering within
McMule, we have also implemented the NLO QED corrections. We have compared our results
with [15] and found full agreement. McMule also contains the dominant electronic NNLO
corrections that are proportional to Q2

µQ
6
e , where Qµ and Qe denote the charge of the muon

and electron, respectively [55]. Also this part of the code is fully verified after comparing the
observables defined in ‘Setup 2’ and ‘Setup 4’ of [15] with [60]. Since [15, 60] use a photon
mass as infrared regulator and the phase-space slicing method, the agreement is a strong cross
check for a correct technical implementation. Details of the computation and physical results
will be presented in Section 5.2. In this section we focus on a description on how to run the
code.

There are several changes with respect to the example discussed in Section 4. First of all,
the process is different. The generic process now is em2em. For a tree-level computation we can
proceed analogous to Section 4 with which_piece set to em2em0. For a NLO computation
we need to evaluate the virtual and real corrections. As shown in (2), using FKS this results in
two terms, the subtracted real corrections (2c) and the finite virtual corrections (2b), i.e. the
virtual corrections combined with the infrared counterterm. The corresponding which_piece
are em2emR and em2emF, respectively.

The results obtained with em2emR and em2emF taken separately are ξc dependent. This
dependence has to cancel in the sum. The ξc parameter is set through the variable xinormcut1
of Table 1. The latter has to be set to a value between 0 and 1 and is related to ξc through (4)
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process group mue

generic process em2em: µe→ µe

generic piece em2em0
generic piece em2emV, em2emC
generic piece em2emFEE, em2emFEM, em2emFMM
generic piece em2emA
generic piece em2emREE

partition em2emREE15, em2emREE35
generic piece em2emREM, em2emRMM
generic piece em2emFFEEEE
generic piece em2emRFEEEE

partition em2emRFEEEE15, em2emRFEEEE35
generic piece em2emRREEEE

partition em2emRREEEE1516, em2emRREEEE3536
generic piece em2emAA, em2emAFEE em2emNFEE
generic piece em2emAREE

partition em2emAREE15, em2emAREE35

Figure 5: A complete list of contributions (which_piece) currently implemented for
µ-e scattering. This is a subset of Figure 2.

as xinormcut1= ξc/ξmax. Checking the independence of physical results on ξc serves as a
consistency check and is an implicit check on the infrared safety of the observable implemented
in quant. To do this, it helps to disentangle em2emF into em2emV and em2emC, according to
(2b).6 The former corresponds to the pure virtual corrections whereas the latter is the infrared
counterterm, i.e. the integrated eikonal times the tree-level matrix element. Of course, taken
separately these terms are infrared divergent. McMule returns the finite part, as defined
in [31,61]. Only em2emC depends on ξc and this part is typically much faster in the numerical
evaluation.

In fact, em2emR and em2emF are divided up further, as can be seen in Figure 5, where a com-
plete tree of possible which_piece for the generic process em2em is depicted. This additional
separation corresponds to a gauge-invariant split of the NLO corrections into emission/absorp-
tion from the electron line EE, emission/absorption from the muon line MM, and the interference
EM. As shown in [15], the EE contributions are by far dominant. In addition, these contribu-
tions suffer most from pseudo singularities that arise from photon emission nearly collinear to
the electron. To deal with these regions of phase space in a numerically stable way, there is one
further purely technical partitioning of em2emREE into em2emREE15 and em2emREE35. These
two partitions have a tuned phase space in s15 = 2p1 · p5 and s35 = 2p3 · p5, respectively, to
deal with initial-state and final-state pseudo-collinear singularities.

Finally, we note that also hadronic contributions are implemented. This is done together
with the leptonic vacuum polarisation (VP) in em2emA. The user can then set the variables
nel, nmu, ntau, and nhad to decide which contributions to include. For the calculation of
the HVP the Fortran library alphaQED [62–64] is used. Specifically, we rely on the hadronic
stand-alone version hadr5n12.f.

Choosing different random seeds, varying ξc and having to compute the various real and
6This additional split is not implemented for all processes.
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Figure 6: The (in)dependence of the pure NNLO contribution σ(2) to the total cross
section on the arbitrary cut parameter ξc . The error band represents the 1σ confi-
dence level of the fit.

virtual parts results in quite a few jobs. A particularly convenient way to runMcMule is using
menu files. A menu file contains a list of jobs to be computed such that the user will only have
to vary the random seed and ξc as the statistical requirements are defined globally in a config
file. This is completed by a submission script, usually called submit.sh. The submit script is
what will need to be launched. It will take care of the starting of different jobs. It can be run
on a normal computer or on a Slurm cluster [65].

To prepare the run in this way we can use pymule, a tool provided together withMcMule.
When using pymule create, we are asked various questions, most of which have a default
answer in square brackets. In the end pymule will create a directory, where all results will
be stored. In addition pymule also provides tools to analyse the results, such as combining
runs with different random seeds and different choices of ξc . A more detailed description of
pymule can be found in the online documentation [31,61].

Moving from NLO to NNLO increases the number of partial results further. Now we have to
run with which_piece set to em2emRREEEE (double-real corrections), em2emRFEEEE (real
virtual corrections), and em2emFFEEEE (double-virtual corrections). As discussed above, the
additional ending EEEE indicates that only electronic corrections are included. As for the real
corrections, also the real-virtual and the double-real contributions are computed with a parti-
tion to disentangle initial-state and final-state pseudo-collinear singularities.

Also at NNLO the correction due to hadronic and leptonic VP is included. These contri-
butions are split up according to the classification of [57]. The diagrams where the VP fac-
torises are implemented in em2emAA, em2emAR, and em2emAF. The former takes into account
diagrams with one or two insertions of the VP into the tree level diagram. The latter two im-
plement QED NLO corrections combined with one insertion. The remaining non-factorisable
vertex correction can be computed via em2emNF. This relies on the results of [56] which uses
the hyperspherical integration method to calculate the hadronic corrections to muon-electron
scattering [66].

As listed in Table 1, running at NNLO there are two ξc variables to be set in the input.
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However, to obtain ξc independent physical results it is imperative that they are set equal,
xinormcut1=xinormcut2. The reason McMule works with two variables is that for com-
putations with massless fermions, xinormcut2 corresponds to the unphysical cut variable
related to the collinear subtraction, often denoted by δcut. Also, an independent xinormcut2
can be used for internal checks.

An example of a typical check of the ξc (in)dependence is shown in Figure 6, where the
n-particle (orange), (n+1)-particle (green), and (n+2)-particle (red) contributions are shown
separately for the total cross section according to ‘Setup 4’ of [15].7 These are just the parts
given in (6). In the sum (blue) the ξc dependence cancels. This can be seen particularly well
in the bottom panel, where the results of seven separate choices of ξc are shown, together with
a 1σ band of a fit to the ξc dependence.

Once more we stress that this cancellation is exact. Thus, in principle any choice is allowed.
However, for very small choices of ξc there are large numerical cancellations. In the case of
production runs, it is thus advisable to pick a value of ξc where the separate contributions have
roughly the same magnitude as the final result. From experience, a choice around ξc ∼ 0.1 is
a good starting point.

5.2 The dominant NNLO corrections

We now turn to the technical details of the calculation as well as the phenomenological dis-
cussion of the results. As previously mentioned, at NNLO we restrict ourselves to the gauge-
invariant subgroup that only contains electronic corrections, i.e. contributions proportional to
Q2
µQ

6
e . These corrections are expected to be dominant compared to the other contributions at

this perturbative order as a consequence of enhanced collinear logarithms. To be consistent,
at NNLO we therefore also only include VP with electrons inside the loop.

Furthermore, we assume the electron to be unpolarised in correspondence with the atomic
electrons of the MUonE experiment. Our results are therefore independent of the muon polar-
isation due to parity invariance of QED. Additionally, the considered gauge-invariant subset is
also independent of whether the muon beam consists of µ+ or µ−. This does not hold, however,
for the full set of NLO QED corrections that is included here. This includes the muon and tau
VP.

The double-virtual diagrams were calculated with the full electron mass dependence using
the analytic expressions for the heavy quark form factors of [67]. Furthermore, the genuine
two-loop corrections to the photon self-energy were taken from [68]. The diagrams for the
real-virtual and double-real contributions were generated using QGraf [69] and calculated
with Package-X [70]. An independent calculation was performed using FORM [71]. Compli-
cated scalar triangle- and box-functions were then evaluated with the COLLIER library [34].
Additionally, COLLIER was used to perform a numerical stable tensor reduction in problematic
regions of the phase space.

With the momenta of the particles labelled as in (9) we define the invariants te = (p1−p3)2

and tµ = (p2−p4)2. In the case of purely virtual corrections we have te = tµ. The energy of the
outgoing electron and muon are denoted by Ee and Eµ, respectively. Additionally, we use θe
and θµ as the corresponding scattering angles relative to the beam axis. We further assume a
muon beam of energy E = 150 GeV, consistent with the M2 beam line at CERN North Area [8].

The total cross section is ill-defined due to the behaviour dσ/d t ∼ t−2 with tmin ≤ t ≤ 0.
We therefore have to apply a cut on the maximal value of t or equivalently on the minimal
energy of the outgoing electron. In all of the results below we have chosen Ee > 1GeV. To
model the geometry of the detector we require in addition that θµ > 0.3 mrad.

7In fact, this was one of the numbers compared with [60].
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Table 2: Results for the integrated cross section for S1 (without elasticity cut) and S2
(with elasticity cut) at LO, NLO, and NNLO. All digits given are significant compared
to the error of the numerical integration.

σ/µb δK(i)/%
S1 S2 S1 S2

σ(0) 121.4229 121.4229
σ(1) 0.5440 -4.0773 0.4480 -3.3580
σ(2) -0.0058 +0.0093 -0.0048 0.0079
σ2 121.9611 117.3549

Following [55], the outgoing electron and muon angles are in the absence of photons re-
lated through the elasticity condition

tanθ el
µ =

2 tanθe

(1+ γ2 tan2 θe)(1+ g∗µ)− 2
, (10)

where

g∗µ =
Em+M2

Em+m2
, γ=

E +m
p

s
, (11)

with s the centre-of-mass energy. This allows to restrict radiation with the elasticity cut

0.9<
θµ

θ el
µ

< 1.1 . (12)

In the following we present results with and without this additional cut, in order to analyse
its impact on the radiative corrections. A similar effect can be expected as in the case of the
acoplanarity cut of [15], where the NLO corrections flatten out significantly.

In summary, we consider the two scenarios

• S1: Ee > 1GeV, θµ > 0.3 mrad,

• S2: Ee > 1GeV, θµ > 0.3 mrad, 0.9< θµ/θ
el
µ < 1.1.

The order-by-order contributions, σ(i), to the integrated cross section, σ2 = σ(0)+σ(1)+σ(2),
are presented in Table 2.8 It also shows the corresponding K factors defined as

K(i) = 1+δK(i) =
σi

σi−1
. (13)

Figure 7 and Figure 8 then show differential results that are of interest to the MUonE experi-
ment. In particular, we present distributions with respect to θe and tµ. The differential cross
section at LO as well as at NNLO are displayed in the upper panels. In addition, the lower
panels show the differential K factors

δK(i) =
dσ(i)/d x
dσi−1/d x

, (14)

with x ∈ {θe, tµ}. In dotted lines, the K factors without the inclusion of the VP are shown.
We first remark that the numerical error for the distribution dσ/dθe (Figure 7) is much

smaller than for dσ/d tµ (Figure 8). This is due to the fact that the cross section in the latter
case is practically zero in most parts of the kinematically allowed region. As exemplified in
Section 4, the statistics for dσ/d tµ could be drastically improved using tailored runs. Never-
theless, the discontinuities of Figure 8 indicate that the Monte Carlo error for individual bins
provided by McMule might be underestimated.

8For this paper, σ(2) only denotes the dominant NNLO contribution as defined in the various sections.
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Figure 7: The differential cross section w.r.t. θe at LO (green) and NNLO (red) for
scenarios S1 (without elasticity cut) and S2 (with elasticity cut). The NLO and NNLO
K factors are shown in blue and red, respectively.

Furthermore, sizeable NLO and NNLO corrections of up to 30% and 0.5%, respectively,
can be observed. Naively, one could therefore conclude that the target precision of 10 ppm
of MUonE is far out of reach. First of all, however, it has to be noted that the enhancement
of the corrections at the end points of the distributions are due to soft photon emission. For a
reliable description in this region, the logarithms need to be resummed. The leading logarithms
can be resummed with a parton shower. Moreover as detailed in [55], also the calculation of
the next-to-leading logarithms to all orders might be feasible. Secondly, the elasticity cut has
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Figure 8: The differential cross section w.r.t. tµ at LO (green) and NNLO (red) for
scenarios S1 (without elasticity cut) and S2 (with elasticity cut). The NLO and NNLO
K factors are shown in blue and red, respectively.

the important effect of significantly reducing the variation in the K factors. Since the MUonE
experiment proposes to measure ratios of cross sections of different kinematic regions to cancel
systematic uncertainties as opposed to absolute values, the flatness of the corrections is highly
advantageous [55,72].
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6 Lepton-proton scattering with McMule

There is a long history in the study of elastic electron-proton and muon-proton scattering and
the computation of radiative corrections to these processes started in the sixties [73]. If lepton-
mass effects are taken into account appropriately, the two processes are the same from a com-
putational point of view.

Typically, the corrections to lepton-proton scattering at NLO [74, 75] are split into differ-
ent gauge-independent parts: corrections from the lepton line, corrections due to VP effects,
corrections from the proton line and the so-called two-photon exchange corrections [76–80].
The latter contain contributions from inelastic intermediate states. This makes it difficult to
obtain solid predictions from first principles. Looking at the charge asymmetry, i.e. the differ-
ence between `+ p and `− p scattering, is a useful tool to gain more information on two-photon
exchange [81].

Going beyond NLO, the situation becomes considerably more complicated. To mention
just two complications, the VP effects cannot be factorised any longer [57] and apart from
the emission of photons also the emission of an additional `+`− pair potentially needs to be
considered.

Due to the small mass of the electron, corrections from the lepton line are typically dom-
inant for ep → ep. Hence, they received particular attention. Effects beyond the the soft
approximation for the radiation from the electron were considered [82], as well as resumma-
tion of leading logarithmic effects [83]. Recently a calculation including the corresponding
NNLO effects was presented in [84]. Resummation was also studied in an effective theory
approach [85].

For these corrections, the only difference between lepton-proton scattering and the results
presented in the previous section is due to the fact that the proton is not pointlike. This can be
accounted for by parametrising the photon-proton interaction through form factors. Of course,
electron-proton scattering has been used to determine these form factors and, in particular,
their behaviour for small momentum transfer squared. This allows for an extraction of the
proton radius, see e.g. [86]. However, for the results presented in this section we will simply
use the standard dipole form factors, as given in Appendix A.

Thus, in this section we show NNLO results for unpolarised elastic lepton-proton scattering,

`(p1) p(p2)→ `(p3) p(p4)
�

γ(p5)γ(p6)
	

, (15)

in the approximation that the lepton interacts with the proton through the exchange of a single
photon with the standard dipole form factor. All lepton mass effects as well as leptonic and
hadronic VP effects are taken into account. On the other hand, two (or more) photon exchange
as well as radiation from the proton is neglected. We also make the assumption that there are
no additional lepton pairs in the final state.

6.1 NNLO effects in elastic electron-proton scattering

As a first example, we consider e− p → e− p in a setting with kinematics adapted to the P2
experiment [6]. An incoming electron of energy E = 155MeV is scattering off a proton initially
at rest. We consider scattering angles in the range 25◦ < θe < 45◦. Following [84], we also
apply a cut on the energy of the outgoing electron and require Ee > 45MeV.

Starting with the total cross section (subject to the cuts above) we list the results in Table 3.
Apart from listing the full NLO and NNLO corrections, σ(1) and σ(2), we also give separately
the VP contribution (leptonic and hadronic) to the NLO and NNLO corrections. While the
NLO corrections are rather large (about 5% with the VP contributing about 1%) the NNLO
corrections are below 0.1%.
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Table 3: Results for the integrated cross section for the P2 setting at LO, NLO, and
NNLO.

σ/µb δK(i)/%
σ(0) 34.5392
σ(1) 1.7763 5.1430
σ
(1)
VP 0.4663 1.3501
σ(2) -0.0237 -0.0653
σ
(2)
VP 0.0132 0.0364
σ2 36.2919

The first differential observable we consider is dσ/dθe. In the top panel of Figure 9 we show
the LO (green) and NNLO (red) differential cross section. The latter includes VP contributions.
In order to assess the effect of higher-order corrections we show the K factors in the bottom
panel. The solid (dotted) lines refer to the corrections with (without) VP contributions. Since
there are no large logarithms for this observable, the size of the corrections is in agreement
with the expectation due to the counting of powers of α for all values of θe. Consequently, the
missing N3LO contributions due to emission from the electron are expected to beO(10−6) and,
hence, negligible. Emission from the proton and two-photon exchange contributions, however,
will need to be properly taken into account.

Results similar to those shown in Figure 9 have been presented in [84], not including VP
contributions. Our NLO results (without VP) agree with these results. However, we disagree
substantially with the NNLO corrections of [84], even if we adapt to their calculation and
include the electron loop in the two-loop vertex diagram. In fact, our NNLO corrections are
negative, whereas those presented in [84] are positive. With respect to the results presented
in Section 5.2 that have been verified independently by [60], the only new ingredients are the
matrix elements. They have been compared pointwise with [84] and agree.

As a second example we show dσ/d|t| in Figure 10. The difference between the LO result
(green) and NNLO result (red) is barely visible in the top panel. The size of the higher-order
correction can be read off from the lower panel. While at LO, t = (p2−p4)2 determined from the
proton kinematics is the same as te ≡ (p1 − p3)2 determined from electron kinematics, these
two quantities start to differ at NLO. In our approximation the ’true’ Q2 that enters the form
factors is Q2 = −t. To illustrate the difference, we show the K factors with |t| as well as the
electronic |te|. The size of the corrections differs by about 20% between the two observables.

Generally speaking, the corrections are well under control for most values of Q2 = |t|,
but increase towards the endpoint as in Figure 8. Indeed, NLO (NNLO) correction up to 10%
(0.5%) are found in the tail of the distribution, and to obtain a very precise theoretical predic-
tion in this region, large logarithms would have to be resummed.

6.2 NNLO effects in elastic muon-proton scattering

Elastic muon-proton scattering µp → µp can be used to obtain an independent extraction of
the proton radius and shed light on possible differences between muons and electrons. In fact,
MUSE [9] will measure simultaneously `±-p scattering with ` ∈ {e,µ}. Since we are neglecting
two-photon exchange, there is no difference between `+ and `− and the only difference to the
process of Section 6.1 is the mass of the lepton. As we will see below, the larger mass of the
muon typically results in smaller corrections.

For the purpose of illustrationwe consider an incomingmuon ofmomentum |~p1|= 210MeV
scattering off a proton at rest. For the scattering angle range we use 20◦ < θµ < 100◦, as
appropriate for MUSE. We include the same contributions as in Section 6.1. Again we start
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Figure 9: Differential cross section dσ/dθe for a P2 setting at LO (green) and NNLO
(red) with K factors. Solid (dotted) K factors are with (without) the inclusion of VP
contributions.

with the total cross section (subject to the cuts above) and present our results in Table 4. In
this case, the NLO (NNLO) corrections are just over 10−2 (10−4) and are actually dominated
by the VP contributions.

The results for the differential cross section dσ/dθµ are depicted in Figure 11. Again
we show the K factor with (solid) and without (dotted) VP contributions. This shows the
dominance of the VP effects which themselves are entirely driven by the contribution of the
electron. The corrections are roughly a factor 4 smaller than for electron-proton scattering
shown in Figure 9. Accordingly, we expect N3LO corrections from the emission of the muon
to contribute well below O(10−6) to dσ/dθµ. This is encouraging in particular if these effects
are seen as background to measure and study two-photon contributions.

As a second differential observable we consider dσ/dEkin
µ , where the kinetic energy of the

muon is defined as Ekin
µ ≡ Eµ−mµ. At LO there is a one-to-one relation between the scattering

angle θµ and Ekin
µ . Beyond LO, for a given θµ there will be events with smaller Ekin

µ due to

Table 4: Results for the integrated cross section for the MUSE setting at LO, NLO, and
NNLO.

σ/µb δK(i)/%
σ(0) 49.6677
σ(1) 0.6541 1.3170
σ
(1)
VP 0.7172 1.4440
σ(2) 0.0075 0.0150
σ
(2)
VP 0.0076 0.0151
σ2 50.3294
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Figure 10: Differential cross section dσ/d|t| for a P2 setting at LO (green) and NNLO
(red) with K factors. Solid (dotted) K factors are determined from proton (electron)
kinematics.

additional radiation. In order to illustrate this, we define four θµ bands as follows:

band 1 : 22.206◦ < θµ < 44.169◦ 126MeV> Ekin
µ

�

�

LO > 117MeV

band 2 : 46.148◦ < θµ < 62.678◦ 116MeV> Ekin
µ

�

�

LO > 107MeV

band 3 : 64.443◦ < θµ < 80.402◦ 106MeV> Ekin
µ

�

�

LO > 97MeV

band 4 : 82.222◦ < θµ < 99.663◦ 96MeV> Ekin
µ

�

�

LO > 87MeV .

(16)

The corresponding values for Ekin
µ at LO are also indicated. At LO, all events of a given band

will fall into this range of Ekin
µ . This can be seen in the top panel of Figure 12, where dσ/dEkin

µ

at NNLO is shown in red (band 1), azure (band 2), green (band 3), and yellow (band 4).
Outside the LO Ekin

µ range, the cross section falls sharply and is only non-zero due to radiative
events. The middle panel shows the NLO K factor. Since K(1) is formally infinity outside the
LO Ekin

µ range, this factor is only shown in the region where the LO cross section does not
vanish. Finally, in the lowest panel we show the NNLO K factor. Within the LO Ekin

µ range,
these corrections are small in accordance with the α2 suppression. Outside the LO Ekin

µ range,
however, the NNLO corrections are quite large, up to 1.5%. This is not very surprising, since
in this kinematic regime the NNLO terms are in fact only a NLO description of the observable.

7 Future developments of McMule

Once a mule has made up its mind, it is difficult to stop it. Hence, there will be continuous
further developments and extensions of the code.

Roughly speaking, further developments can be divided into two classes. First, new pro-
cesses or more complete descriptions of already implemented ones will be added. Second,
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Figure 11: Differential cross section dσ/dθµ for MUSE with incoming muons of mo-
mentum 210MeV, at LO (green) and NNLO (red) with K factors. Solid (dotted) K
factors are with (without) the inclusion of VP contributions.

there will be technical advances that improve the performance and precision, and potentially
enable the implementation of more complicated processes.

With respect to the first class, work is ongoing to implement Møller scattering and
e+ e−→ γγ at NNLO. As an example for improvements on already implemented scattering pro-
cesses we mention the inclusion of polarisation effects. So far, only the descriptions of decays
are available for polarised initial states. Many of the processes mentioned in the introduction
are, however, related to measurements of asymmetries that typically require polarised initial
states. Such observables also often require the inclusion of electroweak corrections, as they lead
to parity-violating effects. In addition, a full NNLO description of muon-electron scattering is
envisaged. In order to go beyond the approximation of electronic corrections the full two-loop
matrix element is required. The corresponding integrals in the limit of massless electrons are
known [87,88] and the amplitude is being computed [89]. In addition, also the one-loop ma-
trix element for eµ→ eµγ is required. The implementation of one-loop amplitudes for NNLO
calculations requires particular care, since they are to be integrated over singular corners of
the phase space. This results in two requirements. First, they have to be implemented with
extreme numerical stability. Second, the numerical evaluation has to be reasonably fast.

To address these issues, in the long term it is probably advisable to link McMule to a
dedicated code that evaluates higher-order amplitudes. There are several one-loop tools that
specialise in this (for example [90–93]). While so far all attempts regarding automated com-
putations of one- and two-loop amplitudes were dedicated to high-energy processes, it should
be possible to adapt these tools to QED computations with massive fermions. OpenLoops [94]
is one such tool that in the past has been relied upon for real virtual corrections. We also plan
to set up an interface to OpenLoops to facilitate their numerically stable calculation. Of course,
a major hurdle on the path towards using an external tool for all amplitudes is that the tool
would have to be extended to two-loop calculations. While first steps have been made in this
direction [95], we anticipate that two-loop amplitudes will have to be implemented directly in
McMule for the time being.
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Figure 12: Differential cross section dσ/dEkin
µ for MUSE with incoming muons of

momentum 210MeV, at LO (green) and NNLO (red) with K factors. Results are
shown separately for different bands of the scattering angle θµ.

Also related to the numerical stability of the integration is the treatment of pseudo sin-
gularities related to near collinear emission of photons. This is dealt with by splitting up the
phase space such that only a small number (ideally one) of pseudo singularities is possible in
each partition. Then the phase space is tuned such that there is a simple one-to-one match
between the dangerous regions of phase space and an integration variable. Such a phase-space
parametrisation typically results in a stable and reliable numerical evaluation of the integrals.
As a possible further development, there is the option to subtract the pseudo-collinear singu-
larity and add back a partially integrated counterterm [96]. However, since the logarithms
arising from these phase-space region are physical, it is important to have a very flexible and
exclusive treatment of the final-state particles.

Since FKS` works at all orders in perturbation theory, it is only the lack of the matrix
elements that prevents us from going beyond NNLO. One example, where a N3LO calculation
might be feasible in the near future concerns the dominant electronic contribution to muon-
electron scattering. As a more futuristic development we mention the idea to possibly compute
the finite (eikonal-subtracted and ultraviolet-renormalised) matrix elements M(`−i) f

n+i that are
the ingredients of FKS` directly numerically.

Finally, many observables will be dominated by large logarithms, at least in some range of
the distributions. Combining fixed-order calculations with a QED parton shower is a generic
and powerful tool to resum the leading logarithms. Thus, the mule might want to take a
shower after a hard day’s work. The structure of FKS` is particularly amicable to a YFS parton
shower because it already exploits the YFS structure. Initial (final) state collinear logarithms
can be resummed using the parton distribution (fragmentation function) approach, which was
recently extended to next-to-leading logarithmic accuracy [97].

Apart from technical developments we have also made steps towards being as open as
possible with our results and facilitating their cross checks. All data that has been used in the
plots presented here are available on a public git repository https://gitlab.com/mule-tools/
user-library. For each data set, we give the input data and a SHA1 identifier of the code used
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to create it. Since the code is available as a Docker image, anyone will be able to reproduce
our results, regardless of operating system and dependencies. We hope this will accelerate
progress in the theoretical description of low-energy particle physics experiments.
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A Input parameters

The computations in this paper are performed in the on-shell scheme for the coupling and
using pole masses. Accordingly, the input parameters we use are [98]

α= 1/137.035999084, GF = 1.1663787 · 10−11 MeV−2,

me = 0.510998950MeV, mµ = 105.658375MeV,

mτ = 1776.86MeV, mp = 938.272088MeV .

(17)

To convert from MeV to µb we use (cħh)2 = 1 = 3.89379372 · 108 MeV2µb. When presenting
branching ratios of the muon, we always divide by the full width, determined from the lifetime
2.196981 · 10−6 s as Γµ = 2.995984 · 10−16 MeV.

The interaction of the photon of momentum q = p′ − p with the proton is parametrised as

ū(mp, p′)
�

F1(Q
2)γµ + F2(Q

2)
iσµνqν

2mp

�

u(mp, p) , (18)

where Q2 = −q2 ≥ 0. The form factors F1 and F2 are related to the Sachs form factors as

GE = F1 −τF2, GM = F1 + F2 , (19)

where τ≡Q2/(4m2
p). Using the standard dipole parametrisation with Λ2 = 0.71GeV2 we set

F1(Q
2) =

1+κτ
1+τ

�

1+
Q2

Λ2

�−2
and F2(Q

2) =
−1+ κ
1+τ

�

1+
Q2

Λ2

�−2
. (20)

Here κ= 2.79284734 is the proton’s magnetic moment in units of the nuclear magneton.

28

https://scipost.org
https://scipost.org/SciPostPhys.9.2.027


SciPost Phys. 9, 027 (2020)

References

[1] D. Androić et al., Precision measurement of the weak charge of the proton, Nature 557, 207
(2018), doi:10.1038/s41586-018-0096-0, arXiv:1905.08283.

[2] W. Xiong et al., A small proton charge radius from an electron–proton scattering experiment,
Nature 575, 147 (2019), doi:10.1038/s41586-019-1721-2.

[3] R. Pohl et al., The size of the proton, Nature 466, 213 (2010), doi:10.1038/nature09250.

[4] A. Antognini et al., Proton structure from the measurement of 2S-2P transition frequencies
of muonic hydrogen, Science 339, 417 (2013), doi:10.1126/science.1230016.

[5] J. Bernauer et al., Electric and magnetic form factors of the proton, Phys. Rev. C 90, 015206
(2014), doi:10.1103/PhysRevC.90.015206, arXiv:1307.6227.

[6] D. Becker et al., The P2 experiment, Eur. Phys. J. A 54, 208 (2018),
doi:10.1140/epja/i2018-12611-6, arXiv:1802.04759.

[7] J. Benesch et al., TheMOLLER experiment: an ultra-precise measurement of the weakmixing
angle using Møller scattering (2014), arXiv:1411.4088.

[8] MUonE collaboration, Letter of intent: The MUonE project, CERN-SPSC-2019-026/SPSC-
I-252 (2019).

[9] R. Gilman et al., Technical design report for the Paul Scherrer Institute experiment
R-12-01.1: Studying the proton "radius" puzzle with µp elastic scattering (2017),
arXiv:1709.09753.

[10] A. Keshavarzi, W. J. Marciano, M. Passera and A. Sirlin, The muon g-2 and ∆α
connection, Phys. Rev. D 102, 033002 (2020), doi:10.1103/PhysRevD.102.033002,
arXiv:2006.12666.

[11] S. Actis et al., Quest for precision in hadronic cross sections at low energy: Monte Carlo
tools vs. experimental data, Eur. Phys. J. C 66, 585 (2010), doi:10.1140/epjc/s10052-
010-1251-4, arXiv:0912.0749.

[12] D. R. Yennie, S. C. Frautschi and H. Suura, The infrared divergence phenomena and high-
energy processes, Ann. Phys. 13, 379 (1961), doi:10.1016/0003-4916(61)90151-8.

[13] T. Engel, A. Signer and Y. Ulrich, A subtraction scheme for massive QED, J. High Energ.
Phys. 01, 085 (2020), doi:10.1007/JHEP01(2020)085, arXiv:1909.10244.

[14] A. B. Arbuzov, Leading and next-to-leading logarithmic approximations in quantum elec-
trodynamics, Phys. Part. Nuclei 50, 721 (2019), doi:10.1134/S1063779619060029.

[15] M. Alacevich, C. M. Carloni Calame, M. Chiesa, G. Montagna, O. Nicrosini and
F. Piccinini, Muon-electron scattering at NLO, J. High Energ. Phys. 02, 155 (2019),
doi:10.1007/JHEP02(2019)155, arXiv:1811.06743.

[16] A. A. Penin, Two-loop photonic corrections to massive Bhabha scattering, Nucl. Phys. B 734,
185 (2006), doi:10.1016/j.nuclphysb.2005.11.016, arXiv:hep-ph/0508127.

[17] A. A. Penin, Two-loop corrections to Bhabha scattering, Phys. Rev. Lett. 95, 010408 (2005),
doi:10.1103/PhysRevLett.95.010408, arXiv:hep-ph/0501120.

29

https://scipost.org
https://scipost.org/SciPostPhys.9.2.027
http://dx.doi.org/10.1038/s41586-018-0096-0
https://arxiv.org/abs/1905.08283
http://dx.doi.org/10.1038/s41586-019-1721-2
http://dx.doi.org/10.1038/nature09250
http://dx.doi.org/10.1126/science.1230016
http://dx.doi.org/10.1103/PhysRevC.90.015206
https://arxiv.org/abs/1307.6227
http://dx.doi.org/10.1140/epja/i2018-12611-6
https://arxiv.org/abs/1802.04759
https://arxiv.org/abs/1411.4088
https://arxiv.org/abs/1709.09753
http://dx.doi.org/10.1103/PhysRevD.102.033002
https://arxiv.org/abs/2006.12666
http://dx.doi.org/10.1140/epjc/s10052-010-1251-4
http://dx.doi.org/10.1140/epjc/s10052-010-1251-4
https://arxiv.org/abs/0912.0749
http://dx.doi.org/10.1016/0003-4916(61)90151-8
http://dx.doi.org/10.1007/JHEP01(2020)085
https://arxiv.org/abs/1909.10244
http://dx.doi.org/10.1134/S1063779619060029
http://dx.doi.org/10.1007/JHEP02(2019)155
https://arxiv.org/abs/1811.06743
http://dx.doi.org/10.1016/j.nuclphysb.2005.11.016
https://arxiv.org/abs/hep-ph/0508127
http://dx.doi.org/10.1103/PhysRevLett.95.010408
https://arxiv.org/abs/hep-ph/0501120


SciPost Phys. 9, 027 (2020)

[18] A. Mitov and S.-O. Moch, The singular behavior of massive QCD amplitudes, J. High Energ.
Phys. 05, 001 (2007), doi:10.1088/1126-6708/2007/05/001, arXiv:hep-ph/0612149.

[19] T. Becher and K. Melnikov, Two-loop QED corrections to Bhabha scattering, J. High Energ.
Phys. 06, 084 (2007), doi:10.1088/1126-6708/2007/06/084, arXiv:0704.3582.

[20] T. Engel, C. Gnendiger, A. Signer and Y. Ulrich, Small-mass effects in heavy-to-light
form factors, J. High Energ. Phys. 02, 118 (2019), doi:10.1007/JHEP02(2019)118,
arXiv:1811.06461.

[21] S. Frixione, Z. Kunszt and A. Signer, Three-jet cross sections to next-to-leading order, Nucl.
Phys. B 467, 399 (1996), doi:10.1016/0550-3213(96)00110-1, arXiv:hep-ph/9512328.

[22] R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading or-
der computations in QCD: the FKS subtraction, J. High Energ. Phys. 10, 003 (2009),
doi:10.1088/1126-6708/2009/10/003, arXiv:0908.4272v2.

[23] G. M. Pruna, A. Signer and Y. Ulrich, Fully differential NLO predictions
for the radiative decay of muons and taus, Phys. Lett. B 772, 452 (2017),
doi:10.1016/j.physletb.2017.07.008, arXiv:1705.03782.

[24] G. M. Pruna, A. Signer and Y. Ulrich, Fully differential NLO predictions for the rare
muon decay, Phys. Lett. B 765, 280 (2017), doi:10.1016/j.physletb.2016.12.039,
arXiv:1611.03617.

[25] Y. Ulrich, Fully differential NLO predictions for rare and radiative lepton decays, Proc. Sci.
295, 124 (2018), doi:10.22323/1.295.0124, arXiv:1712.05633.

[26] M. Fael, L. Mercolli and M. Passera, Radiative µ and τ leptonic decays at NLO, J. High
Energ. Phys. 07, 153 (2015), doi:10.1007/JHEP07(2015)153, arXiv:1506.03416.

[27] M. Fael and C. Greub, Next-to-leading order prediction for the decay µ → e(e+e−) νν, J.
High Energ. Phys. 01, 084 (2017), doi:10.1007/JHEP01(2017)084, arXiv:1611.03726.

[28] M. Fael, Leptonic decays of the tau lepton, EPJ Web Conf. 212, 08004 (2019),
doi:10.1051/epjconf/201921208004.

[29] C. Anastasiou, K. Melnikov and F. Petriello, The electron energy spectrum in muon
decay through O(α2), J. High Energ. Phys. 09, 014 (2007), doi:10.1088/1126-
6708/2007/09/014, arXiv:hep-ph/0505069.

[30] A. Pak and A. Czarnecki, Heavy-to-heavy quark decays at next-to-next-to-leading order,
Phys. Rev. D 78, 114015 (2008), doi:10.1103/PhysRevD.78.114015, arXiv:0808.3509.

[31] Y. Ulrich, The McMule manual, https://gitlab.com/mule-tools/manual.

[32] D.Merkel, Docker: Lightweight linux containers for consistent development and deployment,
Linux J. (2014).

[33] J. Gomes, E. Bagnaschi, I. Campos, M. David, L. Alves, J. Martins, J. Pina, A. López-
García and P. Orviz, Enabling rootless Linux Containers in multi-user environments: The
udocker tool, Comput. Phys. Commun. 232, 84 (2018), doi:10.1016/j.cpc.2018.05.021,
arXiv:1711.01758.

[34] A. Denner, S. Dittmaier and L. Hofer, Collier: A fortran-based complex one-loop
library in extended regularizations, Comput. Phys. Commun. 212, 220 (2017),
doi:10.1016/j.cpc.2016.10.013, arXiv:1604.06792.

30

https://scipost.org
https://scipost.org/SciPostPhys.9.2.027
http://dx.doi.org/10.1088/1126-6708/2007/05/001
https://arxiv.org/abs/hep-ph/0612149
http://dx.doi.org/10.1088/1126-6708/2007/06/084
https://arxiv.org/abs/0704.3582
http://dx.doi.org/10.1007/JHEP02(2019)118
https://arxiv.org/abs/1811.06461
http://dx.doi.org/10.1016/0550-3213(96)00110-1
https://arxiv.org/abs/hep-ph/9512328
http://dx.doi.org/10.1088/1126-6708/2009/10/003
https://arxiv.org/abs/0908.4272v2
http://dx.doi.org/10.1016/j.physletb.2017.07.008
https://arxiv.org/abs/1705.03782
http://dx.doi.org/10.1016/j.physletb.2016.12.039
https://arxiv.org/abs/1611.03617
http://dx.doi.org/10.22323/1.295.0124
https://arxiv.org/abs/1712.05633
http://dx.doi.org/10.1007/JHEP07(2015)153
https://arxiv.org/abs/1506.03416
http://dx.doi.org/10.1007/JHEP01(2017)084
https://arxiv.org/abs/1611.03726
http://dx.doi.org/10.1051/epjconf/201921208004
http://dx.doi.org/10.1088/1126-6708/2007/09/014
http://dx.doi.org/10.1088/1126-6708/2007/09/014
https://arxiv.org/abs/hep-ph/0505069
http://dx.doi.org/10.1103/PhysRevD.78.114015
https://arxiv.org/abs/0808.3509
https://gitlab.com/mule-tools/manual
http://dx.doi.org/10.1016/j.cpc.2018.05.021
https://arxiv.org/abs/1711.01758
http://dx.doi.org/10.1016/j.cpc.2016.10.013
https://arxiv.org/abs/1604.06792


SciPost Phys. 9, 027 (2020)

[35] A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844, 199
(2011), doi:10.1016/j.nuclphysb.2010.11.002, arXiv:1005.2076.

[36] A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B
734, 62 (2006), doi:10.1016/j.nuclphysb.2005.11.007, arXiv:hep-ph/0509141.

[37] A. Denner and S. Dittmaier, Reduction of one-loop tensor 5-point integrals, Nucl. Phys. B
658, 175 (2003), doi:10.1016/S0550-3213(03)00184-6, arXiv:hep-ph/0212259.

[38] G. P. Lepage, VEGAS: An adaptive multidimensional integration program, CLNS-80/447
(1980).

[39] S. van der Walt, S. Chris Colbert and G. Varoquaux, The NumPy array: A
structure for efficient numerical computation, Comput. Sci. Eng. 13, 22 (2011),
doi:10.1109/MCSE.2011.37.

[40] J. D. Hunter, Matplotlib: A 2D graphics environment, Comput. Sci. Eng. 9, 90 (2007),
doi:10.1109/MCSE.2007.55.

[41] F. Perez and B. E. Granger, IPython: A system for interactive scientific computing, Comput.
Sci. Eng. 9, 21 (2007), doi:10.1109/MCSE.2007.53.

[42] A. M. Baldini et al., Muon polarization in the MEG experiment: predictions and mea-
surements, Eur. Phys. J. C 76, 223 (2016), doi:10.1140/epjc/s10052-016-4047-3,
arXiv:1510.04743.

[43] A. M. Baldini et al., Search for lepton flavour violating muon decay mediated by a new light
particle in the MEG experiment (2020), arXiv:2005.00339.

[44] F. Jegerlehner, Muon g−2 theory: The hadronic part, EPJ Web Conf. 166, 00022 (2018),
doi:10.1051/epjconf/201816600022, arXiv:1705.00263.

[45] J. Grange et al., Muon (g-2) technical design report (2015), arXiv:1501.06858.

[46] T. Mibe, Measurement of muon and EDM with an ultra-cold muon beam at J-PARC, Nucl.
Phys. B - Proc. Suppl. 218, 242 (2011), doi:10.1016/j.nuclphysbps.2011.06.039.

[47] G. W. Bennett et al., Final report of the E821 muon anomalous magnetic moment mea-
surement at BNL, Phys. Rev. D 73, 072003 (2006), doi:10.1103/PhysRevD.73.072003,
arXiv:hep-ex/0602035.

[48] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum
polarisation contributions to the muon anomalous magnetic moment and to α(m2

Z), Eur.
Phys. J. C 80, 241 (2020), doi:10.1140/epjc/s10052-020-7792-2, arXiv:1908.00921.

[49] A. Keshavarzi, D. Nomura and T. Teubner, g − 2 of charged leptons, α(m2
Z),

and the hyperfine splitting of muonium, Phys. Rev. D 101, 014029 (2020),
doi:10.1103/PhysRevD.101.014029, arXiv:1911.00367.

[50] Sz. Borsanyi et al., Leading hadronic contribution to themuonmagnetic moment from lattice
QCD (2020), arXiv:2002.12347.

[51] C. M. Carloni Calame, M. Passera, L. Trentadue and G. Venanzoni, A new approach to
evaluate the leading hadronic corrections to the muon g−2, Phys. Lett. B 746, 325 (2015),
doi:10.1016/j.physletb.2015.05.020, arXiv:1504.02228.

31

https://scipost.org
https://scipost.org/SciPostPhys.9.2.027
http://dx.doi.org/10.1016/j.nuclphysb.2010.11.002
https://arxiv.org/abs/1005.2076
http://dx.doi.org/10.1016/j.nuclphysb.2005.11.007
https://arxiv.org/abs/hep-ph/0509141
http://dx.doi.org/10.1016/S0550-3213(03)00184-6
https://arxiv.org/abs/hep-ph/0212259
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1140/epjc/s10052-016-4047-3
https://arxiv.org/abs/1510.04743
https://arxiv.org/abs/2005.00339
http://dx.doi.org/10.1051/epjconf/201816600022
https://arxiv.org/abs/1705.00263
https://arxiv.org/abs/1501.06858
http://dx.doi.org/10.1016/j.nuclphysbps.2011.06.039
http://dx.doi.org/10.1103/PhysRevD.73.072003
https://arxiv.org/abs/hep-ex/0602035
http://dx.doi.org/10.1140/epjc/s10052-020-7792-2
https://arxiv.org/abs/1908.00921
http://dx.doi.org/10.1103/PhysRevD.101.014029
https://arxiv.org/abs/1911.00367
https://arxiv.org/abs/2002.12347
http://dx.doi.org/10.1016/j.physletb.2015.05.020
https://arxiv.org/abs/1504.02228


SciPost Phys. 9, 027 (2020)

[52] A. B. Arbuzov, D. Haidt, C. Matteuzzi, M. Paganoni and L. Trentadue, The running of
the electromagnetic coupling α in small angle Bhabha scattering, Eur. Phys. J. C 34, 267
(2004), doi:10.1140/epjc/s2004-01649-0, arXiv:hep-ph/0402211.

[53] G. Abbiendi et al., Measurement of the running of the QED couplingin small-angle
Bhabha scattering at LEP, Eur. Phys. J. C 45, 1 (2006), doi:10.1140/epjc/s2005-02389-3,
arXiv:hep-ex/0505072.

[54] G. Abbiendi et al., Measuring the leading hadronic contribution to the muon g-2 via
µe scattering, Eur. Phys. J. C 77, 139 (2017), doi:10.1140/epjc/s10052-017-4633-z,
arXiv:1609.08987.

[55] P. Banerjee et al., Theory for muon-electron scattering @ 10 ppm, Eur. Phys. J. C 80, 591
(2020), doi:10.1140/epjc/s10052-020-8138-9, arXiv:2004.13663.

[56] M. Fael, Hadronic corrections to µ − e scattering at NNLO with space-like data, J. High
Energ. Phys. 02, 027 (2019), doi:10.1007/JHEP02(2019)027, arXiv:1808.08233.

[57] M. Fael and M. Passera, Muon-electron scattering at next-to-next-to-leading
order: The hadronic corrections, Phys. Rev. Lett. 122, 192001 (2019),
doi:10.1103/PhysRevLett.122.192001, arXiv:1901.03106.

[58] D. Bardin and L. Kalinovskaya, QED corrections for polarized elastic µ−e scattering (1997),
arXiv:hep-ph/9712310.

[59] N. Kaiser, Radiative corrections to lepton–lepton scattering revisited, J. Phys. G: Nucl. Part.
Phys. 37, 115005 (2010), doi:10.1088/0954-3899/37/11/115005.

[60] C. M. Carloni Calame, M. Chiesa, S. Mehedi Hasan, G. Montagna, O. Nicrosini and F.
Piccinini, Towards muon-electron scattering at NNLO (2020), arXiv:2007.01586.

[61] Y. Ulrich, McMule – QED corrections for low-energy experiments, Ph.D. thesis, University
of Zurich, SciPost Thesis (2020) arXiv:2008.09383.

[62] F. Jegerlehner, The effective fine structure constant at TESLA energies (2001), arXiv:hep-
ph/0105283.

[63] F. Jegerlehner, Precision measurements of σhadronic for αeff(E) at ILC energies and (g−2)µ,
Nucl. Phys. B - Proc. Suppl. 162, 22 (2006), doi:10.1016/j.nuclphysbps.2006.09.060,
arXiv:hep-ph/0608329.

[64] F. Jegerlehner, Electroweak effective couplings for future precision experiments, Nuovo Cim.
C 034S1, 31 (2011), doi:10.1393/ncc/i2011-11011-0.

[65] A. B. Yoo, M. A. Jette and M. Grondona, Slurm: Simple linux utility for resource manage-
ment, in Job scheduling strategies for parallel processing, Springer Berlin Heidelberg, 44
(2003).

[66] S. Laporta, Hyperspherical integration and the triple-cross vertex graphs, Nuovo Cim. A
107, 1729 (1994), doi:10.1007/BF02780705, arXiv:hep-ph/9404203.

[67] W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia and
E. Remiddi, Two-loop QCD corrections to the heavy quark form factors: the vector contribu-
tions, Nucl. Phys. B 706, 245 (2005), doi:10.1016/j.nuclphysb.2004.10.059, arXiv:hep-
ph/0406046.

32

https://scipost.org
https://scipost.org/SciPostPhys.9.2.027
http://dx.doi.org/10.1140/epjc/s2004-01649-0
https://arxiv.org/abs/hep-ph/0402211
http://dx.doi.org/10.1140/epjc/s2005-02389-3
https://arxiv.org/abs/hep-ex/0505072
http://dx.doi.org/10.1140/epjc/s10052-017-4633-z
https://arxiv.org/abs/1609.08987
http://dx.doi.org/10.1140/epjc/s10052-020-8138-9
https://arxiv.org/abs/2004.13663
http://dx.doi.org/10.1007/JHEP02(2019)027
https://arxiv.org/abs/1808.08233
http://dx.doi.org/10.1103/PhysRevLett.122.192001
https://arxiv.org/abs/1901.03106
https://arxiv.org/abs/hep-ph/9712310
http://dx.doi.org/10.1088/0954-3899/37/11/115005
https://arxiv.org/abs/2007.01586
https://arxiv.org/abs/2008.09383
https://arxiv.org/abs/hep-ph/0105283
https://arxiv.org/abs/hep-ph/0105283
http://dx.doi.org/10.1016/j.nuclphysbps.2006.09.060
https://arxiv.org/abs/hep-ph/0608329
http://dx.doi.org/10.1393/ncc/i2011-11011-0
http://dx.doi.org/10.1007/BF02780705
https://arxiv.org/abs/hep-ph/9404203
http://dx.doi.org/10.1016/j.nuclphysb.2004.10.059
https://arxiv.org/abs/hep-ph/0406046
https://arxiv.org/abs/hep-ph/0406046


SciPost Phys. 9, 027 (2020)

[68] A. Djouadi and P. Gambino, Electroweak gauge boson self-energies: Complete QCD cor-
rections, Phys. Rev. D 49, 3499 (1994), doi:10.1103/PhysRevD.49.3499, arXiv:hep-
ph/9309298.

[69] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105, 279 (1993),
doi:10.1006/jcph.1993.1074.

[70] H. H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop
integrals, Comput. Phys. Commun. 197, 276 (2015), doi:10.1016/j.cpc.2015.08.017,
arXiv:1503.01469.

[71] B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2 (2017), arXiv:1707.06453.

[72] A. Masiero, P. Paradisi and M. Passera, New physics at the MUonE experiment at CERN
(2020), arXiv:2002.05418.

[73] L. W. Mo and Y. S. Tsai, Radiative corrections to elastic and inelastic e p and µ p scattering,
Rev. Mod. Phys. 41, 205 (1969), doi:10.1103/RevModPhys.41.205.

[74] L. C. Maximon and J. A. Tjon, Radiative corrections to electron-proton scattering, Phys. Rev.
C 62, 054320 (2000), doi:10.1103/physrevc.62.054320.

[75] I. Akushevich, H. Gao, A. Ilyichev and M. Meziane, Radiative corrections beyond the ultra
relativistic limit in unpolarized ep elastic and Møller scatterings for the PRad Experiment at
Jefferson Laboratory, Eur. Phys. J. A 51, 1 (2015), doi:10.1140/epja/i2015-15001-8.

[76] J. Arrington, P. G. Blunden and W. Melnitchouk, Review of two-photon exchange in elec-
tron scattering, Prog. Part. Nucl. Phys. 66, 782 (2011), doi:10.1016/j.ppnp.2011.07.003,
arXiv:1105.0951.

[77] A. Afanasev, P. G. Blunden, D. Hasell and B. A. Raue, Two-photon exchange
in elastic electron–proton scattering, Prog. Part. Nucl. Phys. 95, 245 (2017),
doi:10.1016/j.ppnp.2017.03.004, arXiv:1703.03874.

[78] O. Tomalak and M. Vanderhaeghen, Two-photon exchange correction to muon–proton
elastic scattering at low momentum transfer, Eur. Phys. J. C 76, 125 (2016),
doi:10.1140/epjc/s10052-016-3966-3, arXiv:1512.09113.

[79] O. Tomalak and M. Vanderhaeghen, Two-photon exchange correction in
elastic unpolarized electron-proton scattering at small momentum trans-
fer, Phys. Rev. D 93, 013023 (2016), doi:10.1103/PhysRevD.93.013023,
hrefhttps://arxiv.org/abs/1508.03759arXiv:1508.03759.

[80] O. Tomalak, B. Pasquini andM. Vanderhaeghen, Two-photon exchange contribution to elas-
tic e−-proton scattering: Full dispersive treatment of πN states and comparison with data,
Phys. Rev. D 96, 096001 (2017), doi:10.1103/PhysRevD.96.096001, arXiv:1708.03303.

[81] O. Koshchii and A. Afanasev, Charge asymmetry in elastic scattering of massive lep-
tons on protons, Phys. Rev. D 96, 016005 (2017), doi:10.1103/PhysRevD.96.016005,
arXiv:1705.00338.

[82] F. Weissbach, K. Hencken, D. Kiselev and D. Trautmann, Improved radiative correc-
tions to (e, e′p) experiments: Explicit treatment of kinematical corrections in multipho-
ton bremsstrahlung, Phys. Rev. C 80, 024602 (2009), doi:10.1103/PhysRevC.80.024602,
arXiv:0805.1535.

33

https://scipost.org
https://scipost.org/SciPostPhys.9.2.027
http://dx.doi.org/10.1103/PhysRevD.49.3499
https://arxiv.org/abs/hep-ph/9309298
https://arxiv.org/abs/hep-ph/9309298
http://dx.doi.org/10.1006/jcph.1993.1074
http://dx.doi.org/10.1016/j.cpc.2015.08.017
https://arxiv.org/abs/1503.01469
https://arxiv.org/abs/1707.06453
https://arxiv.org/abs/2002.05418
http://dx.doi.org/10.1103/RevModPhys.41.205
http://dx.doi.org/10.1103/physrevc.62.054320
http://dx.doi.org/10.1140/epja/i2015-15001-8
http://dx.doi.org/10.1016/j.ppnp.2011.07.003
https://arxiv.org/abs/1105.0951
http://dx.doi.org/10.1016/j.ppnp.2017.03.004
https://arxiv.org/abs/1703.03874
http://dx.doi.org/10.1140/epjc/s10052-016-3966-3
https://arxiv.org/abs/1512.09113
http://dx.doi.org/10.1103/PhysRevD.93.013023
http://dx.doi.org/10.1103/PhysRevD.96.096001
https://arxiv.org/abs/1708.03303
http://dx.doi.org/10.1103/PhysRevD.96.016005
https://arxiv.org/abs/1705.00338
http://dx.doi.org/10.1103/PhysRevC.80.024602
https://arxiv.org/abs/0805.1535


SciPost Phys. 9, 027 (2020)

[83] A. B. Arbuzov and T. V. Kopylova, On higher order radiative corrections to elastic elec-
tron–proton scattering, Eur. Phys. J. C 75, 603 (2015), doi:10.1140/epjc/s10052-015-
3833-7, arXiv:1510.06497.

[84] R. -D. Bucoveanu and H. Spiesberger, Second-order leptonic radiative corrections for
lepton-proton scattering, Eur. Phys. J. A 55, 57 (2019), doi:10.1140/epja/i2019-12727-1,
arXiv:1811.04970.

[85] R. J. Hill, Effective field theory for large logarithms in radiative corrections to electron
proton scattering, Phys. Rev. D 95, 013001 (2017), doi:10.1103/PhysRevD.95.013001,
arXiv:1605.02613.

[86] G. Lee, J. R. Arrington and R. J. Hill, Extraction of the proton radius from electron-proton
scattering data, Phys. Rev. D 92, 013013 (2015), doi:10.1103/PhysRevD.92.013013,
arXiv:1505.01489.

[87] P. Mastrolia, M. Passera, A. Primo and U. Schubert, Master integrals for the NNLO virtual
corrections to µe scattering in QED: the planar graphs, J. High Energ. Phys. 11, 198 (2017),
doi:10.1007/JHEP11(2017)198, arXiv:1709.07435.

[88] S. Di Vita, S. Laporta, P. Mastrolia, A. Primo and U. Schubert, Master integrals for the
NNLO virtual corrections to µe scattering in QED: the non-planar graphs, J. High Energ.
Phys. 09, 016 (2018), doi:10.1007/JHEP09(2018)016, arXiv:1806.08241.

[89] J. Ronca, NNLO QED contribution to the µe → µe elastic scattering, EPJ Web Conf. 234,
01015 (2020), doi:10.1051/epjconf/202023401015, arXiv:1912.05397.

[90] G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard
Model and beyond, Eur. Phys. J. C 74, 3001 (2014), doi:10.1140/epjc/s10052-014-3001-
5, arXiv:1404.7096.

[91] J. Alwall et al., The automated computation of tree-level and next-to-leading order differen-
tial cross sections, and their matching to parton shower simulations, J. High Energ. Phys.
07, 079 (2014), doi:10.1007/jhep07(2014)079, arXiv:1405.0301.

[92] S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA – REcur-
sive Computation of One-Loop Amplitudes, Comput. Phys. Commun. 214, 140 (2017),
doi:10.1016/j.cpc.2017.01.004, arXiv:1605.01090.

[93] F. Buccioni, S. Pozzorini and M. Zoller, On-the-fly reduction of open loops, Eur. Phys. J. C
78, 70 (2018), doi:10.1140/epjc/s10052-018-5562-1, arXiv:1710.11452.

[94] F. Buccioni, J.-N. Lang, J. M. Lindert, P. Maierhöfer, S. Pozzorini, H. Zhang and M. F.
Zoller, OpenLoops 2, Eur. Phys. J. C 79, 866 (2019), doi:10.1140/epjc/s10052-019-7306-
2, arXiv:1907.13071.

[95] S. Pozzorini, H. Zhang and M. F. Zoller, Rational terms of UV origin at two loops, J. High
Energ. Phys. 05, 077 (2020), doi:10.1007/JHEP05(2020)077, arXiv:2001.11388.

[96] S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B 565, 69
(2000), doi:10.1016/S0550-3213(99)00563-5, arXiv:hep-ph/9904440.

[97] V. Bertone, M. Cacciari, S. Frixione and G. Stagnitto, The partonic structure of the electron
at the next-to-leading logarithmic accuracy in QED, J. High Energ. Phys. 03, 135 (2020),
doi:10.1007/JHEP03(2020)135, arXiv:1911.12040.

34

https://scipost.org
https://scipost.org/SciPostPhys.9.2.027
http://dx.doi.org/10.1140/epjc/s10052-015-3833-7
http://dx.doi.org/10.1140/epjc/s10052-015-3833-7
https://arxiv.org/abs/1510.06497
http://dx.doi.org/10.1140/epja/i2019-12727-1
https://arxiv.org/abs/1811.04970
http://dx.doi.org/10.1103/PhysRevD.95.013001
https://arxiv.org/abs/1605.02613
http://dx.doi.org/10.1103/PhysRevD.92.013013
https://arxiv.org/abs/1505.01489
http://dx.doi.org/10.1007/JHEP11(2017)198
https://arxiv.org/abs/1709.07435
http://dx.doi.org/10.1007/JHEP09(2018)016
https://arxiv.org/abs/1806.08241
http://dx.doi.org/10.1051/epjconf/202023401015
https://arxiv.org/abs/1912.05397
http://dx.doi.org/10.1140/epjc/s10052-014-3001-5
http://dx.doi.org/10.1140/epjc/s10052-014-3001-5
https://arxiv.org/abs/1404.7096
http://dx.doi.org/10.1007/jhep07(2014)079
https://arxiv.org/abs/1405.0301
http://dx.doi.org/10.1016/j.cpc.2017.01.004
https://arxiv.org/abs/1605.01090
http://dx.doi.org/10.1140/epjc/s10052-018-5562-1
https://arxiv.org/abs/1710.11452
http://dx.doi.org/10.1140/epjc/s10052-019-7306-2
http://dx.doi.org/10.1140/epjc/s10052-019-7306-2
https://arxiv.org/abs/1907.13071
http://dx.doi.org/10.1007/JHEP05(2020)077
https://arxiv.org/abs/2001.11388
http://dx.doi.org/10.1016/S0550-3213(99)00563-5
https://arxiv.org/abs/hep-ph/9904440
http://dx.doi.org/10.1007/JHEP03(2020)135
https://arxiv.org/abs/1911.12040


SciPost Phys. 9, 027 (2020)

[98] M. Tanabashi et al., Review of particle physics, Phys. Rev. D 98, 030001 (2018),
doi:10.1103/PhysRevD.98.030001.

35

https://scipost.org
https://scipost.org/SciPostPhys.9.2.027
http://dx.doi.org/10.1103/PhysRevD.98.030001

	Introduction
	QED corrections as implemented in McMule
	Structure of McMule
	Running McMule: double radiative muon decay as an example
	Muon-electron scattering with McMule
	Running McMule for muon-electron scattering
	The dominant NNLO corrections

	Lepton-proton scattering with McMule
	NNLO effects in elastic electron-proton scattering
	NNLO effects in elastic muon-proton scattering

	Future developments of McMule
	Input parameters
	References

