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Abstract

The late time physics of interacting QFTs at finite temperature is controlled by hydro-
dynamics. For CFTs this implies that heavy operators – which are generically expected
to create thermal states – can be studied semiclassically. We show that hydrodynamics
universally fixes the OPE coefficients CHH ′L, on average, of all neutral light operators
with two non-identical heavy ones, as a function of the scaling dimension and spin of
the operators. These methods can be straightforwardly extended to CFTs with global
symmetries, and generalize recent EFT results on large charge operators away from the
case of minimal dimension at fixed charge. We also revisit certain aspects of late time
thermal correlators in QFT and other diffusive systems.

Copyright L. V. Delacretaz
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 22-06-2020
Accepted 25-08-2020
Published 08-09-2020

Check for
updates

doi:10.21468/SciPostPhys.9.3.034

Contents

1 Introduction 2
1.1 Summary of results 2

2 Hydrodynamics in QFT 6
2.1 Late time correlators from hydrodynamics 8
2.2 The critical dimension d = 2 12
2.3 Real time correlators and diffuson cascade 12

3 Semiclassical theory of heavy operators in CFTs 16
3.1 Thermodynamics in OPE data 17
3.2 Hydrodynamics in OPE data 17

3.2.1 Microscopic spin J , J ′ 18
3.2.2 Mesoscopic spin J , J ′ 19

3.3 Macroscopic spin 22

4 Global symmetries 22
4.1 Hydrodynamics of a charged fluid 23

4.1.1 Turning on a background µ 6= 0 24
4.2 Dissipative superfluids 24

4.2.1 Dissipative superfluids from the EFT 26
4.3 Implications for heavy CFT operators with macroscopic charge 28
4.4 Phase transitions in the spectrum 29

1

https://scipost.org
https://scipost.org/SciPostPhys.9.3.034
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.9.3.034&amp;domain=pdf&amp;date_stamp=2020-09-08
http://dx.doi.org/10.21468/SciPostPhys.9.3.034


SciPost Phys. 9, 034 (2020)

5 Conclusion 33

A Detailed hydrodynamic correlators 35
A.1 Hydrodynamic loop computation 35
A.2 Results for all spin 36

A.2.1 Odd spin ` 36
A.2.2 Odd number of spatial indices ¯̀ 37

A.3 Subleading tails 37

References 39

1 Introduction

The analytic conformal bootstrap has uncovered universal features in sparse corners of the
spectrum of conformal field theories (CFTs), at large spin [1, 2] or large charge [3]. The
‘middle’ of the spectrum is instead exponentially dense, but reveals universal properties as well
[4,5]. Some of these advances were guided by the existence of semiclassical descriptions, such
as weakly interacting probe particles in AdS [1] for large spin states, or a superfluid effective
field theory (EFT) for large charge states of certain CFTs [6–9]. The middle of the spectrum
also enjoys a natural semiclassical description: thermodynamics [10], and more generally
hydrodynamics. The subject of this paper is to study the consequences of this description.

Hydrodynamics is expected to emerge as the late time dynamics of any non-integrable
quantum field theory (QFT) at finite temperature. The first theoretically controlled demonstra-
tion of this phenomenon is possibly Landau’s two-fluid model [11]; for weakly coupled QFTs
the emergence of hydrodynamics is now well understood within the framework of Boltzmann
kinetic theory [12, 13]. The fluid-gravity correspondence is a more recent example [14–16],
for strongly coupled holographic theories. Although an analogous proof in generic CFTs may
be too formidable a task for the conformal bootstrap, analytic methods may be able to place
constraints on hydrodynamics, such as bounds on transport parameters [17].

The approach followed here is instead to work from the bottom-up, with the hope to guide
future efforts from the analytic or numerical bootstrap. Hydrodynamics tightly constrains the
thermal correlator of any light neutral operator (e.g. any Z2-even light operator in the 3d
Ising model) at late times. This regime is difficult to address with conventional CFT meth-
ods because large Lorentzian times t � β are far outside of the radius of convergence of the
operator product expansion (OPE) [18]. In the microcanonical ensemble, hydrodynamics con-
trols heavy-light four-point functions 〈H LLH〉 far from the LL OPE limit. Assuming typicality
of heavy operators, hydrodynamic predictions can be recast as expressions for off-diagonal
heavy-heavy-light OPE coefficients CHH ′L . Our results, summarized below, should hold in any
non-integrable unitary CFT in three or more spacetime dimensions.

1.1 Summary of results

We consider thermalizing (or chaotic) CFTs in d +1 spacetime dimensions. Operators that do
not carry any internal quantum numbers acquire thermal expectation values: for example a
neutral dimension ∆O scalar satisfies

〈O〉β =
bO
β∆O

, (1.1)
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where β is the inverse temperature, and bO a coefficient that is generically O(1). As ar-
gued in Ref. [10], consistency with the microcanonical ensemble implies that diagonal heavy-
heavy-light OPE coefficients are on average controlled by the thermal expectation value (1.1).
Assuming typicality of heavy eigenstates allows one to drop the averages and leads to the
prediction [10] (dropping numerical factors)

CHHO ' bO

�

∆

bT

�∆O/(d+1)
, (1.2)

for the OPE coefficient of two copies of a heavy operator H of dimension∆with the light oper-
ator O. The dimensionless thermal entropy density bT ≡ sβd controls the thermal expectation
value of the stress-tensor.

In contrast, off-diagonal heavy-heavy-light OPE coefficients CHH ′O should probe out of
equilibrium dynamics. If O is light and the difference in the dimension of the heavy operators
is not too large, this will probe the late time, near-equilibrium dynamics, which is controlled
by hydrodynamics if d ≥ 2. Eq. (1.1) shows that O couples to fluctuations in temperature (or
energy density). These propagate as sound, with velocity c2

s =
1
d and attenuation rate related

to the shear viscosity to entropy ratio ηo ≡ η/s of the CFT, leading to poles near ω = ±k/
p

d
in the low frequency ω and wavevector k thermal two-point function of O

〈OO〉β(ω, k)'
�

bO∆O
β∆O

�2 βd

bT

ηoβk4

�

ω2 − 1
d k2

�2
+
�2d−1

d ηoβωk2
�2 . (1.3)

We show under the same assumptions that lead to (1.2) that this hydrodynamic correlator
implies

|CHJ H ′
J′O
|2 '

b2
O

eS

ηo(J − J ′)4

�

(∆−∆′)2 − 1
d (J − J ′)2

�2
+ ad η2

o

�

bT
∆

�
2

d+1 (∆−∆′)2 (J − J ′)4
, (1.4)

for the OPE coefficient of the light operator O with heavy operators of dimension ∆, ∆′

and spin J , J ′. Off-diagonal OPE coefficients are exponentially suppressed in the entropy
S ∼ (bT∆

d)1/(d+1), as expected on general grounds [4]. We have dropped subexponential de-
pendence on∆, but instead emphasize the singular dependence on∆−∆′ and J−J ′ featuring
the hydrodynamic sound pole. This result holds for heavy operators satisfying

�

∆

bT

�− 1
d+1

® ∆−∆′ ®
�

∆

bT

�
1

d+1

. (1.5)

The difference in spin must satisfy the same upper bound J − J ′ ® (∆/bT )
1/(d+1). This upper

bound comes from the UV cutoff of hydrodynamics, which only describes dynamics at times
larger than the thermalization time t ¦ τth. The lower bound comes from IR effects which
resolve the singularity in (1.4). In (1.5) we have assumed τth ∼ β; weakly coupled CFTs have
τth� β and the window (1.5) is parametrically smaller.

Hydrodynamics pervades late time correlators, and not just those of scalar operators. In a
thermal state, neutral operators of any integer spin can decay into composite hydrodynamics
operators – this is illustrated in Fig. 1. Consider an operator of spin `. Its component with an
even number ¯̀ of spatial indices with 2≤ ¯̀≤ ` has the same quantum numbers as composite
hydrodynamic fields involving the stress tensor Tµν

Oi1···i¯̀0···0 ∼ ∂i1 · · ·∂i¯̀−1
T0i¯̀ + T0i1∂i2 · · ·∂i¯̀−1

T0i¯̀ + · · · . (1.6)

This equation is not meant as a microscopic operator equation in the CFT, but rather as an op-
erator equation in the low-energy (dissipative) effective theory around the thermal state. The
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O(¯̀,`) ∼ + + · · · + + · · ·

∼ ∂
¯̀−1T + T∂

¯̀−2T + · · · + T · · · T + · · ·

Figure 1: Neutral operators in finite temperature QFT are long-lived as they can
decay into hydrodynamic excitations carried by the stress-tensor Tµν. O(¯̀,`) denotes
components of a spin-` operator with ¯̀ spatial indices.

first term shows that the operator overlaps linearly with hydrodynamic excitations. Its two-
point function will therefore contain hydrodynamic poles, leading to OPE coefficients similar
to (1.4). If we consider this operator at vanishing wavevector k = 0, then the leading term
drops because it is a total derivative and the operator no longer overlaps linearly with hydro-
dynamic modes. However, it can still decay into the second composite operator which leads
to a hydrodynamic loop contribution to its correlator

〈Oi1···i¯̀0···0O j1··· j¯̀0···0〉β (t, k = 0) ∼
1

t
d
2+¯̀−2

. (1.7)

Although this universal late-behavior for thermal correlators of generic operators in QFTs can
be straightforwardly derived using the time-honored framework of fluctuating hydrodynamics,
it has to our knowledge not appeared previously in the literature.

The hydrodynamic two-point function (1.7) controls certain OPE coefficients of spinning
light operators with two heavy ones, for example when J = J ′ one finds

|C ¯̀
HJ H ′JO`

|2 ' e−S
�

∆−∆′
�

d
2+¯̀−1

, (1.8)

for ¯̀ even satisfying 2≤ ¯̀≤ `. Similar results hold for general `, ¯̀, with different exponents in
(1.7) and (1.8). The superscript ¯̀ on the left-hand side (partially) labels the tensor structure
of the spinning OPE. For general spins J 6= J ′ and ` ≥ 0, leading OPE coefficients can be
controlled by hydrodynamic correlators at tree-level as in Eq. (1.4), at one-loop as in (1.8), or
at higher loop, see Eq. (3.27) for the general expression.

Strictly speaking, the results (1.2), (1.4) and (1.8) hold after averaging the heavy oper-
ators over a microcanonical window. However, the expected typicality of heavy operators in
generic CFTs imply that a much more sparing averaging may suffice. The eigenstate thermal-
ization hypothesis [19–21] suggests that the diagonal OPE (1.2) holds at the level of individual
operators [10], and that the off-diagonal OPEs in e.g. (1.4) and (1.8) hold after averaging over
n operators, if one tolerates an error ∼ 1/

p
n.

We further derive generalizations of Eqs. (1.4) and (1.8); these results apply to any non-
integrable CFT in spatial dimensions d ≥ 2, without additional continuous global symmetries.
Continuous global symmetries G can be incorporated straightforwardly: they lead to addi-
tional hydrodynamic modes which can give further contributions to OPE coefficients. We il-
lustrate this with the case G = U(1). OPE coefficients involving charged heavy operators are
similar to (1.4) and (1.8), with some differences for odd-spin light operators which receive
larger hydrodynamic contributions because of the new slow density. The U(1) symmetry can
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Figure 2: Top: The spectrum of a CFT can be organized using quantum numbers
associated with dimension∆, spin J , and internal charge Q if the CFT has additional
global symmetries. Existing analytic methods to study various regions of the spec-
trum include the light-cone bootstrap [1,2], Tauberian theorems [4,5], and the large
charge limit [6]. Bottom: The regions that admit a hydrodynamic description are in
red. The triangle shows an OPE coefficient CHH ′L controlled by hydrodynamics.
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be spontaneously broken in the state created by the heavy operator of large charge. In this
case, the hydrodynamic description includes a Goldstone phase. This allows us to connect to
the large charge program [3, 6–9, 22], which can be thought of as a special case where a hy-
drodynamic (or semiclassical) description survives the T → 0 limit thanks to the spontaneous
breaking of the U(1) symmetry. The various possible phases created by heavy operators are
shown in Fig. 2.

The rest of this paper is organized as follows: Fluctuating hydrodynamics is reviewed in
Sec. 2, and applied to relativistic QFTs. A few novel results are also obtained there, including
the hydrodynamic long-time tails in Eq. (1.7) and a curious aspect of correlation functions
G(t, k): these are expected to decay as e−Dk2 t after the thermalization time in diffusive sys-
tems with diffusion constant D. However we find that at later times t ¦ 1

Dk2 log 1
k , irrelevant

interactions lead to a ‘diffuson cascade’ with stretched exponential decay e−
p

Dk2 t . At even
later times t ¦ 1

k2d+2 log 1
k , perturbative control is lost. In Sec. 3 we study how hydrodynamic

correlators control the CFT data, and derive our main results (1.4) and (1.8) along with their
generalizations. In Sec. 4, we extend this framework to CFTs with a global U(1) symmetry. We
explain how the superfluid EFT can be heated up at small temperatures 1� βµ <∞ to con-
nect the hydrodynamic description, and speculate on signatures of thermal phase transitions
in the spectrum of heavy operators.

2 Hydrodynamics in QFT

Hydrodynamics governs the late time dynamics of non-integrable QFTs at finite temperature.
The simplicity of the hydrodynamic description arises from the fact that most excitations are
short-lived at finite temperature, with lifetimes of order of the thermalization time τth. This
allows for an effective description of the system for times

t � τth , (2.1)

in terms long wavelength fluctuations of the variables characterizing thermal equilibrium,
namely temperature and velocity β(x), uµ(x), or their associated densities T00(x), T0i(x). Ad-
ditional continuous global symmetries would lead to more conserved quantities. These modes
are parametrically long lived because their lifetime grows with their wavelength 1/k. We de-
fine the thermalization length `th as the length scale where hydrodynamic modes are no longer
parametrically longer-lived than τth. We will then focus on modes satisfying

k`th� 1 . (2.2)

These time and length scales are parametrically long when the microscopics is weakly coupled,
for example `th ∼ τth ∼

β
g4 in (3+1)d gauge theories with coupling g � 1 [13] . For strongly

interacting QFTs (with speed of sound ∼ 1) one expects `th ∼ τth ¦ β , see e.g. [23].
We briefly outline the construction of hydrodynamics for relativistic QFTs, see [24] for a

self-contained introduction. Correlation functions for the conserved densities are obtained by
solving continuity relations

∂µTµν = 0 . (2.3)

These equations also involve the currents Ti j . They can be closed by writing constitutive rela-
tions for the currents in a gradient expansion – in the Landau frame one has

〈Tµν〉= εuµuν + P∆µν − ζ∆µν∂λuλ −η∆αµ∆
β
ν

�

∂αuβ + ∂βuα −
2
d
ηαβ∂λuλ

�

+ · · · , (2.4)
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where P is the pressure, ε the energy density, ζ, η the bulk and shear viscosities, and the
velocity satisfies uµuµ = −1. We defined the projector ∆µν ≡ ηµν + uµuν. The ellipses denote
terms that are higher order in derivatives.

Hydrodynamic correlation functions can be found by expanding fields around equilibrium.
These correlation functions are therefore obtained after two expansions: a derivative expan-
sion, apparent in (2.4), and an expansion in fields that we will perform below. The former is
always controlled and gives corrections to correlators that are suppressed at late times (2.1),
whereas the perturbative expansion in fields is only controlled if interactions are irrelevant –
this is the case in d ≥ 2 spatial dimensions. We first focus on d > 2. When d = 2, hydrody-
namic interactions are only marginally irrelevant [25] – this case will be treated separately in
Sec. 2.2. In d = 1, interactions are relevant and the theory flows to a new dissipative IR fixed
point with dynamic exponent z = 3/2 [25–27] (to be contrasted with the unstable diffusive
fixed point, where z = 2)†.

When interactions are irrelevant, it is possible to solve Eqs. (2.3) and (2.4) perturbatively
in the fields, by expanding around equilibrium

uµ(x) = δ
0
µ +δ

i
µ

β

s
T0i + · · · , (2.5a)

β(x) = β −
β2c2

s

s
δT00 + · · · , (2.5b)

where the entropy density is given by s = β(ε+ P) and the speed of sound c2
s =

∂ P
∂ ε . This leads

to the retarded Green’s function

GR
T00T00

(ω, k) =
s
β

�

k2

c2
s k2 −ω2 − iΓsk2ω

�

+ · · · (2.6a)

GR
T0i T0 j

(ω, k) =
s
β

�

kik j

k2

ω2

c2
s k2 −ω2 − iΓsk2ω

+

�

δi j −
kik j

k2

�

Dk2

−iω+ Dk2

�

+ · · · , (2.6b)

where · · · denotes terms that are analytic or subleading when ωτth, k`th� 1. The long lived
densities T00, T0i carry a sound mode with attenuation rate Γs = β ·

�

ζ+ 2(d−1)
d η

�

/s, and a
diffusive mode with diffusion constant D = β · η/s. Other two-point functions can be ob-
tained from the fluctuation-dissipation theorem: the Wightman Green’s function for example
is 〈OO〉(ω) = 2

1−e−βω Im GR
OO(ω)'

2
βω Im GR

OO(ω) (here (2.1) implies that we are working at
small frequencies βω� 1). Its Fourier transform will be used below:

〈T0i T0 j〉(t, k) = −
s
β2

�

kik j

k2
cos(csk|t|)e−

1
2 Γsk

2|t| +

�

δi j −
kik j

k2

�

e−Dk2|t|
�

+ · · · . (2.7)

For the present purposes it will be useful to understand the constitutive relation (2.4) as
an operator equation. Namely, using (2.5) we can write the traceless spatial part as

T〈i j〉 = −2D∂(i T j)0 +
β

s
T0i T0 j − traces+ · · · . (2.8)

Traceless symmetric combinations are denoted by A〈i j〉 ≡ A(i j) −
1
dδi jA

k
k. The operator on the

left is studied in the IR by expanding it in terms of composites of IR operators T00, T0i with
the same quantum numbers (here the quantum number being matched is spin under spatial
rotations SO(d)). Correlation functions of both operators will match in the IR. This is routinely
done in EFTs, e.g. in chiral perturbation theory where UV operators are represented in the IR

†Neither fixed point describes CFTs in d = 1, where the enhanced symmetries completely fix thermal physics
in the thermodynamic limit R/β � 1.
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in terms of pion degrees of freedom. A similar strategy was followed in [8] where operators
with small global charge were represented in terms of operators in the superfluid effective field
theory. Although this distinction of UV and IR operators may seem awkward for components of
the stress-tensor, we will see that it becomes a useful concept when studying other operators.

In the case at hand, the linear overlap of T〈i j〉 with IR degrees of freedom implies that the
two-point function of T〈i j〉 will contain the hydrodynamic poles in (2.6) (as can be checked
explicitly, see e.g. appendix A in Ref. [23]). At k = 0, the linear term vanishes, but T〈i j〉 can
still decay into a composite of hydrodynamic operators via the second term in (2.8). It was
found [28] (see [29] for a more recent relativistic exposition) that this term leads to ‘long-time
tails’ in the two-point function

〈T〈i j〉T〈kl〉〉(t, k = 0)'
�

β

s

�2∫ dd k
(2π)d

GT0i T0k
(t, k)GT0 j T0l

(t,−k) + (i↔ j)− traces

=
Ai jkl

β2d(d + 2)

�

1
(4πΓs|t|)d/2

+
d2 − 2

(8πD|t|)d/2

�

+ · · · ,
(2.9)

where Ai jkl = δikδ jl + δilδ jk −
2
dδi jδkl and the integral was computed using (2.7), drop-

ping terms that decay exponentially fast in time. In the first step, we assumed the theory
was Gaussian in the hydrodynamic variables, in which case the symmetric Green’s functions
factorize [30]. This is of course not the case; the same term in (2.8) that leads to long-time
tails is responsible for hydrodynamic interactions (classically, these non-linearities are respon-
sible for turbulence in the Navier-Stokes equations). The framework of fluctuating hydro-
dynamics addresses these interactions. Although hydrodynamics has been understood as a
field theory since the work of Euler, the formulation of dissipative hydrodynamics as an EFT is
somewhat more recent [25,31,32] and was motivated by the observation of long-time tails in
numerics [33], which are now understood as hydrodynamic loops as in Eq. (2.9). Recent de-
velopments in dissipative EFTs for hydrodynamics include [34–37] (see [38] for a review, and
e.g. [39–41] for alternative approaches). These constructions allow for a systematic treatment
of interactions to arbitrary order in perturbations. Here, we will be working in dimensions
where interactions are irrelevant, and will only be interested in the leading hydrodynamic
contribution to correlation functions at late times. In this sense we are justified in approximat-
ing the action as Gaussian in evaluating (2.9) and in the following. Systematically accounting
for corrections to our results would require knowing the structure of interactions in the effec-
tive field theory – this was done for simple diffusion in [42].

2.1 Late time correlators from hydrodynamics

How do the thermal correlators of other simple operators behave at late times? The central
assumption of thermalization and hydrodynamics is that after short time transients, the only
long-lived dynamical degrees of freedom are the densities (2.5). Hence any simple operator
will be carried by these densities at late times. For example, any neutral spin-2 operator Oµν
will have a constitutive relation similar to (2.4) – the stress tensor is only distinguished by
the coefficients in its constitutive relation which are fixed in terms of thermodynamic and
transport parameters. More generally, consider a traceless symmetric tensor Oµ1···µ` with even
spin ` (odd spin is mostly similar and is treated in appendix A.2). Its constitutive relation has
the schematic form

Oµ1···µ` = λ0 uµ1
· · ·uµ` +λ1β ∂µ1

uµ2
· · ·uµ` + · · ·+λ`−1β

`−1∂µ1
· · ·∂µ`−1

uµ`
+λ`β

`−1∂µ1
· · ·∂µ`β + higher derivative , (2.10)

where all terms should be understood to be symmetrized, with traces removed. For some
terms there are several possible choices for how the derivatives are distributed – we will be
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more precise below after determining which terms are most important. The strategy is simply
to write all possible composite hydrodynamic operators with the right quantum numbers, in a
derivative expansion – we therefore do not explicitly include terms like uµ1

�

∂µ2
· · ·∂µ`−1

�

∂ 2uµ`
which are manifestly higher order in derivatives. The powers of β are chosen such that all
coefficients λ (which are still functions of β) have the same dimension, namely that of O – for
CFTs it will be useful to use scale invariance to define instead the dimensionless numbers

λi ≡ bi/β
2∆O . (2.11)

The λ0 term in (2.10) was considered in a CFT context in [18] – it is special in that it leads to
a non-vanishing equilibrium expectation value 〈O〉β 6= 0. However, this term will not always
give the leading hydrodynamic contribution to the late time correlators of O, as we show
below. In particular this term is forbidden by CPT for odd spin `, but odd spin operators still
have hydrodynamic tails.

Let us first consider the components of O with zero or one spatial index. Linearizing the
constitutive relation (2.10) using Eq. (2.5) shows that these components overlap linearly with
hydrodynamic modes: the leading terms are

δO0···0 = −∂βλ0
β2c2

s

s
δT00 + · · · , (2.12a)

δOi0···0 = λ0
β

s
T0i −λ1

β2c2
s

s
∂i T00 + · · · . (2.12b)

Using (2.6), one finds correlation functions that involve the hydrodynamic poles

〈O0···0O0···0〉(ω, k) =
2βd

so

�

β∂βλ0

�2
Γsc

4
s k4

(ω2 − c2
s k2)2 + (Γsωk2)2

+ · · · , (2.13a)

〈Oi0···0O j0···0〉(ω, k) =
2βd

so

kik j

k2

�

ωλ0 +λ1β c2
s k2

�2
Γsk

2

(ω2 − c2
s k2)2 + (Γsωk2)2

(2.13b)

+
2βd

so

�

δi j −
kik j

k2

�

(λ0)2Dk2

ω2 + (Dk2)2
+ · · · ,

where we defined the dimensionless entropy density so ≡ sβd , and · · · are corrections that are
subleading when ωτth, k`th� 1.

Now consider correlators involving ¯̀ spatial components of the operator O, with 1< ¯̀≤ `.
The constitutive relation (2.10) can again be turned into an operator equation using (2.5) –
the part that is traceless symmetric in spatial indices is

O〈i1···i¯̀〉0···0 ∼
λ0β

¯̀

s¯̀ T0i1 · · · T0i¯̀ + · · ·+
λ¯̀−2β

¯̀

s2
T0i1

�

∂i2 · · ·∂i¯̀−1

�

T0i¯̀

+
λ¯̀−1β

¯̀

s
∂i1 · · ·∂i¯̀−1

T0i¯̀ +
λ¯̀β

¯̀+1c2
s

s

�

∂i1 · · ·∂i¯̀

�

T00 + · · · ,

(2.14)

where again all terms should be understood to be symmetrized, with traces removed. There
are still several possibilities for how the derivatives act, e.g. in the λ¯̀−2 term – this will be
specified shortly. We focus on the traceless symmetric part of Oi1···i¯̀0···0, because its traces are
related to time components of the operator (e.g. δi1 i2Oi1···i¯̀0··· = O00i3···i¯̀0···), which in turn
satisfy similar constitutive relations with fewer indices. This operator matching equation is
illustrated in Fig. 1.

We could now proceed by studying the contribution of every operator in (2.14) to the
correlator 〈OO〉. However a simple scaling argument can be used to determine which term in
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(2.14) is the most relevant: note that (2.7) implies that the densities scale as T00 ∼ T0i ∼ kd/2.
For dimensions d > 2, it is therefore more advantageous to use gradients to build spin. The
most relevant operator is the total derivative term λ¯̀−1. We must also keep the term λ¯̀ ;
although it is suppressed when ω ∼ k it can give an enhanced contribution when ω ® βk2,
as was shown for ¯̀ = 1 in (2.12b) and (2.13b). Finally, since both of these terms vanish at
k = 0, it is also important to keep the most relevant operator that is not a total derivative
– when ¯̀ is even this is λ¯̀−2 in (2.14) (when ¯̀ is odd, the λ¯̀−2 term is a total derivative –
this case is treated below). The terms in the constitutive relation (2.14) that give the leading
contribution in the hydrodynamic regime ωτth, k`th ® 1 are therefore λ¯̀−2, λ¯̀−1 and λ¯̀.
Which term dominates depends on how ω compares to the scales csk and Dk2 ∼ Γsk2; their
contributions to the correlator take the form†

〈O(¯̀,`)O(¯̀,`)〉(ω, k) =
βd

so

(λ¯̀−1)
2Dk2(βk)2¯̀−2

ω2 + (Dk2)2
+
βd

so

�

ωλ¯̀−1 +λ¯̀β c2
s k2

�2
Γsk

2(βk)2¯̀−2

(ω2 − c2
s k2)2 + (Γsωk2)2

+
βd

s2
o

(λ¯̀−2)
2

ω





�

ωβ2

Γs

�
d
2+¯̀−2

+

�

ωβ2

D

�
d
2+¯̀−2





�

1+O( D2k4

ω2 )
�

(2.15)

+ · · · .

Here we let O(¯̀,`) ≡O〈i1···i¯̀〉0···0 denote components of a spin ` operator with ¯̀ spatial indices,
omitting the corresponding tensor structures; these are treated more carefully in appendix A,
see Eq. (A.9). The first line follows from the linear overlaps with the hydrodynamic modes as
in (2.13). The second line dominates for k→ 0 and comes from a long-time tail contribution
to the two-point function from a hydrodynamic loop, as we now explain. The hydrodynamic
loop computation is similar to (2.9), with extra gradients acting on the internal legs. Since
λ¯̀−2 term in (2.14) scales as kd+¯̀−2, one expects a contribution to the two-point function

GOO(t)∼ 1/t
d
2+¯̀−2 (note that one must scale ω∼ k2). The numerical prefactor can be found

by performing the loop integral (see appendix A.1 for more details and the tensor structure):

〈O(¯̀,`)O(¯̀,`)〉(t, k = 0) =
�λ¯̀−2

so

�2
βd

�

a1

(2Γs|t|/β2)
d
2+¯̀−2

+
a2

(4D|t|/β2)
d
2+¯̀−2

�

+ · · · , (2.16)

where the numerical coefficients a1 and a2 are given in (A.8), and were dropped in (2.15). We
see that operators with ¯̀≥ 2 spatial indices universally decay as 1/t

d
2+¯̀−2 in thermalizing QFTs

– although this is a straightforward extension of the well-known stress tensor long-time tails
(2.9) to operators with higher spin, this result has to our knowledge not appeared previously
in the literature. Fourier transforming this result gives the last line in (2.15), where we have
also indicated the subleading corrections O( D2k4

ω2 ) for small k 6= 0 (they are computed explicitly
in a special case in appendix A.3, where the analytic structure is also discussed). When the
number of spatial derivatives ¯̀ is odd, the λ¯̀−2 term in the constitutive relation (2.14) is a
total derivative, and there is competition between less relevant terms. Their contribution to
the late time correlator can be computed as in the even ¯̀ case – for ¯̀≥ 3, one finds

〈O(¯̀,`)O(¯̀,`)〉(t, k = 0)∼
1
|t|α¯̀

with α¯̀ =







d + ¯̀− 3 if d ≤ 4 ,

d
2
+ ¯̀− 1 if d > 4 .

(2.17)

†These hydrodynamic contributions also imply that correlators 〈O(¯̀,`)O(¯̀,`)〉(x , t) of neutral operators always
decay polynomially in real time. Exponential decay of correlators is therefore not a good criterion for thermaliza-
tion. I thank Erez Berg for discussions on this point.
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Figure 3: Hydrodynamic loops control the correlators of k = 0 neutral operators at
large time separation.

See appendix A.2 for more details. The first line in (2.15) is then unchanged for ¯̀ odd, but
the second line will be given by the Fourier transform of (2.17) instead of (2.16).

In theories with a large number of degrees of freedom such as holographic theories, the sup-
pression in (2.16) by the dimensionless entropy density so ≡ sβd ∼ N2� 1 implies that these
hydrodynamic tails will only overcome short-time transients ∼ e−t/τth at times t ¦ τth log so
(the late time limit of correlation functions therefore does not commute with the N → ∞
limit). The stress tensor tails (2.9) were captured in a holographic model in Ref. [43] by
computing a graviton loop in the bulk. However certain tails in the holographic correlators of
higher-spin operators (2.16) are reproduced more simply, and are direct consequences of large
N factorization: consider a holographic model with a single trace scalar φ. In the absence of
a φ→−φ symmetry, the scalar will have a thermal expectation value

〈φ〉β =
bφ
β∆φ

. (2.18)

This is achieved in bottom-up holographic models by including a coupling in the bulk between
the scalar and the Weyl tensor [44] (see also [45, 46]). A computation of the scalar two-
point function should reveal the sound mode as in (2.13a). Double-trace spin-` operators
O` ∼ φ∂ `φ will then have long-time tail contributions to their thermal correlators, similar to
(2.16).

Although so acts as a loop counting parameter in fluctuating hydrodynamics, we empha-
size that the perturbative expansion is controlled even when so ∼ 1 because hydrodynamic
interactions are irrelevant†. In this paper, we do not assume that so is large.

We focused above on diagonal two-point functions; extending these results to off-diagonal
correlators 〈O(¯̀,`)O′(¯̀′,`′)〉 is straightforward, see appendix A.1. These methods can also be
easily extended to compute thermal higher-point correlators, which at large time separations
are also controlled by a hydrodynamic loop, see Fig. 3. For example, operators O(¯̀,`)(t, k = 0)
with an even number of spatial indices ¯̀ have a symmetric connected n-point function with
n≥ 3 odd given by

〈O(¯̀,`)(t1) · · ·O(¯̀,`)(tn)〉c ∼
�

λ¯̀−2

so

�n
βd(n−1)

[D(t12 + t23 + · · ·+ tn1)/β2]
d
2+

n
2 (`−2)

+ sym. , (2.19)

with t i j ≡ |t i− t j|, and where ‘sym.’ means symmetrizing‡ the times t1, · · · , tn. When n is odd,
the contribution from the sound pole vanishes because the integrand cosn(csk|t|) oscillates

†For example, the quark-gluon plasma has so ∼ 10 [47–49].
‡In the approach presented here, the correlators are necessarily symmetrized. Correlators with arbitrary time

orderings can however still be computed from hydrodynamics using the effective action, see [50].
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around zero; when n is even the correlator receives an extra contribution from the sound
attenuation rate as in (2.16).

2.2 The critical dimension d = 2

The results in the previous section apply to any QFT in spatial dimensions d > 2. For d = 2,
hydrodynamic interactions are only marginally irrelevant. One manifestation of this is that all
terms in the first line of (2.14) have the same scaling. This implies that many terms contribute
to the correlator, which however still scales like (2.16).

An additional subtlety is that the transport parameters D, Γs now run. For simplicity, let
us assume the bulk viscosity ζ = 0 (as is the case for CFTs), so that Γs = D = βη/s. The β-
function for D is negative [24,25], so that it flows to infinity in the IR†. Indeed, the tree-level
and one-loop contribution to the Green’s function can be found from (2.6) and (2.9) to be

GTx y Tx y
(ω, k = 0) =

2s
β2

�

D+
1

16πsD
log

1
ω
+ · · ·

�

. (2.20)

Interpreting the quantity in brackets D+ ∂ D
∂ logω logω as a running of the diffusion constant one

finds [25]

D(ω)' DΛ

√

√

√

1+
logΛ/ω

8πsD2
Λ

, (2.21)

where DΛ is the diffusion constant at the scale Λ. In the deep IR

D(ω)'

√

√ log1/ω
8πs

. (2.22)

It is a striking feature of (2+1)d hydrodynamics that dissipation does not introduce new param-
eters at the latest times – transport parameters are fixed in terms of the thermodynamics [24]‡.
In practice, the asymptotic value may only be reached at very late times, or small frequencies.
Taking Λ = 1/β and assuming DΛ ≈ β one needs frequencies βω ® e−8πso for the asymptotic
diffusion (2.22) to be reached, where the dimensionless entropy density§ so ≡ sβ2. These
logarithmic corrections to transport propagate to correlation functions of generic operators,
so that transport parameters in e.g. Eq. (2.15) will be replaced with (2.21) – however since
many other terms in (2.14) contribute to the same order in ω and k when d = 2, we will not
attempt to obtain the exact correlator. These logarithmic corrections are negligible for many
practical purposes, but have been observed in classical simulations, see e.g. [53,54]. We will
mostly ignore logarithmic corrections in applications to CFT data in Sec. 3.

2.3 Real time correlators and diffuson cascade

The hydrodynamic correlators in frequency space G(ω, k) obtained above are the ingredients
needed for the CFT applications in Sec. 3; the reader interested in these results may therefore
directly skip ahead to that section. In this section we take a slight digression to discuss finite
temperature QFT correlators in real time. At finite wavevector k, the linearized hydrodynamic
correlators (2.7) decay exponentially in time ∼ e−Dk2|t|. We will see in this section that even
this standard result is drastically affected by hydrodynamic fluctuations, which in a sense are

†This implies that canonically normalized interactions ∼ 1/D are marginally irrelevant and the theory is ‘free’
in the IR, in the sense that it is described by regular tree level hydrodynamics like in higher dimensions.

‡Dissipation is also tied to thermodynamics in (1+1)d when hydrodynamic fluctuations are relevant [25–27],
as was recently emphasized in Ref. [51].

§For CFTs, so = bT in the notation of [18]. A free massless scalar has so =
3ζ(3)

2π , so that e−8πso ≈ 5× 10−7. For
the (2+ 1)d Ising model so ≈ 0.459 [18,52] so e−8πso ≈ 10−5.
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dangerously irrelevant: although they only give small corrections to G(ω, k), they entirely
control the leading behavior of G(t, k) at late times.

Let us therefore study the real time thermal correlation function of an operator with ¯̀

spatial indices
G(t, k)≡ 〈O(¯̀,`)O(¯̀,`)〉(t, k) . (2.23)

We will take ¯̀≥ 2 even for simplicity, but similar results hold for any ¯̀. Based on the previous
section, one expects the polynomial decay of correlation functions (2.16) to still hold for times
smaller than the diffusion time 1/Dk2 of the mode

1 �
t
τth

�
1

Dk2τth
∼

1
(k`th)2

, (2.24)

(in this section, we assume for simplicity that D ∼ Γs ∼ `2
th/τth). The small wavevector of

the operator in units of the UV cutoff of hydrodynamics k`th � 1 will allow for a parametric
separation between various regimes of the correlator at late times. To find the cross-over time
more precisely, we can compare the contributions from the two first terms in Fig. 1 to the
two-point function – one finds that the polynomial decay (2.16) holds in the window

regime I: G(t, k)∼
1

t
d
2+¯̀−2

, 1 �
t
τth

�
1

(k`th)2−γ
, (2.25)

with γ = 2 d−2
d+2¯̀−4

∈ (0, 2). At slightly later times, the correlator is controlled by the linear
overlap with the hydrodynamic mode and has the form

regime II: G(t, k)∼ k2¯̀−2e−Dk2|t| ,
1

(k`th)2−γ
�

t
τth
�

1
(k`th)2

log
1

(k`th)d
. (2.26)

The power-law decay therefore plateaus to a constant before starting to decay exponentially
around the diffusion time 1/Dk2. So far the discussion here mirrors the one in frequency
space, see Eq. (2.15). However the result above eventually breaks down at late times. Indeed,
consider again the second term in Fig. 1, where the operator decays into two hydrodynamic
excitations. Since it is less relevant than the first term, its contribution to the correlator will
be more suppressed by 1/t (or k); however its exponential factor is larger:

GT∂ ¯̀−2T, T∂ ¯̀−2T (t, k)∼ k2¯̀−2kd−2e−
1
2 Dk2|t| . (2.27)

The exponent corresponds to the energy threshold for production of two diffusive fluctuations,
which is half that of a single diffusive mode [42]. More generally, the operator O(k, t) can
decay into n diffusive modes, distributing its momentum such that each mode carries k′ = k/n
so that the exponential factor becomes

�

e−Dk′2 t
�n
= e−

1
n Dk2 t . This is the manifestation in real

time t of the n-diffuson branch cut, with branch point ωn-diff = −
i
n Dk2. There are similar

branch points at the threshold for production of n sound modes ωn-sound = ±csk−
i

2nΓsk
2 (see

appendix A.3). The analytic structure of G(ω, k) is shown in Fig. 4.
For n sufficiently large, the n-diffuson contribution to the correlator has the form†

G(t, k)|n-diff ∼ n!(k`th)
nd e−

1
n Dk2 t . (2.28)

The perturbative expansion in k`th is presumably asymptotic and this result should therefore
only be trusted for n® 1/(k`th)d . The largest contribution can be determined by extremizing

†This expression applies when n is larger than the spin `. When n ® `, decaying into one more T0i costs kd/2

but saves a derivative k, so that the suppression is only (k`th)n(d−2) instead of (k`th)nd in (2.28).
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ω
...
− i

2 Dk2

−iDk2

...
csk−

i
4Γsk

2

csk−
i
2Γsk

2

Figure 4: Analytic structure of hydrodynamic correlation functions GR(ω, k). The
circles denote hydrodynamics polesωdiff = −iDk2 andωsound = ±csk−

i
2Γsk

2, and the
crosses denote branch points ωn-diff = −

i
n Dk2 and ωn-sound = ±csk −

i
2nΓsk

2 located
at the threshold for production of n hydrodynamic excitations.

(2.28) over n. Approximating log n! ∼ n log n and using n � 1/(k`th)d one finds that the
largest contribution at time t comes from decay into

n(t)'

√

√

√

Dk2 t

d log 1
k`th

(2.29)

diffusons. Plugging back into (2.28) produces the correlator

regime III: G(t, k)∼ e−α
p

Dk2|t| ,
1

(k`th)2
log

1
k`th

�
t
τth
�

1
(k`th)2d+2

log
1

k`th
, (2.30)

with α ∼
Ç

d log 1
k`th
∼ 1. In this regime, operators decay into more and more diffusive

excitations, which leads to a stretched exponential decay of correlators.
Although we have focused on the decay of operators with ¯̀ spatial indices in QFTs at

finite temperature, similar results apply for two-point functions of generic neutral operators
in any diffusive system, including non-integrable spin chains and random unitary circuits with
conservation laws. In particular Eqs. (2.26) and (2.30) would apply there, after removing the
spatial spin dependence k2¯̀−2 → 1. Certain signatures of diffusive tails have been observed
numerically in these systems [55, 56], and finite k correlators have been studied e.g. in [57],
but to our knowledge this diffuson cascade (2.30) and cross-over from e−Dk2 t to e−

p
Dk2 t has

yet to be observed. One issue is that of finite system size, which we discuss below.
In the thermodynamic limit, correlators will decay as (2.30) as long as the perturbative

expansion of fluctuating hydrodynamics holds. Given that Eq. (2.28) explodes for decay into
n� 1/(k`th)d diffusons, we expect the hydrodynamic expansion for G(t, k) to breakdown at
times t ¦ tbreakdown, with

n(tbreakdown)∼
1

(k`th)d
⇒

tbreakdown

τth
∼

1
(k`th)2d+2

log
1

k`th
, (2.31)

which is therefore the upper limit of regime III in (2.30). We do not know of a controlled way
to compute hydrodynamic correlation functions G(t, k) at times t ¦ tbreakdown.

In a finite volume Ld there is a minimal wavelength that the diffusive fluctuations in the
loop can carry: kmin =

2π
L . The correlator will then be controlled by decay of the operator into

nmax ∼ k/kmin diffusive modes with momentum kmin, so that at times later than the Thouless
time L2/D the correlation function has the form

regime IV: G(t, k)∼ e−D|k|kmin|t| ,
L2

`2
th

�
t
τth
�

sLd+1

k`2
th

, (2.32)
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G¯̀(t, k)
G¯̀(τth, k)

1

(k`th)2
¯̀−2

(k`th)2
¯̀

e−S

UV

1 1
(k`th)2−γ

1
(k`th)2

log 1
k`th

L2

`2
th

sLd+1

k`2
th

t/τth

RMT

∼ 1/t
d
2+¯̀−2

∼ e−Dk2 t

∼ e−
p

Dk2 t
∼ e−Dkkmin t

1→ n(t) 1→ nmax

I II III IV

Figure 5: Schematic log-log plot of late time two-point functions (2.23) in interact-
ing QFTs at finite temperature. The polynomial decay in regime I depends on the
spatial spin of the operator, however regimes II-IV should occur in any diffusive sys-
tem without the notion of spatial spin, such as non-integrable spin chains. The small
wavevector of the operator k`th � 1 allows for a parametric separation of the four
hydrodynamic regimes. We have assumed that the Thouless time occurs before the
breakdown time (2.31).

where s is the entropy density. Here we are assuming that the Thouless time occurs before the
breakdown of hydrodynamics (2.31). When t reaches the upper limit, the Green’s function is
exponentially small ∼ e−S . At this point we expect the correlator to be described by random
matrix theory (RMT) [58,59], exhibiting a ramp that levels off to a plateau†, upon averaging
(over a few operators with the same quantum numbers, for example). The exponentially small
value of the Green’s function

G ∼ e−S ∼ exp
�

−
so

(kminβ)d

�

, (2.33)

shows that RMT effects are non-perturbative in the hydrodynamics description, which is an
expansion in k`th ∼ kβ (2.2). Fig. 5 summarizes the various regimes of the correlator. To our
knowledge, regimes I, III and IV have not appeared previously in the literature.

We emphasize that these results hold for any non-integrable QFT, with the regimes II,
III and IV holding more generally for any diffusive system. The microscopic couplings only
enter in the determination of the thermalization time τth, and transport parameters such as
D. For weakly coupled theories, the early time behavior t � τth can be studied using direct
finite temperature perturbation theory or kinetic theory [13] (which can also capture chaos

†Note that the onset time of a RMT description tRMT ∼
sLd+1

k`2th
depends on the observable, here through its

wavevector k. Onset of RMT in the spectral form factor is expected to happen at earlier times: in d = 1, tSFF
RMT ∼

L2

D
[59] is smaller than the time scale above by a factor k/s ® k`th� 1.
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[60]). However it is difficult to observe the regimes I, III and IV directly in a weakly coupled
approach, as hydrodynamic fluctuations are not captured by the linearized approximation to
the Boltzmann kinetic equation.

We close with a comment on the convergence of the perturbative expansion. The conver-
gence of the hydrodynamic gradient expansion in large N systems (where hydrodynamic inter-
actions can be ignored if one takes the N →∞ limit first) has been discussed e.g. in [61,62].
Away from the large N limit, one expects that loop effects cause the gradient expansion to
be asymptotic, as usual in effective field theories. This is apparent in the n-diffuson contri-
bution to the correlator (2.28), which blows up when n� 1/(k`th)d . It would be interesting
to understand if this explosion can be tamed, or Borel resummed, to produce a prediction for
correlators G(t, k) after the breakdown time (2.31). In perturbative QFT, processes involving
many particles also lead to a breakdown of the perturbative expansion, which can however
be saved by expanding around a different saddle [63,64] (see [65] for recent developments);
diffusive systems are a natural venue to study multiparticle processes, and perhaps apply some
of these techniques.

3 Semiclassical theory of heavy operators in CFTs

We found in the previous section that the late time thermal two-point functions of light neutral
operators of any spin are governed by hydrodynamics in generic (thermalizing) CFTs. Working
in the microcanonical ensemble, this implies that off-diagonal heavy-heavy-light OPE coeffi-
cients CHH ′L are universal, at least on average. A priori, the averaging must be done over a
microcanonical window of states. However, heavy operators in thermalizing CFTs are expected
to look typical, so that much less averaging may be needed in practice. This expectation is ob-
jectified by the ETH Ansatz [10,19–21] for the matrix elements of a light local operator O in
energy-momentum eigenstates† P̂µ|H〉= |H〉pµ :

〈H ′|O|H〉= 〈O〉βδHH ′ +Ω(p)
−1/2RO

HH ′

Æ

〈OO〉(p− p′) , (3.1)

where Ω(p) is the density of states at momentum p, and the RO
HH ′ behave like independent

random variables with unit variance. Averaging Eq. (3.1) over a microcanonical window of
heavy operators H, H ′ simply states the equivalence between microcanonical and canonical
ensembles; the non-trivial content of Eq. (3.1) is instead that microcanonical averaging is
unnecessary: diagonal matrix elements directly produce thermal expectation values, and off-
diagonal matrix elements probe out of equilibrium response, for example through symmetric
two-point function 〈OO〉. The appearance of 〈OO〉 in the variance above is required for the
Ansatz to reproduce the two-point function [21, 23] (note that the Wightman and symmetric
two-point functions are approximately equal in the hydrodynamic regime (2.1)). In a CFT, the
state-operator correspondence relates these matrix elements to OPE coefficients. For scalar
operators (see e.g. [4])

CHH ′O = R∆O〈H|O|H ′〉 . (3.2)

The diagonal part of ETH (3.1) implies that diagonal heavy-heavy-light OPEs are controlled by
equilibrium thermodynamics, as found in Ref. [10] (see also [4,66]). In section 3.1 their results
are reviewed and extended to operators with spin. In section 3.2 we turn to the off-diagonal
part of (3.1), and show how hydrodynamics controls the corresponding OPE coefficients.

†More precisely, the energy of the heavy state on the cylinder R×Sd is p0 and pi labels the spherical harmonic
on the spatial sphere. We will mostly focus on regimes where the sphere can be approximated as Sd → Rd (see
Eq. (3.11) and comment below), so that pi = ki will denote regular spatial momentum.

16

https://scipost.org
https://scipost.org/SciPostPhys.9.3.034


SciPost Phys. 9, 034 (2020)

3.1 Thermodynamics in OPE data

Consider a heavy operator H, with dimension ∆ ≡ ∆H � 1 larger than any other intrinsic
number of the CFT (such as measures of the number of degrees of freedom). It will be useful
to define the energy density ε of the state that H creates on the cylinder R× Sd of radius R

∆= εRd+1Sd , (3.3)

where Sd ≡ VolSd = 2π(d+1)/2

Γ( d+1
2 )

. We can then reach the macroscopic limit by taking R→∞while

keeping ε fixed. The diagonal OPE coefficient is fixed by thermodynamics [10]

CHHO = R∆O〈H|O|H〉 ' bO(R/β)
∆O = bO

�

d + 1
dSd

∆

bT

�∆O/(d+1)
, (3.4)

where in the second step we used (3.1), and (3.3) in the last to eliminate the radius. We used
(2.10) and (2.11) to express thermal expectation values as

〈O〉β =
bO
β∆O

, 〈Tµν〉β =
bT

βd+1

�

δ0
µδ

0
ν +

ηµν

d + 1

�

, (3.5)

where bT = so = sβd is the dimensionless entropy density, and is related to the energy density
as ε= d

d+1 bT/β
d+1.

Eq. (3.4) can be straightforwardly extended to operators with spin. From Eq. (2.14) we
find that the thermal expectation value of light operator of even spin ` takes the form

〈Oµ1···µ`〉β =
bO
β∆O

�

δ0
µ1
· · ·δ0

µ`
− traces

�

, (3.6)

where we again used scale invariance to write λ0 = bO/β
∆O . If the heavy operators are still

scalars, the OPE coefficient CHHO` is parametrized by a single tensor structure [67], which
agrees with (3.6) (see Ref. [3] for similar checks in the large charge limit). Now if the heavy
operators carry a spin J that is not macroscopic – i.e. J

∆ → 0 in the macroscopic limit – the
states they create on the cylinder are homogeneous so that (3.6) still applies. However, many
tensor structures can now appear [67], each with their own OPE coefficients. For example,
the OPE coefficient involving heavy states |H, Jm〉 in an irreducible representation J of the
Lorentz group with weight |m| ≤ J

〈H, Jm|O`|H, Jm〉 ∼ Cm
HJ HJO` (3.7)

could depend on J and m (we are using SO(3) notation for simplicity, which can be easily
generalized to SO(d + 1) for d > 2). Note that we are focusing on diagonal matrix elements
here, so that both states have to have the same weight. Comparison with (3.6) shows that the
leading answer is in fact independent of J and m as long as J �∆, so that (3.4) still holds

Cm
HJ HJO` ' bO

�

d + 1
dSd

∆

bT

�∆O/(d+1)
. (3.8)

Diagonal OPE coefficients involving heavy operators with macroscopic spin J ∼ ∆ are dis-
cussed in section 3.3.

3.2 Hydrodynamics in OPE data

We will use (3.1) and the correlators obtained in Sec. 2 to determine OPE coefficients (3.2) in
the ‘macroscopic’ limit R→∞, with a ‘mesoscopic’ difference in the dimensions of the heavy
operators ∆≡∆H , ∆′ ≡∆H ′ , namely

∆'∆′ = εRd+1Sd , ∆−∆′ =ωR , (3.9)
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in spacetime dimensions d+1≥ 3, keeping the energy density ε and frequencyω finite. When
the mesoscopic difference in their dimensions is not large

ω=
∆−∆′

R
�

1
τth
∼

1
β

, (3.10)

the off-diagonal OPE coefficient CHH ′O is controlled by hydrodynamics. In the last step we have
assumed the CFT is strongly coupled, so that the thermalization time is set by the temperature –
in a weakly coupled CFT the frequency window where hydrodynamic applies is parametrically
suppressed,† see discussion below (2.2). Eliminating the radius, this hydrodynamic window
is

�

∆

bT

�− 1
(d+1)

® ∆−∆′ ®
�

∆

bT

�
1

(d+1)

. (3.11)

The lower bound comes from the fact that the hydrodynamic results will receive corrections
from the finite size of the sphere of radius R at the Thouless energy ω ∼ D/R2 – these could
be obtained by generalizing the hydrodynamic correlators of Sec. 2 to the sphere, but we will
not attempt to do so here; we expect the singular features that we find in OPE coefficients to
be softened in that regime. The upper bound however is a fundamental UV cutoff of hydrody-
namics (2.1), assuming τth ∼ β .

The OPE coefficients CHJ H ′
J′O`

will depend on the quantum numbers of the heavy operators

∆, ∆′, J , J ′, those of the light operator ∆O, `, the thermal properties of the CFT through
bT and ηo ≡ η/s, and finally on the thermal properties of the light operator through the
coefficients bi in (2.11). In CFTs, the hydrodynamic correlators of Sec. 2 simplify somewhat,
because tracelessness of the stress tensor forces the bulk viscosity to vanish ζ = 0 and fixes
the speed of sound c2

s ≡
∂ P
∂ ε =

1
d . The diffusion constant and sound attenuation rate in (2.6)

or (2.15) are therefore given by

D = ηoβ , Γs =
2(d − 1)

d
ηoβ . (3.12)

The simplest case of three scalar operators J = J ′ = ` = 0 is somewhat subtle and will be
discussed further below. Instead we start with a light spinning operator with ` ≥ 2, and take
J , J ′ ‘microscopic’, i.e. they are kept fix ∼ 1 in the macroscopic limit R→∞.

3.2.1 Microscopic spin J , J ′

Keeping the spin J , J ′ ∼ 1 fixed in the R → ∞ limit implies that the Green’s function in
(3.1) must be evaluated at spatial wave-vector k = J−J ′

R = 0. In this case we found that the
correlator is controlled by hydrodynamic loops: for components with ¯̀≥ 2 spatial indices, the
Green’s function is (using (2.15) and (2.11))

〈O(¯̀,`)O(¯̀,`)〉(ω, k = 0)'
βd−2∆O

b2
T

b2
¯̀−2

ω

�

βω

ηo

�α¯̀

, (3.13)

with α¯̀ = d
2 +¯̀−2 for ¯̀ even, and α¯̀ = d+¯̀−3 for ¯̀ odd (see (2.17)). Converting this into an

expression for the OPE CHJ H ′
J′O`

using (3.1) and (3.2), we see that the hydrodynamic answer

predicts a tensor structure (and fixes the correspondig OPE coefficient) for each ¯̀= 0, 1, . . . , `.

†A CFT is expected to be weakly coupled when its twist gap γ ≡ min (∆− J)− d + 1 ≥ 0 is small γ� 1. In
this case the thermalization time is parametrically enhanced τth ∼ β/γ, as can be observed e.g. in the O(N)model
by comparing its thermalization time [68] to its twist gap [69]. Generic CFTs are expected to satisfy γ ¦ 1 and
τth ∼ β .
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However if the heavy operators are both scalars, conformal invariance constrains the three-
point function up to a single OPE coefficient (the illegal step was to apply ETH (3.1) before
accounting for all symmetries). To accommodate the tensor structures obtained from hydrody-
namics, it is sufficient to let one of the heavy operators have spin J ≥ ` – this leads to precisely
¯̀+ 1 tensor structures in agreement with the CFT prediction†

〈H, Jm|Oµ1···µ` |H
′〉=

∑̀

¯̀=0

C
¯̀
HJ H ′O`δ

¯̀
|m|δ

0
µ1
· · ·δµ`−¯̀δ

σ
µ`−¯̀+1

· · ·δσµ` + perm− traces , (3.14)

where σ = sgn(m) = ± denotes the spatial directions ± = x1 ± i x2 (x1, x2 are the directions
used to define the weight m, i.e. J12|H, Jm〉= |H, Jm〉m).

Combining Eqs. (3.1), (3.2) and (3.13) therefore gives

|C ¯̀
HJ HJ′O`

|2 ' e−S
b2

¯̀−2

b2
T

(R/β)∆O

βω

�

βω

ηo

�α¯̀

. (3.15)

Here we have replaced the random number with unit variance |RHH ′ |2 → 1. Strictly speak-
ing this expression for |CHH ′L|2 and those below should be thought as average statements,
averaged over a few heavy operators H or H ′. We have taken the density of states at energy
E =∆/R to be

Ω(E)' βd+1eS , with S = bT Sd(R/β)
d = bT Sd

�

d + 1
dSd

∆

bT

�
d

d+1

. (3.16)

Eliminating the radius R in (3.15) gives (dropping numerical factors)

|C ¯̀
HJ H ′

J′O`
|2 ' e−S

b2
¯̀−2

b2
T

�

∆

bT

�

2(∆O−α¯̀+1)
d+1

�

∆−∆′
�α¯̀−1

η
α¯̀
o

×
�

1+O(ωτth) +O
� 1
ωR

�

�

. (3.17)

We will not attempt to control subleading extensions to the Cardy formula (3.16), and there-
fore will not comment on the subexponential dependence on ∆. However, we attract the
reader’s attention to the non-analytic dependence on∆−∆′, coming from hydrodynamic fluc-
tuations. Corrections to the leading result are shown in the square brackets, and come from
less relevant terms in hydrodynamics and finite volume corrections:

ωτth ∼
∆−∆′

(∆/bT )
1

d+1

,
1
ωR
∼

1

(∆−∆′)(∆/bT )
1

d+1

, (3.18)

both of which are parametrically small in the regime (3.11).
If both J , J ′ ≥ 1, there may be more tensor structures allowed by conformal invariance

than needed – the claim of thermality is that as in (3.8) the leading OPE coefficients will not
depend on these extra indices.

3.2.2 Mesoscopic spin J , J ′

Let us now extend to heavy operators with ‘mesoscopic’ spin. More precisely, we want the
spins to be non-macroscopic (so that the state on the sphere remains homogeneous), and the
difference in spins to be mesoscopic, or

J , J ′ = o(Rd+1) , J − J ′ = kR , (3.19)

†In the notation of Ref. [67], the tensor structures in the sum are H ¯̀
OH V `−¯̀

O .

19

https://scipost.org
https://scipost.org/SciPostPhys.9.3.034


SciPost Phys. 9, 034 (2020)

in the limit R →∞. Let us first consider a light operator O with spin ` = 0. In Sec. 2 we
found that its thermal expectation value leads to (see (2.13a))

〈O〉β =
b0

β∆O
⇒ 〈OO〉(ω, k)'

�

b0∆O
β∆O

�2 2βd

bT

2d−1
d3 ηoβk4

�

ω2 − 1
d k2

�2
+
�2d−1

d ηoβωk2
�2 . (3.20)

Conformal invariance allows for many tensor structures for the three-point function

〈H, Jm|O|H ′, J ′m′〉= δmm′C
|m|
HJ HJ′O

, (3.21)

i.e. there is an OPE coefficient for every |m|= 0, 1, . . . , min(J , J ′) (the OPE is diagonal in the
weights m, m′ because a scalar operator O inserted at the north pole preserves rotations about
the pole). However we see from (3.20) that these coefficients do not depend on m and are
given by

|C |m|
HJ H ′

J′O
|2 '

α

eS

ηo(J − J ′)4

�

(∆−∆′)2 − 1
d (J − J ′)2

�2
+ ad η2

o

�

bT
∆

�
2

d+1 (∆−∆′)2 (J − J ′)4
, (3.22)

with ad =
�

2(d−1)
d

�2 � dSd
d+1

�
2

d+1 and where the subexponential dependence on ∆ (which is de-

generate with logarithmic corrections to S(∆)) was packaged in α∝ (b0∆O)2

b2
T

�

∆
bT

�2∆O/(d+1)
.

These OPE coefficients feature a ‘resonance’ at the sound mode ∆−∆′ = ± 1p
d
(J − J ′). The

resonance is sharp for heavy operators, with a width ηo
(∆/bT )1/(d+1) � 1 controlled by the shear

viscosity to entropy ratio ηo ≡ η/s. The case J = J ′ is somewhat special: for this case only
the contribution (3.22) vanishes, and the OPE is given by a subleading hydrodynamic tail

|C |m|HH ′O|
2 ∼ αe−S

�

∆−∆′
�

d
2−1

similar to (3.17), see appendix A.3.
We are now ready to turn to the general case of the heavy-heavy-light OPE coefficient of

three spinning operators. The hydrodynamic prediction was given in Eq. (2.15). To match
with OPE coefficients we will need the precise index structure, which can be conveniently
packaged by using the index-free notation

〈O(¯̀,`)O(¯̀,`)〉 ≡ z i1 · · · z i¯̀〈Oi1···i¯̀0···0O j1··· j¯̀0···0〉z′ j1 · · · z′ j¯̀ , (3.23)

with z2 = z′2 = 0. In this notation, the full index structure of (2.15) is given in appendix A
(see Eq. (A.9)). For a CFT (A.9) becomes

〈O(¯̀,`)O(¯̀,`)〉(ω, k)

βd−2∆O+1
=
(b¯̀−1 + b¯̀

k2

ω
p

d
)2

bT

ηoω
2(k · z)¯̀(k · z′)¯̀

�

ω2 − 1
d k2

�2
+
�

2(d−1)
d

�2
η2

oω
2k4

+
(b¯̀−1)

2

bT

�

z · z′ −
(k · z)(k · z′)

k2

�

ηok2(k · z)¯̀−1(k · z′)¯̀−1

ω2 +η2
ok4

+
(b¯̀−2)

2

b2
T

(z · z′)¯̀

ω

�

ω

ηo

�α¯̀

+ · · · ,

(3.24)

where we absorbed numerical factors in the coefficients bi , and ω and k are measured in
units of temperature to simplify the expression. The hydrodynamic result (3.24) contains a
structure for each ¯̀= 0, 1, . . . , `. Moreover, the index contractions in (3.24) take the form

(k · z)r(k · z′)r(z · z′)¯̀−r , (3.25)
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`

J

J ′

Figure 6: CFT tensor structures for the three point function 〈H, J |O`|H ′, J ′〉 with
` = 2, adapted from [67], Fig. 2. The OPEs obtained from hydrodynamics only
depend on the 1

2(`+1)(`+2) ‘contractions’ involving the light operator (solid lines),
and not on the contractions between the heavy operators that create the thermal
state (dashed lines).

with r = 0, 1, . . . , ¯̀. The leading hydrodynamic result (3.24) only contains these structures
for r = ¯̀, ¯̀ − 1 and 0; coefficients of the structures for other values of r will be controlled
by subleading hydrodynamic tails (in d = 2 these additional tails are only log suppressed
compared to the leading ones, see Sec. 2.2). One therefore obtains

∑`
¯̀=0(

¯̀+1) = 1
2(`+1)(`+2)

structures. When J , J ′ ≥ `, Ref. [67] showed that the CFT three-point 〈H|O|H ′〉 function
contains more structures: there are 1

2 (`+ 1) (`+ 2)
�

min(J , J ′) + 1− `
3

�

structures, which in
their notation take the form

Ha
OH Ha′

OH ′H
b
HH ′V

`−a−a′
O V J−a−b

H V J ′−a′−b
H ′ , (3.26)

where a, a′, b run over all integers such that the powers above are positive. The hydrody-
namic OPE coefficients (3.24) only depend on the contractions between the light operator
and the heavy ones, hence on a, a′ but not on b (see Fig. 6). Since a, a′ = 0, 1, . . . , ` satisfy
a+ a′ ≤ ` this produces indeed 1

2(`+1)(`+2) structures. We will not explicitly write the map
(a, a′)↔ (¯̀, r) between the bases (3.25) and (3.26), and instead label OPE coefficients with
¯̀, r and b as C (

¯̀, r, b)
HJ H ′

J′O`
. From (3.24) one then finds

C (
¯̀, 0, b)

HJ H ′
J′O`
= Eq. (3.17) ,

C (
¯̀, ¯̀−1, b)

HJ H ′
J′O`

'
α

eS

(b¯̀−1)
2

bT
ηo(J − J ′)2¯̀

(∆−∆′)2 + ãd η2
o

�

bT
∆

�
2

d+1 (J − J ′)4
, (3.27)

C (
¯̀, ¯̀, b)

HJ H ′
J′O`
'
α

eS

1
bT

�

b¯̀−1 + b¯̀

Ç

ãd
d

�

bT
∆

�
1

d+1 (J−J ′)2

(∆−∆′)

�2

ηo(∆−∆′)2(J − J ′)2¯̀

�

(∆−∆′)2 − 1
d (J − J ′)2

�2
+ ad η2

o

�

bT
∆

�
2

d+1 (∆−∆′)2 (J − J ′)4
− C (

¯̀, ¯̀−1, b)
HJ H ′

J′O`
,
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withα∝
�

∆
bT

�

2(∆O−`+1)
d+1 and with the numerical factors ad =

�

2(d−1)
d

�2 � dSd
d+1

�
2

d+1 , ãd =
�

dSd
d+1

�
2

d+1 .
Subleading corrections to these results are similar to those in Eq. (3.17).

3.3 Macroscopic spin

Let us now briefly comment on heavy operators with macroscopic spin

J ∼∆∼ Rd+1 . (3.28)

Macroscopic spin has been treated in an EFT approach for large charge in CFTs with a U(1)
symmetry [9, 22]. It was found there that in the regime (3.28), the superfluid state forms a
vortex lattice, such that the coarse-grained superfluid velocity is equal to that of a rotating
body with angular momentum J . For a normal fluid, one expects a similar stationary solution
to the Navier-Stokes equations†. Let us work in d = 2 spatial dimensions for simplicity, and
search for a velocity profile uµ ≡ (u0, uθ , uφ) =

�

(1+ v2
φ
)1/2, 0, vφ

�

with an azimuthal velocity
that only depends on the polar angle vφ = vφ(θ ). Now a typical state with angular momentum
on the sphere will equilibrate (preserving its angular momentum) to an equilibrium velocity
profile vφ(θ ) that does not dissipate; in particular it must be annihilated by the shear viscosity
term in (2.4) – this leads to a differential equation which can be solved for vφ(θ ). Energy
eigenstates created by heavy operators are expected to look thermal and should have this
velocity profile. The ideal stress tensor can then be obtained by imposing conservation

Tµν ' so(θ )
�

uµ(θ )uν(θ ) +
gµν

d + 1

�

, ∇µTµν = 0 , (3.29)

where gµν is the metric on the sphere. This equation can be solved for so(θ ). Finally, computing
the total angular momentum of this flow one finds that it is related to the velocity at the equator
by

vmax = vφ(π/2)∼
J
∆

. (3.30)

OPE coefficients between heavy operators of macroscopic spin J and light operators can be
obtained as in the previous sections by now expanding the constitutive relations around the
velocity profile uµ(θ ). This hydrodynamic picture is expected to break down near the unitarity
bound J ≤ ∆ − d + 1 – in particular at low twist ∆ − J ∼ 1 the spectrum is sparse and
populated by double- and higher-twist primaries [1,2], see Fig. 2. Increasing twist to go away
from the edges of the spectrum will increase the density of state, eventually leading to a finite
entropy density and temperature. It is tempting to view the thermal state with macroscopic
spin (3.28) as a ‘gas of multi-twist states’, analogously to how heating up a superfluid leads to a
normal fluid component carried by a gas of phonons (this two-fluid picture, and the emergence
of dissipative hydrodynamics from a conformal superfluid is discussed in Sec. 4.2.1). The
operator phase diagram, including spin, is discussed in more depth in Sec. 4.4 for theories
with an additional U(1) symmetry. We leave the study of OPE coefficients for heavy operators
with macroscopic spin using hydrodynamics in a rotating background for future work.

4 Global symmetries

It is straightforward to extend the results above to QFTs and CFTs with an internal symmetry
group G; this section deals with the simplest example G = U(1). The additional Ward identity

†We thank João Penedones for suggesting this.
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∂µJµ = 0 protects a new slow excitation – charge density J0 – whose fluctuations will give
additional contributions to late time correlators.

A background chemical potential µ can be introduced for the internal symmetry. In sections
4.1 and 4.1.1 we briefly review the hydrodynamic treatment with µ = 0 and µ 6= 0 (a more
complete exposition can be found in Ref. [24]) and derive the universal late time behavior of
thermal correlators for QFTs with a global U(1) symmetry.

The internal symmetry can be spontaneously broken, in which case the theory is described
by dissipative superfluid hydrodynamics†. A new feature in this phase is that the late time cor-
relators of operators charged under the U(1) symmetry are also controlled by hydrodynamics,
because of the additional hydrodynamic field φ which non-linearly realizes the U(1) symme-
try. In section 4.2, the hydrodynamic treatment of Refs. [71, 72] is reviewed, and late time
correlators of light operators derived. In the simplest situations we expect the dissipative su-
perfluids to be smoothly connected to T = 0 superfluids on the edge of the spectrum in Fig. 2.
This will allow us to connect to recent work on the large charge limit of CFTs [3,6–9,22]. The
large charge limit can be thought of as a situation where a semiclassical description survives
as T → 0 (with fixed µ 6= 0), thanks to spontaneous breaking of the U(1) symmetry.

The implications of long-time tails on the CFT data of CFTs with a U(1) symmetry are
studied in section 4.3. Various regions in the (∆,Q) plane will be described by the hydrody-
namic theories of sections 4.1, 4.1.1 and 4.2, following Fig. 2. Finally, the presence of distinct
phases in the large ∆ spectrum naturally brings us to phase transitions. In section 4.4, we
study signatures of thermal phase transitions on the CFT data.

4.1 Hydrodynamics of a charged fluid

The conservation laws ∂µTµν = 0, ∂µJµ = 0 must be supplemented with constitutive relations
for the currents. In the Landau frame and up to first order in derivatives, the constitutive
relation for the stress-tensor is still given by Eq. (2.4) and that of the U(1) current is [24]

Jµ = ρuµ −κ∆µν∂ν(βµ) +χT∆
µν∂νβ +O(∂ 2) . (4.1)

Three new parameters were introduced: ρ, κ and χT.‡ These, along with those appearing in
(2.4), are functions of both µ and β . Consistency with thermodynamics fixes ρ in terms of the
equation of state ρ = ∂ P/∂ µ, and imposes κ≥ 0 and χT = 0.§

Hydrodynamic correlators can again be obtained by expanding around equilibrium (2.5)
with µ(x) = µ+ δµ(x). If we first take the background chemical potential to vanish µ = 0,
then the background charge density ρ vanishes by CPT and we see directly from (4.1) that
there is no mixing at the linear level between the new hydrodynamic degree of freedom δµ and
the ones considered previously δuµ, δβ , at least to this order in derivatives. The stress-tensor
correlator (2.6) is therefore unchanged, and the current correlator is given by

GR
J0J0
(ω, k) =

χDck2

−iω+ Dck2
+ · · · , (4.2)

where χ ≡ ∂ ρ/∂ µ is the charge susceptibility, and Dc ≡ κβ/χ the charge diffusion constant.
The late time thermal correlation functions of light operators O` of spin ` can be found by

matching them to composite hydrodynamic operators as in Section 2. The new hydrodynamic

†Dissipative superfluid hydrodynamics also describes 2+1d theories at finite temperatures 0< T < TBKT, where
strictly there is no spontaneous symmetry breaking; the protection of the long-lived superfluid phase can however
be understood without reference to symmetry breaking [70].

‡Another commonly used notation for the conductivity is σQ ≡ κβ .
§Note that χT is only forbidden because Jµ is conserved. Generic non-conserved spin-1 operators will have

terms like χT in their constitutive relation. In holographic models, along the lines of Ref. [44], these could come
from coupling a massive gauge field in the bulk to the Weyl tensor, e.g. through Aµ∂µC2

Weyl.
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degree of freedom µ can now also be used. Comparing (4.2) with (2.6) shows that it scales
like the other hydrodynamic fluctuations

δµ∼ δβ ∼ δuµ ∼ kd/2 . (4.3)

It is easy to see that the new hydrodynamic field δµ does not allow the construction of more
relevant operators – the results from Section 2 are therefore largely unchanged – except for
odd spin ` operators with ¯̀= 0 or 1 spatial indices. The reason is that for these cases we found
in Sec. 2 that the dominant hydrodynamic contributions to the correlators (2.13) involve the
term λ0 in (2.10), which was forbidden by CPT for odd-spin operators (see appendix A.2.1).
However, thanks to the conserved U(1) charge this term is now allowed for odd spin ` as well

Oµ1···µ` = λ0(µ,β)uµ1
· · ·uµ` +O(∂ ) , (4.4)

where λ0(µ,β) is an odd function of µ by CPT. Expanding λ0 in δµ, one finds that components
with ¯̀= 0 spatial indices can overlap linearly with the density, so that (4.2) implies

〈O0···0O0···0〉(ω, k) =
2(∂ λ0/∂ µ)2

χβ

Dck
2

ω2 + (Dck2)2
+ · · · , (4.5)

and components with ¯̀= 1 spatial indices are controlled by a hydrodynamic loop at k = 0

〈Oi0···0O j0···0〉(t, k = 0) = δi j
(∂ λ0/∂ µ)2

χsβ
d − 1

d
1

[4π(D+ Dc)t]d/2
+ · · · . (4.6)

A special case is the correlator of the current operator itself Oµ = jµ. Then λ0 = ρ so
∂ λ0/∂ µ = χ and (4.6) reproduces known results [28, 29]. This correlator with Oµ = jµ
is the one that led to the original discovery of long-time tails [33].

4.1.1 Turning on a background µ 6= 0

A background chemical potential will allow the longitudinal hydrodynamic modes j0, T00 and
∂i T0i to mix (the transverse sector is unaffected and still given by the second term in (2.6)).
The longitudinal sector will still contain a diffusive mode and a sound mode, but these will
be carried by linear combinations of j0 and T00, see e.g. [24]. The correlators (2.15) of neu-
tral operators therefore do not change qualitatively: the functional dependence on ω, k is
unchanged, but the thermodynamic and transport factors are more complicated.

One exception is again for operators of odd spin `. For example components with ¯̀= 1 spa-
tial indices can now overlap linearly with hydrodynamic modes, even at k = 0. Indeed, λ(µ,β)
in (4.4) is now expanded around µ 6= 0 so that the constitutive relation Oi0···0 = λ0ui+ · · · has
the same form as (2.12b), and the two-point function 〈Oi0···0O j0···0〉(ω, k) is given by (2.13b).
More generally, in charged hydrodynamics at finite density, the results of Sec. 2 hold for both
even and odd spin `, because of the absence of any CPT constraint.

4.2 Dissipative superfluids

The hydrodynamic theory of relativistic, dissipative superfluids was thoroughly studied in
Refs. [71, 72]. Compared to normal charged fluids, superfluids contain an additional slow
hydrodynamic degree of freedom carried by the Goldstone field φ that non-linearly realizes
the internal U(1) symmetry. Here we will focus on conformal superfluids, and will not give
an expectation value to the superfluid velocity, i.e. 〈∂iφ〉 = 0. This velocity can be thought
of as the charge density associated with an emergent higher-form symmetry [70] – since the
symmetry is emergent, heavy CFT operators creating superfluid states are not labeled by their
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representations under it. Working to linear order in the superfluid velocity, there is only one
new thermodynamic parameter compared to (4.1) – the superfluid stiffness ρs – and one new
dissipative parameter ζ3 [71] (see also [72]) :

Tµν = εuµuν + P∆µν + 2ρsµsn(µuν) +ρsµsnµnν −ησµν + · · · , (4.7a)

Jµ = ρs∂µφ +ρnuµ −κ∆µν∂ ν
µ

T
+ · · · , (4.7b)

uµ∂µφ = −µ+ ζ3∂µ(ρsn
µ) + · · · , (4.7c)

where nµ ≡ ∆µν∂ νφ/µs and µs ≡ −uµ∂µφ. The projection ∆µν ≡ ηµν + uµuν, and σµν is
the shear viscosity tensor appearing in (2.4). The thermodynamic parameters ε, P, ρs, ρn and
dissipative parameters η, κ, ζ3 are inputs in the hydrodynamic treatment – however when the
dissipative superfluid is obtained by heating up a T = 0 conformal superfluid (as in Fig. 2),
these can all be expressed in terms of a single EFT parameter at low temperature, see section
4.2.1.

The fluctuations ∂µδφ, withδφ = φ+µt, have the same scaling as the other hydrodynamic
variables (4.3). This new degree of freedom lifts the diffusive mode (4.2) into a second sound
mode (with sound attenuation controlled by κ and ζ3). The correlation function for ∂iδφ is
qualitatively similar to the longitudinal part of (2.6), and correlators of neutral operators will
be controlled by similar hydrodynamic tails as in the previous sections.

One new feature is that operators with finite charge q ∈ Z under the U(1) symmetry can
now be matched in the IR using the Goldstone phase

Oq
µ1···µ`

∼ ∂µ1
· · ·∂µ`e

iqφ + eiqφuµ1
∂µ2
· · ·∂µ`−1

uµ` + · · · , (4.8)

where as in Fig. 1 the first term is the most relevant operator, and the second is the most
relevant operators when k = 0. There are several operators that compete with the ones above,
but all lead to similar results. The correlators of charged operators Oq can now be obtained
as those of neutral operators O in Sec. 2.1, by expanding the hydrodynamic fields. Expanding
φ = δφ − µt shows that real time correlators contain an extra factor of e−iqµt , so that in
frequency space one finds

〈Oq†
(¯̀,`)

Oq
(¯̀,`)
〉(ω, k)∼ 〈O(¯̀,`)O(¯̀,`)〉(ω− qµ, k) , (4.9)

where the right-hand side simply refers to the general result (2.15) for neutral operators, eval-
uated at frequency ω− qµ. One may worry that the hydrodynamic features in this correlator
appear at frequencies above the hydrodynamic cutoffω∼ qµ� 1/τth – however this is simply
because the operator carries a phase e−iqµt which translates hydrodynamic features usually at
ω∼ 0 to ω∼ qµ in the correlator of operators of charge q. We will see in the CFT application
in Sec. 4.3 that ω− qµ measures the difference in dimensions ∆−∆′ of the heavy operators
(as did ω for neutral operators, see (3.9)).

Of course, superfluids at finite temperature also have well known static properties which
control equal time correlators. For example terms like the first term in (4.8) will lead to

〈Oq†
(¯̀,`)

Oq
(¯̀,`)
〉(x , t = 0)∼ e−

q2

2 〈φ(x)φ〉∂ 2¯̀
i 〈φ(x)φ〉 ∼

1

x2¯̀+d−2
for d > 2 . (4.10)

For d = 2, where the equal-time phase correlator 〈φ(x)φ〉 = 1
2πρs

log |x | (where ρs is the
stiffness in (4.7)) one has instead

〈Oq†
(¯̀,`)

Oq
(¯̀,`)
〉(x , t = 0)∼

1

x2¯̀+ q2
4πρs

. (4.11)

These also provide EFT constraints on the CFT data involving heavy charged operators that
create a superfluid state.
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4.2.1 Dissipative superfluids from the EFT

It is natural to expect that if a CFT exhibits a superfluid phase, this phase will be connected
to a T = 0 superfluid, as in Fig. 2. At T = 0, a superfluid EFT describes the physics up to a
cutoff, which in the case of a CFT must be proportional to the chemical potential µ [6, 8, 73,
74]. Dissipative hydrodynamics can be seen to emerge from the EFT at finite temperatures
0 < T � µ; in other words, all the thermodynamic parameters and dissipative parameters in
the previous section can be computed in terms of the EFT parameters. Let us illustrate this to
leading order in gradients, where the EFT is simply [74]

S =
c1

d(d + 1)

∫

dd+1 x |∂ φ|d+1 + · · · , (4.12)

with |∂ φ| ≡
Æ

−∂µφ∂ µφ. The dimensionless constant c1 is non-universal and depends on the
underlying CFT. The U(1) current is

Jµ =
c1

d
|∂ φ|d−1∂µφ + · · · . (4.13)

Expanding around the saddle φ = µt +π, one finds a zero temperature superfluid density

ρs = 〈J0〉β→∞ =
c1

d
µd . (4.14)

Thermodynamics δε= µδρ then fixes the zero temperature energy density

ε≡ 〈T00〉β→∞ =
c1

d + 1
µd+1 , (4.15)

as can be checked by computing the stress tensor directly from (4.12). The pressure for a CFT
is given by P = ε/d. From the CFT perspective, c1 can be defined by Eq. (4.14) or (4.15) and
can be viewed as CFT data on a similar footing as the thermal expectation value of the stress
tensor, bT in (3.5).

The action (4.12) can be expanded around the saddle φ = µt +π

S = S2 + Sint , S2 =

∫

dd+1 x
1
2

�

π̇2
c −

1
d
(∇πc)

2
�

, (4.16a)

Sint ∼
∫

dd+1 x
(∂ πc)3p
ε
+
(∂ πc)4

ε
+ · · · . (4.16b)

with πc ≡
p

c1µd−1π. Only the schematic form of the interactions Sint will be needed – ∂ πc
symbolizes either time or space derivatives and numerical factors have been dropped. The
strong coupling scale of the EFT is given by the energy density Λsc ∼ ε1/(d+1) ∼ c1/(d+1)

1 µ.
Let us start with the thermodynamics, which to leading order can be studied from the

free part Euclidean version of the action (4.16a). The simplest finite temperature quantity to
compute is the entropy density, which can be obtained from the free energy

f = −
1
βV

log Z ' −
1
βV

log

∫

Dφ e−S2,E

=
1
β

∫

dd k
(2π)d

log
�

1− e−csβk
�

=
1

cd
s β

d+1

Γ ( d+1
2 )ζ(d + 1)

π(d+1)/2
,

(4.17)

with cs = 1/
p

d, from which we can obtain the dimensionless entropy density

ssflu
o ≡ βds = −βd+2∂β f '

d + 1
cd
s

Γ ( d+1
2 )ζ(d + 1)

π(d+1)/2
. (4.18)

26

https://scipost.org
https://scipost.org/SciPostPhys.9.3.034


SciPost Phys. 9, 034 (2020)

Terms that are higher order in gradients or field in the action (4.12) and (4.16) lead to cor-
rections to the expressions above that are suppressed by powers of T/µ. The normal density
is slightly more subtle: it comes from taking the thermal expectation value of nonlinear terms
in the current (4.13), and showing the disalignment between the current and the expectation
value of ∂µφ [70]. One finds

ρn =
s
βµ

1− c2
s

c2
s
+ · · · , (4.19)

with s given by (4.18). The non-relativistic limit cs� 1 of this expression is well known [75].
A similar expression has appeared in a holographic context recently [76] – we see here that
it is a universal prediction of the EFT. For a CFT, c2

s = 1/d. Furthermore, the emergence of
hydrodynamics at finite temperature leads to an additional sound mode (second sound) – since
the EFT is to leading order a free scalar and hence scale invariant at low energies, the speed of
second sound is itself related to that of first sound as c2

s,2 = c2
s /d at low temperatures T � µ

(see e.g. [75,77]).
Finally, the dissipative parameters η, κ, ζ3 that appeared in the previous section can also

be computed from the EFT (4.16) by treating the weakly coupled phonons with kinetic (Boltz-
mann) theory. This was done for non-conformal superfluids (which have two additional vis-
cosities ζ1, ζ2) in the non-relativistic limit in Ref. [75]. The calculation is quite lengthy so we
only sketch it here, focusing on the shear viscosity η for illustration. The phonon differential
cross section can be computed at tree level from the cubic and quartic terms in (4.16) (see
e.g. [78]), the diagrams in Fig. 7 lead to

dσ
dΩ
∼

pd+3

ε2
, (4.20)

where ε is the energy density (4.15) and p symbolizes dependence on the individual phonon
momenta pi , i = 1, 2,3, 4. The dependence on the individual momenta can be important, in
particular the total cross section σ diverges because of small angle scattering [75, 78]. This
divergence is regulated by more irrelevant terms in the action (4.12), so that the total cross-
section is less suppressed by the cutoff ε than Eq. (4.20) suggests [75]. However it is large
angle scattering that controls the shear viscosity [13], so that the naive expression (4.20) is
sufficient for our parametric estimate. One can now estimate the thermalization time from the
thermally averaged cross-section

τth ∼
1
〈sσv〉

∼ β(εβd+1)2 . (4.21)

The thermalization time is large τth� β because the phonons are weakly coupled. The shear
viscosity can then be estimated as

η∼
sτth

β
∼ ε2βd+2 ∼ c2

1µ
2d+2βd+2 . (4.22)

The viscosity diverges rapidly as T → 0 because of the long thermalization time (4.21) of the
superfluid.

It is interesting to contrast these results to holographic superfluids [79,80]. Because these
theories have a large O(N2) number of degrees of freedom, the superfluid sector only gives
small O(1) corrections to thermodynamic quantities such as the entropy density s. However,
transport is more sensitive to the presence of the weakly coupled superfluid sector. The holo-
graphic value of the low temperature shear viscosity

η=
s

4π
∼ N2T d (4.23)
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Figure 7: Diagrams in the superfluid EFT contributing to the shear viscosity η and
other transport parameters κ, ζ3 at leading order in T/µ.

should receive a subleading in N2 phonon contribution (4.22), which dominates for tempera-
tures

T ® µ
� c1

N

�1/(d+1)
. (4.24)

A similar conclusion holds for more general hyperscaling-violating Lifschitz geometries where
η= s

4π ∼ N2µd(T/µ)
d−θ

z [76,81], with a different exponent in (4.24). It would be interesting
to understand if this non-commutativity of the T → 0 and N →∞ limits signals a more im-
portant breakdown of low temperature finite density holographic solutions (such as extremal
black holes) due to quantum effects [82].

4.3 Implications for heavy CFT operators with macroscopic charge

The ETH Ansatz (3.1) is slightly modified for systems with additional symmetries. For the
case of an internal U(1) symmetry with generator Q̂, the extension can be simply obtained by
using the Hamiltonian Ĥ → Ĥ − µQ̂ without the need of using the grand canonical ensemble
explicitly. One then obtains, for a few-body operator Oq of U(1) charge q,

〈H ′,Q+ q|Oq|H,Q〉= 〈Oq〉δ0
qδHH ′ +Ω(p)

−1/2RO
HH ′

Ç

〈O†
qOq〉(E − E′ −µq) . (4.25)

Both the one-point and two-point functions are evaluated at finite inverse temperature β and
chemical potential µ related to the charge and energy density of |H,Q〉 by the equation of
state. For neutral light operators q = 0 the results of section 3 are largely unchanged. One
exception is for light operators of spin ` = 1, see Eq. (4.6) and discussion in Sec. 4.1.1; the
resulting OPE predictions can be straightforwardly obtained following the method in Sec. 3.

In a superfluid phase, we found in Eq. (4.9) that the correlators of light charged operators
Oq are also controlled by hydrodynamics. Therefore, when the state created by the heavy
operator HQ,J is a finite temperature superfluid we can use (4.25) to obtain hydrodynamic
predictions for OPE coefficients of light charged operators. We find that the results in Sec. 3 for
neutral operators (q = 0) are essentially unchanged, but now also hold for charged operators
(with the obvious constraint of charge conservation). For example (3.17) becomes

|C ¯̀

HQ,J H ′†
Q+q,J′Oq,`

|2 ' e−S
b2

¯̀−2

b2
T

�

∆

bT

�

2(∆O−α¯̀+1)
d+1

�

∆−∆′
�α¯̀−1

η̃
α¯̀
o

, (4.26)

the only difference with (3.17) being that this also holds for q 6= 0 and the relevant transport
parameter η̃o is not simply the shear viscosity but a combination of the superfluid dissipative
parameters η, κ and ζ3 from Sec. 4.2. The other results in Sec. 3 are similarly generalized.
For example, for a light charged scalar Oq a result similar to (3.22) holds: the OPE coefficient
features hydrodynamic poles, but there are now two sound modes (first and second superfluid
sound), with speed of sound that are no longer fixed to 1/

p
d by conformal invariance.
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Further increasing the charge Q of the heavy operator, one eventually reaches the edge of
the spectrum. If the operator at the edge of the spectrum still creates a state of finite charge
and energy density, its dimension must satisfy

∆min(Q)∝Q
d+1

d . (4.27)

A natural possibility is that this state is a superfluid [6]. The superfluid EFT then predicts both
the spectrum of low-lying operators, and OPE coefficients between these operators and light
CFT operators [3,8]. As one moves away from the edge ∆≥∆min(Q), the spectrum becomes
dense and the many phonon state eventually start to look thermal. Notice that here the ther-
malization time is large (4.21), because the original EFT is weakly coupled. The dimension of
operators near the edge can be written as

∆= (1+δ)∆min(Q) , (4.28)

where δ� 1 is related to the temperature by (this relation follows from Eq. (4.40) derived in
the following section)

δ ∼
ssflu
o

εβd+1
, (4.29)

with ssflu
o given by (4.18). This implies that the hydrodynamic window (3.11) is parametrically

smaller close to the edge of the spectrum

�

δ

ssflu
o

�−2�
∆δ

ssflu
o

�− 1
d+1

® ∆−∆′ ®
�

δ

ssflu
o

�2�
∆δ

ssflu
o

�
1

d+1

. (4.30)

4.4 Phase transitions in the spectrum

The equation of state of a CFT at finite µ and β is no longer fixed by scale invariance, but can
depend on the dimensionless reduced chemical potential

α≡ βµ . (4.31)

In the previous sections, we explored the hydrodynamic descriptions pertaining to two nat-
ural phases of CFTs at finite density – the superfluid phase that is expected for α ¦ 1 and
normal phase for α® 1 – and determined how hydrodynamics controls some of the CFT data.
These phases should be separated by a phase transition. In this section, we explore how the
non-trivial thermodynamic properties of the transition control the data of the underlying CFT,
and leave for future work a hydrodynamic treatment of the system near the phase transition
(this would require incorporating long-lived critical fluctuations, see e.g. Refs. [83, 84]). In
this sense, this section extends the work of Ref. [10], where thermodynamics was seen to
control some of the CFT data, to situations where the thermodynamic equation of state and
corresponding phase structure are non-trivial.

Expectation values of the currents now take the form

〈Jµ〉β ,µ =
ρo(α)
βd

δ0
µ , 〈Tµν〉β ,µ =

so(α)
βd+1

�

δ0
µδ

0
ν − trace

�

, (4.32)

where ρo and so are odd and even functions of α respectively (by CPT), and so(0) = bT . In a
CFT, the thermodynamic relations

δε= Tδs+µδρ ,
d + 1

d
ε= Ts+µρ , (4.33)
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reduce the equation of state to a single function of one variable, which we could take for
example to be so(α). However when studying the operator spectrum in a CFT, it is most
convenient to work in the microcanonical ensemble and to think instead of α (or µ) and β as
functions of the densities, say ε and ρ. In particular, it will be convenient to study a slice of
Fig. 2 at fixed ∆� 1, i.e. fixed energy density ε, and vary charge. Since ε is fixed, we can use
it to define a dimensionless charge density and temperature

n≡
ρ

ε
d

d+1

=
Q

(Sd∆d)
1

d+1

, β̄ ≡ βε1/(d+1) , (4.34)

where again Sd ≡ VolSd = 2π(d+1)/2

Γ( d+1
2 )

. The potentials α(n) and β̄(n) are dimensionless functions

of the dimensionless charge density n. The thermodynamic relations (4.33) imply that these
functions satisfy

n∂nα(n) =
d + 1

d
∂nβ̄(n) , (4.35)

so that only one function is independent, say β̄(n), and can be thought of as the equation of
state characterizing the thermodynamic properties of the CFT. Thermodynamic stability further
implies

∂nβ̄(n)≥ 0 , (4.36)

so that both α and β̄ are positive, monotonically increasing functions of n.
The asymptotic properties of the equation of state can be related to familiar parameters of

the CFT. For example, as n→ 0 one has

β̄(n) =
�

bT d
d + 1

�
1

d+1
�

1+
1
2

d
d + 1

n2

χo
+O(n4)

�

(as n→ 0) . (4.37)

The first term simply comes from (3.5), and the subleading term follows from (4.33) and
(4.35) and features the dimensionless charge susceptibility

χ ≡ lim
µ→0

〈J0〉β ,µ

µ
, χo ≡ χ/ε

d−1
d+1 . (4.38)

(χ can also be expressed as a thermal 2-point function of the current at zero chemical poten-
tial). The monotonicity of β̄ (4.36) for n� 1 is equivalent to χo ≥ 0.

The equation of state is also fixed in the opposite limit if we assume, following Ref. [6],
that the state at

n→ nmax =
Qmax

(∆dSd)
1

d+1

=
(d + 1)

d
d+1

d
c

1
d+1
1 (4.39)

is a zero-temperature superfluid†. Using again the thermodynamic identities (4.35), one finds
that the equation of state near the zero-temperature superfluid takes the form

β̄(n) =

�

d
d + 1

ssflu
o

1− n
nmax

�
1

d+1

+ · · · , (as n→ nmax) , (4.40)

where ssflu
o is given by (4.18). Note that the two asymptotic behaviors (4.37) and (4.40) of

β̄(n) are consistent with its monotonicity property (4.36). A sketch of the equation of state is
shown in Fig. 8.

†This equation can be viewed as a microcanonical CFT definition of the EFT parameter c1. Alternatively
Eqs. (4.14) or (4.15) are canonical definitions of c1.
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�

β̃c ± |nc − n|
1

dν−1

h
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o
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i
1
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Figure 8: Equation of state for a CFT with a global U(1) symmetry, assuming it
reaches a superfluid phase at zero temperature and finite chemical potential. The
equation of state (red) can be parametrized by the dependence of the dimensionless
inverse temperature β̄ = βε

1
d+1 on the dimensionless density n = ρ/ε

d
d+1 at fixed

energy density ε, the y axis is normalized as β̃ ≡
� d+1

d

�
1

d+1 β̄ for convenience. The
dashed blue curves show the behavior near n = 0 (Eq. (4.37)), n = nc and n = nmax
(Eq. (4.40)).

Now the superfluid phase is certainly not expected to persist at large temperatures βµ� 1
(or small charge at fixed energy n � 1)†; we therefore expect the symmetry to be restored
at a critical value n = nc , with nc = O(1) for a generic CFT. If this thermal phase transition
is continuous, we see that the spectra of (d + 1)-dimensional CFTs contain information about
criticality in d dimensions. Using scaling relations the critical point can be characterized by
a correlation length critical exponent ν and anomalous dimension η of the order parameter‡.
Holographic superfluids are an example of CFTs that can be tuned across a U(1)-restoring
thermal phase transition§. That the transition is in the mean-field universality class in this
case [79], with η= 0 and ν= 1/2, is likely an artefact of large N ; mean-field critical exponents
are not expected for generic CFTs.

Consider for example a (3+1)d CFT with a global U(1) symmetry, and assume following
Ref. [6] that the lightest operator of charge Q creates a superfluid state when n= nmax. When
n is decreased past nc , the symmetry is restored and we expect the transition to be in the 3d
Wilson-Fisher universality class, with ν ' 0.672 and η ' 0.038¶. These exponents control
correlators near or at the critical nc , which like the hydrodynamic long-time tails will lead to
predictions for some of the CFT data. For example the anomalous dimension η will control

†See however [85] for constructions in fractional dimensions of ordered finite temperature phases at zero
density.

‡When a d-dimensional Euclidean CFT describes the critical point, these are related to the dimensions of
the lightest neutral scalar ∆s = d − 1

ν and charged order parameter ∆ ~φ =
1+η

2 . Even then we purposely use
‘old-fashioned’ notation for critical exponents ν, η to avoid confusion with the underlying (d + 1)-dimensional
Lorentzian CFT.

§See Fig. 3 in [86] for a distribution of nc in a class of holographic superfluids.
¶See Ref. [87] for a recent discussion on the 8σ tension between the numerical and experimental values of

these exponents.
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the equal-time correlator of light, charged operators

〈Oq(0, x)O†
q〉βc
∼

1
xd−2+η

. (4.41)

The correlation length critical exponent can be obtained from the vanishing of the thermal
mass at the critical point. The thermal mass mth = mth(β ,µ) is defined in the normal (non-
superfluid) phase as the decay of spatial correlators of light operators at finite temperature
(see e.g. [18])

lim
x→∞

〈Oq(0, x)O†
q〉β ∼ e−mth|x | (4.42)

(in the superfluid side n > nc , these correlators decay polynomially, see (4.10)). As we ap-
proach the critical point from the normal phase n → nc , the thermal mass should vanish as

mth(n)∼ |β(n)− βc|ν . (4.43)

Because scaling relations connect several observables, Eqs. (4.41) and (4.43) are but one of
several ways to observe the 3d critical exponents ν and η in the (3+1)d CFT data. Transitions
are only sharp in strict thermodynamic limit ∆ =∞ – thermodynamic singularities are as
usual resolved at finite volume, or here finite ∆� 1.

The case of (2+1)d CFTs with a U(1) symmetry is particularly interesting. Let us consider
the (2+1)d U(1) Wilson-Fisher CFT to be concrete. Monte-Carlo simulations have shown a
∆min(Q) ∼ Q3/2 scaling of the lightest operator at fixed Q [88], implying that this operator
creates a state with both finite energy and charge density. Since the theory is fully bosonic,
this state is expected to be in a superfluid phase. As n is decreased past nc , the U(1) symmetry
is restored – since now d = 2 we expect the transition to be in the Berezinskii-Kosterlitz-
Thouless (BKT) universality class. In particular the thermal mass in the normal phase near the
transition behaves as

mth(n)∼ exp

�

−
1

p

βc − β(n)

�

, (4.44)

and the equation of state β(n) is very smooth, with an essential singularity at n= nc .
The phase diagram can be considerable enriched by considering operators with spin J = j∆,

with 0 ≤ j ≤ 1 (still in the ∆ →∞ limit)†. The corresponding states at zero temperature,
i.e. keeping the charge density as large as possible n = nmax(ε, j), were studied in d = 2 and
d = 3 in Refs. [9, 22], where it was found that the angular momentum of the state is carried
by different objects (on top of the superfluid background) depending on j:

0≤ j ®∆−
d

d+1 single phonon (4.45a)

∆−
d

d+1 ® j ®∆−
1

d+1 vortex-antivortex pair (4.45b)

∆−
1

d+1 ® j ® 1 vortex crystal (4.45c)

As j = J
∆ → 1, the superfluid EFT breaks down and the spectrum is instead governed by the

light-cone bootstrap. Departing from the manifold of maximal charge at fixed dimension and
spin, these ‘phases’ will be embedded in a larger phase diagram with finite temperature phases.
At large enough temperatures, the U(1) symmetry will be restored, and the vortex lattice will
melt. In Fig. 9, we show a tentative operator spectrum ‘phase diagram’ for heavy operators
∆� 1 of a CFTs with a global U(1) symmetry.

Similar phase diagrams have been observed in liquid helium [89], Bose-Einstein conden-
sates [90], thin film superconductors [91], and quantum Hall systems; in the last spin per

†For d > 2, the Lorentz group has more than one Cartan generator, but we will only consider one large spin
quantum number for simplicity, see [22] for a more general study.
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j

1

1/∆
1

d+1

1/∆
d

d+1

0
0 nc nmax

n

LC bootstrap

Normal fluid flowing

with velocity v ∼ j

(Sec. 3.3)

Normal fluid

(Sec. 2 and 4.1)
Superfluid

(Sec. 4.2)

Vortex lattice

single phonon

single vortex

Figure 9: Cut in the spectrum (Fig. 2) at fixed ∆ � 1, showing a possible ‘heavy
operator phase diagram’ for CFTs with a global U(1) symmetry, as a function of their
charge n ∼ Q/∆

d
d+1 and spin j ≡ J/∆. Although certain limiting regions are fairly

well understood, most regions, cross-overs and transitions are conjectural. For ex-
ample, a continuous superfluid to normal transition at j � 1 could also turn into a
first order transition at larger j, as is observed in holographic superfluids [80].

charge is mapped to the filling fraction ν = J/Q ∼ ∆
1

d+1 j/n (see e.g. [90, 92, 93]). Compar-
ison with these systems suggest a number of possible exotic features in the phase diagram in
Fig. 9. For example in (2+1)d, the spinning operators studied in [9] can lead to states with
opposite vorticity on each poles, and vanishing vorticity along the equator. Gapless edge states
are then expected to live along the equator. Since these are supported in (1+1)d, their hydro-
dynamic interactions are relevant and dissipation anomalous [25–27,51]. The CFT spectrum
may also probe the melting of the vortex lattice in Fig. 9. In (2+1)d this transition is infi-
nite order like BKT (4.44), but with different exponents [94]. Finally dynamical response and
transport near the equilibrium critical point is also singular [83]. We leave a more thorough
exploration of this phase diagram for future work.

5 Conclusion

We showed that hydrodynamics controls a large portion of the CFT data, namely OPE coeffi-
cients of any two heavy operators close enough in dimensions (see (1.5)) with light neutral
operators of any spin. Only light operators with internal quantum numbers can escape this
fate: for example fermions, or Z2-odd operators in the Ising model. In superfluid states we
found that even light operators that are charged under the U(1) have hydrodynamical OPE
coefficients. More generally, when the thermal state created by the heavy operator contains
long-lived excitations that nonlinearly realize a global symmetry, hydrodyanmics will control
the evolution of light operators charged under that symmetry.

Our results apply to thermalizing CFTs in d+1 dimensions with d ≥ 2. The infinite tower of

33

https://scipost.org
https://scipost.org/SciPostPhys.9.3.034


SciPost Phys. 9, 034 (2020)

Virasoro symmetries make 1+1d CFTs special. In the thermodynamic limit, thermal correlation
functions are trivial and there is no room for a hydrodynamic description. However they still
exhibit thermalization after a quench [95] (towards a generalized Gibbs ensemble for the
KdV charges [96–100]), non-trivial non-equilibrium behavior [101], and chaos [102–104]. It
would be interesting to see if out of equilibrium methods can be used to determine heavy-
heavy-light OPE coefficients, comparing against results obtained from other methods [105–
109], see in particular [110–112] for discussions on the off-diagonal part of ETH in this context.
Far from equilibrium techniques and turbulence may also be useful in higher dimensions to
determine OPE coefficients CHH ′L away from the hydrodynamic linear response regime regime
(1.5), e.g. to study ∆−∆′ ¦ (∆/bT )

1
d+1 .

There are a number of possible interesting extensions, which we leave for future work. We
list a few below:

• It should be possible to extend our results to CFTs with anomalies or non-trivial current
algebras by studying hydrodynamics with anomalous Ward identities [113–116].

• We have mostly focused on local operators. Certain nonlocal operators, for example in
gauge theory, have signatures in the corresponding hydrodynamic theories as higher-
form charges [117,118].

• Operators that are odd under parity (or inversion) can be considered as well, with hydro-
dynamic tails that depend non-trivially on dimensionality. One can also study heavy op-
erators in CFTs without inversion symmetry, using parity-violating hydrodynamics e.g. in
2+1d [119].

• Boost symmetry plays only a minor role in Sec. 2 – hydrodynamic tails control late time
correlators in non Lorentz-invariant QFTs as well. The CFT implications in Sec. 3 rely
on a state-operator map. We expect similar results to exist in non-relativistic CFTs (with
Schrödinger symmetry), since these also enjoy an operator-state correspondence [120].
The large charge bootstrap has already been extended in this direction [121,122].

The present work revealed hydrodynamic constraints on CFTs. It is our hope that the
favor may one day be returned, with techniques such as crossing and unitarity leading to
constraints on dynamics in thermalizing CFTs, e.g. in the form of bounds on transport and
thermalization [17,23,68,123,124].

It would also be interesting to explore if the novel features in late time thermal correla-
tors discussed here have implications for cosmology, where thermal physics enters both in the
thermal desription of de Sitter space and through the actual temperature of the universe.

We end with an amusing observation: since reflection positive Euclidean CFTs can be con-
tinued to a unitary Lorentzian CFTs [125,126], the equilibrium properties of certain statistical
mechanical systems at their critical point know about hydrodynamics in one lower dimension!†
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A Detailed hydrodynamic correlators

Correlators involving many indices can be treated by using an index free notation (see e.g. [67]).
Consider a spin-` operator Oµ1···µ`; its elements involving ¯̀ spatial components can be pack-
aged as

O(¯̀,`) ≡ z i1 · · · z i¯̀Oi1···i¯̀ 0···0
︸︷︷︸

`−¯̀

, (A.1)

where z lives in d-dimensional space (not d + 1-dimensional spacetime), and satisfies z2 = 0.
This projects on the spatially traceless part (spatial traces are related to components with more
time indices since ηµ1µ2Oµ1µ2···µ` = 0). We are interested in thermal 2-point functions

〈O(¯̀,`)O
′
(¯̀′,`′)
〉β(ω, k) (A.2)

in the hydrodynamic regime ωτth, k`th� 1.

A.1 Hydrodynamic loop computation

When k = 0, we found in Sec. 2 that correlators (A.2) are dominated by a hydrodynamic loop.
For ¯̀ even this comes from the following term in the constitutive relation (2.14)

O(¯̀,`) =
λ¯̀−2β

¯̀

s2
(z i T0i)∂

¯̀−2(z j T0 j) + · · · , (A.3)

where ∂ ≡ z i∂i . Note that it does not matter where the derivatives ∂ ¯̀−2 act, since the k = 0
operator O(¯̀,`) is integrated over space. The present normalization defines the dimensionless
coefficient λ¯̀−2. The contribution of this term to the two-point function between two such
operators can be found by factorizing the stress-tensors and using the hydrodynamic correlator
(2.7)

〈O(¯̀,`)O
′
(¯̀′,`′)
〉(t, k = 0) =

λ¯̀−2λ
′
¯̀′−2
β

¯̀+¯̀′−4

s2
×

2

∫

q
(q · z)¯̀−2(q · z′)¯̀

′−2
�

(q · z)(q · z′)
q2

cos(cs|q||t|)e−
1
2 Γsq

2|t|

+
�

z · z′ −
(q · z)(q · z′)

q2

�

e−Dq2|t|
�2

,

(A.4)

with
∫

q ≡
∫ ddq
(2π)q . Terms in the integrand that oscillate with q lead to exponentially decaying

terms ∼ e−|t|/τth (see e.g. [24]). Dropping these gives

〈O(¯̀,`)O
′
(¯̀′,`′)
〉(t, k = 0) =

λ¯̀−2λ
′
¯̀′−2
β

¯̀+¯̀′−4

s2
×

2

∫

q
(q · z)¯̀−2(q · z′)¯̀

′−2

�

1
2

�

(q · z)(q · z′)
q2

�2

e−Γsq
2|t| +

�

z · z′ −
(q · z)(q · z′)

q2

�2

e−2Dq2|t|
�2

.

(A.5)
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These integrals can be evaluated by noting that when z2 = z′2 = 0 (for d > 1)

∫

q

(q · z)n(q · z′)n
′

q2m
e−

1
2αq2

=
δnn′(z · z′)n

(2π)d/2α
d
2+n−m

n!Γ ( d
2 + n−m)

2mΓ ( d
2 + n)

≡
δnn′(z · z′)n

(2π)d/2α
d
2+n−m

In
m , (A.6)

where in the last step we defined In
m =

n!Γ ( d
2+n−m)

2mΓ ( d
2+n)

. One finds

〈O(¯̀,`)O
′
(¯̀′,`′)
〉(t, k = 0)' δ¯̀¯̀′(z · z′)

¯̀λ¯̀−2λ
′
¯̀−2
β2¯̀−4

(2π)d/2s2

�

I ¯̀
2

(2Γs|t|)
d
2+¯̀−2

+
2I ¯̀

2 − 4I ¯̀−1
1 + 2I ¯̀−2

0

(4D|t|)
d
2+¯̀−2

�

.

(A.7)
Comparison with (2.16) fixes the numerical coefficients there as

a1 =
I ¯̀
2

(2π)d/2
=

¯̀!/(2π)d/2
� d

2 + ¯̀− 1
� � d

2 + ¯̀− 2
� ,

a2

a1
=

2I ¯̀
2 − 4I ¯̀−1

1 + 2I ¯̀−2
0

I ¯̀
2

= 8( d
2 + ¯̀− 2)2 + 2 .

(A.8)
At finite wavevector k 6= 0, we found in Sec. 2 that tree-level hydrodynamic contributions

dominated the correlation function. Fourier transforming (A.7), collecting these contributions
the final answer reads

〈O(¯̀,`)O(¯̀,`)〉β(ω, k)'
2βd

so
(λ¯̀−1)

2
�

z · z′ −
(k · z)(k · z′)

k2

�

Dk2(βk · z)¯̀−1(βk · z′)¯̀−1

ω2 + (Dk2)2

+
2βd

so

�

λ¯̀−1 +
λ¯̀β c2

s k2

ω

�2 1
β2 Γsω

2(βk · z)¯̀(βk · z′)¯̀

(ω2 − c2
s k2)2 + (Γsωk2)2

+
βd

s2
o
(λ¯̀−2)

2 (z · z
′)¯̀

ω





�

ωβ2

2Γs

�
d
2+¯̀−2

+
a2

a1

�

ωβ2

4D

�
d
2+¯̀−2



 ,

(A.9)

where a numerical factor was absorbed in λ¯̀−2. Although we have focused on the leading
contributions to the correlator in the hydrodynamic regime ωτth, k`th � 1, not all possible
tensor structures have been ‘activated’. Other tensor structures as in Eq. (3.25) will be sensitive
to subleading hydrodynamic tails – these will not be computed here.

A.2 Results for all spin

The hydrodynamic correlators obtained in Sec. 2 hold for any even spin ` operator with an
even number ¯̀ of spatial components. In this section, we extend these results to odd ` and ¯̀.

A.2.1 Odd spin `

Operators with odd spin ` still can still decay into hydrodynamic excitations. They also satisfy
a constitutive relation of the form (2.10), except that the zero-derivative term λ0 is forbidden
by CPT†. Higher derivative terms in constitutive relations are also constrained by CPT (see
e.g. [37]), however these constraints allow for all the λi in (2.10) as long as O is not itself a
conserved current.

The result (2.15) (or more precisely (A.9)) therefore holds for ` odd and ¯̀ even as long
as λ0 is not involved, i.e. it holds for ¯̀ ≥ 4 even. Where λ0 is involved, it is replaced by a

†This can also be understood in Euclidean space: λ0 gives an equilibrium thermal one-point function which is
odd under π-rotation of the thermal cylinder for odd spin, and must hence vanish, see e.g. [18].
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subleading hydrodynamic tail. We detail here the cases ¯̀ = 0,1, 2 (¯̀ ≥ 3 odd will be treated
later).

When ¯̀ = 2, the first two lines in (A.9) are unchanged since they do not involve λ0. The
second line came from a hydrodynamic loop through λ0, the most relevant term when k = 0
in the constitutive relation is now

Oµ1···µ` ∼ λ
′
1uµ1
· · ·uµ`−1

∂µ`β ⇒ O(¯̀=2,`) ∼ T0i∂ j T00 , (A.10)

and scales as k(kd/2)2 = kd+1 (which is indeed less relevant than the forbidden λ0 term
∼ kd+¯̀−2 = kd). This leads to a long-time tail contribution to the correlator

(` odd) 〈O(2,`)O(2,`)〉(t, k = 0)∼
1

t
d
2+1

. (A.11)

Fourier transforming gives a result similar to the last line of (A.9), replacing the exponent
d
2 + ¯̀− 2→ d

2 + 1.
When ¯̀ = 0 or 1, the prediction for the correlator 〈O(¯̀,`)O(¯̀,`)〉 in Eq. (2.13) involves

λ0. This contribution will be replaced again by less relevant terms e.g. O(0,`) ∼ ∂ 2
i T00. The

resulting correlator will still take the form (2.13), but with additional ω or k suppression.

A.2.2 Odd number of spatial indices ¯̀

For components of spin-` operators with an odd number ¯̀ ≥ 3 of spatial indices, the term
λ¯̀−2 in (2.14) is a total derivative, and hence will no longer give the dominant contribution to
(2.15) when k→ 0, which will now come from subleading terms in the constitutive relation

O〈i1···i¯̀〉0···0 = λ¯̀∂i1 · · ·∂i¯̀δT00 +λ¯̀−1∂i1 · · ·∂i¯̀−1
T0i¯̀

+λ′¯̀−1
T0i1∂i2 · · ·∂i¯̀δT00

+λ¯̀−3T0i1 T0i2∂i3 · · ·∂i¯̀−1
T0i¯̀ +λ

′
¯̀−2

T0i1 T0i2∂i3 · · ·∂i¯̀δT00 + · · · ,

(A.12)

where the λ′ terms come from different distributions of derivatives in (2.10). The first line
gives tree-level contributions to 〈OO〉, the second line gives 1-loop contributions, and so on.
Since the loop contributions will only dominate terms in the first line when k → 0, we have
dropped total derivative terms such as λ¯̀−2. The two most relevant loop contributions come
from λ′¯̀−1

(1-loop) and λ¯̀−3 (2-loop). These terms scale as

λ′¯̀−1
: k

¯̀−1+d , λ¯̀−3 : k
¯̀−3+ 3d

2 , (A.13)

so that λ¯̀−3 dominates for spatial dimensions d ≤ 4 (and λ′¯̀−1
dominates in higher dimen-

sions). The leading correlator then behaves as

〈O(¯̀,`)O(¯̀,`)〉(t, k = 0)∼















(λ¯̀−3)
2

td+¯̀−3
when d ≤ 4 ,

(λ′¯̀−1
)2

t
d
2+¯̀−1

when d > 4 .

(A.14)

One final special case is when ¯̀ = ` = 3. Then as shown in A.2.1, λ¯̀−3 = λ0 is forbidden by
CPT, so that the top line is replaced by a subleading hydrodynamic tail.
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A.3 Subleading tails

In Sec.2, the leading hydrodynamic contribution to correlators 〈O(¯̀,`)O(¯̀,`)〉(ω, k) were found
by matching the operators O(¯̀,`) to composite hydrodynamic operators as in Fig. 1, and then
Gaussian factorizing the hydrodynamic fields. Gaussian factorization however only holds at
the lowest energies (or smallest ω, k) and irrelevant interactions give subleading corrections
to the correlators. These corrections can be captured systematically by using a dissipative
effective field theory for fluctuating hydrodynamics, see e.g. [25,31,36]. This was performed
to next to leading order in [42] for simple diffusion.

In this appendix, we will illustrate the structure of these subleading corrections with a
specific example. We will do so without using the full effective action, and therefore miss
certain subleading contributions to the correlator. However, important qualitative features of
the answer (such as the analytic structure) will be captured.

Consider the component of a spin-` operator with only time indices O(0,`) ≡ O0···0. Its
constitutive relation (2.10) can be expanded using (2.5)

O(0,`) = λ0(β) + · · ·

= λ0 − ∂βλ0
β2c2

s

s
δT00 +

1
2
(∂ 2
β λ0)

�

β2c2
s

s

�2

(δT00)
2 + · · · ,

(A.15)

where · · · denotes higher derivative terms that we will ignore. The two point function
〈O(¯̀,`)O(¯̀,`)〉 will receive a single tree-level contribution from the linear term 〈δT00δT00〉,
which is given in (2.13a). It will receive 1-loop corrections from 〈δT00δT00〉, 〈δT00δT2

00〉
and 〈δT2

00δT2
00〉. The first two come from interactions in the action and will not be captured

here – we will focus on the last. At leading order it can be factorized

〈δT2
00δT2

00〉(ω, k)' 2

∫

dd xd t eik·x−iωt
�

〈T00T00〉(x , t)
�2

. (A.16)

The hydrodynamic correlator appearing in the integrand can be obtained from (2.7)

〈T00T00〉(x , t)'
s

2β2c2

e−(x+c|t|)2/2Γs|t| + e−(x−c|t|)2/2Γs|t|

(2πΓs|t|)d/2
, (A.17)

so that performing the integral yields

〈δT2
00δT2

00〉(ω, k)'
s2/ (β cs)

4

2(4πΓs)d/2





�

−i(ω− csk) +
1
4Γsk

2
�

d−2
2

Γ (1− d
2 )

+

�

−i(ω+ csk) +
1
4Γsk

2
�

d−2
2

Γ (1− d
2 )



 .

(A.18)
The quantity in square brackets is formally divergent – the divergence can be treated in dimen-
sional regularization by expanding around integer d and throwing away the divergent piece
(this UV divergence can be absorbed in the bare transport parameters [42]). This gives

A
d−2

2

Γ (1− d
2 )
→
(−1)b

d
2 cπA

d−2
2

Γ ( d
2 )

·







1 for d even ,
1
π

log A for d even ,
(A.19)

with A= −i(ω± csk) +
1
4Γsk

2. Eq. (A.18) features a branch cut, with branch point at

ω= ±csk−
i
4
Γsk

2 , (A.20)
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which should be contrasted to the pole in the tree-level part of the correlator (2.13a), at
ω = ±csk −

i
2Γsk

2. This is the sound analog of the two-diffuson branch cut at ω = − i
2 Dk2

found in [42]. The analytic structure of hydrodynamic correlators is shown in Fig. 4. For
generic ω ∼ k, (A.18) is suppressed compared to the tree-level contribution (2.13a) – how-
ever it dominates as k→ 0 where one finds 〈O(0,`)O(0,`)〉(ω, k = 0)∼ (∂ 2

β
λ0)2ω

d
2−1.

Higher-loop corrections will lead to additional branch points at the threshold for produc-
tion of n diffusons ω = − i

n Dk2 or n sound modes ω = ±csk −
i

2nΓsk
2, but the discontinuities

across the cuts are increasingly suppressed at small ω and k. However, the Fourier transform
ω → t picks up these non-analyticities, and the leading behavior of G(t, k) is controlled by
multi-diffuson decay at late time, as shown in Sec. 2.3.
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[48] S. Borsányi, G. Endrődi, Z. Fodor, A. Jakovác, S. D. Katz, S. Krieg, C. Ratti and K. K.
Szabó, The QCD equation of state with dynamical quarks, J. High Energ. Phys. 11, 077
(2010), doi:10.1007/JHEP11(2010)077.

[49] P. Kovtun, G. D. Moore and P. Romatschke, Stickiness of sound: An absolute lower limit on
viscosity and the breakdown of second-order relativistic hydrodynamics, Phys. Rev. D 84,
025006 (2011), doi:10.1103/PhysRevD.84.025006.

[50] M. Blake, H. Lee and H. Liu, A quantum hydrodynamical description for scrambling and
many-body chaos, J. High Energ. Phys. 10, 127 (2018), doi:10.1007/JHEP10(2018)127.

[51] L. V. Delacretaz and P. Glorioso, Breakdown of diffusion on the edge, Phys. Rev. Lett. 124,
236802 (2020), doi:10.1103/PhysRevLett.124.236802.

[52] M. Krech, Casimir forces in binary liquid mixtures, Phys. Rev. E 56, 1642 (1997),
doi:10.1103/PhysRevE.56.1642.

[53] M. Isobe, Long-time tail of the velocity autocorrelation function in a two-
dimensional moderately dense hard-disk fluid, Phys. Rev. E 77, 021201 (2008),
doi:10.1103/PhysRevE.77.021201.

[54] A. Donev, J. B. Bell, A. de la Fuente and A. L. Garcia, Enhancement of diffusive transport by
non-equilibrium thermal fluctuations, J. Stat. Mech. P06014 (2011), doi:10.1088/1742-
5468/2011/06/p06014.

[55] S. Mukerjee, V. Oganesyan and D. Huse, Statistical theory of transport by strongly interact-
ing lattice fermions, Phys. Rev. B 73, 035113 (2006), doi:10.1103/PhysRevB.73.035113.

[56] T. Rakovszky, F. Pollmann and C. W. von Keyserlingk, Sub-ballistic growth
of Rényi entropies due to diffusion, Phys. Rev. Lett. 122, 250602 (2019),
doi:10.1103/PhysRevLett.122.250602.

[57] D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi and E. Altman, A universal operator growth
hypothesis, Phys. Rev. X 9, 041017 (2019), doi:10.1103/PhysRevX.9.041017.

[58] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford,
A. Streicher and M. Tezuka, Black holes and random matrices, J. High Energy Phys. 05,
118 (2017), doi:10.1007/JHEP05(2017)118.

[59] H. Gharibyan, M. Hanada, S. H. Shenker and M. Tezuka, Onset of random
matrix behavior in scrambling systems, J. High Energy Phys. 07, 124 (2018),
doi:10.1007/JHEP07(2018)124.

[60] S. Grozdanov, K. Schalm and V. Scopelliti, Kinetic theory for classical and quantum many-
body chaos, Phys. Rev. E 99, 012206 (2019), doi:10.1103/PhysRevE.99.012206.
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