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Abstract

We derive an expression for the minimal rate of entropy that sustains two reservoirs
at different temperatures T0 and T`. The law displays an intuitive `−1 dependency on
the relative distance and a characterisic log2(T`/T0) dependency on the boundary tem-
peratures. First we give a back-of-envelope argument based on the Fourier Law (FL)
of conduction, showing that the least-dissipation profile is exponential. Then we re-
visit a model of a chain of oscillators, each coupled to a heat reservoir. In the limit of
large damping we reobtain the exponential and squared-log behaviors, providing a self-
consistent derivation of the FL. For small damping “equipartition frustration” leads to
a well-known ballistic behaviour, whose incompatibility with the FL posed a long-time
challenge.
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1 Introduction

Temperature differences and gradients are a common motif in the physics of systems out of
equilibrium. Primarily they serve as fixed boundary conditions for studying how energy flows
within a system [1–3] and couples to other currents, e.g. electric or matter ones [4–6]. Here
instead we will be interested in a dual question: what is the least amount of energy that has to
be dissipated outside the system by some apparatus whose only task is to sustain a temperature
difference?

More precisely, in this work we study lower bounds to the entropy production rate (EPR)
σ of a conductor with respect to the profile of temperatures in the bulk, given those at the
boundary. In linear systems held at temperatures T0 and T` at the extremities we find the
simple expression σ∗∝ `−1 log2(T`/T0). We first provide a simple heuristic argument based
on the Fourier Law (FL) of conduction, and then rederive our results in a stochastic model
of a linear chain of harmonic oscillators coupled to heat reservoirs, analyzed in the light of
the First and Second laws of (stochastic) thermodynamics [7]. As a main new technical result
we obtain explicit second-order expressions for the stationary distribution and the EPR, that
may be applied in the optimization of more complex networks of interacting nodes at different
temperatures (e.g. power grids [8–10]).

We also approach some foundational issues from a new angle. Microscopic derivations of
the FL have for long been considered a challenge to the theorist [2,11–13]. The problem here
is to reconcile the ballistic behaviour in the bulk, that is supposed to be adiabatically isolated
from the environment, and the diffusive character of heat conduction. In our approach, along
similar lines as in Refs. [14–18], we open the bulk to interactions with the environment. For
example, if we think of a refrigerator with T0 and T` respectively the temperatures inside and

Figure 1: Illustration of constructive vs. self-consistent approaches to heat conduc-
tion in temperature gradients. In the former heat flows from the hot reservoir to the
cold one through the oscillators. It former draws its motivation in the derivation of
the physics of open systems from that of isolated systems (micro-to-meso/scopic);
its dissipative observables are the temperatures of the bulk oscillators. In the lat-
ter heat flows to and from each reservoir. This approach focuses on the tempera-
ture of the baths, and aims to connect to broad-scale energy consumption (meso-to-
macro/scopic).
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outside the cold room, in the “challenge” T (x), x ∈ (0,`) would represent the temperature
profile within the adiabatic walls, while in our approach it rather describes the temperature
of the refrigerating liquid in the cooling coil (see Fig. 1). In the so-called overdamping limit,
the FL emerges self-consistently (but not constructively), while the low-noise limit leads to
the known ballistic behaviour, and to a phenomenon of “frustration” whereby the system’s
bulk temperatures differ from their environment’s. Furthermore, notice that for fixed T`, let-
ting T0 → 0 the EPR diverges: reaching zero temperature requires ever-increasing dissipated
power, providing a self-consistent formulation of the Third Law of thermodynamics – that thus
is not independent of the First and Second.

2 Heuristics

We consider an extended system whose degrees of freedom are localized by position x ∈ X
in space, and for which it makes sense to talk about a local temperature T (x), constrained by
some boundary values T (∂ X ). The existence of a meaningful temperature is usually called
local equilibrium or local detailed balance. We point out that it is not the system itself to be at
equilibrium, but rather a continuous set of thermometers whose local degrees of freedom are
labeled by x , and that interact via the system.

To a temperature gradient is associated a thermal force ~F = ~∇T−1, which generates a heat
current ~J . If we provisionally take the FL for granted, the stationary heat current is given by
~J = −κ ~∇T , with κ the heat conductivity. The macroscopic stationary EPR is given by the
scalar product

σ :=

∫

X

~F · ~J (1)

= κ

∫

X
|∇ log T |2 (2)

= κ

∫

X

1
T
∆T −κ

∫

∂ X
~n · ~∇ log T . (3)

We rewrote the expression in a couple of equivalent useful ways. where ~n is the unit vector
orthogonal to the boundary surface element. Notice that the second expression in Eq. (1)
manifests an invariance under the transformation T → 1/T .

We search for extremals of σ by taking the functional derivative δ/δT (y). After some
standard integration by parts and application of Dirac deltas (see details in the Appendix ) we
obtain the Laplace equation∆ log T ∗ = 0, where the asterisk stands for the extremal. Plugging
into the EPR we find

σ∗ =
κ

2

∫

∂ X
~n · ~∇ log2 T ∗, (4)

which is easily checked to be a minimum. Notice the squared-log dependency on boundary
temperatures.

We now reduce to one dimension by assuming that the temperature only varies in one
extended direction x ∈ [0,`], while at fixed x it is uniform in a perpendicular area of fixed
size α. Subjecting the Laplace equation to the boundary constraints T (0) = T0 and T (`) = T`,
we obtain as the unique minimum profile

T ∗(x) = T0

�

T`
T0

�x/`

. (5)

3

https://scipost.org
https://scipost.org/SciPostPhys.9.3.030


SciPost Phys. 9, 030 (2020)

The least EPR is then given by

σ∗ =
κα

`
log2(T`/T0). (6)

Notice that the shorter the distance, the steeper the gradient, the higher the EPR.

3 Model

Let us now re-derive the above results in a well-known microscopic model, employed e.g. in
Refs. [17,18] in attempts at derivations of the FL by self-consistent reservoirs, and in Ref. [16]
to discuss energy equipartition of normal modes.

We consider a homogeneous chain of n harmonic oscillators of unit mass placed at regularly
spaced positions xk = (k−1)`/(n−1), with k = 1, . . . , n, between boundary x = 0 and x = `.
We also set Boltzmann’s constant to unity kB = 1. We denote qk the amplitude of oscillation of
the k-th oscillator and pk its momentum, and collect z = (qk, pk)nk=1. These amplitues are the
effective degrees of freedom that describe the local interaction of the system with the baths.
The total energy is H(z) = 1

2

∑n+1
k=1

�

p2
k +ω

2(qk − qk−1)2
�

, where q0 = p0 = qn+1 = pn+1 = 0
stand for the non-oscillating endpoints where the chain is anchored and ω is the angular
frequency, which for the moment we also set to unityω= 1 to resume it later in the discussion.
Each harmonic oscillator is in contact with a heat bath at temperature Tk, which is a source
of stochastic white noise (the reduced effect of the bath degrees of freedom). The dynamics is
described by the Langevin equation

q̇k(t) =
∂

∂ pk
H(z(t)) (7a)

ṗk(t) = −
∂

∂ qk
H(z(t))− γpk +

p

γTk ζk(t), (7b)

where ζk(t) are the formal time derivatives of independent Brownian motions, and γ is the
damping coefficient. Letting D be the diagonal positive-definite diffusion matrix
D = diag {Tk}nk=1, and A the symmetric tridiagonal matrix

A=















2 −1
−1 2 −1

−1
... . . .
. . . −1

−1 2















, (8)

and further defining the 2n× 2n matrices

M=
�

0 −I
A γI

�

, D=
�

0 0
0 γD

�

, (9)

with I the identity, the equations of motion take the form of a multidimensional Ornstein-
Uhlenbeck (OU) process

ż = −Mz +
p
Dζ , (10)

where ζ(t) are 2n independent delta-correlated white noises. Letting ρ(z, t)dz be the proba-
bility of z(t) being in a neighborhood of z, its density satisfies the Kramers diffusion equation

∂

∂ t
ρ =

∂

∂ z
·
�

Mzρ +D
∂

∂ z
ρ

�

(11)

= {H,ρ} −
∂

∂ p
· j . (12)
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In the second identity in Eq. (12), { · , · } denotes the Poisson bracket and the dissipative current
is given by [19,21]

j := −γ
�

p + D
∂

∂ p

�

ρ, (13)

showing that the underdamped dynamics clearly separates into a ballistic term and a diffusive
one.

The stationary probability ρ∞(z) := limt→∞ρ(z, t) is found by assuming as ansatz a
centered multinormal distribution ρ∞(z)∝ exp−1

2 z ·C−1z where

C=
�

Cqq Cpq
Cᵀpq Cpp

�

(14)

is the stationary correlation matrix, with Cqq and Cpp symmetric, and ᵀ denoting transposition.

4 Results

4.1 Stationary distribution

For the sake of generalization we momentarily allow for a non-symmetric A. Plugging the
stationary distribution into the continuity equation ∂p · j∞ = 0 one finds that the covariance
matrix is uniquely determined by the (first-order) Lyapunov equation [22,23]

CMᵀ +MC= 2D. (15)

In view of Eq. (14), one finds that Cᵀpq = −Cpq is antisymmetric, and furthermore:

ACqq − CqqAᵀ = 2γCpq (16a)

CqqAᵀ + ACqq = 2Cpp (16b)

ACpq − CpqAᵀ = 2γ(D− Cpp). (16c)

The first defines Cqq in terms of Cpq, the second Cqq in terms of Cpp, and the third Cpq in terms
of Cpp. Combining these formulas together we find the second order Lyapunov equation for the
displacements’ covariance C := Cqq

A2C − 2ACAᵀ + CAᵀ2

2γ2
+ AC + CAᵀ = 2D. (17)

In the overdamping limit γ→∞ this expression reduces to the well-known AC + CAᵀ = 2D
[22–24]; furthermore we have Cpp → D (local equipartition) and Cpq ∼

1
γ(AC − D). Defining

the antisymmetric “curvature” tensor R := D−1A− AᵀD−1 = 0 [20], the condition of (global)
detailed balance states that R vanishes, if and only if Cpq vanishes [25]. Proof. If detailed
balance holds then C = DAᵀ−1 solves the second order Lyapunov equation and Cpq = 0. Vice
versa, if Cpq = 0 then the first term in Eq. (17) vanishes, one obtains D = AC = CAᵀ and
therefore R = 0. � In our case detailed balance is achieved when D ∝ I , i.e. for all equal
temperatures.

4.2 Entropy production rate

Before turning to the solution of the second-order Lyapunov equation, we introduce thermo-
dynamic quantities. We now take the time derivative of the mean energy

d
d t
〈H(z(t))〉= −γ

�


|p(t)|2
�

− tr D
�

, (18)
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where the average is over realizations of the Brownian motions, and we used the Itô Lemma
and the martingale property. The First Law d〈H〉 +

∑

k d̄Qk = 0 suggests to define the heat
flow from the k-th reservoir as

d̄Qk

d t
(t) := γ

�

〈p2
k(t)〉 − Tk

�

. (19)

Notice that it vanishes when equipartition holds. The Clausius formula

σ :=
dS
d t
+
∑

k

1
Tk

d̄Qk

d t
=

∫

dz j(γρD)−1 j (20)

defines the EPR, where S := −
∫

dzρ logρ is the Gibbs-Shannon entropy. The second identity,
providing the Second Law σ ≥ 0, is proven in Appendix B. At the stationary state, plugging
the definition of the heat flux Eq. (19) and the expression for the diffusion matrix we find
σ∞ = γ tr

�

D−1(Cpp − D)
�

. We can now employ Eq. (16c) to obtain σ∞ = −tr (CpqR)/2, and
finally employing the Lyapunov equation for Cpq and its antisymmetry Eq. (16a) we arrive at

σ∞ =
1

2γ
tr [(CqqAᵀ − ACqq)D

−1A]. (21)

Both this latter expression for the EPR and the Lyapunov equation are clearly independent
of the vector basis chosen to represent matrices. We will now work with normal modes, i.e.
orthonormal eigenvectors aα of A. Then A=

∑

αλαaα⊗aα, where λα are the real eigenvalues
and ⊗ denotes the outer product. In this basis the diffusion and covariance matrices have
entries respectively Dαβ = aα · Daβ and Cαβ = aα · Caβ . Finally we can express Eq. (17) in
this basis to find Cαβ = 2Dαβ/[λα +λβ + (λα −λβ)2/2γ2] and

σ∞ = −γ
∑

α,β

Dαβ(D
−1)αβ

(λα −λβ)2

(λα −λβ)2 + 2(γ/ω)2(λα +λβ)
, (22)

where we finally resumed the angular frequency ω simply by rescaling all eigenvalues
λα→ω2λα.

In our problem, the tridiagonal matrix A has real eigenvalues λα = 2+ 2cos(απ/(n+ 1))
and orthonormal eigenvectors’entries ak

α =
p

2/(n+ 1) sin(αkπ/(n+ 1)), for α, k = 1, . . . , n,
ranging from slower to faster modes (see Appendix C and Ref. [26]). We can thus compute
Dαβ ; notice that by orthonormality, (D−1)αβ can be obtained from Dαβ by the duality transfor-
mation Tk→ 1/Tk. Finally we obtain

σ = −γ
∑

k,h

∆k,hTh

Tk
(23)

=
γ

2

∑

k<h

�

1
Tk
−

1
Th

�

∆kh(Tk − Th) (24)

=
∑

k 6=h

FkhJkh , (25)

where in the first expression

∆kh =
∑

α,β

ak
αak
βah
αah
β

(λα −λβ)2

(λα −λβ)2 + 2(γ/ω)2(λα +λβ)
. (26)

Matrix∆ is symmetric, its diagonal entries are positive, and by orthonormality
∑

k ak
αak
β
= δα,β

one finds that
∑

k∆kh = 0. Therefore ∆ is a proper discretized Laplacian (see also Refs.
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[27, 28] in the quantum case), and Eq. (23) is a discretized equivalent of Eq. (3) without the
boundary term because in the discrete case this is directly absorbed in the definition of the
Laplacian. Eq. (1) is instead reminiscent of Eq. (24) and Eq. (25) with Fk,h := 1/Tk − 1/Th
as the thermodynamic force due to the competition of the k-th and the h-th reservoir and
Jk,h := γ∆kh(Tk− Th), reproducing the traditional bilinear structure of the entropy production
rate [29]. Then the main difference with the heuristic case is that, despite the fact that the
oscillators only interact with nearest neighbors, they create all-to-all nonequilibrium currents
(see also Ref. [30]). However, Fig. 2 shows that for large γ first-neighbor contributions indeed
dominate.

Finally, we minimize the EPR with respect to the temperatures of the bulk oscillators, sub-
ject to constrained values of the temperatures of the first and last oscillators. For n = 3 the
free oscillator’s temperature is easily found to be T ∗2 =

p

T1T3 (see Appendix D), yielding an
analytical expression of the minimum EPR whose most interesting feature is that as a function
of γ it vanishes for γ→ 0,∞ and has a maximum in between, whose physical significance is
still an open question.

For n > 1 minimization could only be achieved computationally. Fig. 3 shows that in the
overdamping limit in the oscillator model the optimal temperature profile is consistent with
that from the FL, while in the underdamped limit the bulk oscillators’s optimal temperatures
flatten, reproducing the behaviour observed in Ref. [14]. With crosses we plotted the mean
squared momentum of the oscillators, calculated as




p2
k

�

=
∑

α,β

Dαβaαk aβk

1+
ω2(λα−λβ )2

2γ2(λα+λβ )

. (27)

While in the overdamping limit equipartition is reached, in the low-damping limit a phe-
nomenon of temperature frustration occurs, whereby the bulk’s internal temperatures are slightly
off the environment’s. A similar self-consistent treatment of this system was given in Ref. [15];
there, instead of minimizing the EPR, the Authors looked for the temperature profile that more

Figure 2: Plot of −∆1,k in log scale for a chain of n = 30 oscillators, for different
values of γ. In the overdamping limit first neighbours are strongly favoured, while
in the underdamped limit spatial proximity in the bulk does not play a role, and only
the endpoint oscillators are slightly favoured.
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Figure 3: For a chain 30 oscillators with fixed boundary temperatures T1 = 1 and
T30 = 20, and for different values of γ = 0.01, 0.1,100, in bullets the bulk temper-
ature profile that minimizes the EPR, and in crosses the oscillators’ mean-squared
momentum. The fitting curve is an exponential with fixed endpoints, as in Eq. (5).

closely satisfies equipartition over all of the chain, finding that it is linear, instead of exponen-
tial. This difference can be explained by the fact that to minimize the EPR it is best to reduce
the heat flow to the colder reservoirs. This explains why e.g. in the red curve in Fig. 3 depar-
ture from equipartition occurs at hotter temperatures.

Finally, in the overdamping limit the overlapping of all curves in Fig. 4 proves the squared-
log behaviour and the fact that, for given temperature difference well beyond the linear regime,
the minimal EPR scales like (n+ 1)−1, reproducing the `−1 dependence in the FL.

5 Possible developments

To conclude, in this paper we collected theoretical evidence that, for systems open to the in-
teraction with the environment, on the assumption that thermometers can be defined locally,
the minimal entropic cost of maintaining a temperature gradient at the two extremities of a
linearly extended body scales with the squared logarithm of the temperature ratio, and in-
versely with the distance. A main novelty of this work is the idea of viewing a temperature
gradient “from the outside” instead of “from the inside”. This may be of practical interest in
the assessment of the industrial scaling of the energetic demand of technologies running at
very low temperatures or in the optimization of power grids. Our law may provide an indirect
testing ground for the thermodynamics of open systems based on Markov processes, whose ex-
perimental verification is still intertwined with the identification of the kind systems to which
it applies. Finally, notice that experimental verification of the squared-log behaviour would
entail a form of “minimum entropy production” principle [31].
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Figure 4: In the overdamped case γ = 100, for chains of n = 20, 30,40 oscillators,
n+ 1 times the minimum EPR σ∗ as a function of the temperature of the right-most
oscillator ranging from 1 to 100, for given T0 = 1. The three data sets overlap and
are fitted by a squared-log curve as in Eq. (6) (see example for n= 40 in the subplot).

6 Funding information

The research was supported by the National Research Fund Luxembourg (project CORE Ther-
moComp R-AGR-3425-10) and by the European Research Council, project NanoThermo (ERC-
2015-CoG Agreement No. 681456).

A Minimal EPR

We want to explicitly show that the temperature profile T ∗ that minimizes the macroscopic
stationary EPR with our notion of local temperature follows the Laplace equation

∆ log T ∗ = 0 . (A.1)

By considering (κ= 1)

σ =

∫

X
|∇ log T |2 =

∫

X

�

∇T
T

�2

(A.2)

the entropy σ = σ[T] is a functional of the temperature field T (x). By taking the functional
derivative of σ respect to T

δσ[T]
δT (x)

=
∂

∂ T

�

�

∇T
T

�2
�

−∇ ·
∂

∂ (∇T )

�

�

∇T
T

�2
�

= 0 ,

where we applied Dirac’s deltas coming from the functional derivative. The first term is

∂

∂ T

�

�

∇T
T

�2
�

= 2
�

∇T
T

�

·
�

−
∇T
T2

�

= −
2
T
(∇ log T )2
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and the second one gives

∇·
�

2
�

∇T
T

�

∂

∂∇T

�

∇T
T

��

= 2∇ ·
�

1
T
∇T
T

�

= 2∇ ·
�

1
T
∇ log T

�

= −
2
T
(∇ log T )2 +

2
T
∆ log T ,

then

δσ[T]
δT (x)

= −
2
T
(∇ log T )2 +

2
T
(∇ log T )2 −

2
T
∆ log T = 0 ,

which is true when ∆ log T ∗ = 0 holds. The minimal EPR is obtained by integrating (A.2) by
parts:

∫

X
|∇ log T ∗|2 =

∫

X
∇ · (log T ∗ ∇ log T ∗)−

∫

X
log T ∗ ·∆ log T ∗ .

The second contribution vanishes because of Eq. (A.1), then

σ =

∫

X
∇ · (log T ∗ ∇ log T ∗) =

1
2

∫

X
∇ ·∇ log2 T ∗

=
1
2

∫

∂ X
n · ∇ log2 T ∗ .

When restricting our study to one dimension the Laplace equation gives the minimal exponen-
tial profile

T (x) = T0

�

T`
T0

�x/`

, (A.3)

since ∂x T ((1/T )∂x T ) = 0 when ∂x T = const T which is a first-order differential equation
whose solution is a 2-parameters exponential. The parameters are obtained with the two
conditions T (0) = T0 and T (`) = T`.

B Underdamped EPR

Consider the second expression in Eq. (14). We have

kB

∫

dz j(γρD)−1 j (B.1)

= γkB

∫

dz
�

pρ + D
∂ ρ

∂ p

�

·
�

D−1p +
∂

∂ p
logρ

�

= γkB

∫

dz
�

p · D−1p + p ·
∂

∂ p

�

ρ + kB

∫

dz logρ
∂

∂ p
· j , (B.2)

where in the second term we integrated by parts and recovered the definition of the current.
Now, employing the continuity equation Eq. (8) we obtain for the second term

kB

∫

dz logρ
∂

∂ p
· j = kB

∫

dz logρ
�

{H,ρ} −
∂

∂ t
ρ

�

=
d
d t

S(t) , (B.3)
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where S(t) = −kB

∫

zρ(z, t) logρ(z, t) is the Gibbs-Shannon entropy, and we used the Liou-
ville theorem and probability conservation. Also, notice that

∫

dz p ·D−1p ρ = tr [D−1Cpp(t)]
leading to

kB

∫

dz j(γρD)−1 j (B.4)

=
d
d t

S(t) + γkB tr [D−1Cpp(t)] + γkB

∫

dz p ·
∂

∂ p
ρ(z, t). (B.7)

Finally this last term can be integrated by parts yielding −nγkB, thus recovering the first ex-
pression in Eq. (20).

C Orthonormality of the eigenvectors of A

We want to show that the basis of eigenvectors {aα}, α = 1, . . . , n with components

ak
α =

q

2
n+1 sin

�

αkπ
n+1

�

is orthonormal. The condition

n
∑

k=1

ak
αak
α = 1 (C.1)

is fulfilled since

n
∑

k=1

sin2
�

αkπ
n+ 1

�

= −
1
4

n
∑

k=1

�

−2+ e
2iαkπ
n+1 + e−

2iαkπ
n+1

�

=
n
2
−

1
4

� n
∑

k=1

�

e
2iαπ
n+1

�k
+

n
∑

k=1

�

e−
2iαπ
n+1

�k
�

=
n+ 1

2
, (C.2)

where we used that sin(x) = 1
2i (e

i x − e−i x) and that the partial sum of the geometric series is
given by

∑m
k=0 xk = (1−xm+1)/(1−x). The result is obtained by noticing that our summations

runs from k = 1 and that e2izπ = cos(2zπ) = 1,∀z ∈ Z.
With similar arguments we can prove that {aα} is also orthogonal: in fact

n
∑

k=1

ak
αak
β = −

2
(n+ 1)

1
4

n
∑

k=1

�

eiαkπ/(n+1) − e−iαkπ/(n+1)
� �

eiβkπ/(n+1) − e−iβkπ/(n+1)
�

= −
2

(n+ 1)
1
4

�

1− ei(α+β)π

1− ei(α+β)π/(n+1)
−

1− ei(α−β)π

1− ei(α−β)π/(n+1)
−

1− e−i(α−β)π

1− e−i(α−β)π/(n+1)
+

1− e−i(α+β)π

1− e−i(α+β)π/(n+1)

�

= δα,β , (C.3)

since for α= β we fall in the previous case to show normality of aα, and for α 6= β we can say
that when α+β is even (odd) also α−β is even (odd), and in both case the expression above
vanishes because cos(mπ) = 1 for even m and cos(mπ) = −1 for odd m.

D Exact solution for 3 oscillators

Let us consider a system of 3 interacting harmonic oscillators where the endpoints (oscillators
1 and 3) are coupled with thermal reservoirs with given temperatures T1 = Tc and T3 = Th .
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We want to find the temperature T of the oscillators in the middle which minimizes the EPR
given by Eq. (17)

σ = γ
∑

k<h

�

1
Th
−

1
Tk

�

∆kh (Th − Tk) h= 1,2, 3 . (D.1)

The expression above can be written explicitly as

σ = γ
��

1
Th
−

1
Tc

�

∆13(Th − Tc) +
�

1
Th
−

1
T

�

∆23(Th − T ) +
�

1
T
−

1
Tc

�

∆12(T − Tc)
�

(D.2)

and can be minimized by taking the derivative respect to T obtaining

dσ
dT
= γ

d
dT

�

−
Th

T
∆23 −

T
Th
∆23 −

T
Tc
∆12 −

Tc

T
∆12

�

= 0 . (D.3)

The elements ∆kh with k, h = 1,2, 3 include the dependence on the damping parameter γ,
since in the general underdamped framework (see Eq. (26))

∆kh =
3
∑

α,β=1

ak
αak
βah
αah
β

(λα −λβ)2

(λα −λβ)2 + 2 (γ/ω)2 (λα +λβ)
, (D.4)

with λα = 2+ 2cos
�

απ
4

�

, α = 1, 2,3 denoting the α-th eigenvalue of A and ak
α =

1p
2

sin
�

αkπ
4

�

the k-th component, k = 1, 2,3 of the eigenvector aα associated to λα.
The matrix ∆ is symmetric respect to the diagonal, but it is also symmetric respect to the

anti-diagonal. This means that ∆12 =∆23. Then the minimization above gives

1
T2
(Th + Tc) =

1
Th
+

1
Tc

⇒ T =
p

Tc Th (D.7)

and we lost any dependence on γ for the optimal temperature T . Then the temperature profile
for 3 oscillators is independent on γ and is always exponential. If we consider now a larger
system with a generic number n of oscillators, with given temperatures at the endpoints, we
obtained in the overdamped limit that the optimal temperature profile is exponential from Tc
to Th. In the underdamped situation the profile is quite different: by taking γ smaller and
smaller, the temperature profile of all the oscillators in the bulk of the system (excluding then
the endpoints that are still at the given temperatures Tc and Th) tends to be uniform with a
value T =

p

Tc Th as if the oscillators in the bulk are behaving collectively as a single oscillator
with temperature T . This also gives that the minimal profile depends on γ, which is natural
since the explicit minimization (analytically impossible) would contain explicit dependence on
the elements of ∆ and in the limit γ→ 0 we lose any dependence on γ as in the 3 oscillators
model.
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