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Abstract

Periodical equilibrium states of magnetization exist in chiral ferromagnetic films, if the
constant of antisymmetric exchange (Dzyaloshinskii–Moriya interaction) exceeds some
critical value. Here, we demonstrate that this critical value can be significantly modified
in curved film. The competition between symmetric and antisymmetric exchange inter-
actions in a curved film can lead to a new type of domain wall which is inclined with
respect to the cylinder axis. The wall structure is intermediate between Bloch and Néel
ones. The exact analytical solutions for phase boundary curves and the new domain wall
are obtained.
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1 Introduction

Magnetic nanostructure with arbitrary curvilinear shapes can acquire a multitude of ground-
state configurations [1–4] under the twisting influence of the Dzyaloshinskii–Moriya interac-
tion (DMI) and the effect of the curved surfaces/interfaces. Modulated states arise, if a nano-
magnet has typical lengths comparable to the twisting length [5–7] which is determined by
the material parameters and can be influenced by the curvature. The magnetic phase-diagram
of curvilinear ferromagnets becomes much richer as compared to a flat specimen. Among sim-
ple curvilinear shapes, hollow cylindrical tubes or wires are very promising for a broad range
of biomedical [8–11] and technological [12,13] applications, also see Review 14. Nanotubes
can also be assembled into interconnected networks [15] which makes them attractive for
advanced hardware concepts in neuromorphic computing [16]. It is important to note that
magnetic nanotubes can be produced experimentally with different techniques [17–22].

Magnetic nanotubes belong to the simplest magnetic systems with pattern-induced chi-
rality breaking [1, 23]: two energetically equivalent vortex domain walls (DWs) with oppo-
site chiralities possess different dynamical properties, leading to a suppression of the Walker
breakdown [24] and Cherenkov-like radiation of magnons for fast DWs [25, 26]. Addition-
ally, tubular geometry results in the asymmetric spin-wave dispersion relation in azimuthally
magnetized tubes [27,28], similarly to systems with intrinsic DMI [29,30]. In this context, an
interrelation between effects due to intrinsic DMI and curvature-induced chirality is expected.
An important question is, how the curvature modifies the critical DMI d0 [5, 7], which sep-
arates homogeneous and periodic magnetization structures. This is important for assessing
the stability of skyrmions [31] and their motion [32] along the tubes and other curvilinear
surfaces [33, 34]. Here, we present a detailed study of equilibrium states of the ferromag-
netic nanotubes with intrinsic DMI of different symmetries. We show that: (i) The curvature
modifies the critical DMI strength. (ii) New types of DWs appear in the periodic phase.

2 Model

We consider the tubular shell as a ribbon of thickness h and width w, close-coiled upon the rod
of radius R, see Fig. 1. The central line of the ribbon makes angle π/2−ψ with the cylinder
axis. The ribbon width is determined as w = 2πR sinψ, this results in a closed cylindrical
surface, i.e. without a bordering rim along the axis. The surface of the ribbon ς can be
parameterized in the following way: ς (x1, x2) = R cos (ρs/R) x̂ + R sin (ρs/R) ŷ +ρz ẑ, where
ρs = x1 cosψ− x2 sinψ and ρz = x1 sinψ+ x2 cosψ, x1 ∈ [0, L] and x2 ∈ [−w/2, w/2] are
coordinates within the ribbon surface, see Fig. 1. Such a nontrivial parametrization of the
cylinder surface is useful for description of DWs which may be arbitrarily oriented along the
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Figure 1: Schematic presentation of the geometry: (a),(b) The tubular shell is
presented as a ribbon [gray in (a) and colored surfaces in (b)] of thickness h and
width w which is tightly (without gaps) rolled up around the rod (yellow) of radius R;
(c) unrolled ribbon. Thick blue line ς (x1, 0) corresponds to the ribbon center, dashed
lines ς (x1,−w/2) and ς (x1, w/2) with w = 2πR sinψ correspond to the ribbon side
edges. Color scheme corresponds to the normal magnetization component.

tube axis, i.e. ψ defines the angle between the DW and ẑ axis. Parametrization ς(x1, x2)
induces the natural tangential basis eα = ∂ας with the corresponding Euclidean metric tensor
elements gαβ = eα · eβ = δαβ . Here, α,β = 1,2 and ∂α ≡ ∂xα . Note that in our particular case
eα are orthogonal vectors of unit length. This enables us to introduce the orthonormal basis
{e1, e2,n}, where n = e1 × e2 is a normal vector to the surface, see Fig. 1.

Assuming small thickness of the coiled film (h � R), we consider the magnetization as
a continuous function of two variables M = M(x1, x2), which obeys the periodic boundary
condition M(x1, w/2) = M(x1 + T,−w/2) with T = 2πR cosψ. Such constraint for M is a
requirement of continuity of the magnetization for the used parameterization of the cylinder
surface. The energy of the system is modelled by the functional

E = h

∫ ∫

�

AEX +K
�

1−m2
n

�

+ DED

�

dx1dx2, (1)

where three contributions are taken into account. The first term in (1) is the exchange energy
density with EX =

∑

i=x ,y,z (∂im)
2, where A is the exchange constant. Here m = M/Ms is

the unit magnetization vector with Ms the saturation magnetization. The second term is the
easy-normal anisotropy, where K> 0 and mn =m ·n is the normal magnetization component.
The competition between exchange and anisotropy results in the magnetic length `=

p

A/K,
which determines a length scale of the system. The last term in (1) represents DMI contribution
ED with D the DMI constant. We consider two types of DMI: (i) E B

D =m ·[∇×m] is applicable
for systems with T and O symmetries [30]. In the following this is called DMI of Bloch type,
since for planar films it results in DWs and skyrmions of Bloch type. (ii) E N

D = mn∇·m−m·∇mn
is valid for ultrathin films [35,36], bilayers [37] or materials belonging to Cnv crystal classes.
In the following we call this DMI of Néel type. Here and below the indices B and N correspond
to the Bloch and Néel DMI types, respectively.

In our model, we assume that the magnetostatic contribution is negligibly small as com-
pared with the anisotropy contribution, i.e. we consider systems with quality factor
Q = 2K/

�

µ0M2
s

�

� 1 [38]. Examples of chiral magnets which satisfies these condition
were recently studied in [32, 39]. Additionally, for thin stripes the magnetostatic contribu-
tion can be reduced to an effective easy-surface anisotropy [23, 40–43], which simply results
in a shift of the anisotropy constant K→ K− µ0M2

s /2. This approximation is widely used
for the description of equlibrium states on toroidal nanoshells [44], statics and dynamics of
skyrmions [32,45–47] and DWs [48] in curved nanoshells.
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Figure 2: Parameters of periodical state in tubular shells: (a) and (b) show the
angles φB

0, ψB, and period TB as functions of DMI for c ≈ 0.72. In (a), lines are
plotted by means of (3); in (b), solid line is TB/T0 = | cosψB|. Symbols correspond
to numerical simulations: “AN" – spin-lattice simulations with the effectively reduced
anisotropy constant [see Appendix C]; and “OOMMF Sim." – full-scale micromagnetic
simulations [see Appendix D].

Using a curvilinear reference frame we parametrize the magnetization in the following way
m = sinθ cosφ e1 + sinθ sinφ e2 + cosθ n. Expressions for EX, E B

D , and E N
D for a general case

of a local curvilinear basis were previously obtained in Refs. [49], [50], and [45], respectively
(also see Appendix A). In the following we look for the equilibrium magnetization states. To
this end we minimize energy (1) with respect to functions θ (x1, x2), φ(x1, x2) and constant
ψ.

3 DMI of Bloch type

First, we consider the case of Bloch DMI ED = E B
D . For such kind of DMI we find two solutions,

see Appendix B.1. The homogeneous (in the curvilinear reference frame) solution corresponds
to the hedgehog state (m = ±n), its total energy normalized by E0 = hwLK is

Eun
B = c

2, (2)

where c = `/R is the dimensionless curvature. Additionally an inhomogeneous solution is
found with

tanφB
0 = − tan2ψB =

d
c

, (3)

where d = D/
p
AK is DMI strength. It is important that angle φB

0, which defines orienta-
tion of the tangential magnetization component, is a coordinate independent constant. The
relation (3) can be interpreted as follows: for given d and c, there is a curvilinear frame of
reference determined by the angleψB in which the magnetization angleφB is constant. Angles
φB

0 and ψB as functions of DMI strength are plotted in Fig. 2(a). For both types of DMI angle
θ (x1), which defines the magnitude of the normal magnetization component of the inhomo-
geneous state, depends on only one coordinate x1, oriented along the stripe, see Fig. 1. It is
determined by the common “DW” equation

θξ1ξ1
−λ sinθ cosθ = 0 , (4)

with the solution

θ (ξ1) = am
�p

C ξ1,−
λ

C

�

, (5)

where am(•,•) is Jacobi’s amplitude [51, 52], C is an integration constant, and ξ1 = x1/` is
the dimensionless coordinate. The solution (5) describes the sequence of DWs oriented along
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Figure 3: Equilibrium states in tubular shells: (a) and (b) show phase diagrams
of equilibrium states in tubular shell with Bloch and Néel type of intrinsic DMI, re-
spectively. Symbols display the results from numerical simulations: circles – nor-
mal (hedgehog) magnetization distribution (m = ±n); other symbols – periodic
states (gray stars correspond to states with q ≥ 5). Blue solid lines in (a) and (b)
are analytical critical lines determined by Eqs. (8) and (12), respectively; dashed
lines in (a) and (b) mark transitions, where the periodic equilibrium states change
their number of DWs, as determined by numerical solution of energies equality
E

per
B (q) = E

per
B (q + 1) and E

per
N (q) = E

per
N (q + 1): q = 1 corresponds to red dashed

line, q = 2 – green, q = 3 – purple, q = 4 – gray. Dashed black horizontal lines
correspond to critical DMI parameter in a flat systems d0 = ±4/π. Symbol ⊕ in (a)
corresponds to the boundary between the hedgehog and periodic states obtained by
means of micromagnetic simulations in Ref. [32].

the x2 coordinate (perpendicularly to the ribbon, see Fig. 1). For each type of DMI, parameter
λ= λ(c, d) is a function of curvature and DMI strength. For well separated DWs, λ defines the
DW width ∆= 1/

p
λ. The integration constant C determines the period θ (ξ1 + T ) = θ (ξ1)

T =
4
p

C
K
�

−
λ

C

�

= T0| cosψ|/q, (6)

with K(•) is the complete elliptic integral of the first kind [51,52]. On the other hand, period
T = T0| cosψ|/q is predetermined by the periodical boundary conditions discussed above.
Here q ∈ N determines the number of DWs N = 2q on the tube and T0 = 2π/c. N is even
due to the periodical boundary conditions enforced by the tubular geometry. For the case of
Bloch DMI constant C ≡ CB is determined by the equation (6) withψ=ψB taken from (3) and
λ≡ λB = 1+c

�p
d2 +c2 −c

�

/2. One should note that for the case c> 0 and d 6= 0 the DW
width decreases as compared to the case c = 0 (planar film) or d = 0. For the corresponding
period we use the notation T ≡ TB. Period TB as a function of the DMI strength is plotted in
Fig. 2(b). The normalized energy of periodic states per period (T = TB) is

E
per
B = Eun

B +
cq

cosψB

�

4
π

Æ

CB(q)E
�

−
λB

CB(q)

�

−
�

c+
p

c2 + d2
�

− CB(q)
cosψB

qc

�

, (7)

where E(•) is the complete elliptic integral of the second kind [51,52]. For a planar film, the
transition between the homogeneous and periodical state is characterized by infinite increase
of period of the spiral state [7]. Although, for the cylindrical surface the period is finite in the
transition point, for the limit case c→ 0 one has T →∞. Using that C → 0 in this limit, we
obtain from the equality E

per
B = Eun

B the analytical expression for the critical DMI

dB
c = ±d0

√

√

1−c2 −
c
2
π2 − 4
π2

�

c+
Æ

c2 +π2 (1−c2)
�

, (8)
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where d0 = 4/π is a critical DMI parameter for flat systems, which separates homogeneous
and periodic magnetization distributions [5,7]. Although the expression (8) is obtained in the
small curvature limit, it describes very well the existence region of the homogeneous state for
the whole range of curvatures, see Fig. 3(a). The boundary (8) is also in a good agreement with
results obtained by means of micromagnetic simulations in Ref. [32], see symbol⊕ in Fig. 3(a).
The equality of energies E

per
B (c, dc , q) = E

per
B (c, dc , q + 1) determines the boundary between

states with different number of DWs. The resulting phase diagram is plotted in Fig. 3(a). In
the limit case of very small curvature (c � 1), the boundary curve (8) has the asymptotic
behavior dB

c ≈ ±d0∓
�

1− 4/π2
�

c. Thus the curvature decreases the critical magnitude of the
DMI strength. The boundary curve (8) intersects the abscissa with cB

0 = 2/π. For c > cB
0

the periodical state with two DWs exists even without intrinsic DMI, see Fig. 3. This effect
is analogous to the effect of spontaneous formation of the onion state in nanorings when
curvature exceeds some critical value [53].

4 DMI of Néel type

Let us now consider the case of Néel DMI ED = E N
D . The energy of the homogeneous hedgehog

state (m = ±n) reads
Eun

N = c (d +c) . (9)

Similarly to the case of Bloch DMI, there is an inhomogeneous solution in form of periodical
modulation. As well as in the previous case, the angle φ takes the constant value (for details
see Appendix B.2):

cosφN
0 = −sgn(d + 2c). (10)

However, in contrast to the previous case, DWs are always aligned along the cylinder. This
corresponds to the equilibrium value ψN = 0 (or equivalently ψN = π). As previously, the
normal magnetization component is described by the same Eq. (5) with C ≡ CN determined
by (6) with ψ = ψN and λ ≡ λN = 1− cd. Note that due to non-zero DMI and curvature the
width of the well separated Néel DWs is increased. This behavior is opposite to the case of the
Bloch DWs. The normalized energy of the modulated state per period (T = TN = T0/q) is

E
per
N = Eun

N +cq
�

4
π

Æ

CN(q)E
�

−
λN

CN(q)

�

− |2c+ d| −
CN(q)

qc

�

. (11)

The equality of energies Eun
N (c, dc) = E

per
N (c, dc) determines the boundary between homoge-

neous and periodic states. In the small curvature limit we obtain

dN
c = ±d0

�√

√

1+ 2c2

�

1+
2
π2

�

∓c
�

2
π
+
π

2

�

�

. (12)

As in the case of Bloch type DMI, the expression (12) describes the boundary of the homo-
geneous state in the phase diagram for a wide range of curvatures. The equality of ener-
gies E

per
N (c, dc , q) = E

per
N (c, dc , q + 1) determines the boundary between states with different

number of DWs. The resulting phase diagram is plotted in Fig. 3(b). In the limit case of
very small curvature (c � 1), the boundary curve (12) has the linear asymptotic behavior
dN

c ≈ ±d0 − 2
�

1+ 4/π2
�

c. Thus, due to the curvature the absolute value of the critical DMI
can be decreased as well as increased depending on the sign of the DMI. Similarly to the case
of Bloch type DMI, the boundary curve (12) intersects the abscissa with cN

0 = c
B
0 = 2/π and

for the case c> cN
0 the periodical state exists even without intrinsic DMI, see Fig. 3.
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5 Conclusions

At the example of cylindrical thin tubes, we show that curvature modifies the value of critical
DMI for curved systems, see Eqs. (8) and (12), which separates the hedgehog state with ho-
mogeneous magnetization normal to the film from the inhomogenous modulated states. For
the case of Néel type of DMI this effect is much stronger (in the limit case c � 1) as com-
pared to the case of the Bloch DMI. The curvature effects are more pronounced for the case
of Néel intrinsic DMI because the curvature-induced DMI is usually of the Néel type, thus a
direct competition takes place. Note, that for the same reason the Néel skyrmions are more
strongly affected by the curvature gradients as compared to the Bloch skyrmions [33] and the
DMI-free skyrmions stabilized by curvature are of Néel type [45]. We found an exact solution
for equilibrium states on the cylindrical surface for two different types of DMI and plotted
the corresponding phase diagrams, see Fig. 3. The presence of the Néel DMI does not modify
the structure of DWs, i.e. DWs are oriented along the cylinder axis (ψN = 0) and they are
of Néel type. For the case of Bloch DMI, the DWs are of a type intermediate between Bloch
and Néel due to competition of intrinsic DMI and geometry-induced DMI of Néel type. These
DWs are inclined by the angleψB ∈ (−π/4;π/4), see Eq. (3) and Fig. 3. The direction of DWs
inclination (sign of the angle ψB) is defined by the sign of the DMI parameter. This effect is
similar (i) to the field-induced inclined DWs in flat stripes [54]. In our case the role of the
external field is played by the geometry-induced easy-axis anisotropy along the cylinder axis.
And it also resembles (ii) the DMI-induced chiral twist of domains separated by the head-to-
head (tail-to-tail) DWs in nanotubes [48]. In both cases, the periodical boundary conditions,
enforced by the closed cylindrical geometry, result in even number of domains on the cylinder.
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A Introduction of the curvilinear basis and magnetic interactions
on a curvilinear shell

The surface parametrization ς(x1, x2) induces the natural tangential basis gα = ∂ας with the
corresponding metric tensor elements gαβ = gα · g β . Here, α,β = 1,2 and ∂α ≡ ∂xα . As the
vectors gα are orthogonal, one can introduce the orthonormal basis {e1, e2,n} with

eα =
gαp
gαα

, n = e1 × e2. (A.1)

Using the Gauß-Godazzi formula and Weingarten’s equation [55, 56] one can obtain the fol-
lowing differential properties of the basis vectors

∇αeβ = hαβn −Ωαεβγeγ, ∇αn = −hαβeβ . (A.2)
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Here, ∇α ≡ (gαα)
−1/2 ∂α (no summation over α) are components of the surface del operator

and ‖hαβ‖ is a modified second fundamental form. The second fundamental form determines
the Gauß curvature K = det‖hαβ‖ and the mean curvature H= tr‖hαβ‖. Components of the

spin connection vector Ω are determined by the relation Ωγ =
1
2
εαβeα · ∇γeβ .

Using curvilinear reference frame (A.1), we introduce the following magnetization parametriza-
tion

m = sinθ ε + cosθ n, ε = cosφ e1 + sinφ e2, (A.3)

where θ and φ are magnetic angles, and ε is a normalized projection of the vector m on the
tangential plane.

The first term in (1) is the exchange density EX =
∑

i=x ,y,z (∂im)
2 with A the exchange

constant. In the curvilinear reference frame exchange energy can be written as [45,49,53]

EX =∇αmβ∇αmβ +∇αmn∇αmn

+2hαβ
�

mβ∇αmn −mn∇αmβ
�

+ 2εαβΩγmβ∇γmα
+
�

hαγhγβ +Ω
2δαβ

�

mαmβ +
�

H2 − 2K
�

m2
n + 2εαγhγβΩβmαmn.

(A.4a)

Using the angular parametrization (A.3) one can obtain [45,49,53]

EX = [∇θ − Γ ]
2 +

�

sinθ (∇φ −Ω)− cosθ∂φΓ
�2

, (A.4b)

where Γ = ‖hαβ‖ · ε.
The second term in (1) corresponds to the Dzyaloshinskii–Moriya interaction (DMI) ED,

with D being the DMI constant. In the curvilinear frame of reference the Néel type DMI
E N

D = mn∇ ·m −m ·∇mn can be written as [45]

E N
D = mn∇αmα −mα∇αmn − εαβΩβmαmn −Hm2

n. (A.5a)

Using the angular parametrization (A.3) one can obtain (up to the boundary terms) [45,46]

E N
D = 2 (∇θ · ε) sin2 θ −Hcos2 θ + boundary terms, (A.5b)

while, for the Bloch type DMI symmetry E B
D = m · [∇×m] this interaction in the curvilinear

reference frame reads as [50]

E B
D = εαβ

�

mn∇αmβ −mβ∇αmn

�

+ εαβhβγmαmγ −Ωαmαmn. (A.5c)

Substituting the angular parametrization (A.3) into (A.5c) results in the expression (up to the
boundary terms) [50]

E B
D = sin2 θ [(2∇θ − Γ )× ε] · n. (A.5d)

The last term in (1) corresponds to the uniaxial anisotropy EA = sin2 θ , with K> 0 the
easy-normal anisotropy constant.

Parameterization ς (x1, x2) = R cos (ρs/R) x̂ + R sin (ρs/R) ŷ +ρz ẑ results in the following
first and modified second fundamental forms

gαβ = δαβ , ‖hαβ‖=
1
R













− cos2ψ cosψ sinψ
cosψ sinψ − sin2ψ













, (A.6)

respectively. Tubular geometry has zero Gauß curvature K = 0, nonzero mean curvature
H= −R−1 (here minus is related to the direction of the normal vector), and zero components
of spin connection vector Ω= 0.
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B DMI induced periodical solution for a cylindrical surface

B.1 DMI of Bloch type

In this section we consider DMI in form ED = EB
D which is defined in (A.5d). The total energy

density in (1) reads as

E

K
=
�

∇̃θ
�2
+
�

∇̃φ
�2

sin2 θ + 2c cos (φ +ψ) ∇̃θ ·η

−2c sinθ cosθ sin (φ +ψ) ∇̃φ ·η+c2
�

1− sin2 θ sin2 (φ +ψ)
�

+ sin2 θ

+d sin2 θ
h

2
�

θξ1
sinφ − θξ2

cosφ
�

+
κ

2
sin2 (φ +ψ)

i

, η= e1 cosψ− e2 sinψ,

(B.1)

where c= `/R is a reduced curvature with `=
p

A/Kbeing the magnetic length, the operator
∇̃ acts on the dimensionless curvilinear coordinates ξα = xα/`, and d = D/

p
AK is a reduced

DMI strength. The equilibrium values of θ , φ, and ψ are determined by the equations

1
2
δE
δθ
= −∆̃θ + sinθ cosθ

�

�

∇̃φ
�2
+ 1

�

+ 2c sin2 θ sin (φ +ψ) ∇̃φ ·η

−c2 sinθ cosθ sin2 (φ +ψ)− d
�

sin2 θ ∇̃φ · ε −
1
4
c sin2θ sin2 (φ +ψ)

�

= 0,

1
2
δE
δφ
= −∇̃ ·

�

sin2 θ ∇̃φ
�

− 2c sin (φ +ψ) sin2 θ ∇̃θ ·η−c2 sin2 θ sin (φ +ψ) cos (φ +ψ)

+d sin2 θ
h

∇̃θ · ε +
c
2

cos2 (φ +ψ)
i

= 0,

1
2c
δE
δψ
= −θξ1

sin (φ + 2ψ)− θξ2
cos (φ + 2ψ)−

1
2

sin2θ
�

φξ1
cos (φ + 2ψ)−φξ2

sin (φ + 2ψ)
�

−c sin2 θ sin (φ +ψ) cos (φ +ψ) +
d
2

sin2 θ cos2 (φ +ψ) = 0.

(B.2)

Here ∇̃α = `∇α ≡ ∂ξα and ∆̃= ∇̃2.
Equations (B.2) have a trivial solutions θ ≡ 0 and θ ≡ π, which corresponds to the uniform

magnetization distribution in the curvilinear reference frame, i.e. m = ±n, with energy (2).
We also found an inhomogeneous solution (3) with φ = φB

0 = const:

cosφB
0 = −

c sgn(d)
p
c2 + d2

, sinψB = −
d

q

2
�

d2 +c
�

c+
p
c2 + d2

��

. (B.3)

Note that for the case d > 0 one has −π/4 ≤ ψB ≤ 0 and φB
0 = π − 2ψB. While for the

case d < 0 one has 0 ≤ ψB ≤ π/4 and φB
0 = −2ψB. The magnetic angle θ is defined by the

equation (4) with the solution (5).
Energy as a function of DMI strength for Bloch DMI for different q is plotted in Fig. 4(a).

B.2 DMI of Néel type

Here we consider DMI in form ED = EN
D which is defined in Eqs. (A.5a) and (A.5b). The total

energy density in (1) reads as

E

K
=
�

∇̃θ
�2
+
�

∇̃φ
�2

sin2 θ + 2c cos (φ +ψ) ∇̃θ ·η− 2c sinθ cosθ sin (φ +ψ) ∇̃φ ·η

+c2
�

1− sin2 θ sin2 (φ +ψ)
�

+ d
�

2
�

∇̃θ · ε
�

sin2 θ +c cos2 θ
�

+ sin2 θ .
(B.4)
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Figure 4: Energies of the cylinder with c = 0.25 for Bloch (a) and Néel (b) DMI
types.

The equilibrium values of θ , φ, and ψ determined by the equations

1
2
δE
δθ
= −∆̃θ + sinθ cosθ

�

�

∇̃φ
�2
+ 1

�

+ 2c sin2 θ sin (φ +ψ) ∇̃φ ·η

−c2 sinθ cosθ sin2 (φ +ψ)− d
�

sin2 θ ∇̃φ ·
∂ ε

∂ φ
+c sinθ cosθ

�

= 0,

1
2
δE
δφ
= −∇̃ ·

�

sin2 θ ∇̃φ
�

− 2c sin (φ +ψ) sin2 θ ∇̃θ ·η−c2 sin2 θ sin (φ +ψ) cos (φ +ψ)

+d sin2 θ ∇̃θ ·
∂ ε

∂ φ
= 0,

1
2c
δE
δψ
= −θξ1

sin (φ + 2ψ)− θξ2
cos (φ + 2ψ)−

1
2

sin2θ
�

φξ1
cos (φ + 2ψ)−φξ2

sin (φ + 2ψ)
�

−c sin2 θ sin (φ +ψ) cos (φ +ψ) = 0.
(B.5)

Equations (B.5) have a trivial solutions θ ≡ 0 and θ ≡ π, which corresponds to the hedgehog
state m = ±n, i. e. the homogeneous magnetization distribution in the curvilinear reference
frame; the energy of the hedgehog state is described by Eq. (9).

We also found an inhomogeneous solution with φ = φN
0 = const, see (10), and magnetic

angle θ defined in (5).
Energy as a function of DMI strength for Néel DMI for different q is plotted in Fig. 4(b).

C Details of the spin-lattice simulations

In order to verify our analytical calculations we perform a set numerical simulations for a
ferromagnetic cylindrical surface. We consider a cylindrical surface as a square lattice with
lattice constant a. Each node is characterized by a magnetic moment mp(t) which is located

10
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at the position r p(t). Here p = (i, j) is a two dimensional vector which defines the mag-
netic moment and its position on the lattice with size N1 × N2 (i ∈ [1, N1] and j ∈ [1, N2]).
Magnetic moments are ferromagnetically coupled. We are interested in the case when the
system is a closed cylindrical surface, hence we impose the periodical boundary conditions
m(N1+1, j) = m(1, j) and r (N1+1, j) = r (1, j). The dynamics of magnetic system is govern by dis-
crete Landau–Lifshitz–Gilbert equations

dmp

dτ
=mp ×

∂H

∂mp
+αmp ×

�

mp ×
∂H

∂mp

�

, (C.1)

where τ = ω0 t is a reduced time with ω0 = µ0|γ0|Ms, α is a dimensionless damping coeffi-
cients, and H is a dimensionless energy normalized by µ0M2

s . We consider four contributions
to the energy of the system

H =HX +HA +HD +HDDI. (C.2a)

The first term in (C.2a) is the exchange energy

HX = −
1
2

`2
x

a2

∑

p,δ

mp ·mp+δ, (C.2b)

where δ runs over nearest neighbours of the square lattice and `x =
q

A/
�

µ0M2
s

�

.
The second term in (C.2a) is the anisotropy energy

HA = −
Q
2

∑

p

�

mp · np

�2
, (C.2c)

where np is easy-normal axis vector at node with coordinate r p , and Q = 2K/
�

µ0M2
s

�

is a
quality factor [38].

The third term in Eq. (C.2a) is a DMI energy

HD =
d
2
`x

a

√

√Q−Λ
2

∑

p,δ

dp,δ ·
�

mp ×mp+δ
�

, (C.2d)

where dp,δ is a DMI vector. For the case of Néel DMI dp,δ = np×up,δ with up,δ =
�

r p+δ − r p

�

/a
being a unit vector which connects two nearest neighbors. For Bloch DMI symmetry we have
dp,δ = up,δ. Parameter Λ = {0, 1} defines whether long range dipole-dipole interaction is
present or not, i.e. Λ = 0 corresponds to simulations without dipole-dipole interaction and
Λ= 1 vice versa.

The last term in Eq. (C.2a) is a long range dipole-dipole interaction

HDDI = Λ
a3

8π

∑

p,b
p 6=b





mp ·mb
�

�r pb

�

�

3 − 3

�

mp · r pb

� �

mb · r pb

�

�

�r pb

�

�

5



 , (C.2e)

where r pb = r p − r b.
For analytical calculations the dipole-dipole effects can be approximated by a simple re-

definition of the anisotropy constants, leading to a new magnetic length,

K→Keff =K−Λµ0M2
s /2,

`→ `eff =

√

√ A

Keff
= `x

√

√ 2
Q−Λ

,

d → deff =
D

p

AKeff
.

(C.3)
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Figure 5: Equilibrium states in tubular shells with dipole-dipole interaction: (a)
and (b) show phase diagrams of equilibrium states in tubular shell with Bloch and
Néel type DMI, respectively. Symbols display the results of spin-lattice simulations:
circles – normal (hedgehog) magnetization distribution (m = ±n); other symbols –
periodic states (purple diamond correspond to states with q ≥ 3). Blue solid lines in
(a) and (b) are analytical critical lines determined by Eqs. (8) and (12), respectively;
dashed lines in (a) and (b) mark transitions between the periodic equilibrium states
with different number of DWs, as determined by numerical solution of equations
E

per
B (q) = E

per
B (q+1) and E

per
N (q) = E

per
N (q+1): q = 1 corresponds to red dashed line,

q = 2 – green. Dashed black horizontal lines correspond to critical DMI parameter
in a flat systems d0 = ±4/π.

The dynamical problem is considered as a set of 3N1N2 ordinary differential equations (C.1)
with respect to 3N1N2 unknown functions mX

p(τ), mY
p(τ), mZ

p(τ). For given initial conditions,
the set of time evolution equations (C.1) is integrated numerically using Runge–Kutta method
in Python. During the integration process, the condition |mp(τ)|= 1 is controlled.

C.1 Simulations of tubes without dipole-dipole interaction (Λ= 0)

We considered cylinders with N1 = 300a and N2 = 900a, quality factor Q = 2 (correspond to
` = `x), the magnetic length ` ∈ [4.5a, 34.5a] with ∆` = 3a, and DMI constant d ∈ [−2,2]
with ∆d = 0.1. We simulate numerically Landau–Lifshitz–Gilbert equations (C.1) in the over-
damped regime (α= 0.1) during a long-time interval ∆τ� (αω0)

−1.
We performed a set of simulations for various ranges of magnetic and geometrical param-

eters. We simulate Eqs. (C.1) as described above for eight different initial states, namely, the
normal, q-domain walls with q = {2, 4,6, 8,10}, and two random states. The final static state
with the lowest energy is considered to be the equilibrium magnetization state. We present
simulation data in Figs. 2 and 3 by symbols together with theoretical results (plotted by lines).

C.2 Simulations of tubes with dipole-dipole interaction (Λ= 1)

We considered cylinders with N1 = 200a and N2 = 600a, quality factor Q = 3 (correspond to
`eff = `x), the magnetic length `eff ∈ [3a, 23a] with ∆`eff = 4a, and DMI constant
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Figure 6: Phase diagrams of equilibrium states in nanotube with Bloch type DMI.
(a), (b), and (c) are phase diagrams of equilibrium states in nanotube with Bloch type
DMI: (a) and (d) FeGe epitaxial film with Q ≈ 26.3; (b) and (e) artificial material
with Q = 2; (c) and (f) Pt/Co/AlOx layer structure with Q ≈ 1.71. In (a)-(c) symbols
display the results of full-scale micromagnetic simulations: circles – normal (hedge-
hog) magnetization distribution (m = ±n); other symbols – periodic states (purple
diamond correspond to states with q ≥ 3). Blue solid line is analytical critical line
determined by Eq. (8); dashed lines mark transitions between periodic equilibrium
states with different number of DWs, as determined by numerical solution of ener-
gies equality E

per
B (q) = E

per
B (q + 1): q = 1 corresponds to red dashed line, q = 2 –

green. Dashed black horizontal lines correspond to critical DMI parameter in a flat
systems d0 = ±4/π. (d)-(e) are periods TB/T0 = | cosψB| of mgnetization structure
in tube with c≈ 0.72, c≈ 0.71, and c≈ 0.78, respectively.

deff ∈ [−1.2, 1.2] with ∆deff = 0.2. The simulations are performed in the same way as de-
scribed in Sec. C.1.

We present simulation data in Fig. 5 by symbols together with theoretical results (plotted
by lines).

D Details of full-scale micromagnetic simulations

The micromagnetic simulations were performed with the OOMMF code [57] supplemented
with the extension for the DMI in cubic crystals [58]. Four magnetic interactions were taken
into account, namely exchange, magnetostatic, DMI, and uniaxial anisotropy contributions.
We used the parameters for the epitaxial FeGe film [39,59]: exchange constant A= 8.78×10−12

J/m, saturation magnetization Ms = 1.1 × 105 A/m, easy-normal anisotropy K = 2 × 105

J/m3, and DMI constant D ∈ [−1.5,1.5] × 10−3 J/m2. These material parameters result
in a quality factor Q ≈ 26.3 and effective magnetic length `eff ≈ 6.76 nm. We considered
magnetic nanotubes with fixed length L̃ = 500 nm and thickness h = 4 nm. The inner ra-
dius of tubes was in the range R ∈ [7, 66] nm, which results in the dimensionless curvature
c = `eff/ (R+ h/2) ≈ [0.1,0.73] (we considered surface between the outer and inner radii).
The mesh size of 0.5× 0.5× 0.5 nm3 is used in our simulations.
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The simulations are performed in the same way as described in Sec. C.1. Results of nu-
merical simulations are presented in Fig. 2 and Fig. 6(a),(d) by symbols.

D.1 Full-scale micromagnetic simulations with small quality factor

Additionally we performed simulations for systems with small quality factor:

• We used the following artificial material parameters: exchange constant A= 5π×10−12

J/m, saturation magnetization Ms = 5×105 A/m, easy-normal anisotropy K= π×105

J/m3, and DMI constant D∈ [−1.9,1.9]×10−3 J/m2. These material parameters result
in a quality factor Q = 2 and effective magnetic length `eff = 10 nm. We considered
magnetic nanotubes with fixed length L̃ = 500 nm and thickness h = 4 nm. The inner
radius of tubes was in the range R ∈ [12,48] nm, which results in the dimensionless
curvature c = `eff/ (R+ h/2) ≈ [0.2, 0.71] (for the mid-cylinder surface between the
outer and inner radii). The mesh size of 1× 1× 1 nm3 is used in our simulations.

Results of numerical simulations are presented in Fig. 6(b),(e) by symbols.

• We used the material parameters of Pt/Co/AlOx layer structure [45]: exchange con-
stant A= 1.6× 10−11 J/m, saturation magnetization Ms = 1.1× 106 A/m, easy-normal
anisotropy K= 1.3× 106 J/m3, and DMI constant D∈ [−3.6, 3.6]× 10−3 J/m2. These
material parameters result in a quality factor Q ≈ 1.71 and effective magnetic length
`eff ≈ 5.44 nm. We considered magnetic nanotubes with fixed length L̃ = 500 nm and
thickness h = 2 nm. The inner radius of tubes was in the range R ∈ [6, 25] nm, which
results in the dimensionless curvature c = `eff/ (R+ h/2) ≈ [0.21,0.78] (for the mid-
cylinder surface between the outer and inner radii). The mesh size of 0.5 × 0.5 × 0.5
nm3 is used in our simulations.

Results of numerical simulations are presented in Fig. 6(c),(f) by symbols.
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[14] M. Staňo and O. Fruchart, Magnetic nanowires and nanotubes, in Handbook of Magnetic
Materials, Elsevier, ISBN 9780444641618 (2018), doi:10.1016/bs.hmm.2018.08.002.

[15] J. de la Torre Medina, T. da Câmara Santa Clara Gomes, Y. G. Velázquez Galván and L.
Piraux, Large-scale 3-D interconnected Ni nanotube networks with controlled structural and
magnetic properties, Sci. Rep. 8, 14555 (2018), doi:10.1038/s41598-018-32437-8.

[16] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S. Rose and
J. S. Plank, A survey of neuromorphic computing and neural networks in hardware (2017),
arXiv:1705.06963.

[17] R. Streubel, L. Han, F. Kronast, A. A. Ünal, O. G. Schmidt and D. Makarov, Imag-
ing of buried 3D magnetic rolled-up nanomembranes, Nano Lett. 14, 3981 (2014),
doi:10.1021/nl501333h.

[18] J. Pablo-Navarro, C. Magén and J. María de Teresa, Three-dimensional core–shell ferro-
magnetic nanowires grown by focused electron beam induced deposition, Nanotechnology
27, 285302 (2016), doi:10.1088/0957-4484/27/28/285302.

[19] J. M. De Teresa, A. Fernández-Pacheco, R. Córdoba, L. Serrano-Ramón, S. Sangiao
and M. R. Ibarra, Review of magnetic nanostructures grown by focused electron beam in-
duced deposition (FEBID), J. Phys. D: Appl. Phys. 49, 243003 (2016), doi:10.1088/0022-
3727/49/24/243003.
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