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Abstract

We present a systematic geometric framework to study closed quantum systems based
on suitably chosen variational families. For the purpose of (A) real time evolution, (B)
excitation spectra, (C) spectral functions and (D) imaginary time evolution, we show
how the geometric approach highlights the necessity to distinguish between two classes
of manifolds: Kähler and non-Kähler. Traditional variational methods typically require
the variational family to be a Kähler manifold, where multiplication by the imaginary
unit preserves the tangent spaces. This covers the vast majority of cases studied in the
literature. However, recently proposed classes of generalized Gaussian states make it
necessary to also include the non-Kähler case, which has already been encountered oc-
casionally. We illustrate our approach in detail with a range of concrete examples where
the geometric structures of the considered manifolds are particularly relevant. These
go from Gaussian states and group theoretic coherent states to generalized Gaussian
states.
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1 Introduction

Variational methods are of utmost importance in quantum physics. They have played a cru-
cial role in the discovery and characterization of paradigmatic phenomena in many-body sys-
tem, like Bose-Einstein condensation [1,2], superconductivity [3], superfluidity [4], the frac-
tional quantum hall [5] or the Kondo effect [6]. They are the basis of Hartree-Fock meth-
ods [7], Bardeen-Cooper-Schrieffer theory [3], Gutzwiller [8] or Laughlin wavefunctions [9],
the Gross-Pitaevskii equation [1,2], and the density matrix renormalization group [10], which
are nowadays part of standard textbooks in quantum physics. Variational methods are partic-
ularly well suited to describe complex systems where exact or perturbative techniques cannot
be applied. This is typically the case in many-body problems: on the one hand, the exponen-
tial growth of the Hilbert space dimension with the system size restricts exact computational
methods to relatively small systems; on the other hand, as perturbations are generally exten-
sive, they cannot be considered as small as the system size grows. Furthermore, variational
methods are becoming especially relevant in recent times due to the continuous growth of
computational power, as this enables to enlarge the number of variational parameters, for
instance, to scale polynomially with the system size. Their power and scope can be further
extended in combination with other methods, like Monte-Carlo, or even in the context of
quantum computing.

A variational method parametrizes a family of states |ψ(x)〉 or, in case of mixed states,
ρ(x), in terms of so-called variational parameters x = (x1, . . . , xn). The choice of the family
of states is crucial as it has to encompass the physical behavior we want to describe, as well
as to be amenable of efficient computations, circumventing the exponential growth in com-
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putational resources that appears in exact computations. A variety of variational principles
can then be used, depending on the problem at hand. At thermal equilibrium, one can rely
on the fact that the state minimizes the free energy, which reduces to the energy at zero tem-
perature. In that case, for instance, one can just compute the expectation value E(x) of the
Hamiltonian in the state |ψ(x)〉, and find the x0 that minimizes that quantity, yielding a state,
|ψ(x0)〉 that should resemble the real ground state of the system. For time-dependent prob-
lems, one can use Dirac’s variational principle. There, one computes the action S[x(t), ẋ(t)]
for the state |ψ(x(t))〉 and extracts a set of differential equations for x(t) requiring it to be
stationary. Thus, the computational problem is reduced to solving this set of equations, which
can usually be done even for very large systems. While the use of time-dependent variational
methods is not so widespread as those for thermal equilibrium, the first have experienced a
renewed interest thanks to the recent experimental progress in taming and studying the dy-
namics of many-body quantum systems in diverse setups. They include cold atoms in bulk or
in optical lattices [11], trapped ions [12, 13], boson-fermion mixtures [14], quantum impu-
rity problems [15] and pump and probe experiments in condensed matter systems [16–18].
Recently, such methods have been used in the context of matrix product states to analyze a
variety of phenomena, or with Gaussian states in the study of impurity problems [19, 20],
Holstein models [21], or Rydberg states in cold atomic systems [22,23].

Time-dependent variational methods can also be formulated in geometric terms. Here,
the family of states is seen as a manifold in Hilbert space, and the differential equations for
the variational parameters are derived by projecting the infinitesimal change of the state onto
the tangent space of the manifold. This approach offers a very intuitive understanding of the
variational methods through geometry. The translation between the different formulations is
straightforward in the case of complex parametrizations: that is, where the xµ are complex
variables, in which case the corresponding manifold is, from the geometric point of view,
usually referred to as a Kähler manifold. If this is not the case, the geometric formalism has
the advantage of highlighting several subtleties that appear and that have to be treated with
care.

The main aim of the present paper is two-fold. First, to give a complete formulation of
the geometric variational principle in the more general terms, not restricting ourselves to the
case of complex parametrizations: that is, when the xµ are taken to be real parameters1.
For all the variational methods that will be introduced, we will provide a detailed analysis
of the differences that emerge in the non-complex case, most importantly the existence of
inequivalent time dependent variational principles. The motivation to address the case of real
parametrization stems from the fact that, in some situations, one has to impose that some of the
variational parameters are real since otherwise the variational problem becomes intractable.
This occurs, for instance, when one deals with a family of the form |ψ(x)〉 = U(x)|φ〉, where
φ is some fiducial state and U(x) is unitary. By taking x complex, U(x) ceases to be unitary,
and thus even the computation of the normalization of the state may require unreasonable
computational resources.

Second, even though there exists a vast literature on geometrical methods [24–28], it is
mostly addressed to mathematicians and it may be hard to practitioners to extract from it
readily applicable methods. Here, we present a comprehensive, but at the same time rigor-
ous illustration of geometric methods that is accessible to readers ranging from mathematical
physicists to condensed matter physicists. For this, we first give a simple and compact for-
mulation, and then present the mathematical subtleties together with simple examples and
illustrations. We will address some of the issues which are most important when it comes to

1Note that a complex parametrization (in terms of zµ ∈ C) can always be expressed in terms of a real
parametrization just by replacing zµ = xµ1 + ixµ2 , with xµ1,2 ∈R.
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the practical application of these methods: the conservation of physical quantities, the com-
putation of excitations above the ground state, and the evaluation of spectral functions as
suggested by the geometrical approach. For each of them, we will provide a motivation and
derivation from physical considerations and, where we find inequivalent feasible approaches,
give a detailed discussion of the differences and subtleties. Moreover, we discuss how the ge-
ometrical method can be naturally extended to imaginary time evolution, providing us with a
very practical tool for analyzing systems at zero temperature.

To illustrate our results and to connect to applications, we discuss representative examples
of variational classes, for which the presented methods are suitable. In particular, we will re-
cast the prominent families of bosonic and fermionic Gaussian states in a geometric language,
which makes their variational properties transparent. We will further show how the geometric
structures discussed in this paper emerge in a natural way in the context of Gilmore-Perelomov
group theoretic coherent states [29,30], of which traditional coherent and Gaussian states are
examples. Finally, we will discuss possible generalizations going beyond ansätze of this type.

The paper is structured as follows: In section 2, we motivate our geometric approach and
present its key ingredients without requiring any background in differential geometry. In sec-
tion 3, we give a pedagogical introduction to the differential geometry of Kähler manifolds and
fix conventions for the following sections. In section 4, we define our formalism in geomet-
ric terms and discuss various subtleties for the most important applications ranging from (A)
real time evolution, (B) excitation spectra, (C) spectral functions to (D) imaginary time evolu-
tion. In section 5, we apply our formalism to the variational families of Gaussian states, group
theoretic coherent states (Gilmore–Perelomov) and certain classes of non-Gaussian states. In
section 6, we summarize and discuss our results.

2 Variational principle and its geometry

This section serves as a prelude and summary of the more technical sections 3 and 4. In sec-
tion 3 we will give a rigorous definition of the most generic variational family as a differentiable
manifold embedded in projective Hilbert space and define the structures that characterise it as
Kähler manifold. In section 4, we illustrate the possible ways in which variational principles
can be defined on such manifolds and highlight their differences. A reader familiar with the
general approach, but interested in the technical details may skip directly to sections 3 and 4.

In the present section, on the other hand, we illustrate and summarize these results in a
physical language that aims to be familiar also for readers who may not be accustomed to the
more mathematical formulation of the following sections.

We consider closed quantum systems with Hamiltonian Ĥ acting on some Hilbert space H.
Here, we have a many-body quantum system in mind, where H is a tensor product of local
Hilbert spaces, although we will not use this fact in the general description. We would like to
find the evolution of an initial state, |ψ(0)〉, according to the real-time Schrödinger equation

i
d
d t
|ψ〉= Ĥ |ψ〉 , (1)

and also according to the imaginary-time evolution

d
dτ
|ψ〉= −(Ĥ − 〈Ĥ〉) |ψ〉 . (2)
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The latter will converge to a ground state of Ĥ as long as |ψ(0)〉 possesses a non-vanishing
overlap with the corresponding ground subspace.

2.1 Variational families

We will study variational families of states described as |ψ(x)〉 ∈H, where xµ ∈RN is a set of
real parameters. The goal is to approximate the time evolution within this class of states, i.e.,
to find a set of differential equations for xµ(t) so that, provided the variational family accounts
well for the physically relevant properties of the states, we can approximate the exact evolution
by |ψ[x(t)]〉. In the case of imaginary-time evolution, the goal will be to find x0 such that
|ψ(x0)〉 minimizes the energy, i.e., the expectation value of Ĥ, within the variational family.

In principle, one could restrict oneself to variational families that admit a complex
parametrization, i.e., where |ψ(z)〉 ∈ H is holomorphic in zµ ∈ CM and thus independent
of z∗. As we will see, this leads to enormous simplifications, as in the geometric language we
are dealing with so-called Kähler manifolds, which have very friendly properties. However, in
general, we want to use real parametrizations, which cover the complex case (taking the real
and imaginary part of z as independent real parameters), but apply to more general situations.

While in certain situations, it is easy to extend or map a real parametrization to a complex
one, this is not always the case. This applies, in particular, to parametrizations of the form

|ψ(x)〉= U(x) |φ〉 , (3)

where |φ〉 is a suitably chosen reference state and U(x) is a unitary operator that depends on
xµ ∈ RN . Such parametrizations are often used to describe various many-body phenomena
appearing in impurity models [19,22,23,31] electron-phonon interactions [21,32] and lattice
gauge theory [33], and the fact that U(x) is unitary is crucial to compute physical properties
efficiently. However, extending xµ analytically to complexify our parametrizations, will break
unitarity of U and often make computations inefficient, thereby limiting the applicability of
the variational class. We review such examples in section 5, including bosonic and fermionic
Gaussian states and certain non-Gaussian generalizations.

The following example shows an important issue about different possibilities for parametriza-
tions:

Example 1. For a single bosonic degree of freedom (with creation operator â† and annihilation
operator â), we define normalized coherent states as

|ψ(x)〉= e−|z|
2/2ezâ†

|0〉 , (4)

where x = (Rez, Imz). This parametrization is complex but not holomorphic. We can define the
extended family

|ψ′(z)〉= z1ez2 â†
|0〉 , (5)

whose parametrization is holomorphic in zµ ≡ (z1, z2). The latter parametrization differs from
the former as it allows the total phase and normalization of the state to vary freely.

Given a family with a generic parametrization |ψ(x)〉 we can always include two other
parameters, (κ,ϕ), to allow for a variation of normalization and complex phase, so that the
new family is

|ψ′(x ′)〉= eκ+iϕ |ψ(x)〉 , (6)
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where now the total set of variational parameters is x ′ = (κ,ϕ, x). While the global phase does
not have a physical meaning on its own, if we want to study the evolution of a superposition of
one or several variational states, or quantities like spectral functions, the phase will be relevant
and thus should be included in the computation.

This extension of the variational parameteres can always be done at little extra computa-
tional cost and the variational principle can be formulated most simply in terms of the extended
variables x ′. For this reason, in the rest of this section (except for subsection 2.2.1 where we
add some extra observations on this issue) we will assume that this extension has been done
and we will drop the primes, for the sake of an easier notation.

2.2 Time-dependent variational principle

One can get Schrödinger’s equation (1) from the action

S =

∫

d t L with L = Re 〈ψ|(i d
d t − Ĥ)|ψ〉 , (7)

as the Euler-Lagrange equation ensuring stationarity of S. This immediately yields a variational
principle for the real-time evolution, the so-called Dirac principle. For this, we compute the
Euler-Lagrange equations2. as

ωµν ẋν = −∂µ ε(x) , (8)

where ε(x) = 〈ψ(x)|Ĥ|ψ(x)〉 is the expectation value of Ĥ on the unnormalized state |ψ(x)〉,
ωµν = 2 Im 〈vµ|vν〉 and |vµ〉= ∂µ |ψ(x)〉. We exploited the antisymmetry of ω, resulting from
the antilinearity of the Hermitian inner product. Here and in the following, we use Einstein’s
convention of summing over repeated indices and we omit to indicate the explicit dependence
on x of some quantities, such as ω. Furthermore, we refer to the time derivative d

d t by a dot,
and to the partial derivative with respect to xν by ∂ν.

In cases, whereω is invertible, i.e., where an Ω exists, such that Ωµνωνσ = δµσ, we obtain
the equations of motion

ẋµ = −Ωµν∂νε(x) =: X µ(x) . (9)

Ifω is not invertible, this means that the evolution equations for xµ are underdetermined.
The reason may be an overparametrization, in which case one can simply drop some of the
parameters. However, when we discuss the geometric approach, we will see there can be other
reasons related to the fact that the parameters xµ are real, in which case one has to proceed in
a different way. In particular, it may even occur that (8) becomes ill-defined, so that we need
to project out a part of its RHS. We will discuss this in section 4.1.1 and appendix E.

Let us also remark that if we have a complex representation of the state, i.e., |ψ(z)〉 is
holomorphic in z ∈ CM , we can get the equations directly for z, namely3

żµ = −Ω̃µν
∂ ε(z, z∗)
∂ z∗ν

, (10)

2We find L(x , ẋ) = ẋνRe〈ψ(x)|i|vν(x)〉 − ε(x) with ε and |vµ〉 defined after (8). The Euler-
Lagrange equations d

d t
∂ L
∂ ẋµ = ∂ L

∂ xµ follow then directly from d
d t

∂ L
∂ ẋµ = ẋν(Re〈vν|i|vµ〉 + Re〈ψ|i∂ν|vµ〉),

∂ L
∂ xµ = ẋν(Re〈vµ|i|vν〉+Re〈ψ|i∂µ|vν〉)− ∂µε and the definition of ωµν = 2Im 〈vµ|vν〉= Re 〈vν|i|vµ〉 −Re 〈vµ|i|vν〉

3We have L = i
2 (ż

µ 〈ψ|vµ〉 − ż∗µ 〈vµ|ψ〉)− ε(z, z∗). The Euler-Lagrange equations d
d t

∂ L
∂ ż∗µ =

∂ L
∂ z∗µ are therefore

given by the expression d
d t

∂ L
∂ ż∗µ = −

i
2 (ż

ν 〈vµ|vν〉+ ż∗ν 〈∂ ∗
ν

vµ|ψ〉) and also ∂ L
∂ z∗µ =

i
2 (ż

ν 〈vµ|vν〉 − ż∗ν 〈∂ ∗
µ

vν|ψ〉)− ∂ ∗µ ε.
Notice that if the ket |ψ〉 is a function of z only, then the corresponding bra 〈ψ| is a function of z∗ only.
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where (Ω̃−1)µν = −i 〈vµ|vν〉 with |vµ〉 =
d

dzµ |ψ〉 and ε(z, z∗) = 〈ψ(z∗)|Ĥ|ψ(z)〉. Notice that
in this case, Ω̃ is invertible unless there is some redundancy in the parametrization. This is a
consequence of the fact that such variational families are, from the geometric point of view,
what is known as a Kähler manifold (see definition Section 3).

In what follows, we will see that many desirable properties are naturally satisfied when
dealing with Kähler manifolds, while we also point out various subtleties that arise otherwise.

2.2.1 Dynamics of phase and normalization

Let us now briefly consider some more details related to the inclusion of the normalization and
phase (κ,ϕ) as variational parameters. For this, we will temporarily reintroduce the distinction
between |ψ(x)〉 and |ψ′(x ′)〉 as in equation (6). If we consider the Euler-Lagrange equations
corresponding specifically to each of the parameters (κ,ϕ, x), we have

0=
d
d t

�

eκ 〈ψ(x)|ψ(x)〉1/2
�

, (11)

ϕ̇ = −
ε(x ′) + ẋµ Im 〈ψ′(x ′)|vµ〉

e2κ 〈ψ(x)|ψ(x)〉
(12)

and equations for x that do not depend on ϕ and are proportional to e2κ, so that one can
replace the solution of (11) in those equations and solve them independently. If one is inter-
ested in the evolution of the phase, then one just has to plug the solutions for x in (12) and
integrate that differential equation separately.

It is important to note that using the Lagrangian L from (7) without having introduced the
extra parameters (κ,ϕ) or, more precisely, without ensuring that both phase and normalisation
can be freely varied, can lead to unexpected results. More specifically, it can produce equa-
tions of motion which leave some parameters undetermined or where the unwanted coupling
between phases and physical degrees of freedom leads to artificial dynamics.

Nonetheless, one can also equivalently derive the equations for the x directly from a La-
grangian formulation, without introducing the extra parameters (κ,ϕ). It is sufficient to use
the alternative Lagrangian

L(x , ẋ) =
Re 〈ψ(x)|(i d

d t − Ĥ)|ψ(x)〉
〈ψ(x)|ψ(x)〉

, (13)

which is invariant under |ψ(x)〉 → c(x) |ψ〉 (up to a total derivative) and thus differs from (7).
We discuss more in detail how these two definitions are related in Section 4.1.3.

2.2.2 Conserved quantities

An important feature of the time-dependent variational principle is that energy expectation
value is conserved if the Hamiltonian is time-independent. This can be readily seen because
from (11) we know that the states remain normalized during the evolution, so for an initially
normalized state, the energy E will always coincide with the function ε, for which we find

d
d t
ε(x) = ẋµ∂µε = −Ωµν(∂µε)(∂νε) = 0 , (14)

as Ω is antisymmetric.

However, in general, other observables Â = Â† that commute with the Hamiltonian may
not be conserved by the time-dependent variational principle. Indeed, for every variational
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family, one can find symmetry generators Â with [Â, Ĥ] = 0 which will not be preserved.
The question is if those quantities are conserved, that are relevant for describing the physics
of the problem at hand. In the special case where we have a complex parametrization, we
will show in Section 4.1.2 what further conditions Â has to satisfy for it to be conserved.
More specifically, it must fulfil a compatibility requirement with the chosen variational family.
Importantly, we will also discuss how this simple picture is no longer true in the case that no
complex parametrization is available.

If the observables of interest happen not to be conserved, it may be wise to consider an
alternative variational family, but one can also enforce conservation by hand at the expense of
effectively reducing the number of parameters. There are indeed several possibilities to enforce
the conservation of observables other than the energy. For instance, one may think of including
time-dependent Lagrange multipliers in the Lagrangian action to ensure that property [34].
However, this can only work in a restricted number of cases, as can be already seen if one
wants to conserve just a single observable Â. Denoting by A(x) = 〈ψ(x)|Â|ψ(x)〉, and adding
to the Lagrangian L the term λ(t)A, it is easy to see that both ε[x(t)] and A[x(t)] remain
constant if

Ȧ(t) = −Ωµν(∂µε)(∂νA) = 0 (15)

for all times. The function λ(t) can be chosen such that Ä(t) = 0 for all times, namely taking
λ(t) = ζµ∂µε/ζν∂νA, where ζµ = Ωµν∂νΩαβ∂αε∂βA. On top of that, one has to choose an
initial state and a parametrization such that at the initial time Ȧ(0) = 0. Furthermore, the
denominator in the definition of λ(t) must not vanish and since the addition of a Lagrange
multiplier modifies the Schrödinger equation, one has to compensate for that. In particular, at
the final time T , one has to apply the operator exp(i

∫ T
0 λ(t)d tÂ) to the final state, which may

be difficult in practice. This severely limits the range of applicability of the Lagrange multiplier
method.

Another possibility is to solve A(x) = A0 for one of the variables, e.g. leading to
xN = f (x1, . . . , xN−1), and choose a new reduced variational family with parameters
x̃ = (x1, . . . , xN−1) as |ψ̃( x̃)〉 = |ψ( x̃ , f ( x̃))〉. On this reduced family, A will have the con-
stant value A0 by construction. However, this requires to find the function f which may be
difficult in practice. In Section 4.1.2 we will discuss how, thanks to the geometric understand-
ing, this condition can be easily enforced locally without having to explicitly solve for f . In
the same section we will also discuss how to deal with the fact that reducing the variational
family by an odd number of real degrees of freedom, as proposed here, will inevitably make
ω degenerate and thus non-invertible.

2.2.3 Excitation spectra

An approach often used systematically [35] for computing the energy of elementary excitations
is to linearize the equations of motion (9) around the approximate ground state ψ(x0) to find

δ ẋµ = Kµνδxν with Kµν =
∂X µ

∂ xν
(x0) . (16)

The spectrum of K comes in conjugate imaginary pairs ±iω`. The underlying idea is that if we
slightly perturb the state within the variational manifold and solve the linearized equations of
motion, we can approximate the excitation energies as the resulting oscillation frequenciesω`
of the normal mode perturbations around the approximate ground state.

We will see how our geometric perspective provides us with another possibility to compute
the excitation spectrum. Both methods have advantages and drawbacks which we carefully
explain in 4.2.

9

https://scipost.org
https://scipost.org/SciPostPhys.9.4.048


SciPost Phys. 9, 048 (2020)

2.2.4 Spectral functions

In the literature one can find several approaches [36–38] for estimating spectral functions by
relying on a variational family. In section 4.3, we argue that the approach that at the same
time is most in line with the spirit of variational principles and better adapts to being used
with generic ansätze consists in performing linear response theory directly on the variational
manifold. Furthermore, this approach leads to a simple closed formula for the spectral function
based only on the generator Kµν of the linearized equations of motion introduced in (16). Let
us decompose Kµν in terms of eigenvectors as

Kµν =
∑

`

iω`Eµ(iω`)eEν(iω`) , (17)

where eEν(λ) refers to the dual basis of left eigenvectors4, chosen such that Eµ(λ)eEµ(λ′) = δλλ′ .
Further, we use the normalization Eµ(iω`)∗ωµνEν(iω`) = i sgn(ω`), where we apply complex
conjugation component-wise. Then, the spectral function associated to a perturbation V̂ is

AV (ω) = sgn(ω)
∑

`

�

�(∂µ 〈V̂ 〉)Eµ(iω`)
�

�

2
δ(ω−ω`) . (19)

2.3 Geometric approach

Let us now make the connection between the time-dependent variational method reviewed
above with a differential geometry description. The basic idea is to consider the states |ψ(x)〉
as constituting a manifold M embedded in Hilbert space, and define a tangent space at each
point. Then the evolution can be viewed as a projection on that tangent space after each
infinitesimal time step. The main issue here is that, if our parametrization is real, the tangent
space is not a complex vector space. Therefore, we cannot utilize projection operators in
Hilbert space, but rather need to define them on the real tangent spaces. Before entering the
general case, let us briefly analyze the one of complex parametrization.

In that case, the left hand side of Schrödinger’s equation (1) would yield

i
d
d t
|ψ(z)〉= iżµ |vµ〉 , (20)

where |vµ〉 = ∂µ |ψ(z)〉. Thus, it lies in the tangent space, which is spanned by the |vµ〉.
The right hand side of the equation, however, does not necessarily do so, as Ĥ |ψ(z)〉 will
have components outside that span. If we evolve infinitesimally and we want to remain in
the manifold, we will have to project the change of |ψ(z)〉 onto the tangent space. In fact,
in this way we get the optimal approximation to the real evolution within our manifold. In
practice, this amounts to projecting the right hand side of (1) on that tangent space. This can
be achieved by just taking the scalar product on both sides of the equation with 〈vν| which
leads exactly to (10).

If we do not have a complex parametrization, this procedure needs to be modified. In the
rest of this section, we will explain how this is done.

4As explained in section 4.2.2, Kµν is diagonalizable and has completely imaginary eigenvalues λ= ±iω` with
a complete set of right-eigenvectors Eµ(λ) and left-eigenvectors eEµ(λ) satisfying

KµνEν(λ) = λEµ(λ) , eEµ(λ)Kµν = λeEν(λ) . (18)

Note that the eigenvectors will be complex with the relations Eµ(λ∗) = E∗µ(λ) and eEµ(λ∗) = eE∗
µ
(λ). We choose the

normalizations Eµ(λ)eEµ(λ′) = δλλ′ and E∗µ(iω`)ωµνEν(iω`) = i sgn(ω`).
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2.3.1 Tangent space and Kähler structures

The tangent space Tψ to the manifold M at its point |ψ〉 is the space of all possible linear
variations on the manifold around |ψ(x)〉. We can write them as ẋµ ∂µ|ψ(x)〉 and thus the
tangent space can be defined as the span of the tangent vectors |vµ〉 = ∂µ |ψ(x)〉. However,
as our parameters x are taken to be real to maintain generality, this span should only allow
real coefficients. The tangent space should therefore be understood as a real linear space
embedded in the Hilbert space H. In particular, this implies that for |v〉 ∈ Tψ, the direction
i |v〉 should be seen as linearly independent of |v〉 and therefore may itself not belong to the
tangent space.

Note that if, on the other hand, M has a complex holomorphic parametrization then
both |vµ〉 and i |vµ〉 naturally belong to the tangent space as they correspond to ∂

∂ Rezµ |ψ〉 and
∂

∂ Imzµ |ψ〉, respectively. In this case, Tψ is clearly a complex subspace of the Hilbert space.

From the Hilbert inner product we can derive the two real-valued bilinear forms

gµν = 2 Re〈vµ|vν〉 and ωµν = 2 Im〈vµ|vν〉 . (21)

We define their inverses respectively as Gµν and Ωµν. As mentioned before, ω may not neces-
sarily admit a regular inverse, in which case we can still define a meaningful pseudo-inverse
as discussed in section 3.3 and in further detail in appendix E.

Given any Hilbert space vector |φ〉, we define its projection on the tangent space Tψ as
the vector Pψ |φ〉 ∈ Tψ that minimizes the distance from |φ〉 in state norm. As we are not
dealing with a complex linear space, this will not be given by the standard Hermitian projection
operator in Hilbert space. Rather, it takes the form

Pψ |φ〉= 2 |vµ〉GµνRe〈vν|φ〉 . (22)

Finally, let us introduce Jµν = −Gµσωσν, which represents the projection of the imaginary
unit, as seen from

Pψi |vν〉= 2 |vµ〉GµσRe 〈vσ|i|vν〉= Jµν |vµ〉 , (23)

where we used (22) and (21). As highlighted previously, i |vν〉 may not lie in the tangent
space, in which case the projection is non-trivial and we have J2 6= −1 in contrast to i2 = −1.
We will explain that J satisfying J2 = −1 on every tangent space is equivalent to having a
manifold that admits a complex holomorphic parametrization, in such case we will speak of a
Kähler manifold. If, on the other hand, it is somewhere not satisfied, we speak of a non-Kähler
manifold and in this case there exist tangent vectors |vµ〉, for which i |vµ〉 will not belong to
the tangent space. Moreover, the projection Pψ will not commute with multiplication by the
imaginary unit.

Example 2. Following example 1, normalized coherent states have tangent vectors

|v1〉=
∂

∂ Rez
|ψ(x)〉= (â† −Rez) |Ψ(x)〉 ,

|v2〉=
∂

∂ Imz
|ψ(x)〉= (iâ† − Imz) |Ψ(x)〉 .

(24)

For z 6= 0, i |vµ〉 will not be a tangent vector, i.e., i |vµ〉 /∈ spanR(|v1〉 , |v2〉). This changes if we
allowed for a variation of phase and normalization (from the complex holomorphic parametriza-
tion), such that we had the additional basis vectors |v3〉= |Ψ(x)〉 and |v4〉= i |Ψ(x)〉.
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As emphasized at the beginning of section 2, here we use a simplified notation, where the
variational family M is a subset of Hilbert space H with complex phase ϕ and normalization
κ as free parameters. In the more technical treatments of sections 3 and 4.1.1, we will avoid
this by defining variational families M as subsets of projective Hilbert space P(H), where we
project out those tangent directions that correspond to changing phase or normalization of
the state. To avoid confusion between these different definitions we use the symbols ω, g, J ,
Pψ and |vµ〉 to indicate the quantities introduced here (including phase and normalization),
while later we will use ω, g , J , Pψ and |Vµ〉 (with phase and normalization being removed).

2.3.2 Real time evolution

We already mentioned how the time dependent variational principle is equivalent to projecting
infinitesimal time evolution steps onto the tangent space. In the general case of non-Kähler
manifolds, there exist two inequivalent projections of Schrödinger’s equation given by

Pψ(i
d
d t − Ĥ) |ψ〉= 0 or Pψ(

d
d t + iĤ) |ψ〉= 0 , (25)

which are obviously equivalent on a complex vector space, as the two forms only differ by
a factor of i. However, the defining property of a non-Kähler manifold is precisely that its
tangent space is not a complex, but merely a real vector space and multiplication by i will not
commute with the projection Pψ.

In section 4 we will show that the first projection Schrödinger’s equation in (25) is equiv-
alent to the formulation in terms of a Lagrangian L introduced earlier. It consequently leads
to the equations of motion (9). The second choice of (25), often referred to as the McLachlan
variational principle, corresponds to minimizing the local error ‖ d

d t |ψ〉 − (−iĤ) |ψ〉‖ made at
every step of the approximation of the evolution and leads to the equations

ẋµ = 2GµνIm〈vν|Ĥ|ψ〉 . (26)

In section 4, we will argue that in most cases the Lagrangian action principle presents the
more desirable properties. In particular, it leads to simple equations of motion that only depend
on the gradient ∂µε and whose dynamics necessarily preserve the energy itself. However, for
some aspects, the McLachlan evolution still has some advantages, such as the conservation
of observables that commute with the Hamiltonian and are compatible with the variational
family, in the sense defined in Section 4.1.2. We will further explain, how one can construct
a restricted evolution that maintains the desirable properties of both projections in (25) for
non-Kähler families, but at the expense of locally reducing the number of free parameters.

Finally, our geometric formalism provides a simple notation to understand and describe
the methods reviewed so far.

2.4 Imaginary time evolution

So far, our discussion was purely focused on real-time dynamics. In the context of excitations
and spectral functions, we referred to an approximate ground state |ψ0〉 in our variational
family, that minimizes the energy function E(x). While there are many numerical methods to
finding minima, our geometric perspective leads to a natural approach based on approximat-
ing imaginary time evolution, which we defined in (2) for the full Hilbert space. We would
like to approximate this evolution as it is known to converge to a true ground state of the
Hamiltonian, provided one starts from a state with a non-vanishing overlap with such ground
state. However, as this evolution does not derive from an action principle, one cannot naively
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generalise for it Dirac’s time dependent variational principle. On the other hand, the tangent
space projection can be straightforwardly applied to equation (2), leading, as we prove in
Section 4.4, to the time evolution

d xµ

dτ
= −Gµν∂νE(x) , (27)

where E(x) = 〈ψ(x)|Ĥ|ψ(x)〉/ 〈ψ(x)|ψ(x)〉 is the energy expectation value function.

The evolution defined in this way always decreases the energy E of the state, as can be
seen from [39]

d
dτ

E =
d xµ

dτ
∂µE = −Gµν∂νE∂µE < 0 , (28)

where we used that G is positive definite.

Indeed, the dynamics defined by (27) can be simply recognised as a gradient descent on the
manifold with respect to the energy function and the natural notion of distance given by the
metric g. Consequently, this evolution will converge to a (possibly only local) minimum of the
energy. In conclusion, we recognize imaginary time evolution projected onto the variational
manifold as a natural method to find the approximate ground the state |ψ0〉= |ψ(x0)〉.

3 Geometry of variational families

In this section, we review the mathematical structures of variational families, assuming them
to be defined by real parameters, which leads to a description that is more general than the
complex case. First, we explain how a complex Hilbert space can be described as real vector
space equipped with so called Kähler structures. Second, we describe the manifold of all pure
quantum states as projective Hilbert space, which is a real differentiable manifold whose tan-
gent spaces can be embedded as complex subspaces in Hilbert space and thereby inherit Kähler
structures themselves. Third, we introduce general variational families as real submanifolds,
whose tangent spaces may lose the Kähler property. Fourth, we study this potential violation
and possible cures.

Starting with the present section, we define variational families M as sub manifolds of
projective Hilbert space P(H), i.e., we describe pure states ψ rather than state vectors |ψ〉 as
already foreshadowed after example 2.

3.1 Hilbert space as Kähler space

Given a separable Hilbert space H with inner product 〈·|·〉, we can always describe vectors by
a set of complex number ψn with respect to a basis {|n〉}, i.e.,

|ψ〉=
∑

n

ψn |n〉 . (29)

We will see that the tangent space of a general variational manifold is a real subspace of Hilbert
space. Given a set of vectors {|n〉}, we distinguish the real and complex span

spanC{|n〉}=
�∑

nψn |n〉
�

�ψn ∈ C
	

,

spanR{|n〉}=
�∑

nψn |n〉
�

�ψn ∈R
	

.
(30)
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On a real vector space, |ψ〉 6= 0 and i |ψ〉 are linearly independent vectors, because one cannot
be expressed as linear combination with real coefficients of the other. A real basis {|Vµ〉} of H
has therefore twice as many elements as the complex basis {|n〉}, such as

{|Vµ〉} ≡ {|1〉 , i|1〉 , |2〉 , i|2〉 , . . . } . (31)

Given any real basis {|Vµ〉} of vectors, we can express every vector |X 〉 as real linear combina-
tion

|X 〉= Xµ |Vµ〉 , (32)

where we use Einstein’s summation convention5.

A general real linear map Â : H → H will satisfy Â(α |X 〉) = αÂ |X 〉 only for real α. If it
also holds for complex α, we refer to Â as complex-linear. The imaginary unit i becomes itself
a linear map, which only commutes with complex-linear maps.

The Hermitian inner product 〈·|·〉 can be decomposed into its real and imaginary parts
given by

〈Vµ|Vν〉=
N
2

�

gµν + iωµν
�

, (33)

with gµν =
2
N Re 〈Vµ|Vν〉, ωµν =

2
N Im 〈Vµ|Vν〉 and N being a normalization which we will fix

in (51). This gives rise to the following set of structures, illustrated in figure 1.

Definition 1. A real vector space is called Kähler space if it is equipped with the following two
bilinear forms

• Metric6 gµν being symmetric and positive-definite with inverse Gµν, so that Gµσgσµ = δ
µ
ν,

• Symplectic form ωµν being antisymmetric and non-degenerate7 with inverse Ωµν, so that
Ωµσωσν = δµν,

and such that the linear map Jµν := −Gµσωσν is a

• Complex structure Jµν satisfying J2 = −1.

The last condition is also called compatibility between g and ω. We refer to (g ,ω, J) as Kähler
structures.

Clearly, g is a metric and ω is a symplectic form. Furthermore, we will see that they are
indeed compatible and define a complex structure J . For this, it is useful to introduce the real
dual vectors Re〈X | and Im〈X | that act on a vector |Y 〉 via

Re〈X |Y 〉= N
2 XµgµνY ν , Im〈X |Y 〉= N

2 XµωµνY ν , (34)

as one may expect. The identity 1=
∑

n |n〉 〈n| is then

1= 2
N Gµν |Vµ〉 Re〈Vν| . (35)

5We will be careful to only write equations with indices that are truly independent of the choice of basis, such
that the symbol X µ may very well stand for the vector |X 〉 itself. This notation is known as abstract index notation
(see appendix A.2).

6Here, “metric” refers to a metric tensor, i.e., an inner product on a vector space. It should not be confused with
the notion of metric spaces in analysis and topology.

7A bilinear form bµν is called non-degenerate, if it is invertible. For this, we can check det(b) 6= 0 in any basis
of our choice.
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Jµν = −Gµσωσν
(compatibility)

ωµν gµν

Jµν

Symplectic form:
Antisymmetric
non-degenerate
bilinear form

Metric:
Symmetric
positive-definite
bilinear form

Linear complex structure:
Squares to minus identity: J2 = −1

Inverse Ωi j with
Ωµσωσν = δµν

Inverse Gµν with
Gµσgσν = δ

µ
ν

Figure 1: Triangle of Kähler structures. This sketch illustrates the triangle of Kähler
structures, consisting of a symplectic formω, a positive definite metric g and a linear
complex structure J . We also define the inverse symplectic form Ω and the inverse
metric G.

Similarly, the matrix representation of an operator Â is

Aµν =
2
N GµσRe〈Vσ|Â|Vν〉 . (36)

In particular, we compute the matrix representation of the imaginary unit i to be given by

Jµν =
2
N GµσRe〈Vσ|i|Vν〉= −Gµσωσν (37)

as anticipated in our definition. From i2 = −1, we conclude that the so defined J indeed
satisfies J2 = −1 and is thus a complex structures. Therefore, g and ω as defined in (33) are
compatible.

Example 3. A qubit is described by the Hilbert space H = C2 with complex basis {|0〉 , |1〉} and
real basis

|Vi〉 ≡ {|0〉 , |1〉 , i |0〉 , i |1〉} . (38)

With respect to this real basis gµν, ωµν and Jµν are

gµν ≡
2
N

�

1 0
0 1

�

, ωµν ≡
2
N

�

0 1

−1 0

�

, Jµν ≡
�

0 −1
1 0

�

, (39)

where 1 is the 2×2 identity matrix. We can represent a complex-linear map Â=
∑

n,m anm |n〉 〈m|,
i.e., with [A, J] = 0, as the matrix

Aµν ≡
�

A −B
B A

�

, (40)

where A= Re(a) and B= Im(a) in above basis.

In summary, every Hilbert space is a real Kähler space with metric, symplectic form and
complex structure.
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3.2 Projective Hilbert space

Multiplying a Hilbert space vector |ψ〉 with a non-zero complex number does not change the
quantum state it represents. Therefore, the manifold representing all physical states is given by
the projective Hilbert space P(H), which we will define and analyze in this section. Variational
families, which we will discuss in the following section, should then naturally be understood
as submanifolds M of projective Hilbert space P(H).

The projective Hilbert space of H

P(H) = (H\{0})/∼ (41)

is given by the equivalence classes of non-zero Hilbert space vectors with respect to the equiv-
alence relation

|ψ〉 ∼ |ψ̃〉 ⇔ ∃ c ∈ C with |ψ̃〉= c |ψ〉 . (42)

Thus, a state ψ ∈ P(H) is a ray in Hilbert space consisting of all non-zero vectors that are
related by multiplication with a non-zero complex number c.

The tangent space TψP(H) represents the space of changes δψ around an element
ψ ⊂ P(H). Changing a representative |ψ〉 in the direction of itself, i.e., |δψ〉 ∝ |ψ〉, cor-
responds to changing |ψ〉 by a complex factor and thus does not change the underlying state
ψ. Two Hilbert space vectors |X 〉 , |X̃ 〉 ∈ H therefore represent the same change |δψ〉 of the
state |ψ〉 ∈ψ, if they only differ by some α |ψ〉. We define tangent space as

TψP(H) =H/≈ , (43)

where we introduced the equivalence relation

|X 〉 ≈ |X̃ 〉 ⇔ ∃ c ∈ C with |X 〉 − |X̃ 〉= c |ψ〉 , (44)

leading to a regular (not projective) vector space.

We can pick a unique representative |X 〉 of the class [|δψ〉] at the state |ψ〉 by requiring
〈ψ|X 〉 = 0. Viceversa, two vectors |X 〉 6= |X̃ 〉 both satisfying 〈ψ|X 〉 = 〈ψ|X̃ 〉 = 0 belong to
different equivalence classes. We thus identify TψP(H) with

H⊥ψ =
�

|X 〉 ∈H
�

� 〈ψ|X 〉= 0
	

. (45)

Given a general representative |δψ〉 ∈ [|δψ〉], we compute the unique representative men-
tioned above as |X 〉=Qψ |δψ〉 with

Qψ |δψ〉= |δψ〉 −
〈ψ|δψ〉
〈ψ|ψ〉

|ψ〉 . (46)

There is a further subtlety: representing a change δψ of a state ψ as vector |δψ〉 will al-
ways be with respect to a representative |ψ〉. If we choose a different representative
|ψ̃〉 = c |ψ〉 ∈ ψ, the same change δψ would be represented by a different Hilbert space
vector |δψ̃〉 = c |δψ〉. It therefore does not suffice to specify a Hilbert space vector |δψ〉, but
we always need to say with respect to which representative |ψ〉 it was chosen. This could be
avoided when moving to density operators8.

8We can equivalently define projective Hilbert space as the set of pure density operators, i.e., Hermitian, positive
operators ρ with Trρ = Trρ2 = 1. The stateψ is then given by the density operator ρψ =

|ψ〉〈ψ|
〈ψ|ψ〉 and its change δψ

by δρψ =
|δψ〉〈ψ|+|ψ〉〈δψ|

〈ψ|ψ〉 .
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The fact we can identify the tangent space at each point with a Hilbert space H⊥
ψ

enables us,

given a local real basis {|Vµ〉} at ψ, such that H⊥
ψ
= spanR{|Vµ〉}, to induce a canonical metric

gµν, symplectic form ωµν and Jµν onto the tangent space, which thus is a Kähler space, as
discussed previously. We see at this point that on the tangent space TψP(H), it is convenient
to choose N = 〈ψ|ψ〉 as normalization for the Kähler structures. The rescaled metric 1

2 gµν
is well-known as the Fubini-Study metric [40,41], while the symplectic form gives projective
Hilbert space a natural phase space structure.

Manifolds such as P(H), whose tangent spaces are equipped with differentiable Kähler
structures, are called almost-Hermitian manifolds. In appendix C, we show that P(H) satisfies
even stronger conditions, which make it a so called Kähler manifold.

Example 4. The projective Hilbert space of a Qubit is P(C2) = S2, equivalent to the Bloch sphere.
Using spherical coordinates xµ ≡ (θ ,φ) and the complex Hilbert space basis {|0〉 , |1〉}, we can
parametrize the set of states as

|ψ(x)〉= cos
�

θ
2

�

|0〉+ eiφ sin
�

θ
2

�

|1〉 . (47)

The elements of P(H) are the equivalence classesψ(x) =
�

c |ψ(x)〉
�

� c ∈ C, c 6= 0
	

. Consequently,
the tangent space TψP(C2) =H⊥

ψ
of the Bloch sphere at xµ ≡ (θ ,φ) can be spanned by the basis

|Vµ〉=Qψ
�

∂
∂ xµ

�

|ψ(x)〉 with

|V1〉= −
1
2 sin

�

θ
2

�

|0〉+ eiφ

2 cos
�

θ
2

�

|1〉 ,

|V2〉= −
i
2 sin

�

θ
2

�

sinθ |0〉+ ieiφ

2 cos
�

θ
2

�

sinθ |1〉 .
(48)

Using the definition (33) of the metric and symplectic form from the Hilbert space inner product,
we can compute the matrix representations

gµν ≡ 2

�

1 0
0 sin2 θ

�

and ωµν ≡ 2

�

0 sinθ
− sinθ 0

�

. (49)

We recognize gµνd xµd xν = 1
2(dθ

2 + sin2(θ )dφ2) to be the standard metric of a sphere with
radius 1/

p
2. Similarly, we recognize ωµνd xµd xν = 1

2 sinθdθ∧dφ to be the standard volume
form on this sphere. Finally, it is easy to verify that J2 = −1 everywhere.

In summary, a given pure state can be represented by the equivalence classψ ∈ P(H) of all
states related by multiplication with a non-zero complex number. Similarly, a tangent vector
[|X 〉] ∈ TψP(H) at a state ψ is initially defined as the affine space [|X 〉] of all vectors |X 〉
differing by a complex multiple of |ψ〉. A unique representative |X̃ 〉 can be chosen requiring
〈ψ|X̃ 〉 = 0. This leads to the identification TψP(H) ' H⊥

ψ
, such that the Hilbert space inner

product 〈·|·〉 induces local Kähler structures onto TψP(H).

3.3 General variational manifold

The most general variational family is a real differentiable submanifold M ⊂ P(H). At every
point ψ ∈M, we have the tangent space TψM of tangent vectors |X 〉ψ. TψM can be em-
bedded into Hilbert space by defining the local frame |Vµ〉ψ ∈ H, such that |X 〉 = Xµ |Vµ〉, as
before. Note, however, that in general the tangent space TψM = spanR{|Vµ〉} is only a real,
but not necessarily a complex subspace of H. Thus, we will encounter families, for which |X 〉
is a tangent vector, but not i|X 〉.
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M

x1

x2

TψM ⊂H⊥
ψ

|V2〉
|V1〉

ψ(x)

Figure 2: Tangent vectors. We sketch the basis vectors |Vµ〉 of tangent space TψM for
a manifold M parametrized by two coordinates (x1, x2).

In practice, we often parametrize ψ(x) ∈M by choosing a representative |ψ(x)〉 ∈ H.
This allows us to construct the local basis |Vµ(x)〉 of tangent space TψM

|Vµ(x)〉=Qψ(x) ∂µ |ψ(x)〉 , (50)

at the state |ψ(x)〉, where Qψ was defined9 in (46). To simplify notation, we will usually drop
the reference toψ(x) or x and only write |Vµ〉, whenever it is clear at which state we are. The
schematic idea behind tangent space is sketched in figure 2.

Similar to projective Hilbert space, we define restricted Kähler structures on tangent space
TψM ⊂ TψP(H) as

gµν=
2 Re〈Vµ|Vν〉
〈ψ|ψ〉

and ωµν=
2 Im〈Vµ|Vν〉
〈ψ|ψ〉

. (51)

There are two important differences to the corresponding definition (33) in full Hilbert space.
First, with a slight abuse of notation, |Vµ〉 here does not span the Hilbert space, but rather the
typically much smaller tangent space. Second, we set N = 〈ψ|ψ〉 just like for P(H), such that

〈Vµ|Vν〉=
〈ψ|ψ〉

2

�

gµν + iωµν
�

. (52)

This has the important consequence that the restricted Kähler structures are invariant un-
der the change of representative |ψ〉 of the physical state. Namely, under the transformation
|ψ〉 → c |ψ̃〉 with |Vµ〉 → c |Vµ〉, our Kähler structures will not change. This ensures that equa-
tions involving restricted Kähler structures are manifestly defined on projective Hilbert space
and thus independent of the representative |ψ(x)〉 ∈H, we use to represent the abstract state
ψ(x) ∈M ⊂ P(H).

We have TψM ⊂ H and for |X 〉 , |Y 〉 ∈ H, we have the real inner product Re〈X |Y 〉 on H
inducing the norm ‖|X 〉‖ =

p

Re 〈X |X 〉 =
p

〈X |X 〉, which is nothing more than the regular
Hilbert space norm. We then define the orthogonal projector Pψ from H onto TψM with
respect to Re〈·|·〉, i.e., for each vector |X 〉 ∈ H we find the vector Pψ |X 〉 ∈ TψM minimizing
the norm ‖|X 〉 −Pψ |X 〉‖.

9The projector Qψ is important to ensure that |Vµ〉 can be identified with an element of H⊥
ψ
' TψP(H) as

discussed in Section 3.2, i.e., 〈ψ|Vµ〉 = 0. For derivations, it can be useful to go into a local coordinate system of
xµ, in which |Vµ〉 = ∂µ |ψ〉, i.e., the action of Qψ can be ignored. This can always be achieved locally at a point
and any invariant expressions derived this way, will be valid in any coordinate system.
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Table 1: Comparison: Kähler vs. Non-Kähler. We review the properties of restricted
Kähler structures in each case. See appendix C for a review of the conditions for a
general manifold to be Kähler.

Kähler
Non-Kähler

(non-
degenerate)

(degenerate)

Restricted metric g
symmetric, positive

definite,
symmetric, positive definite,

inverse G (Gg = 1) invertible invertible

Restricted symplectic
form ω

antisymmetric, closed
(dω= 0),

antisymmetric, may not be closed

inverse Ω (Ωω= 1) or
pseudo-inverse Ω

non-degenerate
non-

degenerate
degenerate

Restricted complex
structure J

J2 = −1, 0≥ J2 ≥ −1,

inverse or
pseudo-inverse

J−1 = −Ωg
invertible with J−1 = −J invertible

pseudo-
invertible

We can write this orthogonal projector in two ways:

Pψ =
2 |Vµ〉GµνRe〈Vν|

〈ψ|ψ〉
, P

µ

ψ
=

2GµνRe〈Vν|
〈ψ|ψ〉

, (53)

such that we have Pψ = |Vµ〉P
µ

ψ
. The difference lies in the co-domain: While Pψ : H → H

maps back onto Hilbert space, e.g., to compute P2
ψ
= Pψ, we have that Pµ

ψ
: H→ TψM is a

map from Hilbert space into tangent space. Due to TψM ⊂ TψP(H), we have

Pψ = PψQψ =QψPψ and P
µ

ψ
= P

µ

ψ
Qψ , (54)

which follows from Qψ |Vµ〉 = |Vµ〉 and Q
†
ψ
= Qψ. In contrast to Qψ, the projector Pψ is in

general not Hermitian.

Provided that there are no redundancies or gauge directions (only changing phase or nor-
malization) in our choice of parameters, gµν will still be positive-definite and invertible with
inverse Gµν. We find that

Jµν = −Gµσωσν =
2GµσRe〈Vσ|i|Vν〉

〈ψ|ψ〉
= P

µ

ψ
i |Vν〉 (55)

is the projection of the multiplication by the imaginary unit (as real-linear map) onto TψM.
It will not square to minus identity if multiplication by i in full Hilbert space does not preserve
the tangent space.

If gµν is not invertible, it means that there exists a set of coefficients Xµ such that
XµgµνX ν = 0, that is ‖Xµ |Vµ〉 ‖= 0 and therefore Xµ |Vµ〉= 0. In other words, not all vectors
|Vµ〉 are linearly independent and thus also not all parameters are independent. If this is the
case, it is not a real problem as the formalism introduced can still be used with little modi-
fications. More precisely, the projectors (53), as well as all other objects we will introduce,
are meaningfully defined if we indicate with Gµν the Moore-Penrose pseudo-inverse of gµν,
i.e., we invert gµν only on the orthogonal complement to its kernel (orthogonal with respect
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of the flat metric δµν in our coordinates10). Indeed, all directions in the kernel correspond to
a vanishing vector in the tangent space and therefore do not matter. In this case, also Ωµν,
should be defined as the inverse of ωµν on the orthogonal complement to the kernel of gµν.

11

However, it is still possible that ω and J are not invertible even on this reduced subspace.

In this case, in order to define Ω one has to reduce oneself to working on an even smaller
subspace, that is one that does not contain the kernel of ω and J . Here, however, the way
in which we reduce these extra dimensions is not equivalent, as these directions are not any-
more just redundant gauge choices of our parametrization. The reduction here effectively
corresponds to working on a physically smaller manifold, as we will explain better in the next
section. For what follows we will always suppose that Ω is defined by inverting ω on the tan-
gent subspace orthogonal, with respect to the metric gµν, to the kernel of J . That is, Ω is the
Moore-Penrose pseudo-inverse of ω with respect to g , i.e., the pseudo-inverse is evaluated in
an orthonormal basis. In appendix E, we elaborate further on the definition and evaluation of
this pseudo-inverse.

In conclusion, we see that we are able to define the restricted structures (g ,ω, J) which,
however, do not necessarily satisfy the Kähler property. This is due to the fact that the tangent
space, as we have pointed out, is a real, but not necessarily complex subspace of H. Note that
these objects are locally defined in each tangent space TψM for ψ ∈M.

Example 5. For the Hilbert space H = (C2)⊗2 of two Qubits, we can choose the variational
manifold M of symmetric product states represented by

|ϕ(x)〉= |ψ(x)〉 ⊗ |ψ(x)〉 , (56)

with xµ ≡ (θ ,φ), where |ψ(x)〉 is a single Qubit state as parametrized in (47). The tangent
space is spanned by

|Wµ〉= |Vµ〉 ⊗ |ψ(x)〉+ |ψ(x)〉 ⊗ |Vµ〉 , (57)

where |Vµ〉 are the single Qubit tangent vectors defined in (48). With this, we find

gµν ≡
�

1 0
0 sin2 (θ )

�

and ωµν ≡
�

0 sinθ
− sinθ 0

�

(58)

leading to J2 = −1 everywhere. We therefore conclude that the tangent space TψM satisfies the
Kähler property everywhere.

Example 6. For the single Qubit Hilbert space H = C2, we can choose the equator of the Bloch
sphere as our variational manifold M. This amounts to fixing θ = π/2 in the single Qubit
state (47) leading to the representatives

|ψ(φ)〉= 1p
2
|0〉+

eiφ

p
2
|1〉 , (59)

with a single variational parameter φ. We have the single tangent vector |V 〉 = |V1〉 as defined
in (48). From the inner product 〈V |V 〉 = 1

4 , we find g = 1
2 and ω = 0 implying J = 0. Con-

sequently and not surprising due to the odd dimension, the tangent spaces of our variational
manifold M are not Kähler spaces. Moreover, neither ω nor J are invertible.

10In the specific case of the manifold of matrix product states, there exists a different, more natural definition of
orthogonality [42].

11Note that the kernel ofωµν itself does not necessarily correspond to redundant directions of the parametrization
as X µωµν = 0 does not imply X µ |Vµ〉= 0.
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Example 7. We consider a bosonic system with two degrees of freedom associated with annihi-
lation operators â1 and â2. The vacuum state |0, 0〉 satisfies âm |0,0〉 = 0, â†

1 |0,0〉 = |1, 0〉 and
â†

2 |0, 0〉= |0,1〉. We introduce

b̂ = cosh r â1 + sinh r â†
2 , (60)

with canonical commutation relations [b̂, b̂†] = 1 and r being a fixed constant (not a variational
parameter). We then define the states of our variational manifold as

|ψ(α)〉= eαb̂†−α∗ b̂ |0〉 , (61)

parametrized by a single complex number α. |ψ(α)〉 is not the one-mode coherent state
|α〉 = eαâ†−α∗ â |0〉, because b̂ |0〉 6= 0. Our variational manifold has two independent real pa-
rameters given by xµ ≡ (Reα, Imα). After some algebra taking [b̂, b̂†] = 1 into account, we
find

|V1〉= eαb̂†−α∗ b̂ (cosh r |1,0〉 − sinh r |0, 1〉) ,

|V2〉= eαb̂†−α∗ b̂ i(cosh r |1, 0〉+ sinh r |0,1〉) .
(62)

Metric and symplectic form take the forms

gµν ≡ cosh 2r

�

2 0
0 2

�

and ωµν ≡
�

0 2
−2 0

�

. (63)

This gives rise to the restricted complex structure

Jµν ≡ sech 2r

�

0 −1
1 0

�

, (64)

which only satisfies J2 = −1 for r = 0.

In summary, we introduced general variational manifolds as real differentiable subman-
ifolds M of projective Hilbert space P(H). By embedding the tangent spaces TψM into
Hilbert space, the Hilbert space inner product defines restricted Kähler structures on the tan-
gent spaces, whose properties we will explore next.

3.4 Kähler and non-Kähler manifolds

We categorize variational manifolds depending on whether their tangent spaces are Kähler
spaces or not. We will see in the following sections that this distinction has some important
consequences for the application of variational methods on the given family.

Definition 2. We classify general variational families M ⊂ P(H) based on their restricted Kähler
structures. We refer to a variational family M as

• Kähler12, if all tangent spaces TψM are a Kähler spaces, i.e., J2 = −1 everywhere on the
manifold,

12A general manifold M, whose tangent spaces are equipped with compatible Kähler structures, is known as an
almost Hermitian manifold. However, if an almost Hermitian manifold is the submanifold of a Kähler manifold
(as defined in appendix C), then it is also a Kähler manifold itself. Thus, due to the fact that P(H) is a Kähler
manifold, all almost Hermitian submanifolds M ⊂ P(H) are also Kähler manifolds, which is why we use the term
Kähler in this context.
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• Non-Kähler, if it is not Kähler. If ω is degenerate, we define Ω as the pseudo-inverse.

This classification refers to the manifold as a whole. In table 1 we summarize the properties of
each class of manifolds.

Many well-known variational families, such as Gaussian states [43], coherent states [29,
30, 44], matrix product states [45] and projected entangled pair states [46], are Kähler. On
the other hand, one naturally encounters non-Kähler manifolds when one parametrizes states
through a family of general unitaries U(x) applied to a reference state |φ〉, i.e.,

|ψ(x)〉= U(x) |φ〉 . (65)

For example, this issue arises for the classes of generalized Gaussian states introduced in [32],
for the Multi-scale Entanglement Renormalisation Ansatz states [47] or if one applies Gaussian
transformations U(x) to general non-Gaussian states.

Example 8. We already reviewed examples for these three cases in the previous section. More
precisely, example 5 is Kähler, example 6 is non-Kähler with degenerate ω and example 7 is non-
Kähler with non-degenerate ω.

Given a submanifold M ⊂ P(H), we can use the embedding in the manifold P(H) to
constrain the form that the restricted complex structure J can take on M.

Proposition 1. On a tangent space TψM ⊂H of a submanifold M ⊂ P(H) we can always find
an orthonormal basis {|Vµ〉}, such that gµν ≡ 1 and the restricted complex structure is represented
by the block matrix

Jµν ≡







































1
−1

. . .
c1

−c1

c2

−c2

. . .
0

. . .







































(66)

with 0< ci < 1. This standard form induces the decomposition of TψM into the three orthogonal
parts

TψM= TψM⊕ IψM
︸ ︷︷ ︸

TψM

⊕DψM , (67)

where TψM is the largest Kähler subspace and TψM is the largest space on which J and ω are
invertible.

Proof. We present a constrictive proof in appendix B.

Proposition 1 is also relevant for classifying real subspaces of complex Hilbert spaces. In-
terestingly, it is linked to the entanglement structure of fermionic Gaussian states, as made
explicit in [48].
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The manifold M is Kähler if there is only the first block in (66) everywhere. The symplectic
form ω is non-degenerate if we only have the first two diagonal blocks. The next proposition
provides some further intuition for the non-Kähler case, which is also known in mathematics
in the context of sub manifolds of Kähler manifolds [49].

Proposition 2. The Kähler property is equivalent to requiring that TψM is not just a real, but
also a complex subspace, i.e., for all |X 〉 ∈ TψM, we also have i|X 〉 ∈ TψM. Therefore, the
multiplication by i commutes with the projector Pψ, i.e., Pψi= iPψ and Pψ is complex-linear.

Proof. We present a proof in appendix B.

If a manifold admits a complex holomorphic parametrization, i.e., a parametrization that
depends on the complex parameters zµ, but not on z∗µ, then the manifold will be Kähler.
Indeed, taking Rezµ and Imzµ as real parameters gives the tangent vectors

|vµ〉=
∂

∂ Rezµ
|ψ(z)〉 , i |vµ〉=

∂

∂ Imzµ
|ψ(z)〉 . (68)

It is actually also possible to show that, viceversa, a Kähler manifold is also a complex manifold,
that is it admits, at least locally, a complex holomorphic parametrization.

As mentioned before, in order to define the inverse ofω it is necessary to restrict ourselves
to work only in a subspace of TψM. We now see that the definition we gave previously of
always defining Ω as the pseudo-inverse with respect to g coincides with always choosing to
consider only the tangent directions in

TψM= spanR{|V i〉} . (69)

In order to apply variational methods as explained in the following sections, it may be
necessary to at least locally restore the Kähler property. We can achieve this by locally further
restricting ourselves to

TψM= spanR{|V i〉} . (70)

Using the bases {|Vµ〉} and {|Vµ〉}, we can define the restricted Kähler structures (g ,ω, J),
which are compatible, and (g ,ω, J), where ω and J are non-degenerate.

Our assumption on the definition of Ω can be understood as taking Ω to be zero on the
subspace DψM, where ω is not invertible, and equal to the inverse of ω on TψM. Note that
this definition is only possible because the tangent space is also equipped with a metric g ,
which makes the orthogonal decomposition TψM= TψM⊕DψM well-defined.

In summary, a general variational family M ⊂ P(H) is not necessarily a Kähler manifold.
We can check locally, if the restricted Kähler structures fail to satisfy the Kähler condition. If
this happens, we can always choose local subspaces

TψM ⊂ TψM ⊂ TψM (71)

on which the restricted Kähler structures satisfy the Kähler properties or are at least invert-
ible. Defining Ω as the pseudo-inverse with respect to g is equivalent to inverting ω only on
TψM. In what follows, we therefore do not need to distinguish between the non-Kähler cases
with degenerate or non-degenerate structures, as we will always be able to apply the same
variational techniques based on Ω.
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3.5 Observables and Poisson bracket

Any Hermitian operator Â defines a real-valued function 〈Â〉 on the manifold M and in fact on
the whole projective Hilbert space. The function is given by the expectation value

A(x) = 〈Â〉 (x) =
〈ψ(x)|Â|ψ(x)〉
〈ψ(x)|ψ(x)〉

. (72)

It is invariant under rescalings of |ψ〉 by complex factors and is thus a well-defined map on
projective Hilbert space P(H). We will use the notation 〈Â〉 and A(x) interchangeably. For the
function deriving from the Hamiltonian operator Ĥ, we use the symbol E = 〈Ĥ〉 and call it the
energy.

Given a Hermitian operator Â and the representative |ψ(x)〉, we have the important rela-
tion

P
µ

ψ
Â |ψ〉= Gµν(∂νA) , (73)

which is invariant under the change of representative |ψ〉 → c |ψ〉 and |Vµ〉 → c |Vµ〉. It follows
from

∂µA=
2Re〈Vµ| Â |ψ〉
〈ψ|ψ〉

= gµνP
ν
ψÂ |ψ〉 , (74)

where we used product rule and (50).

The following definition will play an important role in the context of Poisson brackets and
conserved quantities. Every operator Â defines a vector field given by QψÂ |ψ〉. If this vector
field is tangent to M for all ψ ∈M, the following definition applies.

Definition 3. Given a general operator Â and a variational familyM ⊂ P(H), we say Âpreserves
M if

QψÂ |ψ〉= (Â− 〈Â〉) |ψ〉 for all ψ ∈M (75)

lies in the tangent space TψM, i.e., QψÂ |ψ〉= PψÂ |ψ〉.

The symplectic structure of the manifold naturally induces a Poisson bracket on the space
of differentiable functions, which is given by

{A, B} := (∂µA)Ωµν(∂νB) . (76)

In some special cases this can be related to the commutator of the related operators.

Proposition 3. Given two Hermitian operators Â and B̂ of which one preserves the Kähler mani-
fold M, i.e.,

(Â− 〈Â〉) |ψ〉 ∈ TψM or (B̂ − 〈B̂〉) |ψ〉 ∈ TψM , (77)

the Poisson bracket is related to the commutator via

{A, B}= i
〈ψ|[Â, B̂]|ψ〉
〈ψ|ψ〉

. (78)
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Table 2: Action principles. We review the different action principles and how they
relate to the respective manifolds.

Lagrangian McLachlan Dirac-Frenkel

Definition Pψ(i
d
d t − Ĥ) |ψ〉= 0 Pψ(

d
d t + iĤ) |ψ〉= 0 both

Kähler manifold always defined and all equivalent

Non-Kähler
manifold

defined for chosen
inverse Ω

(see proposition 4)

always defined
(see proposition 5)

not defined

Advantage
energy conservation
(see proposition 4)

conservation of
symmetries

(see proposition 7)
both

Linearization
around ground

state

possible
(see section 4.2.2)

not possible
(see section 4.2.2)

possible

Proof. We compute

i 〈ψ|[Â,B̂]|ψ〉
〈ψ|ψ〉 = 2Re〈ψ|(Â−〈Â〉)i(B̂−〈B̂〉)|ψ〉

〈ψ|ψ〉 . (79)

As one of the vectors (Â−〈Â〉) |ψ〉 or (B̂−〈B̂〉) |ψ〉 lies in the tangent space TψM, (34) applies,
giving

i 〈ψ|[Â,B̂]|ψ〉
〈ψ|ψ〉 = P

µ

ψ
Â |ψ〉 gµνP

ν
ψiB̂ |ψ〉= ∂νA JνρGρσ∂σB = ∂νAΩ

νσ∂σB , (80)

where we used (74) and J = −J−1 = Ωg for a Kähler manifold.

For M= P(H), above conditions are clearly met for any Hermitian operators Â and B̂. For
a general Kähler submanifold M ⊂ P(H), however, the validity of (78) depends on the choice
of operators considered. On a submanifold which is not Kähler the statement is in general no
longer valid.

4 Variational methods

Having introduced the mathematical background in the previous section, we can now study
how variational methods allow us to describe closed quantum systems approximately. Given
a system defined by a Hilbert space H and a Hamiltonian Ĥ, we assume that a choice of a
variational manifold M ⊂ P(H), as defined in the previous section, has been made and show
how to (A) describe real time dynamics, (B) approximate excitation energies, (C) compute
spectral functions, (D) search for approximate ground states. In doing so, we will emphasize
the differences that arise between the cases where the chosen variational manifold is or is not
of the Kähler type.

Following the conventions introduced in section 3, we present a systematic and rigorous
treatment of variational methods, for which section 2 served as prelude with some simplifica-
tions as discussed after example 2.
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4.1 Real time evolution

For what concerns real time evolution, we would like to approximate the Schrödinger equa-
tion (1) on our variational manifold M. There are different principles, used extensively in the
literature, according to which this approximation can be performed. We will see that only in
the case of Kähler manifolds they are all equivalent.

4.1.1 Variational principles

Following the literature, we can define the following variational principles for |ψ〉 := |ψ(t)〉.

Lagrangian action principle [25]. The most commonly used variational principle relies
on the Lagrangian action, already introduced in (13),

S =
∫ t f

t i

L d t =

∫ t f

t i

d t Re
〈ψ|(i d

d t − Ĥ)|ψ〉
〈ψ|ψ〉

, (81)

whose stationary solution satisfies

0= Re 〈Qψδψ|(i
d
d t − Ĥ)|ψ〉 (82)

for all times and all allowed variations |δψ(t)〉 with Qψ |δψ〉 = |δψ〉 −
〈ψ|δψ〉
〈ψ|ψ〉 |ψ〉 from (46).

This is equivalent to Schrödinger’s equation on projective Hilbert space13. On a variational
manifold M ⊂ P(H), i.e., where we require Qψ |δψ(t)〉 ∈ Tψ(t)M in (82), we instead have

Pψi d
d t |ψ〉= PψĤ |ψ〉 . (83)

This gives rise to the equations of motion (9) anticipated in Section 2, which we derive in
Proposition 4. For a time-independent Hamiltonian, they always preserve the energy expecta-
tion value.

McLachlan minimal error principle [50]. Alternatively, we can try to minimize the error
between the approximate trajectory and the true solution. As we do not know the latter, we
cannot compute the total error, but at least we can quantify the local error in state norm







d
d t |ψ〉 − (−iĤ) |ψ〉





 , (84)

due to imposing that d
d t |ψ(x)〉 represents a variation tangent to the manifold,

i.e., Qψ
d
d t |ψ(x)〉 ∈ TψM. It is minimized by the projection

Qψ
d
d t |ψ〉= −PψiĤ |ψ〉 . (85)

This gives rise to the equations of motion (26) anticipated in Section 2, which we derive in
Proposition 5. The resulting equations of motion only agree with the Lagrangian action if M
is a Kähler manifold. Otherwise, they may not preserve the energy expectation value.

Dirac-Frenkel variational principle [51,52]. Another variational principle requires

〈δψ|(i d
d t − Ĥ)|ψ〉= 0 (86)

for all allowed variations |δψ(t)〉. It is easy to see that the real and imaginary parts of (86)
are equivalent to (83) and (85) respectively. Therefore, this principle is well-defined (and

13The fact that the projector Qψ onto projective tangent space H⊥
ψ

appears, shows that the resulting dynamics is
defined on projective Hilbert space, while global phase and normalization are left undetermined. We will explain
how to recover the dynamics of phase and normalization in Section 4.1.3.
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equivalent to the other two) only in the cases in which they are equivalent between themselves,
that is, as we will see, if and only if M is a Kähler manifold. Otherwise, the resulting equations
will be overdetermined.

Expressing equations (83) and (85) in coordinates leads to flow equations for the manifold
parameters x(t). We can then define a real time evolution vector field X µ everywhere on M,
such that

d xµ

d t
= X µ(x) . (87)

Integrating such equations defines the flow map Φt that maps an initial set of coordinates
xµ(0) to the values xµ(t) that they assume after evolving for a time t.

In the case of the Lagrangian action principle, the vector field X takes the form given in
the following proposition. A similar derivation was also considered in [25].

Proposition 4. The real time evolution projected according to the Lagrangian action princi-
ple (83) is

d xµ

d t
≡ X µ = −Ωµν(∂νE) , (Lagrangian) (88)

where E(x) is the energy function, defined in the context of equation (72). Such evolution always
conserves the energy expectation value.

Proof. From the definition (50) of the tangent space basis, we have

d
d t |ψ〉= ẋµ ∂µ |ψ〉= ẋµ |Vµ〉+

〈ψ| d
d tψ〉

〈ψ|ψ〉
|ψ〉 . (89)

We substitute this in (83) and then expand the projectors using the relations (53), (55) and
Pψi |ψ〉= 0 to obtain

JµνX ν = Gµρ
2Re〈Vρ| Ĥ |ψ〉
〈ψ|ψ〉

. (90)

We further simplify the expression by using (74) and (J−1)µν = −Ωµρgρν from (55). This
leads to

X µ = (J−1)µνG
νσ∂σE = −Ωµν∂νE . (91)

To obtain the variation of the energy expectation value E we compute directly

dE
d t
= (∂µE)

d xµ

d t
= −(∂µE)Ωµν(∂νE) = 0 , (92)

where we used the antisymmetry of Ωµν. If J (and thus also Ω) is not invertible, one needs to
restrict to an appropriate subspace.

The most important lesson of (88) is that projected time evolution on a Kähler manifold is
equivalent to Hamiltonian evolution with respect to energy function E(x). As was pointed out
in [24], already the time evolution in full projective Hilbert space, i.e., M = P(H), follows
the classical Hamilton equations if we use the natural symplectic form Ωµν. Let us point out
that the sign in equation (88) depends on the convention chosen for the symplectic form,
which in classical mechanics differs from the one adopted here. One further consequence of
equation (88) is that the real time evolution vector field X (x) vanishes in stationary points
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of the energy, that is points x0 such that ∂µE(x0) = 0. These points will therefore also be
stationary points of the evolution governed by X as illustrated in figure 3.

Let us here recall that, ifωµν is not invertible,Ωµν refers to the pseudo-inverse, as discussed
in sections 3.3 and 3.4. This convention means that in practice the Lagrangian evolution will
always take place in the submanifold ofM on whichω is invertible. There may be pathological
cases where ω vanishes on the whole tangent space and therefore the Lagrangian principle
does not lead to any evolution. In appendix E, we present a method to efficiently compute the
pseudo-inverse in practical applications.

In the case of the McLachlan minimal error principle, the evolution equations take the form
given in the following proposition, which cannot be simplified further. It is also in general not
true that this evolution conserves the energy or that has a stationary point in energy minima.

Proposition 5. The real time evolution projected based on the McLachlan minimal error prin-
ciple (85) is

d xµ

d t
≡ X µ = −

2GµνRe〈Vν|iĤ|ψ〉
〈ψ|ψ〉

. (McLachlan) (93)

Proof. By substituting (50) in (85), analogously to what was done in (89), we have

ẋµ = P
µ

ψ
(−iĤ |ψ〉) , (94)

from which the proposition follows by expanding the projector according to (53).

To perform real time evolution in practice, either based on (88) for Lagrangian evolution
or based on (93) for McLachlan evolution, we will typically employ a numerical integration
scheme [53, 54] to evolve individual steps. It is generally hard to get rigorous bounds on
the resulting error that increases over time, but in certain settings there still exist meaningful
estimates [55]. Let us now relate the different variational principles, which has also been
discussed in [56].

Proposition 6. The Lagrangian, the McLachlan and the Dirac-Frenkel variational principle are
equivalent if the variational family is Kähler.

Proof. To prove the statement, it is sufficient to see that equations (83) and (85) can be written
simply as applying the tangent space projector Pψ to two different forms of the Schrödinger
equation, i.e.,

Lagrangian: Pψ(i
d
d t − Ĥ) |ψ〉= 0 (95)

McLachlan: Pψ(
d
d t + iĤ) |ψ〉= 0. (96)

These two forms only differ by a factor of i. However, as we discussed in proposition 2, one
equivalent way to define the Kähler property of our manifold is that multiplication by i com-
mutes with the projector Pψ. Therefore, if the manifold is Kähler, an imaginary unit can be
factored out of equations (95) and (96) making them coincide. If, on the other hand, the
manifold is non-Kähler, this operation is forbidden and they are in general not equivalent.

As discussed in Section 3.4, if the chosen manifold does not respect the Kähler condition,
we always have the choice to locally restrict ourselves to consider only a subset of tangent

directions with respect to which the manifold is again Kähler, i.e., TψM. Then both principles
will again give the same equation of motion, which will have the same form as (88) where we
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M
TψM

Pψ

X µ = P
µ

ψ
(−iĤ) |ψ〉

−iĤ |ψ〉

ψ

ψ0

Figure 3: Real time evolution. We illustrate real time evolution on a variational man-
ifold M according to the Dirac-Frenkel variational principle (where Lagrangian and
McLachlan principles coincide). The time evolution vector −iĤ |ψ〉 at a state ψ is
orthogonally projected through Pψ onto the variational manifold M to define the
vector field X µ. We further indicate how real time evolution near a fixed point ψ0
follows approximately circles or ellipses.

just replace Ωµν with Ωµν, which will conserve the energy and have stationary points in the
minima of the energy. We will refer to this procedure as Kählerization.

We can compute explicitly how the vector fields of the Lagrangian and McLachlan varia-
tional principles differ. For this, we only consider the subspaces, defined in Proposition 1, in
which the complex structure fails to be Kähler, i.e., where we have

J ≡
⊕

i

�

ci
−ci

�

, (97)

as in (66). On the enlarged tangent space including all vectors i |Vµ〉, the enlarged complex
structure

J̌ ≡
⊕

i









ci

q

1− c2
i

−ci

q

1− c2
i

−
q

1− c2
i ci

−
q

1− c2
i −ci









(98)

clearly satisfies J̌2 = −1. For the time evolution vector field X̌ ≡ ⊕i(ai , bi ,αi ,βi) on the
enlarged space, we find the two distinct restrictions

XLagrangian = J−1Pψ J̌X̌ ≡ ⊕i

�

ai −
q

1−c2
i

ci
αi , bi +

q

1−c2
i

ci
βi

�

(99)

XMcLachlan = PψX̌ ≡ ⊕i(ai , bi) , (100)

associated to the Lagrangian and the McLachlan principle, respectively. We see explicitly that
they agree for ci = 1, but also when αi = βi = 0.

Example 9. We consider the variational family from example 7 for a system with two bosonic
degrees of freedom. We choose the Hamiltonian

Ĥ =
ε+(n̂1+n̂2)+ε−[(n̂1−n̂2) cosφ+(â†

1 â2+â1 â†
2) sinφ]

2 , (101)

where ε1 and ε2 are the excitation energies with ε± = ε1 ± ε2, while φ is a coupling constant,
such that Ĥ = ε1n̂1+ε2n̂2 for φ = 0. Figure 4 shows the time evolution of the expectation values
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-1.0

-0.5

0.0

0.5

1.0

(a) Non-Kähler, coupled

-1.0 -0.5 0.0 0.5 1.0

(b) Non-Kähler, uncoupled

-1.0 -0.5 0.0 0.5 1.0

(c) Kähler, coupled

exact

Lagrangian

McLachlan

-1.0 -0.5 0.0 0.5 1.0

(d) Kähler, uncoupled

Figure 4: Comparison of variational principles. We illustrate how exact, Lagrangian
and McLachlan evolution differ in example 9. We choose ε1 = 1, ε2 = 2, initial condi-
tions z̃ ≡ (1,0) and r = 0.3 for non-Kähler, r = 0 for Kähler, φ = 0.3 for coupled and
φ = 0 for uncoupled. To indicate speed, we place an arrow at t ∈ {1.5,3, 4.5}. (a) All
trajectories differ, (b) Lagrangian and McLachlan give the same trajectories with dif-
ferent speed, (c) Lagrangian and McLachlan agree, (d) Langrangian and McLachlan
become exact.

z̃α ≡ (q̃, p̃) for the two operators

ˆ̃q = 1p
2
(b̂† + b̂) , ˆ̃p = ip

2
(b̂† − b̂) , (102)

where b̂ was defined in (60). For r = 0, the variational family is Kähler and the two variational
principles give rise to the same evolution. For r 6= 0, the two principles generally disagree. The
explicit formulas can be efficiently derived using the framework of Gaussian states reviewed in
section 5.1, where we reconsider the present scenario in example 20.

Kähler vs. non-Kähler. On a Kähler manifold all three variational principles are well-
defined and equivalent. They all give the same energy conserving equations of motion (88).
On a non-Kähler manifold, only the Lagrangian and McLachlan variational principles are well-
defined, but they give in general inequivalent equations of motion given by (88) and (93).
Only the Lagrangian ones will manifestly conserve the energy and have stationary points in
the minima of the energy. In table 2, we review advantages and drawbacks discussed in the
following. While in most cases, the Lagrangian principle appears to be a natural choice, the
McLachlan principle is often preferable if ω is highly degenerate—in particular, if ω = 0 its
pseudo-inverse is Ω = 0 and the evolution would vanish everywhere independent of Ĥ, such
that the McLachlan principle appears to be the better choice.

4.1.2 Conserved quantities

Given the generator Â of a symmetry of the Hamiltonian Ĥ, i.e., [Ĥ, Â] = 0, the expectation
value A(t) = 〈ψt | Â |ψt〉 is necessarily preserved by unitary time evolution on the full Hilbert
space

|ψt〉= U(t) |ψ0〉= e−iĤ t |ψ0〉 . (103)

We now consider if this continues to be true for projected time evolution on a manifold.

For a time-independent Hamiltonian Ĥ, we have seen that the energy expectation value
E is always conserved by Lagrangian projected real time evolution. However, projected time
evolution will not in general preserve expectation values of an operator Â with [Ĥ, Â] = 0. To
guarantee this, one has to further require that Â preserves the manifold.
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Proposition 7. Given a variational manifoldM and a Hermitian operator Â, such that [Ĥ, Â] = 0
and Â preserves the manifold in the sense of Definition 3, i.e.,

QψÂ |ψ〉= (Â− 〈Â〉) |ψ〉 ∈ TψM ∀ψ ∈M , (104)

the expectation value A(x(t)), defined as in equation (72), is preserved under real time evolu-
tion projected according to the McLachlan variational principle. It is also true for Lagrangian
variational principle, if the two principles agree, i.e., if the manifold is Kähler.

Proof. We compute

d
d t

A(t) = (∂µA)
d xµ

d t
= PνψÂ |ψ〉 g νµP

µ

ψ
(−iĤ |ψ〉) = 2Re〈ψ|(Â−〈Â〉)(−iĤ)|ψ〉

〈ψ|ψ〉 = i〈ψ|[Ĥ,Â]|ψ〉
〈ψ|ψ〉 = 0,

(105)

where in the first line we used relation (74) for the gradient of A, the definition of McLachlan
evolution (85) and that Pµ

ψ
〈Â〉 |ψ〉 = 0, in the second step we used that, thanks to the condi-

tion (104), the restricted bilinear form g in the first line coincides with the full Hilbert space
one in the second line of (105).

This result only applies the McLachlan projected real time evolution, for which the equation
of motion (94) holds. In the Lagrangian case, we would have

Ȧ= (∂µA)X µ = −(∂µA)Ωµν∂νE = {E, A}, (106)

which is in general not equal to i 〈ψ|[Ĥ, Â]|ψ〉 〈ψ|ψ〉−1 on a non-Kähler manifold14 and thus
not necessarily zero.

We see here the main advantage of the Kählerization procedure described in the previous
section. Indeed, through Kählerization we are able to define, even for general non-Kähler
manifolds, a projected real time evolution that shares the desirable properties of both, the
Lagrangian and the McLachlan projections, i.e., it is a symplectic, energy preserving evolution
with stationary points in the energy minima and at the same time preserves the expectation
value of symmetry generators satisfying (104). Note that Kählerization may spoil the conser-

vation laws of observables Â, for which QψÂ |ψ〉 does not lie in the Kähler subspace TψM, in
which case we will need to enforce conservation by hand, discussed next.

For operators Â where (104) is not satisfied, we have two options to correct for this:

(a) Enlarge the variational manifold M, such that condition (104) is satisfied.

(b) Enforce conservation by hand, for which we modify the projected time evolution vector
field X µ.

While option (a) is typically more desirable, it requires creativity to find a suitable exten-
sion of a given family M. Of course, if Â is an important physical observable that is relevant
to the problem, a manifold that does not preserve it may not be a good choice to approximate
the system’s behavior. In practice, however, it may still be worthwhile to check the predictions
of an approximated time-evolution adopting (b).

14For Kähler manifolds, as discussed in the context of Proposition 3, {F, G} = i 〈ψ|[F̂ , Ĝ]|ψ〉 〈ψ|ψ〉−1 only holds
if either F̂ or Ĝ preserves the manifold.
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This is done by adding a further projection of the real time evolution flow onto the subspace
of the tangent space orthogonal (with respect to g ) to the direction P

µ

ψ
Â |ψ〉 = Gµν∂νA. This

is equivalent to restricting ourselves to the submanifold

ÝM=
¦

|ψ〉 ∈M
�

�

〈ψ|Â|ψ〉
〈ψ|ψ〉 = A0

©

⊂M, (107)

where A0 is the initial value 〈ψ(0)|Â|ψ(0)〉 〈ψ(0)|ψ(0)〉−1. Note that this modified evolution
may spoil other conservation laws (e.g., energy) that were previously intact.

To preserve several quantities ÂI , we can project onto the subspace orthogonal to the
span of X I = PψÂI |ψ〉. If we also want to preserve the Kähler property, we should choose
X I = (PψÂI |ψ〉 , iPψÂI |ψ〉). We can then define egI J = XµI gµν X νJ to define the projector

ePµν = δ
µ
ν − XµI eG

I J XρJ gρν , (108)

where eG I J is the inverse (or pseudo inverse, if not all vectors X I are linearly independent) of
egI J .

The modified Lagrangian evolution vector field eX µ is

eX µ = −eΩµν(∂νE) with eΩ
µν
= ePµσeP

ν
ρΩ

σρ , (109)

while for the McLachlan evolution, we find

eX µ = ePµνX ν , (110)

where X µ represents the unmodified evolution vector field in the McLachlan case. It will
conserve all expectation values AI(t) by construction. In the Lagrangian case also the energy
will continue to be conserved by construction, which would need to be enforced by hand for
the McLachlan case.

Kähler vs. non-Kähler. On a non-Kähler manifold, where we have two inequivalent
definitions of the evolution, only the one coming from the McLachlan principle preserves the
expectation value of symmetry generators satisfying (104). Thus a key reason to Kählerize a
non-Kähler manifold is to conserve these expectation values also in the Lagrangian evolution.

4.1.3 Dynamics of global phase

Up to now we have always considered our variational manifolds M as submanifolds of pro-
jective Hilbert space and thus the tangent space TψM as a subspace of H⊥

ψ
. This means all

states are only defined up to a complex factor. In practice, our family ψ(x) ∈ P(H) will be
described by a choice |ψ(x)〉 ∈H, i.e., for every set of parameters xµ, we will have a Hilbert
space vector |ψ(x)〉 representing the quantum state ψ(x) ∈ P(H).

If the parametrization xµ happens to contain the global phase or normalization of the
state as an independent parameter, we are overparametrizing our family and the evolution
equations (88) or (93) will keep the evolution of some parameters undetermined leading to
some gauge redundancy. This is due to the fact that normalization and phase do not change
the quantum state |ψ(x)〉 represents and our equations of motion only determine the physical
evolution of the quantum state and not of its Hilbert space representative.

We can include the time evolution of the global phase and the state normalization by
extending our parametrization by defining

|Ψ(x ,κ,ϕ)〉= eκ+iϕ |ψ(x)〉 , (111)
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where κ and ϕ are two additional real parameters. If phase or normalization were already
contained in xµ this will lead to an overparametrization, but we have already explained how
to take care of this in Section 3.3.

Then, on top of the real time evolution equations (83) or (85), we obtain equations for
these extra parameters by projecting Schrödinger’s equation on the corresponding tangent
space directions, i.e., |Vκ〉= |Ψ〉 and |Vϕ〉= i |Ψ〉, to find the two equations

Re 〈Ψ|(−i d
d t + Ĥ)|Ψ〉= 0 , Re 〈Ψ| d

d t + iĤ|Ψ〉= 0 . (112)

Equivalently, as anticipated in Section 2, we can use the Lagrangian action principle to find
the same equations by extremizing the alternative action

S =

∫ t f

t i

d t Re 〈Ψ(t)|(i d
d t − Ĥ)|Ψ(t)〉 (113)

for the full set of parameters (x ,κ,ϕ) rather than S from (81) for only x .

In both cases, the time evolution of xµ(t) is unchanged, but we find the additional equa-
tions

ϕ̇ =
Re〈ψ|i d

d t |ψ〉
〈ψ|ψ〉 − E(t) and κ̇= −

Re〈ψ| d
d t |ψ〉

〈ψ|ψ〉 (114)

relating the evolution of phase and normalization with |ψ(x(t))〉. Interestingly, the time evo-
lution of κ will ensure that |Ψ(x ,κ,ϕ)〉 does not change normalization.

The procedure can be understood as follows. Global phase and normalization are conju-
gate parameters when considering Hilbert space as Kähler space, as can be seen from |Vϕ〉= i |Vκ〉.
When considering a variational manifold M ⊂ P(H), we have the following options:

1. When we are only interested in the time evolution of physical states ψ, we must project
out the information about global phase and normalization using P

µ

ψ
. Consequently, our

evolution equations will not determine how to change global phase or normalization as
this information is pure gauge. We followed this philosophy until the current section.

2. When we are also interested in the time evolution of global phase and normalization,
we can always extend M to include both phase and normalization as independent pa-
rameters. Given a generic parametrization |ψ(x)〉, we can extend it to |Ψ(x ,κ,ϕ)〉 to
ensure that it satisfies the Kähler property in the phase/normalization subspace. We can
then find evolution equations for ϕ and κ. This is what we explained in the current
subsection.

Finally, let us emphasize that using equations (112) or extremizing action (113) without first
ensuring both phase and normalization are included as independent parameters may lead to
unphysical results.

Example 10. We consider coherent states parametrized as |ψ(x)〉 = eiϕ(x1,x2)e(x1+ix2)â†
|0〉,

where the states are not normalized due to 〈ψ(x)|ψ(x)〉 = ex2
1+x2

2 and we chose intentionally
a phase ϕ(x1, x2). We further consider the Hamiltonian Ĥ = ωâ†â. The equation of motion on
projective Hilbert space based on the action (7) are

ẋ1 =ωx2 and ẋ2 = −ωx1 . (115)
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However, if we use (113), we find the action

S =

∫

d t
�

ẋ1 x2 − ẋ2 x1 −
∂ ϕ
∂ x1

ẋ1 −
∂ ϕ
∂ x2

ẋ2

�

ex2
1+y2

1 , (116)

which leads to the equations of motion given by

(1+ x2
1 + x2

2)(ωx1 + ẋ2) = (
∂ ϕ
∂ x2

x1 −
∂ ϕ
∂ x1

x2) ẋ2 , (117)

(1+ x2
1 + y2

2 )(ωx2 − ẋ1) = (
∂ ϕ
∂ x1

x2 −
∂ ϕ
∂ x2

x1) ẋ1 . (118)

They only agree with (115) if ∂ ϕ∂ x2
x1 −

∂ ϕ
∂ x1

x2 = 0.

4.2 Excitation spectra

We would like to use a variational family M to approximate the excitation energies Ei of some
eigenstates |Ei〉 of the Hamiltonian. Typically, we are interested in low energy eigenstates,
that is eigenstates close to the groundstate of the Hamiltonian. Suppose then that on M
we are able to find an approximate ground state |ψ0〉, that is the state with energy ω0 that
represents the global energy minimum on M (we will describe a method for finding such state
in Section 4.4). Then there are two distinct approaches of deriving a spectrum: the projection
of the Hamiltonian and the linearization of the equations of motion.

4.2.1 Projected Hamiltonian

Given a tangent space Tψ0
M at a state ψ0 ∈M, we can approximate the excitation spectrum

of the Hamiltonian Ĥ from its projection onto Tψ0
M.

Based on the two action principles (Lagrangian vs. McLachlan), we define two different
projections given by

Hµ
ν = P

µ

ψ0
Ĥ |Vν〉 , (Lagrangian)

Rµν = −P
µ

ψ0
iĤ |Vν〉 . (McLachlan)

(119)

On a Kähler manifold M, we will have Rµν = −JµσHσ
ν and [J , H] = [R, H] = 0. In this case,

H represents a Hermitian operator on tangent space (which is complex sub Hilbert space) and
R is anti-Hermitian. In this case, the eigenvalues of H are real and come in pairs (ω`,ω`),
while the ones of R come are purely imaginary and come in conjugate pairs (iω`,−iω`). The
two associated eigenvectors of R are related by multiplication of J and also span the respective
eigenspace of H .

On a non-Kähler manifold M, the relation between H and R as well as their respective
spectra is non-trivial. The eigenvalues ω` of Hµ

ν will still be real, while the ones of Rµν
continue to appear in conjugate pairs. The latter also implies that for an odd-dimensional
manifold Rµν must have a vanishing eigenvalue, which is a pure artefact of the projection.

The projected Hamiltonian Hµ
ν represents the full Hamiltonian restricted to the tangent

space. The Courant–Fischer–Weyl min-max principle states that the eigenvalues E` of Ĥ and
the eigenvalues ω` of Hµ

ν satisfy

E` ≤ω` ≤ EN−n+` , (120)

with N = dimRH and n = dimR Tψ0
M, where we assume that all eigenvalues are sorted

and appear with their multiplicity. Therefore, every approximate eigenvalue ω` bounds a
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corresponding true eigenvalue Ei from above. How good this approximation is will highly
depend on the choice of variational manifold. Note that the energy differencesω`−ω0 instead
do not necessarily bound E`− E0, because the ground state energy ω0 might not be exact, i.e.,
ω0 > E0.

Furthermore, the eigenvalues ω` are variational in the sense that if Xµ
`

is an eigenvector
of Hµ

ν such that Hµ
νX ν
`
=ω` Xµ

`
, then the corresponding Hilbert space vector |X`〉= Xµ

`
|Vµ〉

satisfies
〈X`|Ĥ|X`〉
〈X`|X`〉

=ω` . (121)

Kähler vs. non-Kähler. On a Kähler manifold, Hµ
ν and Rµν are related via R = −JH

and they will be the representations of a complex Hermitian and anti-Hermitian operators,
respectively. Real eigenvalue pairs (ω`,ω`) of H will be related to imaginary eigenvalue pairs
(iω`,−iω`) of R. On a non-Kähler manifold, the eigenvalues ω` of H could all be different
and unrelated to the ones R, which are still imaginary appearing in conjugate pairs.

4.2.2 Linearized equations of motion

A common alternative to projecting the Hamiltionian is to linearize the equations of motion
around a fixed point x0 such that X (x0) = 0

d xµ

d t
= X µ ⇒

d
d t
δxµ = Kµνδxν , (122)

with δxµ = xµ− xµ0 and Kµν = ∂νX µ|x=x0
. Here, δxµ represents a small perturbation around

the approximate ground state. The frequencies ω` appearing in conjugate pairs ±iω` in the
spectrum of Kµν represent the frequencies with which such perturbations oscillate around
the ground state and thus provide an approximation to the excitation energies E` − E0 of the
Hamiltonian.

As pointed out in Section 4.1.1, the fixed point x0 only coincides with the approximate
ground stateψ0 if the real time evolution is defined in terms of the Lagrangian action principle.
We thus assume the equations of motion (88) based on Lagrangian action principle. In this
case, we find

Kµν = ∂νX µ = −∂ν(Ωµρ∂ρE) = −Ωµρ(∂ρ∂νE) , (123)

where everything is evaluated at x0 after taking the derivatives. We used that ∂ρE = 0 at the
fixed point15.

By construction, Kµν is a symplectic generator, because it satisfies KΩ+ΩKᵀ = 0, which
implies that M = eK preserves the symplectic form, i.e., MΩMᵀ = Ω. Provided that ψ0
is an energy minimum, the bilinear form hµν = ∂ν∂µE is positive definite. By Williamson’s
theorem [57], Kµν is diagonalizable and the resulting eigenvalues appear in conjugate pairs
(iω`,−iω`).

From a geometric point of view, δxµ represents a tangent vector |δψ〉 = δxµ |Vµ〉 living
in the tangent space Tψ0

M at the approximate ground state |ψ0〉. The time evolution of a

15Usually, defining a derivative of a vector field X µ requires a way to relate tangent spaces at adjacent points
via a so-called connection. The resulting covariant derivative ∇νX µ = ∂νX µ + Γ µ

νρ
X ρ will depend on Γ µ

νρ
that

encodes the connection. In our case X µ vanishes at the fixed point, so that the dependence of Γ µ
νρ

drops out and
the spectrum of Kµν =∇νX µ at |ψ0〉 is canonically defined.
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tangent vector at a fixed point |ψ0〉 is described by the linearized evolution flow16

dΦt : Tψ0
M→ Tψ0

M . (124)

K is the generator of the flow dΦt leading to the important relation

dΦt = et K , (125)

which shows that dΦt is symplectic.

Unitary evolution on Hilbert space leads to a flow on projective Hilbert space that preserves
all three Kähler structures. However, when we project this flow onto a variational manifold
to find X µ, we will project out the part of the vector field orthogonal to tangent space. When
using the Lagrangian action principle, the projected flow will continue to be symplectic, i.e.,
preserve Ω, but none of the other two Kähler structures17. Geometrically, this implies that the
trajectories of states near the fixed pointψ0 will be elliptic rather than circular, when measured
with respect to G.

Therefore, even if M is a Kähler manifold, Kµν will in general neither commute with J
nor be antisymmetric with respect to G, i.e., satisfy KG = −GKᵀ. This has the following
consequences:

• Right-eigenvectors Eµ(λ) with KµνEν(λ) = λEµ(λ) and left-eigenvectors eEµ(λ) with
Kµν eEµ(λ)=λeEν(λ) are not related via Eµ(λ) = Gµν eEν(λ), but need to be computed
independently. This is important when computing spectral functions in section 4.3.

• There does in general not exist a Hilbert space operator K̂ , such that Kµν is its restriction
in the sense of Kµν = P

µ

ψ0
K̂ |Vν〉 or Kµν = P

µ

ψ0
iK̂ |Vν〉. Thus, K is not a restriction of a

Hamiltonian.

Kähler vs. non-Kähler. On a non-Kähler manifold, where we have two inequivalent defi-
nitions of the equations of motion, it only makes sense to linearize the ones coming from the
Lagrangian action principle, as their fixed point coincides with the approximate ground state.
The resulting generator Kµν will in generally not commute with J , even for Kähler manifolds,
which has important consequences for its eigenvectors relevant for spectral functions.

4.2.3 Comparison: projection vs. linearization

In the following, we will compare the previously introduced approaches of approximating
excitation energy. This comparison is particularly illuminating in the case of Kähler manifold.

At a stationary point, i.e., ∂µE = 2Re 〈Vµ|Ĥ|ψ〉 = 0, we consider the symplectic generator
Kµν defined as

Kµν = −Ωµσ(∂σ∂νE) = (J−1)µσ ∂ν
�

PσψĤ |ψ〉
�

, (126)

16Mathematically, the linearized flow dΦt is defined as the differential (also known as push-forward) of the flow
map Φt defined after equation (87). In general it is a map from the tangent space Tψ(0)M to the tangent space
Tψ(t)M. In the special case of |ψ0〉 being a fixed point of the time evolution, it reduces to a linear map from Tψ0

M
onto itself. One can then show that this map is generated by the linearization Kµν of the vector field X µ that
defines the evolution flow.

17Note that due to the 2-out-of-3 principle, any linear map M satisfying two out of the three conditions
MΩMᵀ = Ω, MGMᵀ = G and M J M−1 = J will satisfy all three. Thus, any violation will necessarily affect at
least two Kähler structures.
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where we only have J−1 = −J for Kähler manifolds. Evaluating the derivative in (126) gives
the two pieces

∂ν
�

PσψĤ |ψ〉
�

= PσψĤ |Vν〉+ (∂νPσψ)Ĥ |ψ〉 , (127)

where we evaluate everything at ψ0 after computing the derivatives. We recognize
Hσ

ν = Pσ
ψ

Ĥ |Vν〉 and define Fσν = (∂νPσψ)Ĥ |ψ〉=
2

〈ψ|ψ〉G
σρ 〈∂νVρ|Ĥ|ψ0〉 leading to

Kµν = (J
−1)µσ

�

Hσ
ν + Fσν

�

. (128)

In summary, we see that the linearization Kµν consists of the two pieces: First, the projected
Hamiltonian H and second, the derivative of the projector. These terms are multiplied with
the inverse complex structure J−1.

In the case of a Kähler manifold there is a further way to understand these two term that
make up Kµν. In this case, we can use J2 = −1 to decompose any linear operator K on Tψ0

M
as K = K+ + K− with

K±=
1
2(K ± J K J) , {K+, J}=0 , [K−, J]=0 . (129)

We will see that this decomposition coincides exactly with the one of Kµν in (128). To do this,
we use the fact that a Kähler manifold of dimension 2n always admits18 a parametrization
xµ = (x1, · · · , x2n) satisfying for 1≤ j ≤ n

|Vj〉= i |Vn+ j〉 , (130)

i.e., the coordinate x j is conjugate to xn+ j . In this basis, J and Ω are

J ≡
�

0 −1
1 0

�

, Ω≡
1
2

�

−Imη−1 −Reη−1

Reη−1 −Imη−1

�

, (131)

where η jk = 〈Vj|Vk〉. Then the structure of matrices that commute or anti-commute with J is

K− =

�

a b
−b a

�

, K+ =

�

a b
b −a

�

. (132)

We can evaluate Kµν to find exactly this form

Kµν = −Ωµρ∂ρ∂νE = (K+)
µ
ν + (K−)

µ
ν , (133)

where its two pieces are explicitly given by

K+ ≡
�

Im(η−1h) Re(η−1h)
−Re(η−1h) Im(η−1h)

�

, (134)

K− ≡
�

Im(η−1 f ) Re(η−1 f )
Re(η−1 f ) −Im(η−1 f )

�

, (135)

where h jk = 〈Vj|Ĥ|Vk〉 and f jk = 〈∂ jVk|Ĥ|ψ0〉. This clearly shows that the two pieces are given
by K− = JH and K+ = J F as defined before (128).

In conclusion, from the decomposition (133) we immediately see again that Kµν has two
contributions. One is related to the projected Hamiltonian Hµ

ν and commutes with J . The

18This ultimately coincides with showing that a Kähler manifold is also a complex manifold, that is it admits a
holomorphic parametrisation in terms of complex parameters zα = xα + iyα.
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other is related to the overlap of Ĥ |ψ0〉with the double tangent vectors |∂αVβ〉, which coincides
with the one we previously described in terms of the derivative of the projector and anti-
commutes with J . Thus K− is a complex linear map, while K+ is a contribution that makes
Kµν non-complex linear.

Finally, if we complexify tangent space, i.e., treat complex linear combinations of |Vµ〉 as
linearly independent, there exists a basis transformation that makes J diagonal and brings K+
and K− respectively, into block diagonal and block off-diagonal form, given by

J ≡ i

�

1 0
0 −1

�

, K− = i

�

−η−1h 0
0 (η−1h)∗

�

, K+ = i

�

0 (η−1 f )∗

−η−1 f 0

�

, (136)

i.e., for Kähler manifolds the terms in (128) decouple nicely. For a non-Kähler manifold, neither
H nor F may commute with J , but even the decomposition (129) will not work for J2 6= −1.

In the next section, we will see that the term K− can be a blessing and a curse: on the one
hand, it can ensure that in systems with spontaneously broken symmetry the eigenvalues of
Kµν contain a Goldstone mode. On the other hand, for unfortunate choices of the variational
family M we may encounter such massless modes even if there is no spontaneously broken
symmetry (spurious Goldstone mode).

Kähler vs. non-Kähler. We can relate the linearization Kµν with the projected Hamilto-
nian Hµ

ν via (128). For Kähler manifolds, this decomposition becomes particularly geometric,
as the two pieces correspond to its complex linear and complex anti-linear part.

4.2.4 Spurious Goldstone mode

The spectrum of Kµν is not variational. In contrast to a variational approximation of an eigen-
state, our eigenvector |Eµ(λ)〉 of Kµν with

Kµν Eν(λ) = λEµ(λ) , (137)

and |E(λ)〉= Eµ(λ) |Vµ〉, does not satisfy

λ= ±〈E(λ)|iĤ|E(λ)〉 . (138)

The expectation value of the full Hamiltonian with respect to |E(λ)〉 is in general not easily
related to λ, as it would be for a variational state. It is also not true that for every eigenvalue
pair ±iω`, there exists a true eigenstate |E`〉 of Ĥ with excitation energy E` − E0 ≤ω`.

In fact, there are situations, where the true ground state |E0〉 is non-degenerate, but Kµν
still has a zero eigenvalue associated to a massless Goldstone mode. This typically occurs if
we have a conserved quantity Â with [Â, Ĥ] = 0, such that −iÂ |ψ〉 ∈ TψM everywhere as
discussed in the context of Proposition 7. At this point, the question is if the global energy
minimum |ψ0〉 on M is invariant under e−iÂ or not. Whenever the global minimum on ψ0 on
M is not invariant, i.e., there is a whole family |ψ0(ϕ)〉 = e−iϕÂ |ψ0〉 of approximate ground
states, the generator Kµν will have a massless Goldstone mode

EµG = P
µ

ψ0
(−iÂ) |ψ0〉 with KµνEνG = 0 . (139)

Whenever the true ground state |E0〉 of the system is invariant under e−iÂ, this Goldstone mode
is spurious and merely an artefact of a spontaneous symmetry breaking on M, but not on full
P(H).
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|E0〉 ∈H

M

|ψ0〉

|ψ0(ϕ)〉= e−iϕÂ |ψ0〉

Figure 5: Spurious Goldstone mode. Even if the Hamiltonian has a unique ground
state |E0〉 without a spontaneously broken symmetry in full Hilbert space, on a cho-
sen sub manifold M there may be inequivalent states |ψ0(ϕ)〉 = e−iϕÂ |ψ0〉 that all
minimize the energy. This leads to a spontaneous breaking of the symmetry gener-
ated by Â and the appearance of a spurious Goldstone mode.

|ψg〉

1. t = 0

|ψε(t ′)〉

2. t = t ′ 3. t > t ′ >

|δψ(t)〉

4. t > t ′ >

Figure 6: Linear response theory. We consider an approximate ground state
ψ0 ∈M. While |ψ0〉 does not evolve in time, certain trajectories of nearby states
are approximately elliptic. A finite perturbation at time t ′ changes the state to
|ψε(t ′)〉 = eiεV̂ |ψ0〉. This state will then evolve according to the equations of mo-
tion. We linearize by taking the limit ε→ 0, where we find that the tangent vector
|δψ(t)〉= d

dε |ψε(t)〉 |ε=0 can be decomposed into eigenvectors of Kµν that rotate on
ellipses.

This was pointed out in [58] as an important problem of approximating the spectrum
via linearized equations of motion rather than using the projected Hamiltonian. However,
in [59] we found that this can also be desirable to capture features of the thermodynamic limit
for finite system size. In particular, the gapless Bogoliubov excitation spectrum of the Bose-
Hubbard model can be shown to result from the diagonalization of the generator (123) of the
linearized equations of motion on the manifold of coherent states. The Bogoliubov spectrum
is gapless independent from the system size, even though the true ground state |E0〉 becomes
only degenerate in the thermodynamic limit. This also extends from Bogoliubov theory to the
full Gaussian time dependent variational principle, as discussed in [59].

We illustrate this issue in figure 5, where the Hamiltonian is spontaneously broken only
on the variational manifold M, but not in the full Hilbert space, where it has a unique ground
state |E0〉.

4.3 Spectral functions

Next, we would like to use the variational manifold M to estimate the spectral function of a
system with respect to the perturbation operator V̂ .
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Given a Hermitian operator V̂ , the spectral function is

A(ω) = − 1
π

Im GR(ω), (140)

where GR is the retarded Green’s function

GR(ω) = −i

∫

d t eiωtΘ(t)
〈ψ0|[V̂ (t), V̂ ]|ψ0〉

〈ψ0|ψ0〉
, (141)

with Θ(t) being the step function and V̂ (t) the Heisenberg evolved operator under the system
Hamiltonian Ĥ.

The definition in terms of the retarded Green’s function stems from linear response the-
ory. Indeed, let us suppose that a small external perturbing probe field εϕ(t) couples to our
system through the operator V̂ . That is, the system state |ψε(t)〉 evolves under the perturbed
Hamiltonian Ĥ+εϕ(t)V̂ . Then, let us measure the response of the system through the expec-
tation value of the same observable V̂ . As the perturbation is ideally infinitesimally small, we
only consider such response up to linear order in ε. Consequently, we define the time-domain
linear response as

δV (t) =
d
dε

�

�

�

�

ε=0

〈ψε(t)|V̂ |ψε(t)〉
〈ψε(t)|ψε(t)〉

. (142)

Then in frequency domain we have that

δṼ (ω)≡
∫

d t eiωtδV (t) = ϕ̃(ω)GR(ω). (143)

That is, GR is exactly the so-called linear susceptibility of the system, which is an experimentally
accessible quantity.

Given a variational manifold there are two possible paths to trying to approximate A(ω).

1. We can calculate the quantity (142) after having projected the evolution of |ψε(t)〉 on the
manifold. In other words, we perform linear response theory directly on the variational
manifold. This leads us to express A(ω) in terms of the eigendecomposition of the
generator of linearized real time evolution Kµν introduced in (123).

2. Alternatively, one can try to approximate on the manifold the quantity

e−iĤ t V̂ |ψ0〉 , (144)

that appears in equation (141). In this case one should note that in general V̂ |ψ0〉 does
not belong to the variational manifold, so one has to perform some truncation even
before applying the time evolution operator e−iĤ t . The other subtlety here is that one
must make sure that the quantity (144) is calculated with the correct global phase, as
we explained in Section 4.1.3.

It seems to us that method 2 captures less the spirit of variational manifolds. Indeed one
has that the quantity V̂ |ψ0〉 would morally represent a small perturbation around the ground-
state |ψ0〉 and would thus naturally live in the tangent space to the manifold of states at |ψ0〉.
Representing V̂ |ψ0〉 as a vector of M therefore is only meaningful if the manifold itself is a
good representation of its own tangent space. But this is not true for general manifolds and
indeed there is no uniquely defined method for representing V̂ |ψ0〉 on M. The first method,
on the other hand, can alternatively be thought of precisely as representing the perturbations
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generated by V̂ on Tψ0
M. Furthermore, we will show that method 1 leads to a closed expres-

sion for the spectral function from which it is immediate to see that sgnA(ω) = sgnω (as it is
in the full Hilbert space), while this cannot be shown in general for method 2.

For these reasons in the next subsections we will focus on the details of the first method,
giving a final expression for the spectral function estimated in this way in Proposition 10.

4.3.1 Linear response theory

As mentioned, a possible way of calculating spectral functions is to perform linear response
theory directly on the variational manifold. In this subsection we will then briefly explain how
this can be done. The idea is illustrated in figure 6.

Let us consider a possibly time-dependent perturbation Â(t) of our unperturbed Hamilto-
nian Ĥ0, such that Ĥε(t) = Ĥ0+εÂ(t), and an observable B̂, whose response we are interested
in. For spectral functions, we will be interested in the particular case where Â(t) = ϕ(t)V̂ for
arbitrary functions ϕ(t) and B̂ = V̂ , but we will for the moment keep our treatment general.

Our perturbed Hamiltonian gives rise to the time dependent real time evolution vector
field X µ

ε (t), which is
Xε(t) = X0 + εXA(t) , (145)

where X0 and XA(t) are the evolution vector fields associated to the Hamiltonians Ĥ0 and Â(t)
respectively. The solution of this perturbed evolution is |ψε(t)〉 satisfying

Qψ
d
d t |ψε(t)〉= X µ

ε (t) |Vµ〉 . (146)

For the following Proposition 8 it would not be important whether the evolution vector
field is defined according to the Lagrangian or McLachlan variational principles, as long as it
has the form (145). However, later we will be interested in the case in which the perturbed
evolution happens around the approximate ground state |ψ0〉 and it will be important that this
state is also a fixed point of the time evolution. So, as was the case in Section 4.2.2, from now
on we will suppose that the evolution vector fields are defined according to the Lagrangian
evolution (88).

We are interested in the response in expectation value of the observable B̂ at linear order
in ε, that is

δB(t) = d
dε
〈ψε(t)|B̂|ψε(t)〉
〈ψε(t)|ψε(t)〉

�

�

�

ε=0
= δxµ(t)∂µB(x(t)) , (147)

where we defined the propagated perturbation

δxµ(t) |Vµ〉=Qψ
d
dε |ψε(t)〉

�

�

�

ε=0
∈ Tψ(t)M , (148)

which can be evaluated as follows.

Proposition 8. Given a variational manifold M we define (according to the Lagrangian action
principle) the free projected real time evolution |ψ(t)〉 as governed by the free Hamiltonian Ĥ0
and the perturbed projected real time evolution |ψε(t)〉 as governed by the perturbed Hamiltonian
Ĥε(t) = Ĥ0+ εÂ(t), both with the same initial state |ψ(0)〉. Then, the propagated perturbation,
defined according to (148), is given by

δxµ(t) = −
∫ t

−∞
d t ′ (dΦt−t ′)

µ
νΩ

νρ ∂ρA(t ′)
�

�

ψ(t ′) , (149)
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where dΦt is the linearized free evolution flow19.

Proof. This can be shown in a standard way by using the interaction representation. We sketch
a proof in Appendix B.

Put simply, δxµ is the superposition of all propagated perturbations, i.e., a perturbation

−JνρP
ρ

ψ(t ′)Â(t
′) |ψ(t ′)〉= −Ωνρ ∂ρA

�

�

ψ(t ′) (150)

at time t ′ is evolved with the linearized free evolution dΦt−t ′ to time t where it contributes
towards δxµ(t).

If we now take as initial state |ψ(0)〉 the approximate ground state |ψ0〉, that is a fixed
point of the projected evolution, we have that the free evolution is trivial |ψ(t)〉 = |ψ0〉. It
also follows that dΦt is a linear map from Tψ0

M onto itself given by

dΦt = eK t , (151)

where Kµν is the generator of the linearized flow introduced in (123). The map dΦt can
therefore be evaluated in terms of the spectral decomposition of Kµν.

Proposition 9. The linear response to a perturbation Â(t), measured in terms of the observable
B̂, for a system initially in the state ψ0 ∈M is given by

δB(t) = −i
∑

`

sgn(iλ`)[Eµ(λ`)∂µB

∫ t

−∞
d t ′ eλ`(t−t ′) [Eν(λ`)∂νA(t ′)]

∗ , (152)

where all derivatives are evaluated at |ψ0〉 and Eµ(λ`) is an eigenvector of Kµν such that

KµνEν(λ`) = λ`Eµ(λ`) , (153)

and normalised so that Eµ(λ`)ωµνEν(λ`)∗ = i sgn(iλ`).

Proof. We can always decompose Kµν in terms eigenvectors Eµ(λ) with eigenvalues λ and
dual eigenvectors20

eEµ(λ), such that

Kµν =
∑

`

λ` Eµ(λ`) eEν(λ`) . (154)

The eigenvalues λ` will come in conjugate pairs ±iω`, which implies that the associated eigen-
vectors and dual eigenvectors are complex and mathematically speaking lie the complexified
tangent space. However, as Kµν is a real map, we must have Eµ(iω) = Eµ(−iω)∗.
We then notice that Ωµν eEν(−iω) is an eigenvector of K with eigenvalue iω. To see this it is
sufficient to apply K to it and use the symplectic property KΩ= −ΩKᵀ. It is then always possi-
ble to normalize the eigenvectors Eµ such that the relation Ωµν eEν(−iω) = −i sgn(ω)Eµ(iω) =
−i sgn(ω)Eµ(−iω)∗ holds.21 From this, inverting Ω and exploiting its antisymmetry, we have
eEµ(−iω) = i sgn(ω)Eν(−iω)∗ωνµ.
Using this and (154), we can rewrite (151) as

(dΦt)
µ
ν = i

∑

`

sign(iλ`) eλ` t Eµ(λ`)Eρ(λ`)∗ωρν. (155)

Combining this with (147) and (149) we have (152).
19See footnote 16.
20The dual vector eEµ(λ) is defined by eEµ(λ)Eµ(λ′) = δλ,λ′
21Doing this rescaling while maintaining the property Eµ(iω) = Eµ(−iω)∗ is actually only possible if

Eµ(−iω)ωµνEν(iω) = ia with a > 0, ∀ω > 0. But this is always true because by definition K = −Ωh,
where hµν = ∂µ∂νE is positive definite (Hessian at a local minimum). It follows that −ωK > 0 and therefore
0< −Eµ(iω)∗ωµρKρνEν(iω) = −iωEµ(−iω)ωµνEν(iω) =ωa.
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4.3.2 Spectral response

To calculate spectral functions we now just need to evaluate the result (152) for Â(t) = ϕ(t)V̂
and B̂ = V̂ and then take the Fourier transform.

Proposition 10. The spectral function with respect to the perturbation operator V̂ , estimated by
performing linear response theory on the variational manifold M, is

A(ω) = sgn(ω)
∑

`

�

�Eµ(iω`)∂µV
�

�

2
δ(ω−ω`) , (156)

where E i(iω`) are the eigenvectors of Kµν, normalized such that Eµ(iω`)∗ωµνEν(iω`) = i sgn(ω`),
and the sum runs over all possible values of ω` (appearing in pairs of opposite signs).

Proof. Evaluating the Fourier transform of (152) and comparing with (143) leads us to the
estimate for the retarded Green’s function

GR(ω) = −i
∑

`

sgn(ω`)
�

�Eµ(iω`)∂µV
�

�

2
∫

d t ei(ω−ω`)tΘ(t)

=
∑

`

sgn(ω`)
�

�Eµ(iω`)∂µV
�

�

2
�

P
1

ω−ω`
− iπδ(ω−ω`)

�

,
(157)

where the Sokhotski-Plemelj formula has been used. The imaginary part of this expression
can be then be inserted into the definition of the spectral function (140), leading to the re-
sult (156).

Spectral functions calculated in this way have the desirable property sgnA(ω) = sgnω.

Kähler vs. non-Kähler. On a non-Kähler manifold, where we have two inequivalent
definitions of the equations of motion, it only makes sense to perform linear response theory
with the ones coming from the Lagrangian action principle, as their fixed point coincides with
the approximate ground state.

4.4 Imaginary time evolution

In the previous sections we have assumed we knew the state |ψ0〉 that minimizes the energy
on the variational manifold M. Solving this optimization problem is often non-trivial and
different methods may be more appropriate in different situations. However, we would like
here to present a method, known as projected imaginary time evolution, that makes use of the
same geometric notions introduced in Section 4.1 for real time evolution.

On full Hilbert space, imaginary time evolution is

d
dτ
|ψ(τ)〉= −(Ĥ − E(τ)) |ψ(τ)〉 , (158)

which can be integrated to the solution

|ψ(τ)〉=
e−Ĥτ |ψ(0)〉

Æ

〈ψ(0)|e−2Ĥτ|ψ(0)〉
. (159)

This will converge in the limit τ →∞ to a true ground state if and only if the initial state
|ψ(0)〉 had some non-zero overlap with the ground state space.
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M
TψM

Fµ = P
µ

ψ
(−Ĥ) |ψ〉

P
µ

ψ

−Ĥ |ψ〉

ψ

ψ0

Figure 7: Imaginary time evolution. We illustrate the imaginary time evolution vector
field Fµ on the variational family M analogously to figure 3, which is given by the
orthogonal projection of−Ĥ |ψ〉 through Pψ onto M. This vector field flows towards
the global minimum ψ0 of the energy function.

Given a variational manifold M, we can approximate imaginary time evolution on it and
hope that it will also converge to the approximate ground state |ψ0〉. This can be done by
projecting (158) onto tangent space. Contrary to real time evolution, there does not exist a
formulation of imaginary time evolution in terms of an action principle, so the projection can
only be done according to the McLachlan minimal error principle.

We would like to minimize the local projection error






d
dτ |ψ(τ)〉 − (E − Ĥ) |ψ(τ)〉





 , (160)

imposing that d
dτ |ψ(τ)〉 ∈ TψM, which leads to

d
dτ |ψ(τ)〉= Pψ(τ)(E − Ĥ) |ψ(τ)〉= −Pψ(τ)Ĥ |ψ(τ)〉 , (161)

where we used Pψ |ψ〉= 0.

This leads to the projected evolution equation

d xµ

dτ
|Vµ〉= −Pψ(τ)Ĥ |ψ(τ)〉 , (162)

from which we can define the imaginary time evolution vector field Fµ everywhere on M,
such that

d xµ

dτ
= Fµ(x) = −Pµ

ψ(x)Ĥ |ψ(x)〉 . (163)

This vector field can be understood as follows.

Proposition 11. Given a manifold M, the projected imaginary time evolution is given by

d xµ

dτ
= Fµ(x) = −Gµν(∂νE) , (164)

where E(x) is the energy function, defined in the context of equation (72). Its solution x(τ)
monotonically decreases the energy.

Proof. We apply the projector Pµ
ψ

in (163) to find

Fµ = −PµĤ |ψ〉= −
2

〈ψ|ψ〉
GµνRe 〈Vν| Ĥ |ψ〉 . (165)
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We simplify this by using (74). Plugging this back into the previous equations, we arrive
at (164). To show that the energy monotonically decreases, we find

dE
dτ
= (∂µE)

d xµ

dτ
= −(∂µE)Gµν (∂νE)≤ 0 , (166)

which follows from the positivity of Gµν.

We thus recognize projected imaginary time evolution (164) as gradient descent of the
energy function E(x) with respect to the natural geometry encoded in the metric Gµν on the
manifold M, as illustrated in figure 7. It is our experience that solving (164) numerically
has better convergence properties than performing a naive gradient descent, where we just
try to minimize the energy E(x) as a function of xµ assuming a flat metric. Hence, when
replacing the fixed time step by a line search, imaginary time evolution becomes equivalent
to Riemannian gradient descent. Indeed, the literature on Riemannian optimization [60–63]
describes how the Riemannian geometry (i.e., the metric) of a manifold can be taken into
account in each of the standard optimization algorithms such as the gradient descent method,
Newton’s method, the conjugate gradient method, and quasi-Newton methods such as the
(limited memory) Broyden–Fletcher–Goldfarb–Shanno scheme [64–67].

Kähler vs. non-Kähler. The results discussed in this section do not rely on the manifold
M being a Kähler manifold. The McLachlan projection principle is the only one that can be
resonably defined for imaginary time evolution and leads to the desirable gradient descent
result for any real differentiable manifold, independently of the Kähler property.

4.4.1 Conserved quantities

In many situations, one would like to further constrain our variational manifold by requiring
that certain operators ÂI have fixed expectation values AI . Geometrically, this amounts to
restricting the search to the submanifold

ÝM=
n

ψ ∈M
�

�

〈ψ|ÂI |ψ〉
〈ψ|ψ〉 = AI ∀ I

o

⊂M . (167)

For example, for Hamiltonians commuting with the total particle number operator N̂ , one
often wants to find lowest energy state within an eigenspace of N̂ with N̂ |ψ〉 = N |ψ〉. To
approximate such a state on a variational manifold M, we can search for minimal energy
state on the submanifold of states with 〈N̂〉= N .

In general, this manifold ÝM will not satisfy the Kähler property anymore. In particular, if
we only fix a single expectation value, we will generically reduce the dimension of a Kähler
M to an odd dimension, which cannot be again a Kähler manifold. However, we have seen
that for the purpose of finding the state of minimal energy, we can apply formula (158) on the
reduced manifold, regardless of the Kähler property.

Instead of finding a new parametrization of the reduced variational manifold, as long as we
choose an initial state for the imaginary time evolution that satisfies the desired constraints,
we can then just implement them locally. We can indeed modify the imaginary time evolution
vector field F by further projecting it onto the restricted tangent space T ÝM. In this way the
respective expectation values are preserved by construction.

If there are several quantities ÂI that we wish to fix, TψÝM is given by the sub tangent space
orthogonal to the span of XµI = P

µ

ψ
ÂI |ψ〉. To project onto it, we define

egI J = XµI gµν X νJ , (168)
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which gives rise to the projector

ePµν = δ
µ
ν − XµI eG

I J XρJ gρν , (169)

where eG I J is the inverse of egI J (or pseudo inverse, if not all constraints are independent). The
modified imaginary time evolution vector field is then

eFµ = ePµνFν , (170)

which will conserve all the expectation values AI(τ). In analogy to (109), this is equivalent to

eFµ = −eGµν(∂νE) with eG
µν
= ePµσeP

ν
ρGσρ . (171)

If we want to fix the expectation value of the number operator N̂ , we have the scalar
function N(x) = 〈N̂〉 with Xµ = P

µ

ψ
N̂ |ψ〉= Gµν∂νN , such that

eFµ = Fµ −
Gµν(∂νN)

(∂σN)Gσρ(∂ρN)
(∂λN)Fλ , (172)

which clearly satisfies dN
dτ = (∂µN) eFµ = 0.

5 Applications

In this section we will apply the formalism developed in this paper to some examples of vari-
ational manifolds. The aim is to illustrate how different Kähler and non-Kähler structures can
arise in practice.

In section 5.1 we will discuss a very common and natural example of Kähler manifolds,
namely bosonic and fermionic Gaussian states. Indeed, in the case of Gaussian states, Kähler
structures arise naturally directly in the way these states can be parametrized. We will intro-
duce them using a formalism that stresses this aspect. In sections 5.2 and 5.3 we will focus on
states of the form |ψ(x)〉= U(x) |φ〉 where U(x) is subset of unitary transformations and |φ〉
an appropriately chosen reference state. We will show how this class of states can give rise to
manifolds that violate the Kähler conditions to different degrees.

5.1 Gaussian states

We consider pure bosonic and fermionic Gaussian states, which are also known as quasi-free
states. Bosonic Gaussian states (squeezed coherent states) form a prominent variational family
in the study of bosonic systems, such as Bose-Einstein condensates [68], cold atoms in optical
lattices [59] and photonic systems [69]. Fermionic Gaussian states (generalized Hartree-Fock
states, including Slater determinants) are equally important for the study of fermionic systems,
including Bardeen–Cooper–Schrieffer theory [3] and the Hartree-Fock method [7]. Other ap-
plications range from field theory [70], continuous variable quantum information [71], rela-
tivistic quantum information [72] and quantum fields in curved spacetime [73]. Most impor-
tantly, they are completely determined by their one- and two-point function and they satisfy
Wick’s theorem. Interestingly, pure Gaussian states are in one-to-one correspondence to com-
patible Kähler structures (gab,ωab, J a

b) on the classical phase space. These Kähler structures
are distinct from those (gµν,ωµν, Jµν) on tangent space, but we will derive relations between
them.
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While the relationship between pure Gaussian states and Kähler structures has been pointed
out before in the context of quantum fields in curved spacetime [73–76], the linear complex
structure J was only recently used as a convenient parametrization of states. This allowed for
a unified formulation of bosonic and fermionic Gaussian states [77,78], which enabled new re-
sults in the context of their entanglement dynamics [79–81], the typicality of energy eigenstate
entanglement [82–84] and in the study of circuit complexity in quantum field theory [85,86].

5.1.1 Definition

The theory of N bosonic or fermionic degrees of freedom can be constructed on the classical
phase space V 'R2N . We denote a phase space vector by ξa ∈ V and a dual vector by wa ∈ V ∗,
where we use the Latin indices a, b, c, d, e for phase space to distinguish from tangent space
indices µ,ν,σ,λ. We will see in a moment how this relates to standard bosonic and fermionic
creation and annihilation operators.

The classical bosonic phase space V is always equipped with symplectic form Ωab and its
inverseωab satisfying Ωacωcb = δa

b, which define the classical Poisson brackets and then give
rise to the canonical commutation relations (CCR). Similarly, one can define classical fermionic
phase space V by equipping it with a positive definite metric Gab and its inverse gab satisfying
Gac gcb = δa

b giving rise to the canonical anti-commutation relations (CAR).

We can always choose a basis of classical linear observables ξa q,p
≡ (q1, · · · , qN , p1, · · · , pN ),

which can be bosonic or fermionic, such that (ω,Ω) or (g, G), respectively, take their standard
form given by

ωab
q,p
≡
�

0 −1
1 0

�

, Ωab q,p
≡
�

0 1

−1 0

�

, (bosons)

gab
q,p
≡
�

1 0
0 1

�

, Gab q,p
≡
�

1 0
0 1

�

, (fermions)

(173)

where we will use the symbol
q,p
≡ throughout this manuscript to indicate that the RHS of the

equation show the vector or matrix representation with respect to the above standard basis.

Quantization promotes these linear observables ξa to Hermitian quantum operators

ξ̂a q,p
≡ (q̂1, · · · , q̂N , p̂1, · · · , p̂N ) (174)

satisfying the commutation or anti-commutation relations

[ξ̂a, ξ̂b] = iΩab , (bosons)

{ξ̂a, ξ̂b}= Gab . (fermions)
(175)

We refer to ξ̂a as quadratures for bosons and as Majorana modes for fermions. These relations
ensure that the bosonic or fermionic creation and annihilation operators âi = (q̂i + ip̂i)/

p
2

and â†
i = (q̂i− ip̂i)/

p
2 will satisfy their standard commutation or anti-commutation relations,

respectively.

Given a normalized quantum state |ψ〉, we define its one and two point correlation func-
tions as

za = 〈ψ|ξ̂a|ψ〉 , (176)

Cab
2 = 〈ψ|(ξ̂− z)a(ξ̂− z)b|ψ〉 . (177)
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The fact that ξ̂a is Hermitian implies that za is real. This does not apply to Cab
2 , which we

therefore decompose into its real and imaginary part given by

Cab
2 =

1
2

�

Gab + iΩab
�

. (178)

It is easy to verify that Gab is real, symmetric and positive definite with inverse gab and Ωab is
anti-symmetric. For bosons, Ωab is fixed by the commutation relations, while
for fermions, Gab is fixed by the anti-commutation relations. With respect to our basis
ξ̂a ≡ (q̂1, · · · , q̂N , p̂1, · · · , p̂N ), they are given by (173). We define the covariance matrix

Γ ab =

�

Gab = Cab
2 + C ba

2 (bosons)
Ωab = −i(Cab

2 − C ba
2 ) (fermions)

, (179)

which is the only part of Cab
2 that depends on |ψ〉. Later on, we will use Γ ab as parameters of

our variational manifold.

We define the linear complex structure J of |ψ〉 as

J a
b = −Gacωcb , (180)

as before. Note, however, that for fermions Ωab may not be invertible, in which case we define
ωab as its unique pseudoinverse with respect to Gab, i.e., we invert Ωab on the orthogonal
complement of its kernel. We define

|ψ〉 is Gaussian ⇔ J2 = −1 . (181)

Put differently, pure bosonic and fermionic Gaussian states are those states, for which
(gab,ωab, J a

b) are compatible Kähler structures as defined in section 3. For fermions, this
also implies22 za = 0, while for bosons za is a free parameter, which we call the displacement.
We denote a pure Gaussian state with displacement za and complex structure J by |J , z〉, which
is uniquely determined (up to normalization and phase) by requiring

1
2
(δa

b + iJ a
b)(ξ̂

b − zb) |J , z〉= 0 . (182)

Given a Gaussian state |J , z〉, we define the operators

ξ̂a
± =

1
2
(δa

b ∓ iJ a
b)(ξ̂

b − zb) , (183)

which satisfy ξ̂a = ξ̂a
+ + ξ̂

a
− + za and ξ̂− |J , z〉 = 0. Put differently, we project onto the

eigenspaces of J with eigenvalues ±i and displaced by z. These spaces, i.e., complex lin-
ear combinations of ξ̂a

+ or ξ̂a
−, correspond to the spaces of creation and annihilation opera-

tors,respectively. Most importantly, ξ̂a
± satisfy the commutation and anti-commutation rela-

tions given by

[ξ̂a
±, ξ̂b

±] = 0 , [ξ̂a
∓, ξ̂b

±] = Cab
2 , (bosons) (184)

{ξ̂a
±, ξ̂b

±}= 0 , {ξ̂a
∓, ξ̂b

±}= Cab
2 . (fermions) (185)

Using these relations together with ξ̂− |J , z〉 = 0, one can show the equivalence of (177)
and (182). Moreover, one can show that any higher order correlation function

Ca1···an
n = 〈J , z|(ξ̂− z)a1 . . . (ξ̂− z)an |J , z〉 , (186)

with n> 2 can be computed purely from Cab
2 via Wick’s theorem, which states the following:

22There exist fermionic coherent states [87], where za is a Grassmann number, which we do not consider here.
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(a) Odd correlation functions vanish, i.e., C2n+1 = 0.

(b) Even correlation functions are given by the sum over all two-contractions

Ca1···a2n
2n =

∑

σ

|σ|
n!

C
aσ(1)aσ(2)
2 . . . C

aσ(2n−1)aσ(2n)
2 , (187)

where the permutationsσ satisfyσ(2i−1)< σ(2i) and |σ|= 1 for bosons and |σ|= sgn(σ),
called parity, for fermions.

This enables us to compute arbitrary expectation values of observables O written as polyno-
mials in ξ̂a efficiently.

Example 11. The harmonic oscillator Ĥ = 1
2(p̂

2+ω2q̂2) with standard position and momentum
operators [q̂, p̂] = i has ground state wave function ψ(q) =ω1/4e−ωq2/2 from which we find the
one- and two point functions

za = 0 , Cab
2 =

1
2
(Gab + iΩab)≡

1
2

�

1/ω i
−i ω

�

. (188)

This leads to the linear complex structure

J a
b = −Gacωcb ≡

�

0 1/ω
−ω 0

�

. (189)

We can compute ξ̂a
− =

1
2(1+ iJ)a b(ξ̂− z)b as

ξ̂a
− =

1
2

�

1 i/ω
−iω 1

��

q̂
p̂

�

=
1
p

2ω

�

â
−iωâ

�

, (190)

where â = 1
2
p
ω
(ωq̂+ ip̂).

Example 12. The fermionic oscillator of a single degree of freedom is given by Ĥ = ω(n̂ − 1
2),

where n̂ = â†â with â† and â being fermionic creation and annihilation operators. We can go to
Majorana modes q = 1p

2
(â† + â) and p̂ = ip

2
(â† − â) which satisfy q2 = p2 = 1

2 . There are only
two distinct fermionic Gaussian states given by |0〉 and |1〉. The associated complex structures are

J+
q,p
≡
�

0 1
−1 0

�

and J−
q,p
≡
�

0 −1
1 0

�

, (191)

respectively. We have the annihilation operators ξ̂a
− ≡

1p
2
(â, iâ) for the state |0〉 and

ξ̂a
− ≡

1p
2
(â†,−iâ†) for |1〉.

In summary, we showed how Kähler structures can be used as unifying framework to treat
bosonic and fermionic Gaussian states on an equal footing. In particular, we can label pure
Gaussian states |J , z〉 by their associated complex structure J , rather than using their covari-
ance matrix. In praxis, we can quickly switch between the different Kähler structures using
their relations as reviewed in appendix A.4.
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5.1.2 Gaussian transformations

There is a subgroup of unitary transformations that map pure Gaussian states onto themselves.
We refer to them as Gaussian transformations and we will see that they are given by the
exponential of linear and quadratic operators in terms of ξ̂a.

In this context, we will encounter the symplectic and orthogonal Lie groups and algebras.
We identify them with linear maps M a

b and Ka
b on the classical phase space V . Using the

symplectic form Ωab (bosons) and the metric Gab (fermions), we define the symplectic and
orthogonal group G as

Sp(2N ,R) = {M a
b ∈ GL(2N ,R)|MΩMᵀ = Ω} ,

O(2N ,R) = {M a
b ∈ GL(2N ,R)|MGMᵀ = G} ,

(192)

respectively, with their associated Lie algebras g

sp(2N ,R) = {Ka
b ∈ gl(2N ,R)|KΩ+ΩKᵀ = 0},

so(2N ,R) = {Ka
b ∈ gl(2N ,R)|KG + GKᵀ = 0} .

(193)

Group elements M ∈ G are equivalent to the well-known Bogoliubov transformations. To
see this relation, we can pick a basis ξ̂a q,p

≡ (q̂1, . . . , q̂N , p̂1, . . . q̂N ) of Hermitian operators sat-
isfying (175) and transform it to a new basis ξ̂′a ≡ M a

bξ̂
b. This fixes a transformation

â′i =
∑N

j=1(αi j â j + βi j â
†
j ), which now takes the known standard form of a Bogoliubov trans-

formation.

We can represent Lie algebra elements K faithfully as anti-Hermitian quadratic operators
bK given by

Ka
b ⇔ bK =

�

− i
2ωacK

c
bξ̂

aξ̂b (bosons)
1
2 gacK

c
bξ̂

aξ̂b (fermions)
. (194)

Using the canonical commutation, we can verify

[K1, K2]b = [cK1,cK2] , (195)

i.e., our quadratic operators bK form a representation of the Lie algebra g. The respective
exponentials of bK give rise to a projective representation of the associated Lie group G, i.e., we
have the identification

M = eK ⇔ S(M) = ebK , (196)

between Lie group elements M and unitary operators S(M), which we refer to as squeezing
transformations.

For bosons, we also have displacement transformations

za ⇔ D(z) = exp
�

izaωabξ̂
b
�

, (197)

i.e., we identify a phase space vector z ∈ V with the respective unitary operator D(z).
For fermions, products of M = eK for K ∈ so(2N ,R) will only generate the subgroup

SO(2N ,R), whose group elements satisfy det M = 1. To generate other group elements
M ∈ O(2N ,R) with det M = −1, we can take any dual vector va ∈ V ∗ satisfying vaGabvb = 2
to define

S(Mv) = vaξ̂
a , (fermions) (198)
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representing (Mv)a b = vcG
cavb−δa

b ∈ O(2N ,R)with det Mv = −1. We can further check that
S(Mv) is unitary. Moreover, we have S†(Mv)ξ̂aS(Mv) = (Mv)a bξ̂

b. Consequently, together
S(eK) and S(Mv) for a single chosen va generate the full orthogonal group O(2N ,R), i.e.,
every element M ∈ O(2N ,R) with det M = −1 can be represented as a S(M) ' S(eK)S(Mv)
for a fixed va and K = log M M−1

v .

Displacement and squeezing transformations form projective representations of vector ad-
dition in V and group multiplication in G. We define Gaussian transformations

U(M , z)∼=D(z)S(M) , (199)

where “∼=” refers to equality up to a complex phase. Using Baker-Campbell-Hausdorff, it is not
difficult to show

U†(M , z)ξ̂aU(M , z) = M a
bξ̂

b + za . (200)

Therefore, it is a projective representation with

U(M , z)U(M̃ , z̃)∼= U(M M̃ , z +Mz̃) , (201)

where (Mz̃)a = M a
bz̃b. The action of U(M , z) onto a Gaussian state is particularly simple and

given by

U(M , z) |J0, z0〉 ∼= |MJ0M−1, Mz0 + z〉 . (202)

Given a linear complex structure J0, there is a unique group of transformations M preserving
J0, i.e.,

GL(N ,C) = {M a
b ∈ GL(2N ,R)|MJ0M−1 = J0} . (203)

This group is indeed the complex linear group GL(N ,C), because the complex structure J0 can
turn V ' R2N into a complex vector space V ' CN with scalar multiplication � : (C, V )→ V
satisfying (α+ iβ)� v = α v + β J0v. With this in mind, a transformation M ∈ GL(N ,C) can
be seen as a linear map on V ' CN that commute with the representation J0 of the imaginary
unit, i.e., MJ0 = J0M .

Consequently, the subgroup of G which also preserves J0 is the intersection

G ∩GL(N ,C) = U(N) . (204)

This turns out to be the group of transformations that preserve all Kähler structures (G,Ω, J0)
on V , which are just the unitary transformations preserving the Kähler induced Hermitian
inner product on V given by

〈z, z̃〉=
1
2
(gab + iωab)z

az̃b . (205)

Given a Gaussian state |J0, 0〉, we can reach another23 Gaussian state |J , z〉 by applying the
transformation

U(eK , z)∼=D(z) ebK with K =
1
2

log∆ , (206)

where we introduced the relative covariance matrix

∆a
b = −J a

c(J0)
c

b = Γ
ac(Γ0)

−1
cb . (207)

Above transformation follows from J = eK J0e−K .

23For bosons, all Gaussian states are connected and can be reached. For fermions, there exist two disconnected
sets of Gaussian states, which cannot be continuously connected.
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Example 13. The squeezing transformations of a single bosonic mode ξ̂a q,p
≡ (q̂, p̂) are

G = Sp(2,R), generated by

X
q,p
≡
�

1 0
0 −1

�

, Y
q,p
≡
�

0 1
1 0

�

, Z
q,p
≡
�

0 1
−1 0

�

, (208)

with their associated quadratic operators

bX = −i q̂p̂+p̂q̂
2 , bY = i q̂2−p̂2

2 , bZ = −i q̂2+p̂2

2 . (209)

The Gaussian state |J0, 0〉 is preserved by u ∈ U(1) with

J0
q,p
≡
�

0 1
−1 0

�

and u
q,p
≡
�

cosϕ sinϕ
− sinϕ cosϕ

�

, (210)

where U(1) = Sp(2,R) ∩ GL(1,C) and u = eϕZ with [Z , J0] = 0. The most general Gaussian
state of one bosonic mode has complex structure

J
q,p
≡
�

− cosφ sinhρ sinφ sinhρ + coshρ
sinφ sinhρ − coshρ cosφ sinhρ

�

, (211)

for which we can verify J2 = −1. From the relative complex structure ∆= −JJ0, we compute the
generator

K =
1
2

log∆
q,p
≡
ρ

2

�

sinφ cosφ
cosφ − sinφ

�

, (212)

such that ebK |J0, 0〉 ∼= |J , 0〉.

Example 14. The squeezing transformations of a single fermionic mode ξ̂a q,p
≡ (q̂, p̂) are

G = O(2,R), generated by

X
q,p
≡
�

0 1
−1 0

�

⇔ bX = q̂p̂−p̂q̂
2 (213)

and our choice of the additional group element

Mv
q,p
≡
�

1 0
0 −1

�

⇔ S(Mv) =
p

2 q̂ (214)

with va ≡ (
p

2, 0). As seen in example 12, there are exactly two distinct complex structures given
by J+ and J− from (191) which are related by J+ = MvJ−M−1

v and which both satisfy uJu−1 = J
for u = eX . This is because u is the generator SO(2,R) which is identical to the subgroup U(1)
preserving J±.

Example 15. The squeezing transformations of two fermionic modes ξ̂a q,p
≡ (q̂1, q̂2, p̂1, p̂2) are

G = O(4,R) with six linearly independent generators Ki satisfying KG + GKᵀ = 0. Given the
linear complex structure

J0
q,p
≡







1
1

−1
−1






, (215)
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there is a 4-dimensional subspace of these generators also satisfying [K , J0], which generates
U(2) ⊂ O(4,R). The most general fermionic complex structure is

J±
q,p
≡





0 ∓ sinθ sinφ ± cosθ ± sinθ cosφ
± sinθ sinφ 0 − sinθ cosφ cosθ
∓ cosθ sinθ cosφ 0 sinθ sinφ

∓ sinθ cosφ − cosθ − sinθ sinφ 0



 . (216)

We have J+ = MJ0M−1 and J− = Mv MJ0M−1Mv for va ≡ (
p

2, 0,0, 0) and M = eK with

K =
1
2

log∆
q,p
≡
θ

2





0 cosφ 0 sinφ
− cosφ 0 − sinφ 0

0 sinφ 0 − cosφ
− sinφ 0 cosφ 0



 (217)

for ∆ = J+J0. From the explicit form of J±, we see that (θ ,φ) behave as spherical coordinates.
This agrees with the fact that the manifold of fermionic Gaussian states with two modes consists
of two disjoint spheres.

In summary, Gaussian transformations consist of squeezing (bosons and fermions) and
displacements (only bosons). The former changes both the complex structure (equivalently:
covariance matrices) and displacements, while the latter only displaces the state. Whenever we
choose a Gaussian state |J0, z0〉, it defines with the respective background structure (symplectic
form for bosons or metric for fermions) a subgroup U(N) of transformations in G that preserve
J0.

5.1.3 Geometry of variational family

We will now shift gears. Rather than looking at the Kähler structures (gab,ωab, J a
b) associated

to an individual Gaussian state |J , z〉, we now consider the full variational family M of pure
bosonic or fermionic Gaussian states to study the Kähler structures (gµν,ωµν, Jµν) on tangent
space TψM. For this, we will need to compute the tangent basis vectors |Vµ〉, which we will
split into two types |Va〉 and |Vab〉.

We introduced Gaussian states |J , z〉 as being uniquely (up to a complex phase) charac-
terized by their complex structure J and their displacement vector z. Consequently, a general
tangent vector is characterized by the pair (δJ a

b,δza) describing the respective changes of
J a

b and za. However, the resulting expressions simplify if we express everything in terms of
the (bosonic or fermionic) covariance matrix Γ ab as defined in (179). We will therefore label
states by |Γ , z〉 and tangent vectors by (δΓ ,δz) with

|δΓ ,δz〉= δΓ ab |Vab〉+δza |Va〉 ∈H⊥|Γ ,z〉 . (218)

The tangent space T(Γ ,z)M thus decomposes as

T(Γ ,z) = S(Γ ,z) ⊕D(Γ ,z) , (219)

where S(Γ ,z) corresponds to the changes of J and D(Γ ,z) refers to the changes of z (only for
bosons). We will see that these spaces can be naturally identified with the space of one- and
two-particle excitations in Hilbert space (constructed as Fock space).

Squeezing tangent space S(Γ ,z). The tangent space of squeezings is described by variations
δΓ ab of the covariance matrix. Note that such changes are constrained to preserve the complex
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structure property J2 = −1 and reflect the symmetry/antisymmetry of Γ for bosons/fermions,
respectively. We therefore have

δΓ ab = δΓ ba , δΓ Jᵀ = JδΓ , (bosons)

δΓ ab = −δΓ ba , δΓ Jᵀ = JδΓ . (fermions)
(220)

The tangent vectors |Vab〉=Q(Γ ,z)
∂
∂ Γ ab |Γ , z〉 are then24

|Vab〉=
� i

4 gacωbd ξ̂
c
+ξ̂

d
+ |Γ , z〉 (bosons)

1
4 gacωbd ξ̂

c
+ξ̂

d
+ |Γ , z〉 (fermions)

. (221)

The set of tangent vectors |Vab〉 is overcomplete, but this does not cause any problems as for
any change δΓ ab, the associated tangent vector is given by |δΓ 〉 = δΓ ab |Vab〉. Using Wick’s
theorem, we can compute the inner product

〈δΓ |δΓ̃ 〉=
1
16
(gac gbd + iωac gbd)δΓ

abδΓ̃ cd . (222)

We thus see that the inner product between squeezing tangent vectors can be computed from
the Kähler structure (g,ω, J) on the classical phase space V .

Displacement tangent space D(Γ ,z). The tangent space of displacements is described by
the variations δza of za, which can be changed freely. Therefore, we can identify the tangent
space T|Γ ,z〉 with the classical phase space V , i.e., δza ∈ V . The local frame |Va〉 is

|Va〉=Q(Γ ,z)
∂

∂ za
|Γ , z〉= iωabξ̂

b
+ |Γ , z〉 . (223)

We find the inner product

〈δz|δz̃〉=
1
2
(gab − iωab) z

az̃b , (224)

which implies that the tangent space is isomorphic to V embedded with metric gab and sym-
plectic form −ωab.25 The spaces S(Γ ,z) and D(Γ ,z) are orthogonal, because 〈Va|Vbc〉= 0 follows
from Cabc

3 = 0 in Wick’s theorem.

Kähler structures on tangent space. The tangent space of bosonic Gaussian states can be
decomposed into the direct sum of displacements and squeezings, which are orthogonal due to
〈Vab|Vc〉 = 0. The tangent space of fermionic Gaussian states, only consists of the squeezings.
Evaluating the respective inner products gives

〈δΓ ,δz|δΓ̃ ,δz̃〉=
1

16
(gce gd f − iωce gd f )δΓ

cdδΓ̃ e f

+
1
2
(gab − iωab)δzaδz̃b ,

(225)

giving rise to the Kähler structures

gµν ≡ (+gab)⊕ (+
1
8 gce ⊗ gd f ) , (226)

ωµν ≡ (−ωab)⊕ (−
1
8ωce ⊗ gd f ) . (227)

24The most general tangent vector of the squeezing manifold is given by |VK〉=Q(Γ ,z)bK |Γ , z〉, where bK is a general
quadratic operator from (194). We can then relate |VK〉 to the change δΓ = 2Re 〈Γ , z|(ξ̂aξ̂b + ξ̂bξ̂a − 2zazb)|VK〉 for
bosons and δΓ = 2Im 〈Γ , 0|(ξ̂aξ̂b − ξ̂bξ̂a)|VK〉 for fermions to find (221). For bosonic states |Γ , z〉 with za 6= 0, |VK〉
also has a component |δz〉= δza |Va〉 with δza = Ka

bzb in the displacement tangent space D(Γ ,z), discussed next.
25The sign difference is due to our chosen conventions and related to the issue discussed in footnote 26.
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Here, we do not have 〈Vab|Vcd〉 = 1
16(gac gbd − iωac gbd), but only

〈δΓ |δΓ̃ 〉= 1
16(gac gbd − iωac gbd)δΓ abδΓ̃ cd , where δΓ ab needs to satisfy (220). Inverting them

on this subspace leads to the dual Kähler structures

Gµν ≡ (+Gab)⊕ (+8Gce ⊗ Gd f ) ,

Ωµν ≡ (−Ωab)⊕ (−8Ωce ⊗ Gd f ) ,

Jµν ≡ (−J a
b)⊕ (−J c

e ⊗δd
f ) .

(228)

They are defined on the dual subspace spanned by (wa, Wab) with Wab satisfying

Wab =Wba , W J = JᵀW , (bosons)

Wab = −Wba , W J = JᵀW , (fermions)
(229)

dual to (220). Given a general Wab, we can define its projection bW c onto this subspace as

bW cab =

¨ 1
2(W − JᵀW J)(ab) (bosons)
1
2(W − JᵀW J)[ab] (fermions)

, (230)

with W(ab) =
1
2(Wab +Wba) and W[ab] =

1
2(Wab −Wba) referring to symmetrization and anti-

symmetrization, respectively. The resulting projection Wab satisfies bW cabδΓ
ab =WabδΓ

ab for
δΓ ab satisfying (229).

We find the action of i onto |δΓ ,δz〉 to be

i |δΓ ,δz〉= −J a
cδΓ

cb |Vab〉 − J c
dδzd |Vc〉= |−JδΓ ,−Jδz〉 . (231)

Example 16. We consider the Gaussian state |J0, 0〉 of a single bosonic mode ξ̂a ≡ (q̂, p̂) with
Kähler structures

J0
q,p
≡
�

0 1
−1 0

�

, G
q,p
≡
�

1 0
0 1

�

, Ω
q,p
≡
�

0 1
−1 0

�

. (232)

A change δΓ of the covariance matrix Γ = G is constrained to satisfy (220), such that we have

δΓ
q,p
≡
�

a b
b −a

�

and δz
q,p
≡
�

c
d

�

. (233)

The associated tangent vectors are given by

|V11〉 ≡ −|V22〉 ≡
(â†)2

8 |J0, 0〉 , |V1〉=
â†
p

2
|J0, 0〉 ,

|V12〉 ≡ |V21〉 ≡
i(â†)2

8 |J0, 0〉 , |V2〉=
iâ†
p

2
|J0, 0〉 ,

(234)

which leads to a general tangent vector

|δΓ ,δz〉= [1
4(a+ ib)(â†)2 + 1p

2
(c + id)â†] |J0, 0〉 . (235)

Example 17. We saw in example 14 that fermionic Gaussian states for N = 1 consists of two
points and thus is zero dimensional. Instead, we consider for N = 2 the state |Γ , 0〉 and allowed
change δΓ with

Γ
q,p
≡







1
1

−1
−1






, δΓ

q,p
≡







a b
−a −b

b −a
−b a






. (236)
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The non-zero tangent vectors are then

|V13〉 ≡ |V42〉 ≡ −|V24〉 ≡ −|V31〉 ≡
iâ†

1 â†
2

8 |Γ , 0〉 , (237)

|V14〉 ≡ |V23〉 ≡ −|V32〉 ≡ −|V41〉 ≡ −
â†

1 â†
2

8 |Γ , 0〉 , (238)

where we recall |Vab〉 ≡ −|Vba〉. We thus find

|δΓ , 0〉= −1
2(a+ ib)iâ†

1â†
2 |Γ , 0〉 . (239)

In summary, the Kähler structure (gab,ωab, J a
b) on the classical phase space V are in-

timately linked to the ones (gµν,ωµν, Jµν) on tangent space. For bosons, we saw that the
displacement tangent space D|J ,z〉 can be naturally identified with phase space V as Kähler
space.

5.1.4 Variational methods

After having clarified the Kähler geometry of bosonic and fermionic Gaussian states, we can
use them to illustrate the variational methods discussed in section 4. Applications include
(A) real time evolution, (B) excitation spectra, (D) spectral functions and (D) imaginary time
evolution.

Real time evolution. Based on (88), we have the Lagrangian evolution equation
d xµ
d t = −Ω

µν ∂ E
∂ xν . As Gaussian states are parametrized by xµ = (Γ , z), we need to compute

∂ E
∂ Γ ab and ∂ E

∂ za . As Ωµν is only defined on the subspace satisfying (229), we need to project ∂ E
∂ Γ

onto this subspace to find d
d t Γ

ab = 8ΩacGbdb ∂ E
∂ Γ ccd and thus26

d
d t za = X a = Ωab ∂ E

∂ zb ,
d
d t Γ

ab = X ab = 4Ωac
�

∂ E
∂ Γ − Jᵀ ∂ E

∂ Γ J
�

cd Gd b = 4(Ω ∂ E
∂ Γ G − G ∂ E

∂ Γ Ω)
ab

(240)

in agreement with the respective equations27 of [32]. We introduced the evolution vector field
X µ = (X a, X ab). We can also define the instantaneous Hamiltonian

Ĥ =

� 1
2 kab(ξ̂− z)a(ξ̂− z)b + laξ̂

a − E (bosons)
i
2 kabξ̂

aξ̂b − E (fermions)
(241)

with l = ∂ E
∂ z and k = ±2b ∂ E

∂ Γ c, where (+) applies to bosons and (−) to fermions. This is the
quadratic Hamiltonian whose time evolution on the Gaussian family agrees with the projection
X µ, i.e., −iĤ |Γ , z〉= X µ |Vµ〉. We further define the instantaneous Lie algebra element

Ka
b =

�

Ωackcb (bosons)
Gackcb (fermions)

, (242)

which allows us to write the time evolution equation for the linear complex structure and
displacement simply as

ż = Ωab lb and J̇ = [K , J] . (243)

26By construction the energy will only depend on the symmetric or antisymmetric part of Γ ab for bosons and
fermions, respectively, such that ∂ E

∂ Γ will be automatically symmetric or antisymmetric.
Note the sign difference in ż = Ω∂ E compared to Ẋ = −Ω∂ E, which is due to the chosen conventions mentioned
in 25.

27See equations (31) of [32], where z =∆R/
p

2, Ω= σ and Γ = G = Γb for bosons and G = 1 and Γ = Ω= −Γm
for fermions.
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Table 3: Dimension counting. We count the dimensions of the Gaussian manifold for
N bosonic or fermionic modes.

Displacements
(bosons)

Squeezings (bosons) Squeezings (fermions)

Change δza δΓ ab δΓ ab

Constraints none Γ ab = Γ ba, ∆Γ Jᵀ = JδΓ
Γ ab = −Γ ba,
∆Γ Jᵀ = JδΓ

Dimensions 2N N(N + 1) N(N − 1)

Note that these equations are in general non-linear, as K and l depend on the state and thus
on J and z.

Imaginary time evolution. We recall that on a general manifold, we have the the imag-
inary time evolution vector field d xµ

dτ = −Gµν ∂ E
∂ xν . This translates to d

dτΓ
ab = 8ΩacGbdb ∂ E

∂ Γ ccd
and thus to28

d
dτza = −Gab ∂ E

∂ zb (244)
d

dτΓ
ab = −4Gab( ∂ E

∂ Γ − Jᵀ ∂ E
∂ Γ J)cd Gd b = −4(G ∂ E

∂ Γ G +Ω ∂ E
∂ Γ Ω)

ab (245)

which agrees with the respective equations29 in [32].

Excitation spectrum. We recall that we can approximate the excitation spectrum either
by linearizing the equations of motion or by projecting the Hamiltonian onto tangent space.
The latter can be straightforwardly done in the number basis by expressing Ĥ in terms of
creation and annihilation operators associated to the approximate ground state |ψ0〉. We
therefore focus here on the former case, where the spectrum is encoded in the eigenvalues
of Kµν = −Ωµσ(∂ν∂σE). We evaluate K for Gaussian states at a stationary point, i.e., at x0
with (∂µE)(x0) = 0. We use the real time evolution vector field X µ = (X a, X ab) from (240) to
compute

K ≡





∂ X a

∂ zc
∂ X ab

∂ zc

�

∂ X
∂ Γ

�a

cd

�

∂ X
∂ Γ

�ab

cd



 , (246)

which can be explicitly computed as30

∂ X a

∂ zc = Ωae ∂ 2E
∂ zc∂ ze

, (247)

∂ X ab

∂ zc = 4
�

Ωae ∂ 2E
∂ zc∂ Γ e f Γ

f b − Γ ae ∂ 2E
∂ zc∂ Γ e f Ω

f b
�

, (248)
�

∂ X
∂ Γ

�a

cd =
Ωae

2

�

∂ 2E
∂ Γ cd∂ ze − J f

c
∂ 2E

∂ Γ f g∂ ze J g
d

�

, (249)
�

∂ X
∂ Γ

�ab

cd = 4
�

Ωae ∂ 2E
∂ Γ cd∂ Γ e f Γ

f b − Γ ae ∂ 2E
∂ Γ cd∂ Γ e f Ω

f b +Ωae ∂ E
∂ Γ ecδ

b
d −δa

c
∂ E
∂ Γ d f Ω

f b

+ J g
cΓ

ae ∂ 2E
∂ Γ gh∂ Γ e f Ω

f bJh
d − J g

cΩ
ae ∂ 2E
∂ Γ g∂ Γ e f Γ

f bJh
d

+ J a
c
∂ E
∂ Γ g f Ω

f bJ g
d − (Jᵀ)c gΩae ∂ E

∂ Γ eg J b
d

�

.

(250)

28See footnote 26.
29See equations (30) of [32].
30We make the assumptions discussed in footnote 26.
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Note that for fermions, we only have the last block
�

∂ X
∂ Γ

�

, as the others are related to the
displacement za, which vanishes for fermions. For bosons, the spectrum of the first block
∂ X a

∂ zc can be related to Bogoliubov mean field theory, as discussed in [59], i.e., it captures the
one-particle spectrum.

Spectral functions. We can then evaluate spectral functions based on formula (156) for
any operator V̂ . In practice, all eigenvectors Eµ(λ`) will be represented as

Eµ(λ`)≡ (δza,δΓ ab) , (251)

such that we can compute the dual vectors

∂µV ≡ ( ∂ V
∂ za , ∂ V

∂ Γ ab ) . (252)

Note that we will need to remove unphysical eigenvectors and dual eigenvectors, as discussed
in the next paragraph. The spectral function is then directly computed from (156). This
was done explicitly in [59] to study the excitation spectrum and spectral functions of the
paradigmatic Bose-Hubbard model, where V̂ was chosen to either describe density variations
or lattice modulations.

As explained in table 3, the manifold of bosonic states is N(N + 3)-dimensional, while
the manifold of fermionic states is N(N − 1)-dimensional. In contrast, the matrix represen-
tation (246) has a much larger dimension, due to the fact that we do not implement the
constraints on Γ directly in the basis of K , but rather by applying the projection (230) in the
definition of K . By construction, any forbidden change δΓ violating the constraints (220) will
be projected out and thus contributes the eigenvalue zero to the spectrum of K . In practice,
we therefore have two options:

(a) We can just compute the spectrum of K as written in (246) and drop N(N∓1) vanishing
eigenvalues for bosons and fermions, respectively. If there are more zero eigenvalues,
the spectrum will have one or more zero modes. To identify the corresponding (physical)
eigenvector (zc ,δΓ cd), one would need identify those eigenvectors which do not violate
the constraints (220). All eigenvectors with non-vanishing eigenvalues are physical and
necessarily satisfy the constraint.

(b) We can also reduce the dimension of K by constructing an orthonormal basis δΓ cd
i explic-

itly. This allows us restrict/project K onto this subspace. This is particulary important
when

There are large classes of examples where variational methods have been successfully ap-
plied to the family of Gaussian states to describe physical systems. Given a single fixed uni-
tary transformation U0, we can define the variational family of transformed Gaussian states
M′ = {U0 |Γ , z〉}. Using this variational family for a given Hamiltonian Ĥ is equivalent to ap-
plying our methods directly to the transformed Hamiltonian Ĥ ′ = U†

0 ĤU0. This approach has
been successfully applied to various systems, such as the Kondo problem [19].

Example 18. We consider a free bosonic system with one degree of freedom. Let its quadratic
Hamiltonian be

Ĥ =
1
2

habξ̂
aξ̂b with h

q,p
≡
�

ω 0
0 ω

�

. (253)

The manifold of Gaussian states was explicitly parametrized in (211), such that we find the

E =
1
4

habΓ
ab +

1
2

habzazb =
ω

2
(coshρ + z2

1 + z2
2) . (254)

58

https://scipost.org
https://scipost.org/SciPostPhys.9.4.048


SciPost Phys. 9, 048 (2020)

The change of za and Γ ab under time evolution are

dz
d t qpω

�

z2

−z1

�

, dΓ
d t

q,p
≡ −2ω sinhρ

�

cosφ − sinφ
− sinφ − cosφ

�

(255)

leading to ρ̇ = 0 and φ̇ = 2ω. Similarly, imaginary time evolution is given by

dz
dτ

q,p
≡
�

−ωz1

−ωz2

�

, dΓ
dτ

q,p
≡−ω

�

2sinh2ρ + sinφ sinh2ρ cosφ sinh2ρ
cosφ sinh2ρ 2sinh2ρ − sinφ sinh2ρ

�

(256)

leading to ρ′ = −2sinhρ and φ′ = 0. Finally, we find

K ≡







ω

−ω
2ω

−2ω






, (257)

from which we can read off the 1- and 2-particle excitation energies of the free Hamiltonian. For
the matrix representation of K, we chose the orthonormal basis (za, Γi)

δΓ1
q,p
≡
�

1
−1

�

, δΓ2
q,p
≡
�

1
1

�

. (258)

Example 19. We consider a free fermionic system with two degrees of freedom. Let its quadratic
Hamiltonian be

Ĥ =
1
2

habξ̂
aξ̂b with h

q,p
≡





ω1

ω2

−ω1

−ω2



 . (259)

This manifold of Gaussian states was explicitly parametrized in (216) with two coordinates
xµ ≡ (θ ,φ) leading to the energy of the state with J± given by

E = −
1
4

habΓ
ab = −(ω2 ±ω1) cosθ . (260)

The resulting equations for real time evolution are

dΓ
d t

q,p
≡(ω2 ±ω1) sinθ





cosφ sinφ
− cosφ − sinφ

sinφ − cosφ
− sinφ cosφ



 (261)

leading to the equations θ̇ = 0 and φ̇ = (ω2 ± ω1). Similarly, imaginary time evolution is
described by

dΓ
dτ

q,p
≡ (ω2±ω1) sin2θ

2





− sinφ − tanθ cosφ
sinφ − cosφ − tanθ
tanθ cosφ sinφ
− cosφ tanθ − sinφ



 (262)

leading to θ ′ = (ω2 ±ω1) sinθ and φ′ = 0. We can compute the matrix representation of Kµν
as

K ≡
�

0 ω1 +ω2
−ω1 −ω2 0

�

, (263)

whose eigenvalues correspond to the 2-particle spectrum of the free Hamiltonian Ĥ. For the matrix
representation of Kµν, we chose the orthonormal basis of variations

δΓ1 ≡







1
−1

−1
1






, δΓ2 ≡







1
−1

1
−1






. (264)
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Example 20. We now derive the time evolution for example 9 of a free bosonic system with two
degrees of freedom. We fix a basis ξ̂a q,p

≡ (q̂1, q̂2, p̂1, p̂2), with respect to which symplectic form and
covariance matrix of |Γ , z〉 are

Ω
q,p
≡







1
1

−1
−1






, Γ

q,p
≡







1
1

1
1






. (265)

We now choose the 2-dimensional variational families of coherent states |Γ , z〉, where
za q,p
≡ (q1, p1, q2, p2) depends on the two variational parameters z̃α

q,p
≡ (q̃, p̃) via

za = T a
β z̃β with T

q,p
≡







cosh r 0
sinh r 0

0 cosh r
0 − sinh r






, (266)

which agrees with |ψ(α)〉 from example 7. The z̃α are the expectation values of the canonically
conjugated operators

ˆ̃q = q̂1 cosh r − q̂2 sinh r , (267)

ˆ̃p = p̂1 cosh r − p̂2 sinh r . (268)

We represent the orthogonal projectorP(Γ ,z) as 2-by-4 matrix Pαb = Pα(Γ ,z) |Vb〉with PαbT b
γ = δαγ

given by

P
q,p
≡
�

cosh r − sinh r 0 0
0 0 cosh r sinh r

�

, (269)

where P acts on the tangent space of all displacements δz from (223) and orthogonally projects
onto the tangent space of our family described by δz̃. The Hamiltonian (101) can be rewritten as
Ĥ = 1

2habξ̂
aξ̂b with

h
q,p
≡







c1 c3
c3 c2

c1 c3
c3 c2






, (270)

where c1 = ε1 cos2φ + ε2 sin2φ, c1 = ε1 sin2φ + ε2 cos2φ and c3 =
ε1−ε2

2 sin2φ. We consider
the time evolution under Ĥ of the expectation values z̃ ≡ (q̃, p̃) for the following scenarios.
True evolution. The time evolution equation ża = X a follows from (240) and is given by

X a = Ka
bzb with Ka

b = Ω
achcb (271)

and solved by z(t) = M(t)z(0) with M(t) = etK .
Lagrangian vs. McLachlan evolution. The Lagrangian and McLachlan evolution are based on
projecting the equations of motion (240) in the two ways

X α
Lagrangian = PαbX b = (K1)

α
γz̃
γ , (272)

X α
McLachlan = (J̃

−1)αβ Pβ cJ
c
dX d = (K2)

α
γz̃
β , (273)

where we have X a = Ka
bT b

γz̃
γ. We compute

J̃=PJ T
q,p
≡
�

0 −sech2r
sech 2r 0

�

, Ki
q,p
≡
�

0 a+i
a−i 0

�

, (274)
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where we introduced the constants given by

a±1 = ±
(ε1−ε2) cos2φ+(ε1+ε2)sech (2r)

2 ,

a±2 = ±
(ε1+ε2) cosh2r+(ε1−ε2)(cos2φ∓sin 2φ sinh2φ)

2 .
(275)

We can compare the time evolution of the variational parameters z̃α ≡ (q̃, p̃) for the two varia-
tional principles with the exact evolution of the expectation values of (ˆ̃q, ˆ̃q) for the same initial
state |Γ , z〉, as shown in figure 4.

5.1.5 Approximating expectation values

In this section, we compare how the expectation value of observables changes depending on
if we evolve in the full Hilbert space with −iĤ or on our variational manifold with Pψ(−iĤ).
Clearly, any observable O that can be expanded in powers of ξ̂a can, in principle, be computed
exactly from the covariance matrix Γ ab and displacement vector za (for bosons) using Wick’s
theorem.

As it turns out, the derivative d
d t 〈Â〉 for linear-quadratic observables Â agrees in the two

cases on the Gaussian manifold, i.e., linear-quadratic observables are insensitive to
non-Gaussianities to linear order on the Gaussian manifold.

Put differently, the variation δ〈Â〉 is insensitive if we perturb the Gaussian state |Γ , z〉 either
into the direction |δψ〉, which will generally leave the class of Gaussian states, or into the
projected direction P|Γ ,z〉 |ψ〉, which is projected onto the Gaussian manifold. Here, we have
δ〈Â〉= d

d t 〈Â〉 if we choose |δψ〉= d
d t |ψ〉= −iĤ |ψ〉.

Proposition 12. Given a Gaussian state |Γ , z〉 and an arbitrary tangent vector |φ〉with 〈Γ , z|φ〉= 0,
the change of linear-quadratic observables Â= faξ̂

a + 1
2habξ̂

aξ̂b is

δ〈Â〉= 2Re 〈Γ , z|Â |φ〉= 2Re 〈Γ , z|ÂP(Γ ,z)|φ〉 . (276)

Proof. The proof is rather simple and goes in two steps: First, we note that a linear-quadratic
operator Â acting on |Γ , z〉 allows for the decomposition

Â |Γ , z〉= C |Γ , z〉+ X a |Va〉+ X ab |Vab〉 . (277)

Second, the inner product between Â |Γ , z〉 and the tangent vector |φ〉 only happen in this
subspace. Consequently, equation (276) follows.

Corollary 1. The time derivatives of displacement vector ża and covariance matrix Γ̇ ab at a Gaus-
sian state |Γ , z〉 are the same for the true time evolution with some interacting Hamiltonian Ĥ
and for its projection onto the Gaussian manifold. In formulas, this means

ża=2Re〈Γ , z|ξ̂aP(Γ ,z)(−iĤ)|Γ , z〉

=〈Γ , z|[−iĤ, ξ̂a]|Γ , z〉 ,
(278)

Ġab=2Re〈Γ , z|{ξ̂a, ξ̂b}P(Γ ,z)(−iĤ)|Γ , z〉 − d(zazb)
d t

=〈Γ , z|[−iĤ, {ξ̂a, ξ̂b}]|Γ , z〉 − żazb − zażb ,
(279)

Ω̇ab=2Re〈Γ , z|[ξ̂a, ξ̂b]P(Γ ,z)(−iĤ)|Γ , z〉

=〈Γ , z|[−iĤ, [ξ̂a, ξ̂b]]|Γ , z〉 ,
(280)

where Γ = G for bosons and Γ = Ω for fermions.
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In summary, projecting onto the Gaussian manifold is equivalent to truncating the equa-
tions of motion of the n-point functions at second order, i.e., we integrate equations (278)
to (280) and ignore non-Gaussian evolution of higher n-point functions Cn for n> 2.

5.2 Group theoretic coherent states

Standard coherent states of the form |α〉 = eαâ†−α∗ â |0〉 of a single bosonic degree of freedom
were introduced by Glauber [44]. From the perspective of Gaussian states, as presented in
the previous section, coherent states correspond to a submanifold of bosonic Gaussian states
with fixed complex structure J a

b (or covariance matrix Γ ab), but variable displacement vector
za. Given a fixed Gaussian state |J , 0〉, we can reach the set of coherent states |J , z〉 with all
possible za ∈ V by applying the displacement transformation |J , z〉=D(z) |J , 0〉. So, here, the
main structure is D(z), which gives a projective representation of the group of vector addition
V .

In this section, we generalize this construction by considering, instead of D(z), generic
unitary representations of arbitrary semi-simple Lie groups. This leads to construct the so-
called group theoretic coherent states. They were independently introduced by Gilmore [29,
88] and Perelomov [30, 89]. While we follow the excellent review [90], we will particularly
emphasize the geometric structure of the resulting variational families and their advantages. In
particular, we will show that group theoretic coherent states constructed from certain vectors,
called highest weight vectors, always give rise to Kähler manifolds. Furthermore, we will
connect to the previous section to show explicitly how the full families of bosonic and fermionic
Gaussian states can be naturally understood as group theoretic coherent states with respect to
groups G = Sp(2N ,R) and G = O(2N ,R) for bosons and fermions, respectively.

5.2.1 Definition

We consider a separable Hilbert space H, a real Lie group G with real Lie algebra g and a
possibly projective unitary representation U of G on H, i.e., we have

U(M) : H→H with U(M1)U(M2)' U(M1M2) , (281)

where ' indicates equality up to a complex phase. We may later impose conditions, such as
requiring that the Lie group is compact or semi-simple. Given a basis Ξi of the Lie algebra g,
we have the Lie brackets31

[Ξi ,Ξ j] = ck
i jΞk , (282)

where ck
i j are called structure constants. Our group representation induces a representation of

Ξi as operators

Ξ̂i =
d
ds

U(esΞi )
�

�

s=0 , (283)

which are anti-Hermitian32 due to U† = U−1. A general Lie algebra element A ∈ g is then
represented as anti-Hermitian operator Â= AiΞ̂i .

We can always represent group and Lie algebra through their action on the Lie algebra
itself. This is called the adjoint representation. Here, a Lie group element M is represented as

31In physics, some authors [91] choose the basis X i = −iΞi , such that A= AiΞi = iAi X i and [X i , X j] = ick
i jΞk.

32A basis X i = −iΞi would lead to Hermitian operators X̂ i = −iΞ̂i .
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the linear map AdM : g→ g with

AdM (Ξi) =
d
ds

MesΞi M−1
�

�

s=0 , (284)

which reduces for matrices to AdM (Ξi) = MΞi M
−1. Similarly, the adjoint representation of a

Lie algebra element Ξi is given by the linear map adi : g→ g with

adi(Ξ j) = [Ξi ,Ξ j] = ck
i jΞk , (285)

which implies that the adjoint representation of Ξi always takes the matrix form (adi)k j = ck
i j

with respect to Ξ j . The adjoint representation defines the Killing form

Ki j = Tr(adiad j) = (adi)
k

l(adi)
l
k = ck

il c
l
jk , (286)

which is non-degenerate for semi-simple Lie groups.

Example 21. We consider the Lie group SU(2) consisting of complex, unitary 2-by-2 matrices
with unit determinant. Its algebra is well known to be spanned by the matrices Ξi ≡

i
2σi , where

σi are the Pauli matrices, with structure constants ck
i j ≡ ε

k
i j given by the totally antisymmetric

tensor with ε1
11 = 1. The Killing form is thus Ki j = εk

ilε
l
jk = −2δi j . We consider the following

two representations:
Spin-1

2 . This is the fundamental representation and thus coincides with the definition. We repre-
sent the group on the Hilbert space H = C2 and it is generated by the anti-Hermitian operators
Ξ̂i ≡ −

i
2σi with

Ξ̂1 ≡ −
1
2

�

i
i

�

, Ξ̂2 ≡
1
2

�

−1
1

�

, Ξ̂3 ≡
1
2

�

−i
i

�

, (287)

which coincides with the definition Ξi .
Spin-1. This representation is also the adjoint representation and the matrices can be chosen to
be real. It is then given by real 3-by-3 rotation matrices acting on the Hilbert space H = C3. It is
generated by

Ξ̂1 ≡
�

0
1

−1

�

, Ξ̂2 ≡
�

−1
0

1

�

, Ξ̂3 ≡
�

1
−1

0

�

, (288)

which are infinitesimal rotations in the three planes. As matrices, they correspond to (Ξ̂i)k j = εk
i j ,

which confirms that this is the adjoint representation.

We will now explain how the choice of a reference state φ together with a projective
representation U(M) on some Hilbert space H defines a variational family Mφ ⊂ P(H).

Definition 4. Choosing a non-zero state |φ〉 ∈H defines the associated manifold of group theo-
retic coherent states

Mφ = {U(M) |φ〉 |M ∈ G}/∼ ⊂ P(H) , (289)

where |ψ〉 ∼ |ψ̃〉 ⇔ |ψ〉= c |ψ̃〉 for some c ∈ C.

When applying variational methods to Mφ , it is useful to parametrize states by group ele-
ments, i.e., |ψ(M)〉= U(M) |φ〉. Rather than taking derivatives with respect to some artificial
coordinates, we define local coordinates

|ψ(M , x)〉= U(Mex iΞi ) |φ〉= U(M)ex i Ξ̂i |φ〉 (290)
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around every state |ψ(M)〉 with tangent vectors at x = 0

|Vi〉=Qψ(M)
∂
∂ x i |ψ(M , x)〉

�

�

x=0 =Qψ(M)U(M) Ξ̂i |φ〉 . (291)

This allows us to introduce a map between the Lie algebra g and the tangent spaces of the
manifold Mφ as follows.

Definition 5. For any M ∈ G, we associate to every Lie algebra element A = AiΞi the tangent
vector

Ai |Vi〉= AiQψ(M)U(M) Ξ̂i |φ〉 ∈ Tψ(M)Mφ . (292)

This map is only an isomorphism if there are no Lie algebra elements A that only generate
a change of complex phase and are thus mapped to Ai |Vi〉 = 0. Such Lie algebra elements
define a subalgebra hφ generating the stabilizer group Hφ , defined as

Hφ =
�

M ∈ G
�

�U(M) |φ〉 ∼ |φ〉
	

, (293)

hφ = {A= AiΞi |Ai |Vi〉= AiQφΞ̂i |φ〉= 0} . (294)

As a manifold, we thus have Mφ = G/Hφ . Consequently, all tangent spaces Tψ(M)Mφ are
isomorphic to g/hφ = g/≈ with A≈ B if A− B ∈ hφ . If the Lie algebra is semi-simple, we can
use the then non-degenerate Killing form to uniquely represent g/hφ as

h⊥φ = {B = BiΞi |Ki jA
iB j = 0∀A∈ hφ} . (295)

We can now proceed to calculate the restricted Kähler strucures for the manifold Mφ .
We can use the Lie algebra induced tangent space vectors |Vi〉, introduced in (291), to derive
simple expressions of the restricted Kähler structures independent of M .

Proposition 13. The restricted Kähler structures of the manifold Mφ are

g i j =
2Re〈Vi(M)|V j(M)〉
〈ψ(M)|ψ(M)〉 = −

〈φ|Ξ̂iQφ Ξ̂ j+Ξ̂ jQφ Ξ̂i |φ〉
〈φ|φ〉 , (296)

ωi j =
2Im〈Vi(M)|V j(M)〉
〈ψ(M)|ψ(M)〉 =

〈φ|Ξ̂ jQφ Ξ̂i−Ξ̂iQφ Ξ̂ j |φ〉
〈φ|φ〉 , (297)

which are independent of M and thus everywhere the same.

Proof. We can straightforwardly compute

〈Vi|V j〉= 〈φ|Ξ̂
†
i U

†(M)Qψ(M)U(M)Ξ̂ j|φ〉= −〈φ|Ξ̂iQφΞ̂ j|φ〉 , (298)

where we used U†(M)Qψ(M)U(M) =Qφ and Ξ̂†
i = −Ξ̂i .

Proposition 13 implies a dramatic simplification of the variational manifold Mφ , because it
suffices to choose a single basis Ξi of generators to bring the Kähler structures into a standard
form which extends to all tangent spaces via the map of definition 5. This is particularly
important for numerical implementations as discussed in section 5.2.5.

Example 22. We will reconsider the Lie group SU(2) from example 21. As we are interested in
the possible families Mφ , we will need to understand which φ are inequalivant, i.e., do not give
rise to the same family Mφ . We can compute the tangent vectors |Vi〉 based on definition 5 for
the following representations.
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Spin-1
2 . Up to a multiplication with a complex number c, we can use our fundamental represen-

tation U(M) to transform any non-zero vector into any other complex vector. As our definition of
Mφ ignores complex rescalings, we therefore must have Mφ = P(C2), i.e., for any non-zero state
φ, the resulting family is the full projective Hilbert space as discussed in example 4. To compute
the tangent space vectors, we take |φ〉 ≡ (1,0) and find

|V1〉 ≡
�

0
i
2

�

, |V2〉 ≡
�

0
1
2

�

, |V3〉 ≡
�

0
0

�

. (299)

As |V3〉 = 0, the tangent space is TφMφ = spanR(|V1〉 , |V2〉) leading to the restricted Kähler
structures

g ≡
�

2 0
0 2

�

, ω≡
�

0 2
−2 0

�

, J ≡
�

0 −1
1 0

�

, (300)

which clearly satisfy J2 = −1.
Spin-1. Our representation U(M) consists of standard 3-by-3 rotation matrices acting on C3.
In the basis of these matrices, we can thus represent any vector as column |φ〉 ≡ ~a + i~b, with
~a,~b ∈ R3. We choose this vector to be normalized, such that ~a2 + ~b2 = 1. Multiplying with a
complex phase eiϕ corresponds to a rotation ~a→ cos(ϕ)~a+sin(ϕ)~b and ~b→ cos (ϕ)~b−sin(ϕ)~a,
which we can use to ensure ~a · ~b = 0 and ~a2 ≥ ~b2, such that we can always choose 0 ≤ θ ≤ π

4

with |~a| = cosθ and |~b| = sinθ . We can then apply the rotation matrices U(M), such that
~a = (cosθ , 0, 0) and ~b = (0, sinθ , 0). Furthermore, we find the tangent vectors

|V1〉≡

�

0
0

−i sinθ

�

, |V2〉≡

�

0
0

cosθ

�

, |V3〉≡

�

−i cos 2θ sinθ
− cos 2θ cosθ

0

�

. (301)

For this choice, we can compute the Kähler structures

g≡2





sin2 θ 0 0
0 cos2 θ 0
0 0 cos2 θ

2



 , ω≡2





0 sin2θ 0
− sin 2θ 0 0

0 0 cos2 θ
2



 (302)

leading to the linear complex structure

J ≡





0 − cotθ 0
tanθ 0 0

0 0 0



 . (303)

For 0 < θ < π
4 , we have hφ = span(|V1〉 , |V2〉 , |V3〉) and Mφ is degenerate non-Kähler. For

θ = 0, we have hφ = span(|V2〉 , |V3〉), on which ω vanishes and Mφ is again degenerate non-
Kähler. Only for θ = π

4 , we have hφ = span(|V1〉 , |V2〉), on which J2 = −1 holds, and Mφ

is Kähler. The families Mφ ⊂ P(C3) are 3-dimensional copies of SO(3,R) for 0 < θ < π
4 and

spheres S2, otherwise. Together these orbits foliate the projective Hilbert space P(C3) just like a
sphere can be foliated in circles of latitudes with single points at the poles.

5.2.2 Compact Lie groups

We are interested in geometry of the variational family Mφ ⊂ P(H), namely its restricted
Kähler structures (296) and (297). In particular, we would like to find a simple criterion when
such a family of group theoretic coherent states is a Kähler manifold. In this section, we will
focus on the representation theory of compact semi-simple Lie algebras, as discussed in [91].
Later, we will also consider Lie algebras that are not compact or not semi-simple, as discussed
in [92].
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For readers familiar with the theory of Lie algebras, let us emphasize that we need to
carefully distinguish between the theory of real and complex Lie algebras. In our case, we have
a real Lie algebra g, because we started from a real Lie group G and its unitary representation
U . We will be lead to also consider the complexification

gC = {AiΞi |Ai ∈ C} , (304)

but only real elements A ∈ g ⊂ gC will be represented by anti-Hermitian operators Â. For a
general element A= AiΞi ∈ gC, we define its conjugation as A∗ = A∗iΞi , such that A is only real
if A= A∗.

We consider a compact semi-simple Lie group G with real Lie algebra g, i.e., the Killing form
K is negative definite, such that K(A, B) < 0 for all non-zero A, B ∈ g. Our construction relies
on first choosing a Cartan subalgebra h ⊂ g (not to be confused with hφ), characterized by the
property that if [X , Y ] ∈ h for all X ∈ h also Y ∈ h. For semi-simple Lie algebras, this implies
that h is Abelian, i.e., [X , Y ] = 0 for all X , Y ∈ h. We choose a basis of h as HI = H i

IΞi , which
is smaller than Ξi that spans g. While the choice of h is not unique, they are all isomorphic for
compact semi-simple Lie algebras and they give rise to the following structures33:

• The adjoint representation adI = H i
I adi of the Cartan basis HI has joint eigenspaces

vα ⊂ gC with

adI(Eα) = [HI , Eα] = αI Eα ∀ Eα ∈ vα , (305)

where the set of eigenvalues αI is called a root34, which always come in pairs (α,−α).

• The root system ∆ is the set of all non-zero roots α. It can be split into the two disjoint
sets of positive roots ∆+ and negative roots ∆−, such that for every α ∈ ∆+, we have
−α ∈∆−.

• We have the root space decomposition given by

gC = hC ⊕
⊕

α∈∆+
vα ⊕ v−α , (306)

where all vα are complex and one-dimensional.

• For every root α ∈∆, we have the generator35

Hα = αI(K−1)I J HJ ∈ hC , (307)

such that [Eα, E−α] =K(Eα, E−α)Hα.

• We can choose for each eigenspace vα an eigenvector Eα, such that K(Eα, E−α)> 0 and
such that

[Eα, Eβ] = Nαβ Eα+β if α+ β ∈∆ , (308)

where Nαβ are real and satisfy Nα,β = −N−α,−β , while all other brackets [Eα, Eβ] vanish.

33The same structures arise for non-compact semi-simple Lie algebras, but they are not necessarily isomorphic
anymore.

34Each root is a linear map α : h→ C with α(AI HI ) = AIαI .
35There is a slight abuse of notation: HI refers to a real basis of h and is distinct from Hα ∈ hC defined in (307).
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One can use the property of g being compact to show that above choices of Eα satisfy E∗α = −E−α
and that all αI are imaginary. Thus, we have the real basis

Ξi ≡ (HI ,Qα, Pα) , (309)

where α ∈∆+ and we introduced the real generators

Qα = Eα − E−α and Pα = i(Eα + E−α) . (310)

When we represent Ξi by anti-Hermitian operators Ξ̂i on a Hilbert space H, all ĤI = H i
I Ξ̂i

commute with each other. A common eigenvector |µ〉 ∈H of all ĤI with

ĤI |µ〉= µI |µ〉 (311)

is called a weight vector and the joint eigenvalues µI are called its weight36. A weight vector
|µ〉 is called highest weight vector37 if it is annihilated by all positive root operators Êα with
α ∈∆+, i.e.,

|µ〉 highest weight ⇔ Êα |µ〉= 0 ∀α ∈∆+ . (312)

Different choices of h and different assignments of which roots are positive will lead to different
highest weight vectors. We refer to all vectors |µ〉 as highest weight vectors, for which there
exists a choice of Cartan subalgebra h and an assignment of positive roots, such that |µ〉 is
a highest weight vector in the above sense. For compact Lie groups, all such highest weight
vectors are related by applying U(M) for some M ∈ G, i.e., the family Mφ forφ being a highest
weight vector is actually the set of all highest weight vectors with respect to all possible choices
of Cartan subalgebras and positivity of roots. The following proposition shows that such Mφ

is Kähler, which was also recognized in [90].

Proposition 14. If φ is a highest weight vector and G a semi-simple compact group, the manifold
Mφ is Kähler.

Proof. As the group is compact, because of the discussion in section 5.2.2, a basis of the cor-
responding algebra is given by (309). Let |φ〉 = |µ〉 the highest weight vector with respect
to the Cartan subalgebra hC spanned by Hα. We split our set ∆+ of positive root into those
α̃ ∈ ∆+ with Ê−α̃ |µ〉 = 0 and those α ∈ ∆+ with Ê−α |µ〉 6= 0. Note that Êα |µ〉 = 0 for all
α ∈ ∆+ due to |µ〉 being highest weight. With this, we can split our basis Ξi further into the
three parts Ξi ≡ (HI ,Qα̃, Pα̃,Qα, Pα). We can construct the induced tangent space basis |Vi〉
from their definition (5) to find

|VI〉=QµĤI |µ〉= 0 , (313)

|V1
α̃〉=QµQ̂α̃ |µ〉= 0 , (314)

|V2
α̃〉=Qµ P̂α̃ |µ〉= 0 , (315)

|V1
α〉=QµQ̂α |µ〉= Ê−α |µ〉 ∝ |µ−α〉 6= 0 , (316)

|V2
α〉=Qµ P̂α |µ〉= iÊ−α |µ〉 ∝ i |µ−α〉 6= 0 . (317)

Here, (|V1
α〉 , |V

2
α〉) forms a basis of tangent space. Indeed Ê−α |µ〉 is an eigenvectors of ĤI

with eigenvalue µI −αI , such that ĤI Ê−α |µ〉= (µI −αI)Ê−α |µ〉 and as such are orthonormal.
Clearly, we have the pairs |V1

α〉 and |V2
α〉= i |V1

α〉 ensuring that tangent space satisfies the Kähler
property.

36Weights are linear maps µ : h→ C with µ(AI HI ) = AIµI .
37Technically, we could also call it lowest weight vector, if we switched the roles of positive and negative roots,

which is why some authors use the term ‘extremal weight’.
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Assuming |µ〉 is a weight vector, i.e., an eigenvector of the Cartan subalgebra operators,
we can explicitly compute the matrix representations

g ≡ 2
⊕

α

〈µ|[Ê−α, Êα] + 2Êα Ê−α|µ〉
〈µ|µ〉

�

1 0
0 1

�

, (318)

ω≡ 2
⊕

α

〈µ|[Ê−α, Êα]|µ〉
〈µ|µ〉

�

0 1
−1 0

�

, (319)

J ≡
⊕

α

〈µ|[Ê−α, Êα]|µ〉
〈µ|[Ê−α, Êα] + 2Êα Ê−α|µ〉

�

0 −1
1 0

�

. (320)

with respect to (|V1
α〉 , |V

2
α〉). We see immediately that such structures then take the canonical

Kähler form (J2 = −1) only if |µ〉 is the highest weight, that is 〈µ|Êα Ê−α|µ〉 = 0. In this case,
they only depend on the following factor which we evaluate explicitly using (307):

〈µ|[Ê−α,Êα]|µ〉
〈µ|µ〉 = − 〈µ|K(Eα,E−α)Ĥα|µ〉

〈µ|µ〉 = −K(Eα,E−α)µ(Hα)
〈µ|µ〉 . (321)

This can be explicitly checked in the following example.

Example 23. We reconsider example 22 of SU(2) for the spin-1
2 and spin-1 representation. SU(2)

is a compact group. We choose as real Cartan subalgebra h = spanR(Ξ3), which gives rise to
E± =

i
2(Ξ1 ± iΞ2), where we E+ corresponds to the only positive root.

Spin-1
2 . There is only one Mφ , which is the full space P(C2). Therefore every state in the

representation is a highest weight state with respect to some choice of hC and selection of positive
roots. For our choice, the highest weight state is |φ〉= (1,0), for which we already computed the
tangent vector in example 22 and verified that Mφ is Kähler.
Spin-1. Not every state is a highest weight state anymore. With respect to our choice of positive
root vector E+, the highest weight state is |φ〉 = ( 1p

2
, ip

2
, 0), which corresponds to the boundary

case θ = π/4 from our previous considerations. This agrees with our finding that Mφ is only
Kähler for θ = π

4 . Note that we can always include more generators to construct a larger group
(here: SU(3)), so that also states for π

4 6= θ 6= 0 are highest weight states (with respect to the
larger state) and Mφ will be Kähler (here: full P(H)).

5.2.3 General Lie groups

Proposition 14 shows that Mφ is a Kähler manifold if G is a compact semisimple Lie grup and
φ a highest weight vector. How much of this analysis can be carried out for non-compact or
non-semi-simple Lie groups/algebras?

For a semi-simple, non-compact real Lie algebra g, i.e., K is not negative definite anymore
(but still non-degenerate), we can still choose a Cartan subalgebra h ⊂ g and use the same
root space decomposition (306). Not all choices of h are isomorphic anymore, as K restricted
to h may have different signatures. This may lead to additional requirements for a highest
weight vector |µ〉 to give rise to Kähler manifolds. For any choice of Cartan subalgebra h and
a positive root system ∆+, we consider representations38 with unique highest weight vector
|µ〉 annihilated by all positive root operators Êα. We can distinguish the following cases:

Compact Cartan subalgebra. We refer to a chosen Cartan subalgebra h as compact if the
Killing form K restricted to h is negative definite. In this case, all roots α ∈ ∆ are imaginary,

38For non-compact Lie groups, any non-trivial unitary representation will be infinite dimensional, in which case
there are also representations without highest weight vectors. We do not consider those.
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â1 â†
2

roots

|0,0〉

|0,2〉

|2,0〉

|2,2〉

|1,1〉

|1,3〉

|3,1〉

|3,3〉

· · ·

...

· · ·

...

|0,1〉

|1,0〉

|2,1〉

|1,2〉

|0,3〉

|3,0〉

|2,3〉

|3,2〉

. .
.

weights

â†
1 â†

2
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Figure 8: Root and weight diagrams for sp(4,R) and so(4,R). We illustrate the roots
and weights for the squeezing representation S(M) in the case of two bosonic (left)
and two fermionic (right) modes. The corresponding Lie algebras g are sp(4,R) and
so(4,R), respectively. As Cartan subalgebra we choose ĤI ≡ (in̂1±

i
2 , in̂2±

i
2). There

are eight bosonic and four fermionic roots. The root vectors are purely imaginary,
allowing us to represent Im(αI) by arrows in two dimensions (red = positive roots,
green = negative roots). The weight vectors are the number eigenstates |n1, n2〉
with highest weight vector |0,0〉. They can also be represented in two dimensions
by plotting on each axis their eigenvalue with respect to one of the Cartan algebra
elements (black dots = even sector, blue dots = odd sector).

i.e., all α(HI) ∈ iR, and the positive roots ∆+ can be divided into two sets39: the set ∆k of
compact roots and the set ∆p of non-compact roots. The associated root operators Eα satisfy
E∗α = ∓E−α with (−) for compact roots and (+) for non-compact roots. A real basis of the real
algebra g is then

Ξi ≡ (HI ,Qαk , Pαk , iQαp , iPαp) , (322)

where αk ∈ ∆k,αp ∈ ∆p. At this stage, the proof of proposition 14 can be directly applied to
above basis Ξi and Mφ is Kähler.

Non-compact Cartan subalgebra. Whenever the Killing form restricted to our chosen Car-
tan subalgebra is not negative definite, some roots α ∈∆may be non-imaginary, in which case
Mµ constructed from the associated highest weight vector |µ〉may not be Kähler. Only if all the
non-imaginary root operators Êα annihilate the highest weight state |µ〉,
i.e., Eα |µ〉 = E−α |µ〉 = 0 for all non-imaginary roots α, we can once again apply the proof
of proposition 14. Indeed, in this case the basis of the real Lie algebra g will be given by (322)
plus some real basis vectors constructed from the non-imaginary root spaces. Those additional
basis vectors, however, annihilate the reference state and thus do not play a role in the prop-
erties of the tangent space and Mφ will again be Kähler. In summary, a highest weight vector
|µ〉will give rise to a Kähler manifold Mµ if it is not only annihilated by the positive imaginary
root operators Êα, but also by all non-imaginary root operators Ê±α.

Much less is known for general Lie groups that are not semi-simple, because their Lie
algebras are still not classified. Instead one can attempt to apply the presented analysis case
by case. Most importantly, this analysis works for the prominent family of regular coherent

39If the algebra is not compact, it can be divided into the two subspaces g = k ⊕ p, such that the Killing form
is negative definite on k and positive definite on p. Having a compact Cartan subalgebra means h ⊂ k and is
equivalent to having only imaginary roots. An imaginary root α is respectively compact or non-compact if vα and
v−α are contained in kC or pC.
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states, constructed from the Heisenberg algebra that is not semi-simple, as we will explain in
example 25.

Example 24. Bosonic and fermionic Gaussian states |J , 0〉 as defined in section 5.1 are group the-
oretic coherent states with respect to the groups Sp(2N ,R) and O(2N ,R) respectively, as defined
in (192). The corresponding algebras sp(2N ,R) and so(2N ,R) are represented by anti-Hermitian
quadratic combinations of the linear phase space operators ξ̂a, as in (194). For bosons this rep-
resentation is reducible and decomposes over the even and odd part of the Hilbert space, i.e.,
H = H+ ⊕H− where H± are the eigenspace of the parity operator P = eiπN̂ with N̂ being a
total number operator. For fermions, the group representation is irreducible due S(Mv) defined
in (198), which mixes the two sectors, while the algebra representation still splits over the even and
odd sector, as the bosonic case. The algebra is N(2N + 1) dimensional for bosons and N(2N − 1)
dimensional for fermions.
We can always select creation and annihilation operators â†

i and âi with number operators
n̂i = â†

i âi . This allows us to choose the N-dimensional Cartan subalgebra, whose basis is repre-
sented as HI ≡ (in̂1±

i
2 , . . . , in̂N±

i
2), where (+) applies to bosons and (−) to fermions. We divide

the associated N(2N − 1± 1) roots into positive and negative roots and pick the corresponding
basis vectors as

Êα ∈

¨

{iâi â j , â†
k âl |i ≤ j, k < l} (bosons)

{âi â j , â†
k âl |i < j, k < l} (fermions)

, (323)

Ê−α ∈

¨

{iâ†
i â†

j , â†
l âk|i ≤ j, k < l} (bosons)

{â†
j â

†
i , â†

l âk|i < j, k < l} (fermions)
. (324)

With this choice of real Cartan subalgebra all roots are imaginary. Only the roots associated to
âi â j and â†

i â†
j for bosons are non-compact, while all others are compact. We verify Ê†

α = ±Ê−α,
with (+) for compact and (−) for non-compact roots. Vice versa E∗α = ∓E−α, with (−) for compact
and (+) for non-compact roots. With this choice, the weight vectors of the representation on H+
are the states |n1, · · · , nN 〉 with fixed excitation numbers ni for all n̂i and

∑

i ni even. The highest
weight vector is |0, . . . , 0〉. The representation on H− is the same, except that we require

∑

i ni to
be odd, such that the highest weight vector is |1, 0, . . . , 0〉. For fermions, the highest weight families
Mφ of the two sectors are actually a single family (consisting of two disconnected components),
because we also represent group elements M with det M = −1 in our representation. For bosons,
only the family constructed from the highest weight, |0, . . . , 0〉, in the even representation is called
Gaussian. Let us highlight that the family Mφ for |φ〉 = |1,0, . . . , 0〉 is an interesting Kähler
family whose properties are not fully explored. For N = 2, the Cartan subalgebra is 2-dimensional,
which allows us to plot roots and weights in the plane, as done in figure 8.

Example 25. Standard bosonic coherent states are probably the most well-known type of coherent
states used in physics. These are generated from the displacement transformationsD(z) introduced
in (197). WhileD(z) is a projective representation of the Abelian group of phase space translations
(V,+) with D(z)D(z̃) = eizaωab z̃bD(z + z̃), this is actually not true for its Lie algebra. Instead,
one can consider eiϕD(z) as a representation of the Heisenberg group with (2N +1)-dimensional
Lie algebra represented by the anti-Hermitian operators Ξ̂i ≡ (iq̂1, ip̂1, . . . , iq̂N , ip̂N , i1). This Lie
algebra is not semi-simple and the standard approach of computing roots fails. However, if we
extend the Lie algebra even further to also include the N elements represented as number operators
in̂i = iâ†

i âi =
i
2(q̂

2
i + p̂2

i − 1), we can construct a root diagram. The Cartan subalgebra is then
represented by ĤI ≡ (in̂1, . . . , in̂N , i1) with root vectors âi and â†

i . Consequently, the roots form
an orthonormal basis, the eigenstates |n1, . . . , nN 〉 of the number operators n̂ are the weight states
and |0, . . . , 0〉 is the highest weight state, as for bosonic Gaussian states.
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To summarize we have the following cases:

• Semi-simple, compact algebra. Any compact group G has a compact Lie algebra g, for
which the family Mφ is Kähler if |φ〉 is the highest weight state of the representation.
See example 24 of fermionic Gaussian states.

• Semi-simple, non-compact algebra. If the group is non-compact, not all highest weight
vectors give rise to Kähler manifolds. For every highest weight vectors associated to the
real Cartan subalgebra h ⊂ g, we need to split the corresponding roots into imaginary
and non-imaginary roots. Only highest weight vectors that are also annihilated by all
(not just the positive) non-imaginary root vectors Eα will give rise to Kähler manifolds.
This includes in particular highest weight vectors, whose Cartan subalgebra is compact
and thus has only imaginary roots. See example 24 of bosonic Gaussian states.

• Not semi-simple algebra. The Kähler properties of the manifold have to be checked case
by case, as there is no general classification theory. In the physical important case of the
Heisenberg algebra (regular coherent states), the presented construction still works. See
example 25 of coherent states.

Our proofs and discussions only showed one direction, namely that φ being a highest weight
vector (and annihilated by non-imaginary roots, if there are any) implies that Mφ is Kähler.
According to [90,93], the opposite is also true, i.e., group theoretic coherent states are Kähler
if and only if they constructed from such a state φ. According to [90], variational families Mφ

that are Kähler also satisfy the conditions of so called symmetric spaces [94].

5.2.4 Co-adjoint orbits

In the context of group theoretic coherent states, one often transforms the problem of de-
scribing the geometry of Mφ to a real submanifold Oφ of the dual Lie algebra g∗, which is
called co-adjoint orbit. Using this language is particularly useful when we can establish an
isomorphism Mφ 'Oφ , i.e., when they are equivalent manifolds.

Definition 6. Given a non-zero state |φ〉 ∈H and M ∈ G, we define the dual Lie algebra element
βM ∈ g∗ as

βM : g→R; A 7→ i
〈φ|U†(M)ÂU(M)|φ〉

〈φ|φ〉
. (325)

This gives rise to its coadjoint orbit as the submanifold

Oφ = {βM |M ∈ G} ⊂ g∗ , (326)

where we can compute (βM )i = (β1) j(AdM ) j i .

The motivation for introducing the coadjoint orbit is that Oφ and Mφ will turn out to
coincide under certain conditions, including the important case where Mφ is of Kähler type.
Analogous to Hφ and hφ , we define

Sφ = {M ∈ G |βM = β1} ,

sφ = {A∈ g | (β1)k(adA)
k

j = (β1)k(A
ick

i j) = 0} ,
(327)

which are the stabilizer subgroup of the dual vector β1 = i 〈φ|Ξ̂i|φ〉/ 〈φ|φ〉 and the associated
Lie algebra. In other words, Sφ behaves to the orbit Oφ just like Hφ to Mφ .
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Proposition 15. We always have hφ ⊂ sφ and Hφ ⊂ Sφ . If they are equal, Oφ and Mφ are
isomorphic, i.e.,

hφ = sφ ⇔ Mφ ' G/Hφ = G/Sφ 'Oφ . (328)

Proof. We have Hφ ⊂ Sφ , because for M ∈ Hψ we have

βM (A) = i 〈ψ|U
†(M)ÂU(M)|ψ〉
〈φ|φ〉 = i 〈ψ|Â|ψ〉= β1(A). (329)

Consequently, we also have hφ ⊂ sφ .

Only if Hφ = Sφ , we will have the equality whileMφ is in general larger thanOφ , i.e., there
may be distinct states U(M) |ψ〉 ∈Mφ for which βM are the same. The following proposition
allows the efficient computation of ωi j from β1.

Proposition 16. The symplectic form ωi j on Mφ is

ωi j = β1([Ξi ,Ξ j]) = (β1)kck
i j . (330)

It is non-degenerate if and only if hφ = sφ or, equivalently, Mφ =Oφ . This directly implies

Mφ is Kähler ⇒ Mφ =Oφ . (331)

Proof. We compute explicitly

ωi j =
〈φ|Ξ̂ jQφ Ξ̂i−Ξ̂iQφ Ξ̂ j |φ〉

i〈φ|φ〉

=
〈φ|[Ξ̂ j ,Ξ̂i]|φ〉
〈φ|φ〉 +

2Im(〈φ|Ξi |φ〉〈φ|Ξ j |φ〉)
〈φ|φ〉2

=
i〈φ|ck

i j Ξ̂k|φ〉
〈φ|φ〉 + 0= ck

i j (β1)k .

(332)

Degeneracy of ωi j on tangent space means that there is a non-zero Ai |Vi〉 6= 0 with Aiωi j = 0.
Recalling

hφ = {AiΞi |Ai |Vi〉= 0} , (333)

sφ = {AiΞi | (β1)k(Aick
i j) = Aiωi j = 0} , (334)

implies such Ai cannot exist if and only if hφ = sφ .

The conclusion of this proposition is that ωi j is only non-degenerate if Mφ = Oφ and
vice versa. It is well-known in the theory of Lie groups [95] that any coadjoint orbit comes
naturally equipped with a non-degenerate symplectic form and here we see that it agrees with
the one on Mφ if Mφ =Oφ .

Example 26. Let us consider the example of SU(2) for the spin-1
2 and spin-1 representation a

final time. The co-adjoint representation is isomorphic to the spin-1 representation (just like the
adjoint) and can be understood as real 3-by-3 rotation matrices acting on real dual vectors (β1)k.
Therefore, all co-adjoint orbits for β1 6= 0 are 2-spheres, while the orbit β1 = 0 is the single point
{0}.
Spin-1

2 . We recall that there is only a single Mφ = P(C2), so that we can just compute β1 for the
representative |φ〉 ≡ (1,0). This gives the dual vector β1 ≡ (0,0, 1

2). Unsurprisingly, we have the
orbit Oφ 'Mφ ' S2.
Spin-1. We were able to parametrize all possible families Mφ by a representative
|φ〉 ≡ (cosθ , i sinθ , 0) for 0 ≤ θ ≤ π

4 . From here, we find β1 ≡ (0,0, sin2θ ). Consequently, the
orbit Oφ will be a sphere for θ > 0. However, only for θ = θ

4 , i.e., for φ being of highest weight,
we have Mφ 'Oφ .
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5.2.5 Numerical implementation

The goal of this section is to explain how any class of coherent states, be it Kähler or non-
Kähler, allows for an efficient implementation of real and imaginary time evolution. Here, we
use the Lagrangian action for real time dynamics. The key advantage of coherent states lies
in the fact that we can use the Lie algebra to identify the different tangent spaces, such that
symplectic form Ωi j and metric G i j does not need to be evaluated at every step. This provides
a significant computational advantage compared to a naive implementation without taking
the natural group structure into account.

In practice, this reduces the calculation of real and imaginary time evolution tremendously.
Instead of needing to compute metric and symplectic form at every step with respect to given
coordinates, we can parametrize states by matrices M and use the identification

Tψ(M)Mφ ' h⊥φ (335)

from definition 5 to evaluate G i j or Ωi j once based on proposition 13. This gives the following
dynamics.

Proposition 17. The equations of motion for M are

dM
dt (t) = M Ξi X i , (336)

dM
dτ (τ) = −M Ξi G i j(∂i E) (337)

for real time and imaginary time evolution respectively, where X i is given by (88) for Lagrangian
and by (93) for McLachlan evolution.

Proof. At each point M(s), with respect to the local coordinates introduced in (290) the time
evolution is

d
ds

M =
d
ds

M(s)≡
d
ds
(Mex i(s)Ξi ) = MΞi ẋ

i , (338)

where s = t and ẋ i is given by X i from (88) or (93) for real time evolution and s = τ and ẋ i

is given by F i from (164) for imaginary time evolution.

Consequently, a numerical implementation can be based on the following algorithm.

1. Choose a basis Ξi of h⊥
φ

represented as matrices and compute the required geometric

structure, such as g i j or ωi j and their inverses G i j or Ωi j . In many situations, it is con-
venient to choose Ξi , such that the associated geometric structures take some standard
forms.

2. Compute the gradient of E(M) at M as

∂i E(M) :=
d
ds

f (MesΞi )
�

�

s=0 . (339)

The evaluation of this derivative is the only problem specific piece to be
implemented. For Gaussian states |ψ(M)〉 = |MJ0M−1, z〉, the energy function
E(M) = 〈MJ0M−1, z|Ĥ|MJ0M−1, z〉 can be evaluated analytically using Wick’s theorem,
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such that also its derivative can be found as formal expression in terms of M and Ξi .
The evolution is then

X i(M) =











−Ωi j(∂ j E)(M) (Lagrangian)

−G i j 2Re〈V j |iĤ|ψ〉
〈ψ|ψ〉 (McLachlan)

−G i j(∂ j E)(M) (gradient)

(340)

for real time (Lagrangian or McLachlan) or imaginary time evolution, respectively. Let
us emphasize that G i j or Ωi j does not need to be evaluated again, as it does not depend
on M when parametrized in this way.

3. The evolution equation is then solved by performing discrete steps. Starting with some
initial matrix M0, we compute

Mn+1 = Mn eεδMn ≈ Mn

�

1+ ε
2 δMn

1− ε
2 δMn

�

, (341)

where δMn = X i(Mn)Ξi . Here, we approximate the exponential for small ε, such that
Mn+1 ∈ G.

Note that we need to choose ε sufficiently small to ensure that the denominator has eigen-
values close to 1, which can be achieved by choosing ε−1 larger than the largest eigenvalue
of δMn. For imaginary time evolution, we need further to choose ε sufficiently small, such
that the energy decreases in each step. For real time Langrangian evolution, the energy is
only preserved for infinitesimal steps, while for finite ε some deviation may occur. There exist
various numerical schemes, including symplectic integration, to deal with this issue more ef-
ficiently [53,54]. For real time evolution with varying step sizes, it is important to keep track
of the passed time to capture the correct dynamics of observables. This is less important for
imaginary time evolution where we are mostly interested in the convergence to the energy
minimum. The algorithm can be further enhanced by approximating the exponential function
in (341) to higher order, similar to higher order Runge-Kutta methods.

In [59], this method is used to study the ground state properties of the Bose-Hubbard
model in the superfluid phase. Apart from real and imaginary time evolution, the prescribed
method can be used for any functional optimization on the constructed manifold M. In [96],
these methods are used to evaluate entanglement and complexity of purification for Gaussian
states, which requires a minimization over all Gaussian purifications of a given mixed state.

5.3 Generalized Gaussian states

In the previous section we have considered manifolds made up of states of the form U(M) |φ〉,
where, as in definition 4, U is a unitary representation of the Lie group G, M is an element
of G and |φ〉 is a chosen reference state. We have seen that the geometric properties of the
manifold defined in this way crucially depend on the choice of |φ〉. Indeed, if |φ〉 is chosen as
a highest weight vector of the representation then the Kähler property of the manifold follows
naturally from the group structure. On the other hand if |φ〉 is not a highest weight vector,
then the Kähler property is not guaranteed.

We can schematically distinguish the following cases:

• Highest weight state |φ〉
The family |ψ(M)〉 = U(M) |φ〉 is defined taking |φ〉 as a highest weight state with
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respect to the representation U(M). If G is a compact semi-simple Lie group, the result-
ing variational family is always Kähler40. As discussed in examples 24 and 25, several
commonly used variational fall into this class, in particular coherent states and general
bosonic or fermionic Gaussian states. We have reviewed in detail the Kähler properties
of bosonic and fermionic Gaussian states in section 5.1.

• Fixed non-highest weight state |φ〉
The family |ψ(M)〉 = U(M) |φ〉 is defined taking a reference state |φ〉 which is not a
highest weight state with respect to the representation U(M). The resulting variational
family is typically non-Kähler. Nonetheless, these families maintain the advantages dis-
cussed in section 5.2, namely a natural basis in every tangent space, with respect to
which the restricted Kähler structures have the same matrix representations and need
not to be evaluated at every step.

• Family of reference states |φ(x)〉
The family |ψ(M)〉 = U(M) |φ(x)〉 is defined taking a reference state |φ(x)〉 that de-
pends on additional parameters. As |φ(x)〉 can include highest weight states, the full
manifold will in general consist of individual sheets labelled by x , which may be partially
Kähler and partially non-Kähler (making the full family non-Kähler). Such families were
recently [32] used to construct non-Gaussian states with correlations between bosonic
and fermionic degrees of freedom, as we discuss in section 5.3.2.

We will now illustrate this scheme in more detail by focusing on a specific choice of Lie
group and representation, i.e., the group of Gaussian unitaries U(M , z) introduced in (199).
These are unitaries that can be written as the exponential of anti-Hermitian operators at most
quadratic in the linear operators ξ̂a and, as seen in example 24, they give a representation of
the Lie groups ISp(2N ,R) for bosons and O(2N ,R) for fermions.

As warm up, we will take the simple case of a single bosonic mode. Here, all the above
cases emerge depending on the choice of reference state |φ〉. Then we will move to the general
case of an arbitrary number of bosonic and fermionic modes, where we will use the formalism
of the previous sections to define the variational family of generalized Gaussian states [32] in
the group-theoretic language and study their Kähler properties.

5.3.1 Warm up examples (single bosonic mode)

Let us consider a single bosonic mode defined by the creation and annihilation operators b̂†

and b̂ or the quadratures q̂ = 1p
2
(b̂† + b̂) and p̂ = ip

2
(b̂† − b̂). As discussed in example 24, in

this case the Gaussian algebra is spanned by the Cartan subalgebra element Ĥ = i(1+ 2b̂† b̂)
and by the elements E+ = b̂ b̂ and E− = b̂† b̂†, corresponding to the one positive and one
negative root of the algebra. Then, the real basis (309) of the algebra is represented by the
operators

Ξ̂1 ≡ bX = b̂†2 − b̂2 (342)

Ξ̂2 ≡ bY = i(b̂†2 + b̂2) (343)

Ξ̂3 ≡ bZ = i(n̂+ 1
2) , (344)

40If the group is not compact or not semi-simple |φ〉 may have to satisfy further conditions, as we will discuss in
section 5.2.3.
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where we followed the conventions of example 13. Indeed, the most general Gaussian squeez-
ing operator in such system can be then written as

U(x , y, z) = ex X̂+yŶ+zẐ . (345)

We then consider the manifold of group theoretic coherent states of the form

|ψ(x , y, z)〉= U(x , y, z) |φ〉 . (346)

As discussed in the context of defintion 5, for states of this form there exists a natural isomor-
phism between the tangent spaces at different points, which are all equivalent to a subspace
of the associated Lie algebra. It is thus sufficient to consider the tangent space at the point
|ψ(0,0, 0)〉= |φ〉. At this point, tangent space is spanned by the vectors

|V1〉 ≡Qφ(b̂
†2 − b̂2) |φ〉 ,

|V2〉 ≡ iQφ(b̂
†2 + b̂2) |φ〉 ,

|V3〉 ≡ iQφ(1+ 2n̂) |φ〉 ,

(347)

which also coincide with the ones introduced in (291). The form of these states, after applying
the projector Q, depends on the specific choice of |φ〉.

We will now review some possible choices, showing that if we choose a highest weight
state of the representation (first case) we will obtain a Kähler manifold, while if we do not
(subsequent cases) we can construct non-Kähler manifolds of the different types discussed in
the previous sections.

Kähler (Gaussian) case |φ〉 = |0〉. As already discussed extensively, choosing |φ〉 as the
Fock vacuum leads to the manifold of one-mode bosonic squeezed states. We have seen that
these form a Kähler manifold, as can be expected in the light of what discussed in Section 5.2.
Indeed, |0〉 is the highest weight state of the representation of Sp(2,R) we are using, so the
resulting manifold is Kähler by Proposition 14. More concretely, we see that the last vector
in (347) will be proportional to |φ〉 and thus will vanish once the projector Qφ is applied. We
are then left with a two dimensional tangent space, spanned by the first two which form a
Kähler pair. Overall we indeed have

|V1〉 ≡
p

2 |2〉 , |V2〉 ≡ i
p

2 |2〉 , |V3〉 ≡ 0 . (348)

Note that, as we are only considering squeezing and not displacements, a similar behaviour
will appear also for |φ〉 = |1〉. This is indeed the the highest weight state of the odd sector of
the representation, as discussed in example 24.

Non-Kähler non-degenerate case |φ〉 = |2〉. If we choose |φ〉 as a Fock state |n〉 with
n≥ 2 then we will similarly have that the the last vector in (347) vanishes after applying Qφ .
The remaining two vectors will however not form a conjugate pair. For n= 2, we find

|V1〉 ≡
p

12 |4〉 −
p

2 |0〉 , (349)

|V2〉 ≡ i(
p

12 |4〉+
p

2 |0〉) , (350)

|V3〉 ≡ 0 . (351)

Through simple calculations one can see that in this case the symplectic formω will be invert-
ible, but the complex structure J will, in the basis {|V1〉 , |V2〉}, have the form

J =

�

0 −5/7
5/7 0

�

, (352)
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which clearly does not square to −1.

Non-Kähler degenerate case |φ〉= 1p
2
(|0〉+ |2〉). If we choose a |φ〉 that is not an eigen-

state of n̂, for example a superposition of two different Fock states, then it will not be a weight
state of the representation. In this case none of the vectors in (347) will vanish after applying
Qφ . Therefore, we will have a three dimensional tangent space. Being odd-dimensional, it
cannot admit an invertible symplectic form ω. In particular, for |φ〉= 1p

2
(|0〉+ |2〉) we have

|V1〉 ≡
p

6 |4〉+ |2〉 − |0〉 , (353)

|V2〉 ≡ i
p

6 |4〉 , (354)

|V3〉 ≡ i
p

2(
p

2−
p

0) . (355)

This leads to the complex structure

J =
1
4





0 −3 −
p

2
4 0 0

2
p

2 0 0



 , (356)

from which we have that J2 has eigenvalues 0, −1 and −1. We see therefore that the manifold
is not naturally Kähler, however if we invert ω only on the two-dimensional subspace where
this is possible (i.e., with the pseudo-inverse), as discussed in section 3.4, then the resulting
manifold is Kähler.

Variable reference state |φ(α, Γ , z)〉 = eiαn̂2
|Γ , z〉. Finally, we can also consider the case

where |φ〉 is not a fixed state, but rather depends itself on some parameters that will then be
part of the total parameter set of the manifold. In this case, different instances of the pos-
sibilities discussed above may occur at different points of the manifold. In particular, let us
consider for |φ〉 the states obtained by applying the unitary eiαn̂2

, depending on the single real
parameter α, to the family of Gaussian states, parametrized by |Γ , z〉 according to the conven-
tions of section 5.1. Here, at a generic point of the manifold, varying the parameter αwill lead
to a single independent unpaired tangent vector Qφ∂αeiαn̂2

|Γ , z〉, which will necessarily make
the tangent space non-Kähler. However at the special points where J = 1 and z = 0, that is
|φ〉= |0〉 for any α, we have that the tangent space will be isomorphic to the one of Gaussian
states, that is Kähler.

5.3.2 Definition of a class of generalized Gaussian states

As seen in the previous section, choosing variable reference state |φ(x)〉 can lead to mani-
folds with rather elaborate geometric structures. In this section, we will introduce a set of
states that can be considered as a generalization of such example to the case of an arbitrary
number of bosonic and fermionic modes. These states were first introduced in [32] as a varia-
tional ansatz in many-body physics that extends Gaussian states. We will define this family in
group-theoretic terms, study their Kähler properties and thereby show that they do not form
Kähler manifolds. Thus, they are an important example to apply the methods introduced in
the previous sections.

We consider a Hilbert space containing both bosonic and fermionic degrees of freedom,
i.e., H = Hb ⊗Hf where Hb is the bosonic Fock space of Nb bosonic modes and Hf is the
fermionic Fock space of Nf fermionic modes. We refer to the classical phase spaces Vb ' R2Nb

and Vf 'R2Nf . On this space, we fix a basis of bosonic and fermionic linear operators

ξ̂a
b ≡ (q̂

b
1, · · · , q̂b

Nb
, p̂b

1, · · · , p̂b
Nb
) , (357)

ξ̂a
f ≡ (q̂

f
1, · · · , q̂f

Nf
, p̂f

1, · · · , p̂f
Nf
) , (358)
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which also determine the number operators

n̂i
b/f =

1
2

�
�

q̂b/f
i

�2
+
�

p̂b/f
i

�2
− 1

�

(359)

for all i = 1, . . . , Nb/f.

Gaussian states of systems with bosonic and fermionic degrees of freedom are defined as
the tensor product

|Γb, zb, Γf〉 ≡ |Γb, zb〉 ⊗ |Γf, 0〉 (360)

and are thus unable to capture correlations between bosons and fermions. This is an impor-
tant drawback when studying correlated boson-fermion mixtures, which generalized Gaussian
states are able to overcome. Gaussian transformations on the mixed Hilbert space H =Hb⊗Hf
are defined as the representation of the group ISp(2Nb,R)×O(2Nf,R)

U(Mb, Mf) = Ub(Mb, zb)⊗Uf(Mf) , (361)

with Mb ∈ Sp(2Nb,R), zb ∈ Vb and f ∈ O(2Nf,R), such that Ub and Uf are the representations
of respectively bosonic and fermionic Gaussian unitaries defined in section 5.1.

We now consider states of the form U(Mb, Mf) |φ(x)〉 for variable choices of the state
|φ(x)〉. More precisely, we consider the non-Gaussian reference states

|φ(α, Γb, zb, Γf)〉= UNG(α) |Γb, zb, Γf〉 . (362)

Here, UNG is a non-Gaussian unitary, acting on the full Hilbert spaceH =Hb⊗Hf, parametrized
by the real parameters α and |Γb, zb, Γf〉 is Gaussian.

There are two important choices for the unitary UNG, depending on the type of correlation
between the bosonic and fermionic sector one wishes to introduce,

U (1)NG(α
b,αf,αbf) = e

i(αb
i j n̂

i
b n̂ j

b+α
f
ĩ j̃

n̂ĩ
f n̂

j̃
f+α

bf
i j̃

n̂i
b n̂ j̃

f ) , (363)

U (2)NG(α
b,αf,αbf) = e

i(αb
i j n̂

i
b n̂ j

b+α
f
ĩ j̃

n̂ĩ
f n̂

j̃
f+α

bf
a j̃
ξ̂a

b n̂ j̃
f ) , (364)

where the indices i, j run over the bosonic modes and ĩ, j̃ run over the fermionic ones. The
resulting family of non-Gaussian states is then given by

|ψ(M ,α, Γ )〉= U(M)UNG(α) |Γ 〉 , (365)

where we have M=(Mb, zb, Mf), α=(αb,αf,αbf) and Γ=(Γb, zb, Γf). Note that this parametriza-
tions certainly contains redundancies and careful analysis of the resulting family is desirable.
This choice of non-Gaussian unitaries is motivated by the fact that, while going beyond the
space of Gaussian transformation, they still allow for efficient computations. They satisfy the
property U†

NGξ̂
aUNG = (UG)a bξ̂

b, where UG is a Gaussian unitary combined with a linear trans-
formation of the ξ̂a.

Moreover, these states can be understood as true generalizations of Gaussian states in the
sense of a generalized Wick’s theorem. As discussed in [32], the evaluation of n-function fol-
lows from a quadratic generating function, just like in Wick’s theorem. However, what makes
them truly different from Gaussian states is that this generating functional is different for dif-
ferent n, such that more interesting correlation structures (such as boson-fermion correlations,
but even within one sector) can be captured. For this reason any n-point function can be effi-
ciently computed for the states introduced in this section, generalizing the property that in the
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case of Gaussian states follows from Wick’s theorem. For this property to hold, the unitarity
of UNG is essential. With this in mind, the parameters α should be considered real and not
extended to the complex plane.

Therefore, the previous considerations about Kähler manifolds apply directly. Clearly, the
manifold decomposes into equivalence classes (sheets) of states U |φ(x)〉 related by Gaussian
transformations. In particular, the sheets constructed this way will only be Kähler where the
reference state |φ(x)〉 is the highest weight state of the representation, i.e., the vacuum state
|Γb, zb, Γf〉= |0〉b⊗|0〉f, while the overall manifold (collection of sheets) will not be Kähler. Con-
sequently, these states provide a natural playground for the concepts and methods introduced
in this paper and vice versa a rigorous understanding of variational methods for non-Kähler
manifolds is required to use generalized Gaussian states in practice.

6 Summary and discussion

We have presented a systematic geometric framework to use variational methods for the study
of closed quantum systems. Our results build on extensive previous work ranging from the ge-
ometric formulation of the time dependent variational principle by Saraceno and Kramer [25]
to the formulation of group theoretic coherent states due to Gilmore and Perelomov [29,30].

The main contribution of the present work is to recognize the Kähler property as an im-
portant criterion in the classification of variational families, to extend existing methods to the
non-Kähler case and thereby provide a systematic framework for such calculations. While
section 2 served as less rigorous exposition, we wrote a concise review of the necessary math-
ematical background in section 3 to understand our main results in section 4.

Real time evolution (4.1). We gave explicit formulas for the Lagrangian evolution (88)
and the McLachlan evolution (93), whose equivalence for Kähler manifolds was shown in
proposition 6. We also compared their conservation laws when the two evolutions differ (non-
Kähler case).

Excitation spectra (4.2). We rephrased the two approaches of computing excitation spec-
tra from tangent spaces geometrically, namely projecting the Hamiltonian according to (119)
vs. linearizing the equations of motion according to (122) à la Gross–Pitaevskii, and discuss
their relations for Kähler and non-Kähler manifolds. For the latter approach, in (123) we
introduced the local generator Kµν of time evolution.

Spectral functions (4.3). We formulated linear response theory in our geometric language
to derive a new approximation of the spectral function in (156) using the eigenvectors of Kµν,
which can be applied to both Kähler and non-Kähler manifolds.

Imaginary time evolution (4.4). We gave a geometric derivation of projected imaginary
time evolution (164), which makes its equivalence to gradient descent explicit and does not
rely on the Kähler property.

In our application section 5, we considered commonly used families of states under the
light of variational methods and Kähler geometry: We started with the well-known families
of bosonic and fermionic Gaussian states (5.1), where we related for the first time the Kähler
structures on tangent space (g , ω, J) of the family with the ones on the classical phase space
(g,ω, J). We then reviewed group theoretic coherent states (5.2) à la Gilmore-Perelemov .
Finally, we investigated the recently introduced families of generalized Gaussian states (5.3)
through the lense of group theory and Kähler geometry.
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Geometric formulations of quantum theory have a long tradition [24,26–28] in the math-
ematical physics community, but their usage for everyday applications in quantum many body
physics and quantum optics has been limited for several reasons. Studying real and imaginary
time evolution on high dimensional variational families requires extensive computational re-
sources, which were not available thirty years ago. While it was often sufficient in the past to
do a first order calculation based on standard families, such as coherent states, more complex
models and more complicated physical questions (often inspired by experiments) often require
new approaches, such as larger variational families. Finally, finding suitable variational fam-
ilies is always about striking a balance between choosing the family’s dimension sufficiently
large to capture interesting physics, but also sufficiently small to make calculations feasible.
While the dimension of Hilbert space typically scales exponentially with the number of degrees
of freedom N , most effective variational families scale polynomially (coherent states ∼ N ,
Gaussian states ∼ N2, generalized Gaussian states ∼ N2).

We expect that in the near future the systematic application of existing and newly proposed
variational families in quantum many body problems will contribute to a better understanding
of the involved physics with the potential of making new predictions relevant for experimental
studies. We believe that with the present paper we have laid the theoretical foundations for
the exploration of general variational families and methods. A prominent example of these
are generalized Gaussian states as proposed in [32] and reviewed in section 5.3. They present
a new approach for the variational study of various systems, ranging from boson-fermion mix-
tures in Holstein models [21] to Su-Schrieer-Heeger models and Kondo models [32], but their
geometric and mathematical structures have been largely unexplored. They form manifest
non-Kähler manifolds and this makes our formalism particularly suited for their study. Even
revisiting known models with enlarged variational families can reveal new properties. For ex-
ample, moving from coherent to the larger family of bosonic Gaussian states revealed recently
that the ground state of trapped Bose-Einstein condensates with attractive s-wave interaction
exhibits features of a squeezed state [97,98].

The present paper focused exclusively on variational families of pure quantum states, used
for the study of closed quantum systems, i.e., at zero temperature. A natural extension of our
formalism would be to also incorporate open quantum systems by allowing mixed states within
our variational family. The approximate ground states ψ0 minimizing the energy would be
replaced by density operator ρ0 minimizing the free energy. Non-equilibrium phenomena are
often treated in their Markovian approximation, where time evolution is governed by master
equations of the Gorini-Kossakowski-Sudarshan-Lindblad form [99,100]. Using this to derive
meaningful variational equations is an important challenge, which has been only partially
accomplished in the context of specific variational families [101, 102]. We believe that the
geometric perspective laid out in the current manuscript may also be helpful for developing
variational methods to study the dynamics of open quantum systems.
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A Conventions and notation

In this appendix, we review the conventions and notation used in this manuscript. The goal of
our formalism is to be largely self-explanatory with an easy conversion between abstract objects
(vectors, tensors, operators) and their numerical representation (lists, matrices, arrays).

A.1 Nomenclature

The following list contains most of the symbols and their meaning, used throughout this
manuscript.

Symbol Meaning

|ψ〉 ∈H Hilbert space vector

|ψ(x)〉 ∈ M family of Hilbert space vectors M ⊂H
|vµ〉 tangent space vector on M ⊂H

ωµν, gµν, Jµν restricted Kähler structures on M ⊂H
ε Expectation value ε = 〈ψ|Ĥ|ψ〉
L Lagrangian on M

ψ ∈ P(H) quantum state in projective Hilbert space

ψ(x) ∈M family of states M ⊂H
|Vµ〉 tangent space vector on M ⊂H

TψM tangent space of M at ψ

µ,ν,δ,γ tangent space indices

ωµν, gµν, Jµν restricted Kähler structures on M ⊂H
L Lagrangian on L
E Expectation value E = 〈ψ|Ĥ|ψ〉/ 〈ψ|ψ〉

H⊥
ψ

vectors orthogonal to |ψ〉
Qψ orthogonal projector onto H⊥

ψ

Pψ orthogonal projector onto TψM
A(x) = 〈Â〉 (x) expectation value of Â for state ψ(x)

{A, B} Poisson bracket on M for functions A, B

X µ real time evolutation vector field

Fµ imaginary time evolution vector field
ePµν projector onto conservation laws subspace

eX µ, eFµ conservation laws preserving vector fields
ÝM manifolds of constant conserved quantities
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|Ψ〉= eκ+iϕ |ψ〉 family with variable phase/normalization

Kµν linearized time evolution flow

λ` = ±iω` eigenvalues of Kµν
Eµ(λ) right-eigenvectors of Kµν
eEµ(λ) left-eigenvectors of Kµν
A(ω) spectral function

V classical bosonic/fermionic phasespace

a, b, c, d classical phase space indices

gab,ωab, J a
b Gaussian Kähler structures

Gab,Ωab inverse Kähler structures

za, Cab
2 one-point and two-point function

Γ ab bosonic/fermionic covariance matrix

Ca1...an
n n-point function

bK representation of generator K

S(M) squeezing transformation

D(z) displacement transformation

U(M , z) Gaussian transformation

∆= −JJ0 relative complex structure

|Va〉 ∈D(Γ ,z) displacement tangent vector

|Vab〉 ∈ S(Γ ,z) squeezing tangent vector

G,g Lie group and Lie algebra

i, j, k, l Lie algebra indices

Ξi Lie algebra basis

Ξ̂i operator representation of Lie algebra

Ki j Killing form

|Vi〉 Lie algebra induced tangent space basis

φ, |φ〉 reference state and state vector

Mφ ⊂ P(H) group theoretic coherent states

Hφ ,hφ stabilizer group and algebra of φ

h real Cartan subalgebra

I , J , K , L Cartan subalgebra indices

HI Cartan subalgebra basis

vα root spaces with roots α

Eα root vectors with root α

(βM )k ∈ g∗ expectation value of Ξ̂k

Oφ co-adjoint orbit of φ

Sφ , sφ stabilizer group and algebra of β1

82

https://scipost.org
https://scipost.org/SciPostPhys.9.4.048


SciPost Phys. 9, 048 (2020)

A.2 Abstract index notation

Throughout this paper, all equations containing indices follow the conventions of abstract index
notation. This formalism is commonly used in the research field of general relativity and
gravity, where differential geometry plays an important role, but we believe that it is also of
great benefit when studying the geometry of variational manifolds.

The formalism is suitable to conveniently keep track of tensors built on a vector space.
Given a finite dimensional real vector space V with dual V ∗, a (r, s)-tensor T is a linear map

T : V ∗ × · · · × V ∗ × V × · · · × V →R . (366)

In particular, a (1, 0)-tensor is a vector, a (0,1)-tensor is a dual vector and a (1,1)-tensor is a
linear map. To keep track of the type of tensor, abstract index notation refers to the (r, s)-tensor
T as T a1···ar

b1···bs
, i.e., we assign r upper indices and s lower indices. Typically, we choose the

indices from some alphabet to indicate which vector space, we are referring to. For tangent
space TψM of a variational manifold M, we use Greek letters µ,ν,γ,δ, while we use Latin
letters a, b, c, d to refer to the classical phase space V of a bosonic or fermionic system. In the
context of group theoretic states, we use i, j, k, l to refer to the Lie algebra and I , J , K , L to
refer to its Cartan subalgebra.

The key advantage of abstract index notation in the context of variational manifolds is that
it helps us to keep track of what types of tensors, we are dealing with and which contractions
are allowed. Apart from vectors X a and dual vectors wa, we are mostly dealing with tensors
that have two indices, namely linear maps J a

b, bilinear forms g ab and dual bilinear forms Ωab

In the present paper, we often deal with linear maps and bilinear form, i.e., tensors that
have two indices. They are naturally represented as matrices, in particular, for numerical
evaluation. For convenience, we will also use the notation, where tensors with suppressed
indices are implied to be contracted, just as standard matrix multiplication works. Obviously,
this means that only such expressions are allowed where the adjacent indices are given by one
upper and one lower index.

A.3 Special tensors and tensor operations

In the following, we review common matrix and tensor operations and emphasize how they
are defined if we do not have a natural identification between a vector space and its dual
space. This highlights that certain formulas involving matrix operations (such as computing
determinants, traces, eigenvalues or transposes) are only well defined in certain cases, i.e., if
the respective matrix represents a linear map in some cases or bilinear form in other cases.

Identity. Every vector space V comes with the canonical identity map δa
b satisfying

δa
bX a = X a. Note that the notation 1a

b would also be consistent, but we stayed with the
commonly used Kronecker delta. There does not exist a canonical analogue as bilinear form,
e.g., a form δab or δab which only make sense with respect to a specific basis and are therefore
not canonical, but rather a specific choice, such as a metric g ab.

Transformation rules. An invertible linear map M a
b : V → V of the vector space V acts

on a general (r, s)-tensor T a1···ar
b1···bs

and transforms it to

M a1
c1
· · ·M ar

cr
(M−1)d1

b1
· · · (M−1)ds

bs
T c1···cr

d1···ds
. (367)

In particular, a vector X a transforms as M a
bX b, a dual vector wa as wb(M−1)ba, a dual bilinear

form Sab as M a
cB

cd(Mᵀ)d b, a bilinear form sab as (M−1ᵀ)ac bcd(M−1)d b and a linear map Ka
b

as M a
cK

d
d(M−1)d b.
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Determinant. The determinant det (M) is only well-defined for a linear map M a
b. The

determinant of a bilinear form sab or Sab is ill defined, unless we have a reference object, such
as a metric gab or Gab. Then, we can compute the determinant of the matrix of the linear
maps Sac gcb or Gacscb.

Trace. The trace tr(M) = M a
a is only defined for a linear map, not for bilinear forms Sab

or sab, unless we again have a reference object, such as a metric.

Eigenvalues. Without additional structures, we can only defined eigenvalues for a linear
map M a

b, where an eigenvalue λ associated to an eigenvector X a satisfies

M a
bX b = λX b . (368)

This is well-known from linear algebra. A bilinear form X ab does not have intrinsic eigenval-
ues, but we can compute its eigenvalues relative to another bilinear form. Given a bilinear
form sab and a metric Gab or symplectic form Ωab, we can define the metric or symplectic
eigenvalues as the regular eigenvalues of the linear map Gacscb or Ωacscb, respectively.

Transpose. The transpose of a linear map M a
b : V → V is the map (Mᵀ)a b : V ∗ → V ∗.

We have the relation (Mᵀ)a b = M b
a, which means that the two represent the same tensor

and typically one does not distinguish between the two in abstract index notation. However,
for our shorthand notation, it is important to keep the order of indices in right order. From
the perspective of abstract index notation, there is not really much point to use the transpose
operation, but we will still write the respective expressions for convenience, so that they can
be easily converted to matrix expressions, e.g., for numerical implementations.

Gradient. Given a function f (x) on some manifold M, its gradient (d f )µ = ∂µ f is field of
covectors, also known as 1-form. This means that the gradient alone does not define a tangent
space direction, e.g., to move in the direction of steepest ascent. Indeed, only if we have a
metric Gµν, we can define typical gradient vector field Fµ = Gµν(∂ν f ). The reason is that the
gradient d f as dual vector encodes the linearized change d f (X ) = d fµ Xµ of the function f ,
when performing a step in the direction Xµ. Clearly, by increasing our step size, we can make
this change arbitrarily large, so there is no “steepest” direction. Only if we have an absolute
measure of our step size, e.g., a norm ‖X‖=

Æ

XµgµνX ν induced by an inner product gµν, we
can find a unique direction, for which a step of fixed size maximizes the change.
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A.4 Common formulas

Given a triangle of Kähler structures (G,Ω, J) with inverses (g,ω,−J), we have the following
relations. We list them both in abstract index notation and in shorthand notation.

−J2 = 1 ⇔ −J a
cJ

c
b = δ

a
b (369)

−(Jᵀ)2 = 1ᵀ ⇔ −(Jᵀ)ac(Jᵀ)c
b = δa

b (370)

−J−1 = J ⇔ −(J−1)a b = J a
b (371)

JΩJᵀ = Ω ⇔ J a
cΩ

cd(Jᵀ)d
b = Ωab (372)

−ΩJᵀ = JΩ ⇔ −Ωac(Jᵀ)c
b = J a

cΩ
cb (373)

JGJᵀ = G ⇔ J a
cG

cd(Jᵀ)d
b = Gab (374)

−GJᵀ = JG ⇔ −Gac(Jᵀ)c
b = J a

cG
cb (375)

ΩJᵀ = G ⇔ Ωac(Jᵀ)c
b = Gab (376)

−JΩ= G ⇔ −J a
cΩ

cb = Gab (377)

Ωω= 1 ⇔ Ωacωcb = δ
a

b (378)

ωΩ= 1ᵀ ⇔ ωacΩ
cb = δa

b (379)

Gg = 1 ⇔ Gac gcb = δ
a

b (380)

gG = 1ᵀ ⇔ gacG
cb = δa

b (381)

−ωGω= g ⇔ −ωacG
cdΩd b = gab (382)

−gΩg =ω ⇔ −gacΩ
cd Gd b =ωab (383)

Ωg = J ⇔ Ωac gcb = J a
b (384)

−Gω= J ⇔ −Gacωcb = J a
b (385)

−Ωᵀ = Ω ⇔ −Ωba = Ωab (386)

Gᵀ = G ⇔ Gba = Gab (387)

A symplectic group element M a
b ∈ Sp(2N ,R) and a symplectic algebra element Ka

b ∈ sp(2N ,R)
are characterized by the following properties.

MΩMᵀ = Ω ⇔ M a
cΩ

cd(Mᵀ)d
b = Ωab (388)

ΩMᵀω= M−1 ⇔ Ωac(Mᵀ)c
dωd b = (M

−1)a b (389)

−ΩKᵀ = KΩ ⇔ −Ωac(Kᵀ)c
b = Ka

cΩ
b (390)

An orthogonal group element M a
b ∈ O(2N) and an orthogonal algebra element Ka

b ∈ so(2N)
are characterized by the following properties.

MGMᵀ = G ⇔ M a
cG

cd(Mᵀ)d
b = Gab (391)

GMᵀG = M−1 ⇔ Gac(Mᵀ)c
d Gd b = (M

−1)a b (392)

−GKᵀ = KG ⇔ −Gac(Kᵀ)c
b = Ka

cG
b (393)

B Proofs

In this appendix, we present several technical proofs of selected propositions from the main
text, whose proof would have interrupted the reading flow.
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Proposition 1. On a tangent space TψM ⊂H of a submanifold M ⊂ P(H) we can always find
an orthonormal basis {|Vµ〉}, such that gµν ≡ 1 and the restricted complex structure is represented
by the block matrix

Jµν ≡







































1
−1

. . .
c1

−c1

c2

−c2

. . .
0

. . .







































(394)

with 0< ci < 1. This standard form induces the decomposition of TψM into the three orthogonal
parts

TψM= TψM⊕ IψM
︸ ︷︷ ︸

TψM

⊕DψM , (395)

where TψM is the largest Kähler subspace and TψM is the largest space on which J and ω are
invertible.

Proof. We focus on a single tangent space TψM ⊂H and refer to the Kähler structures on H,
rather than the restricted ones on TψM, as (g,ω, J). To shorten notation, we define A := TψM
and B as its orthogonal complement in H with respect to g, so that H = A⊕ B. We will refer
to the restricted Kähler structures on A or B by (gA,ωA, JA) and (gB,ωB, JB), respectively. The
relation J = Gω = −Ωg implies g = −ωJ or, equivalently, g(v, w) = −ω(v, Jw), and also
g(J v, Jw) = g(v, w) for all v, w ∈ H. From here, g(J v, w) = −g(v, Jw) follows and we can
derive for a, a′ ∈ A

gA(JAa, a′) = g(Ja, a′) = −gA(a, JAa′) , (396)

which implies that JA is antisymmetric with respect to gA and thus is diagonalizable, has either
vanishing or purely imaginary eigenvalues with the latter appearing in pairs±ci . Furthermore,
we can always choose an orthonormal basis, such that gA = 1 and JA is represented by (394).
Next, we show that ci ∈ (0, 1]. We define the orthogonal projectors PA :H→ A and PB :H→ B,
such that

J =

�

JA JAB

JBA JB

�

,

JA: A→ A, a 7→ PA(Ja) ,
JB: B→ B, b 7→ PB(J b) ,

JAB: B→ A, b 7→ PA(J b) ,
JBA: A→ B, a 7→ PB(Ja) .

(397)

We write J2 − 1= 0 in blocks to find
�

J2
A + JABJBA−1A JAJAB + JABJB

JBJBA+ JBAJA J2
B + JBAJAB −1B

�

= 0 . (398)

We consider an eigenvector a ∈ Aof JA with JAa = ica for non-zero c, which implies J2
A a = −c2 a.

We compute

g(a, a) = g(JAa+ JBAa, JAa+ JBAa)

= g(JAa, JAa) + g(JBAa, JBAa)

≥ g(JAa, JAa) = −g(a, J2
A a) = c2 g(a, a)

(399)
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where we used that A and B are orthogonal which eliminates crossing terms. This implies the
inequality c2 ≤ 1 and thus, we can choose ci ∈ (0, 1] as in (66).

Proposition 2. The Kähler property is equivalent to requiring that TψM is not just a real, but
also a complex subspace, i.e., for all |X 〉 ∈ TψM, we also have i|X 〉 ∈ TψM. Therefore, the
multiplication by i commutes with the projector Pψ, i.e., Pψi= iPψ and Pψ is complex-linear.

Proof. We want to show that J2
A = −1A implies that for all a ∈ A, we also have ia = Ja ∈ A.

Therefore, we need to show that Ja = JAa, which is equivalent to JBA = 0. For arbitrary a ∈ A,
we compute

g(JBAa, JBAa) = g(Ja, JBAa) = −g(a, JJBAa) = −g(a, JABJBAa) . (400)

This expression vanishes if J2
A = −1A, because in that case JABJBA = J2

A − 1A = 0 follows from
the first block in (398). Since g is non-degenerate, this implies JBA = 0. Similarly, we can use
the last block in (398) to conclude J2

B = −1B, which implies JBA = 0. With vanishing JAB and
JBA, J is block diagonal and commutes with the projectors. In the language of complex vector
spaces, this implies that Pψi= iPψ.

Proposition 8. Given a variational manifold M we define (according to the Lagrangian action
principle) the free projected real time evolution |ψ(t)〉 as governed by the free Hamiltonian Ĥ0
and the perturbed projected real time evolution |ψε(t)〉 as governed by the perturbed Hamiltonian
Ĥε(t) = Ĥ0+ εÂ(t), both with the same initial state |ψ(0)〉. Then, the propagated perturbation,
defined according to (148), is given by

δxµ(t) = −
∫ t

−∞
d t ′ (dΦt−t ′)

µ
νΩ

νρ ∂ρA(t ′)
�

�

ψ(t ′) , (401)

where dΦt is the linearized free evolution flow.

Proof. Let us define the perturbed evolution flow Φεt as the map that sends the coordinates of
an initial state xµ(0) to the coordinates xµ(t) of the state time evolved under the projected
perturbed real time evolution. It is governed by

d
d t
Φεt (x) = Xε(Φεt (x)) = X0(Φ

ε
t (x)) + εXA(Φ

ε
t (x)) , (402)

where X0 and XA are the evolution vector fields associated to the Hamiltonians Ĥ0 and Â
respectively. We define the free evolution flow Φ0

t analogously by just setting ε = 0 in the
previous expressions.
Let us now define the interaction picture flow eΦεt = Φ

0
−t ◦Φ

ε
t . It has the useful property that its
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time evolution only depends on the perturbing vector field:

d
d t
eΦεt (x) = −X0(eΦ

ε
t (x)) + dΦ0

−tXε(Φ
ε
t (x)) (403)

= −X0(eΦ
ε
t (x)) + dΦ0

−tX0(Φ
ε
t (x))

+ ε dΦ0
−tXA(Φ

ε
t (x))

(404)

= −X0(eΦ
ε
t (x)) +

d
d t ′

�

�

�

t ′=0
Φ0
−tΦ

0
t ′Φ

ε
t (x)

+ ε dΦ0
−tXA(Φ

ε
t (x))

(405)

= −X0(eΦ
ε
t (x)) +

d
d t ′

�

�

�

t ′=0
Φ0

t ′−tΦ
ε
t (x)

+ ε dΦ0
−tXA(Φ

ε
t (x))

(406)

= −X0(eΦ
ε
t (x)) +X0(Φ

0
−tΦ

ε
t (x))

+ ε dΦ0
−tXA(Φ

ε
t (x))

(407)

= ε dΦ0
−tXA(Φ

ε
t (x)) . (408)

We are interested in the propagated perturbation

δxµ(t) =
d
dε

�

�

�

ε=0
Φ0

t
eΦεt (x) = dΦ0

t

�

d
dε

�

�

�

ε=0
eΦεt (x)

�

. (409)

The quantity d
dε

�

�

�

ε=0
eΦεt (x) is for all times a vector of Tψ(0)M and its time evolution can be

obtained by using (408) after having commuted derivatives:

d
d t

�

d
dε

�

�

�

ε=0
eΦεt (x)

�

=
d
dε

�

�

�

ε=0

�

d
d t
eΦεt (x)

�

(410)

=
d
dε

�

�

�

ε=0
ε dΦ0

−tXA(Φ
ε
t (x)) (411)

= dΦ0
−tXA(Φ

0
t (x)) . (412)

The solution to this equation follows from integrating as

d
dε

�

�

�

ε=0
eΦεt (x) =

∫ t

−∞
d t ′ dΦ0

−t ′XA(Φ
0
t ′(x)) . (413)

Combining this with (409) and the expression (88) for the Lagrangian real time evolution
vector field XA(Φ0

t ′(x)) leads to the result (401).

C Kähler manifolds

Kähler manifolds play a central role in this manuscript. For completeness, in this appendix we
will discuss their definition and properties. More information can be found in [49]. A Kähler
manifold is a manifold M equipped with a metric gµν and a symplectic form ωµν that satisfy
several properties. These include some local properties, that is that Jµν = −Gµσωσν verifies
J2 = −1 at all points, and also some non-local properties (closedness of ω and vanishing
Nijenhuis tensor). The precise definition is as follows.

Definition 7. A real manifold M is called Kähler if each tangent space is equipped with a pos-
itive definite metric gµν and a compatible symplectic form ωµν as in definition 1, such that
Jµν = −Gµσωσν with J2 = −1, and the following conditions are satisfied:
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• Symplectic form ω is closed (dω= 0) with

(dω)µνσ =
1
6

�

∂µωνσ + ∂νωσµ + ∂σωµν − ∂µωσν − ∂νωµσ − ∂σωνµ
�

. (414)

• Nijenhuis tensor NJ vanishes (NJ = 0) with

(NJ )
µ
νσ = Jλσ ∂λJµν − Jλν ∂λJµσ + Jµλ(∂νJλσ − ∂σJλν) . (415)

In essence, a Kähler manifold is simulteneously a Riemannian, a symplectic and a complex
manifold, such that the respective structures in every tangent space are compatible in the sense
of definition 1.

For the purpose of the methods presented in this manuscript, it is of interest only whether
the restricted Kähler structures on M satisfy the compatibility conditions from definition 1. If
they do, the manifold is known as an almost-Hermitian manifold. We do not use the additional
properties of ω being closed or NJ vanishing.

However, as shown in the following proposition, if an almost-Hermitian manifold M is
also a submanifold of a Kähler manifold, the additional non-local conditions are automatically
satisfied and M is itself a Kähler manifold. In the context of this manuscript we always deal
with manifolds M ⊂ P(H), where projective Hilbert space P(H) is known to be a Kähler
manifold [73]. For this reason, for all the manifolds we encounter, the local compatibility
conditions from definition 1 are sufficient conditions for the manifold to be Kähler and we will
therefore refer to manifolds that satisfy them as Kähler.

Proposition 9. Given a Kähler manifold M̃ with compatible Kähler structures (g̃ , ω̃, J̃), a sub
manifold M ⊂ M̃ equipped with the restricted Kähler structures (g ,ω, J = −Gω) is itself a
Kähler manifold provided that J2 = −1.

Proof. M satisfies all local Kähler conditions. We therefore only need to show thatω is closed
and NJ = 0. We consider local coordinates x̃ µ̃ on M̃, such that x µ̃ ≡ (xµ, x ′µ

′
) where changes

in xµ preserve the submanifold M, while changes in x ′µ
′

are orthogonal to it. We can fur-
ther choose xµ and x ′µ

′
locally, such that the matrix representations of the Kähler structures

(ω, g , J) with respect to the decomposition µ̃≡ (µ,µ′) are

g̃ ≡

�

g 0

0 g ′

�

, ω̃≡

�

ω 0

0 ω′

�

, J̃ ≡

�

J 0

0 J ′

�

, (416)

which is a consequence of J2 = −1, as proven in proposition 1. Thus, this implies that
J̃ = J ⊕ J ′ with respect to this decomposition TψM̃= TψM⊕ (TψM)⊥.

• Symplectic form is closed. In the above basis, (dω)µνσ corresponds to a sub block of the
array (dω̃)µ̃ν̃σ̃. Consequently, dω̃= 0 implies dω= 0.

• We restrict ÑJ̃ on M̃ to M to find

(ÑJ̃ )
µ
νσ = J λ̃σ ∂λ̃Jµν − J λ̃ν ∂λ̃Jµσ + Jµλ̃(∂νJ λ̃σ − ∂σJ λ̃ν) (417)

which is not obviously equal to (NJ )µνσ due to the contraction over λ̃, which takes the
full manifold into account. However, our previous considerations showed that J̃ = J⊕J ′.
This implies that J λ̃µ = Jλµ, which proves the equality. Consequently NJ̃ = 0 implies
NJ = 0.

We therefore conclude that any submanifold M of a Kähler manifold M̃ with J2 = −1 every-
where is again a Kähler manifold. Note that this implies in particular that M is also a complex
and a symplectic manifold.
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D Normalized states as principal bundle

We introduced projective Hilbert space P(H) as the space of distinguishable quantum states,
where normalization and phases of Hilbert space vectors can be ignored. However, in practice
we usually parametrizing a variational manifold M ⊂ P(H) by a set normalized states |ψ(x)〉
which depend on some real parameters x i . It is therefore useful to introduce the manifold of
normalized states

N (H) =
�

|ψ〉 ∈H
�

� 〈ψ|ψ〉= 1
	

. (418)

This manifold will play an important when we are interested in relative phases between states.
Mathematically, N (H) is a principal fiber bundle over the base manifold P(H). Given a quan-
tum state ψ ∈ P(H), we have a corresponding fiber eiϕ |ψ〉 ∈ N (H) of normalized Hilbert
state vector representing this state. We also have a natural U(1) group action onto such fibers
given by multiplication with a complex phase, i.e., |ψ〉 → eiϕ |ψ〉 with eiϕ ∈ U(1).

We can now ask if we can use any structures of the Hilbert space to define a natural notion
of parallel transport, i.e., how to choose the complex phases when changing the quantum state
continuously. This question is well-studied in the context of gauge theories and amounts to
choosing a natural notion of horizontal tangent spaces, which encode how to move naturally
through the principal fiber bundle. Interestingly, N (H) is equipped with a natural notion of
moving horizontally, namely by requiring that a horizontal curve |ψ(t)〉 satisfies

〈ψ(t)| d
d t |ψ(t)〉= 0 , (419)

i.e., we require that the tangent vector d
d t |ψ(t)〉 is always orthogonal to the state |ψ(t)〉. The

tangent space of normalized states is given by

T|ψ〉N (H) =
�

|ϕ〉 ∈H
�

�Re 〈ψ|φ〉= 0
	

. (420)

Locally, we can decompose this space into

T|ψ〉N (H) = spanR(|ψ〉)⊕H⊥ψ , (421)

where the former the former is vertical space along the fiber and the latter is our natural choice
of horizontal subspace.

We can understand the local choice of complex phase eiϕ as pure gauge and U(1) as the
corresponding gauge group. This implies that our description of normalized states N (H) is
equivalent to electromagnetism on the base manifold P(H). In particular, we can compute
the gauge field Aµ and its field strength tensor Fµν.

Example 27. We consider the Bloch sphere with

|ψ(x)〉= cos
�

θ
2

�

|0〉+ eiφ sin
�

θ
2

�

|0〉 . (422)

We can compute the gauge field Ai as

Aµ = Im 〈ψ(x)|∂µ|ψ(x)〉 ≡ (0, sin2
�

θ
2

�

) . (423)

As differential form, we therefore have A= sin2
�

θ
2

�

dφ. We find the field strength as its differential

F = dA= 2sin
�

θ
2

�

dθ ∧ dφ . (424)
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We can compute the change of phase∆ϕ, also called holonomy, if we move horizontally in N (H),
such that our path describes a circle at constant latitude θ when projected onto the Bloch sphere.
We find

∆ϕ =

∫ 2π

0

dφA= 2π sin2
�

θ
2

�

. (425)

We can also use Hamiltonian evolution by

Ĥ = E0 +ωσz (426)

to compute the time evolution. The Hamiltonian vector field is given by

ẋµ = X µ = (0,−2ω) , (427)

such that the solution of the equation of motions is just φ(t) = −ωt. The quantum state will
return to its original state at t = π

ω , where φ(t) = −2π. However, we will pick up a relative
phase given by the integral

∆ϕ =

∫ π/2

0

(Aµ ẋµ − E)d t = −
π(E0 +ω)

ω
, (428)

where we used E = E0 +ω cosθ .

In general, we conclude that the change of complex phase after returning to the same
quantum state through time evolution is given by

∆ϕ =

∫ T

0

(Aµ ẋµ − E(x)) , (429)

where E(x) = E(x0) is constant for time-independent Hamiltonians.

If we go to variational families M ⊂ P(H), we can still use (429) to compute the holon-
omy associated to projected time evolution. This is important if we want to compute spectral
functions from real time evolution on M rather than via the linearization around a stationary
point.

In practice, we therefore see that the only required additional structure on a variational
family M is the computation of the gauge field Aµ. Once this is computed, we can derive the
change of relative phases from integration over Aµ and the energy expectation value, which is
constant for time-independent Hamiltonians. Once, we have taken the relative phase in the
time evolution into account, we can also use it to compute inner products between different
state vectors, while ensuring the correct complex phase.

E Calculation of the pseudo-inverse

In section 4.1, we have described how calculating the Lagrangian real time evolution amounts
to solving the differential equation of motion

d xµ

d t
≡ X µ = −Ωµν(∂νE) . (430)
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In practical applications, this equation will be integrated numerically, requiring to calculate its
right hand side at each time step.

The numerical complexity of computing this quantity lies in the cost of evaluating the
gradient ∂µE (which will depend of the specific structure of the energy function E(x) under
consideration) and in the cost of computing the matrix Ω and contracting it with such gradient
vector. As discussed in sections 3.3 and 3.4, the matrix Ω is a certain pseudo-inverse of the
symplectic form ω, namely the one where we invert ω on the orthogonal complement of its
kernel.

In this appendix, we will present a method to correctly evaluate this pseudo-inverse Ωµν

and simultaneously contract it with the gradient ∂νE to optimize the numerical cost of the
operation. The need to compute a pseudo-inverse rather than a regular inverse lies in the fact
thatωmay be degenerate and thus not invertible in the regular sense. In other words, ωmay
have a non-trivial kernel

kerω= {vµ ∈R2N |ωµνvν = 0} . (431)

We can distinguish two types of vectors inside kerω:

1. Vectors vµ that also lie in ker g , i.e., gµνvν = 0.

2. Vectors vµ that have a non-vanishing length with respect to g , i.e., ‖v‖2 = vµgµνvν > 0

The vectors of the first type arise due to redundancies in the parametrization of the variational
manifoldM. In this case, not all vectors |Vµ〉will correspond to linearly independent directions
in tangent space, so that it is possible to find such non-trivial linear combinations of them that
vanish, i.e., vµ |Vµ〉= 0 for vµ of the first type. Consequently, such vµ will have vanishing matrix
elements in g and ω. The vectors of the second type, instead, represent physical directions
in tangent space and may arise if M is not a Kähler manifold, as explained in section 3.4. In
particular, such directions always exist in odd dimensional manifolds M.

The vector X µ, we wish to compute in (430), must solve

ωµνX ν = −∂µE . (432)

Ifω is non-degenerate and thus invertible, this solution is unique and given byX µ = −Ωµν(∂νE),
where Ω is defined as the regular inverse of ω. If, however, ω is degenerate, then equa-
tion (432) will generally be ill defined and not admit a unique solution. The set of possible
solutions of equation (432) has the form X0+ kerω, where X µ

0 is one possible solution of the
equation. To find a meaningful solution, we need to consider the following:

(a) If two solutions differ by an element in kerω of the first type discussed above (i.e., arising
from an overparametrization of the manifold), any of them could be picked without
influencing the physical results of the calculation. Indeed, one would obtain the same
physical vector, just parametrized in two of the many possible redundant ways.

(b) If, instead, two solutions differ by vectors of ker ω of the second type (i.e., physical
vectors), then it is necessary to specify which solution should be picked. This essentially
amounts to specifying how to compute the pseudo-inverse of ω.

(c) Finally, it may be ill defined because ∂µE may not vanish on kerω, i.e., there may be vµ

with vµωµν = 0, but vµ∂µE 6= 0, which implies that (432) cannot be solved.

In section 3.3, we explain how issues (a) and (b) can be addressed by imposing that we
pick a solution that is orthogonal with respect to g to ker ω. In other words, we pick the
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solution X ∈ X0 + kerω, such that X µgµνvν = 0 for all vµ ∈ kerω. This corresponds to
choosing to move only in the submanifold in which J can be put in the form discussed in
Proposition 1 without the diagonal zero block. This solution can also be identified41 as the
element X ∈ X0 + kerω with minimal length ‖X ‖2 = X µgµνX ν. Thus, the problem of cor-
rectly computing X µ in (430) is equivalent to finding a solution of (432) that also minimizes
the quantity X µgµνX ν. In summary, we have recast the pseudo-inversion as the linearly con-
strained quadratic minimization problem (quadratic program):

Minimize X µgµνX ν such that ωµνX ν + ∂µE = 0 .

It is known [103] that such problems can be solved by introducing the Lagrange multipliers
λµ ∈R2N and finding a stationary point of the Lagrangian function

f (X ,λ) = X µgµνX ν +λµ (ωµνX ν + ∂µE) . (433)

A stationary point of f (X ,λ), in turn, is given by a solution of the equation
�

∂ f
∂X
∂ f
∂ λ

�

=

�

2g ωᵀ

ω 0

�

︸ ︷︷ ︸

A

�

X
λ

�

+

�

0
∂ E

�

︸ ︷︷ ︸

B

= 0 . (434)

This is a 4N -dimensional linear problem of the form Ax + B = 0 which, for large system sizes,
can be efficiently tackled numerically. While we have succeeded in reducing the complicated
pseudo-inverse problem to the linear problem (434), this problem still contains in itself all the
intrinsic redundancies that characterize the pseudo-inverse problem. Here, however, these
redundancies are re-expressed in such a way that they can be easily dealt with. More specif-
ically, redundant solutions of (434) can be produced either by shifting X by an element of
ker g or by shifting λ by an element of kerω. In the first case, we are just shifting between
different redundant parametrizations of the same physical state. In the second case, we are
not creating any physical differences, as we are just modifying the Lagrange multipliers which
play no physical role in the theory. So any solution of (434) returned to us by our numerical
solution method corresponds to a physically acceptable value for X µ that can be used in the
integration scheme of our choice for (430).

Finally, we also need to address (c), i.e., that (432) and thus also (434) may actually not
have any solutions if ∂ E has some overlap with the kernel of ω. In this case, the best we can
do is to minimize ‖Ax+B‖, which is equivalent to projecting out the components of B in kerA.
Indeed, (Ax +B) can be split into two orthogonal components (Ax +B)‖ and (Ax +B)⊥, which
are in kerA and (kerA)⊥ with respect to the flat metric of equation (434). Clearly, (Ax+B)‖ = B‖
is independent of x , while (Ax + B)⊥ can be made to vanish exactly as A is invertible in the
orthogonal complement to its kernel. Therefore minimizing ‖Ax + B‖ is equivalent to solving
Ax + B = 0 after having removed the component B‖ of B. This can be done efficiently by
multiplying the whole equation by Aᵀ = A, that is solving

A(Ax + B) = A2 x + AB = 0 . (435)

Such equation indeed is solved if and only if (Ax+B)⊥ = 0. Another advantage of (435) is that
now the coefficient matrix A2 is non-negative definite and the problem can thus be efficiently

41For this, we observe that since g is non-negative the quantity ‖w‖2 = wµg µνw
ν admits a global minimum at

w0, defined by the stationarity condition 2wµ0 g µνδwν = 0, for all possible variations δw of w around w0. Such
minimum may not be unique because g might be degenerate. However, such arbitrariness corresponds precisely to
variations along directions reflecting redundant parametrizations which, as we just explained, do not change the
physical result. In our case, the possible variations around any point inside the set of solutionsX0+kerω correspond
to all vectors v ∈ kerω. Therefore, the solution vector of minimum length is identified by X µg µνvν = 0 for every
vµ ∈ kerω, i.e., it is also orthogonal to kerω.
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tackled with conjugate gradient methods. Such methods typically converge to an approximate
solution more efficiently than relying on performing a full singular value decomposition.
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