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Abstract

A large family of diffusive models of transport that have been considered in the past
years admit a transformation into the same model in contact with an equilibrium bath.
This mapping holds at the full dynamical level, and is independent of dimension or topol-
ogy. It provides a good opportunity to discuss questions of time reversal in out of equi-
librium contexts. In particular, thanks to the mapping one may define the free energy
in the non-equilibrium states very naturally as the (usual) free energy of the mapped
system.
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1 Introduction

The purpose of this paper is to show that a large class of models of transport that have been
studied by the mathematical physics community in the past years are, in fact, hidden equilib-
rium models. Stochastic energy transport models were already introduced by Kac [1] for a
fully connected graph. On a one dimensional lattice with leads at the ends connected to two
reservoirs, two extensively studied models are: the Kipnis-Marchioro-Presutti (KMP) model [2]
with thermal baths, where energies are randomly redistributed among nearest-neighbor sites
and the symmetric exclusion process (SEP) [3, 4] with particle baths, where particles jump
stochastically between neighboring sites.

In a remarkable series of papers (see [5] for a review), Bertini et al. constructed the
coarse-grained ‘fluctuating hydrodynamic’ limit of such diffusive systems. They showed how
to construct a (WKB / Friedlin-Wentzel) theory where the amplitude of the effective noise is
the small parameter. The problem maps then onto a Hamiltonian (or Hamilton-Jacobi) field
theory in one space dimension, expressed in terms of a density field ρ(x) and its conjugate
ρ̂(x). The papers contain a second development that comes as a surprise: there is an explicit
transformation that maps the evolution between a configurationρ1(x , t ′) andρ2(x , t) into one
between ρ2(x , t ′) and ρ1(x , t) even when the system is driven out of equilibrium by the baths.
Such transformations are available when there is a time-reversal symmetry - typically detailed
balance - in systems with equilibrium baths. In order to explain this miracle, Tailleur et al. [6]
showed that in fact, the large deviations around the hydrodynamic limit of SEP and of KMP
could be transformed, via non-local canonical transformations, into equilibrium. The mapping
from ‘downhill’ to ‘uphill’ is then nothing but the usual one, once the system is transformed
into an undriven system with detailed balance. It was however never clear which systems
enjoy such exceptional feature.

We shall show here that, for a large class of systems, there exists a mapping from the
non-equilibrium process to the equilibrium process already at microscopic level, and in any
dimensionality. The main result of this paper is then that diffusive systems driven in a non-
equilibrium state by (multiple) external reservoirs are in direct relation with the corresponding
equilibrium systems. See Figure 1 for a pictorial representation of the mapping between a
system with three reservoirs at temperatures T1, T2, T3 and a system with reservoirs all having
the same temperature T .

Before going on, it is useful to mention that the particle transport models like SEP, and
the energy transport models like KMP, may be treated in a unified group-theoretical way that
uncovers their similarities – and indeed opens a whole set of connections with the work on
quantum chains, especially those related to AdS/CFT and high-energy QCD [7–11].

It turns out that the mapping to equilibrium is not dependent on integrability, but it derives
from a property extensively studied by probabilists: duality [12]. This property in turn is a
consequence of a group of invariance of the generator of the evolution, that is by no means
obvious when looking at the transition rules.

Although integrability is inessential, when the systems are integrable the mapping may be
constructed explicitly using the conserved charges. As an example, we will work out in detail
(cf. Section 4.3) the explicit formulas for the mapping for the SEP model following the recent
results of [13].

The results of this paper may be extended to quantum stochastic systems driven in a non-
equilibrium steady state by Lindblad reservoirs [14]. For the sake of clarity we restrict here to
classical interacting particle systems and we shall discuss the quantum counterpart [15] in a
forthcoming paper.
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Figure 1: A probability distribution in the system of the left is mapped onto one in the system
of the right. The mapping is preserved by subsequent evolution and may be inverted. The
stationary state attained in the system of the left is mapped onto the equilibrium state of the
system to the right. The couplings to the reservoirs Γi remain the same.

2 Group-based diffusive models

Our results apply to a whole class of transport models, in particular the spatial structure does
not matter. The system is thus defined on a general graph G = (V, E), not necessarily planar. The
graph has vertices V = {1,2, . . . , N} and edges E. On the vertices (labelled by i ∈ V ) we have,
when the models are discrete, a given number of particles which may or may not be limited;
otherwise, when the models are continuous, we have a continuous quantity (‘energy’). In the
edge set E, we distinguish:

• Internal edges, along which these quantities are transported, according to a certain
probabilistic rule which may depend on the edge. We assume this rule is symmetric, i.e.
the edges are unoriented.

• External edges (‘leads’), connecting vertices to different reservoirs, which may be parti-
cle or thermal baths. The baths are defined by their thermodynamic properties (chemical
potential µi or temperature Ti), and by their coupling strength Γi ≥ 0. If the µi (or the Ti)
are all the same, the system eventually reaches thermodynamic equilibrium. Otherwise,
a stationary state with transport is eventually reached.

The most studied graphs of this kind are one-dimensional chains, but we shall not restrict to
these here. The class of models that we can treat is identified by the following property: they
are diffusive models and they posses a symmetry group, yielding an algebraic description of the
process generator. On the surface, this looks quite restrictive and abstract, but the class actually
contains several natural models considered so far in the mathematical study of transport. We
defer the algebraic description, together with the identification of the symmetry group, to the
next section. Here we introduce a few models representative of this class; we also recall their
duals.

2.1 Particle transport models

Symmetric partially excluded processes: SEP(n). These are systems of particles with re-
pulsive interactions. In the most general version [16, 17] one assumes maximal occupancy
n ∈ N, which justifies the name SEP(n). Particles evolve stochastically, following a sequence
of jumps at (exponentially distributed) random times, as follows:
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• Rule for transport from a vertex k to a vertex `: the internal edge (k,`) is chosen with
rate Ak` > 0. The jumping rate to move one particle from k to ` is proportional to the
number of particles on the departure site nk, and to the number of ‘holes’ (n−n`) in the
arrival site `. Similarly for a jump from ` to k.

• Rule for particle reservoirs: a lead connected to site i is chosen with rate Γi > 0. A
particle is injected in i with rate ρi times the number of holes in i, and extracted from i
with rate (1−ρi) times the number of particles in i.

Dual process. For any maximal occupation number n the model has a dual process [16,
18, 19] which is obtained by adding extra sites (one for each lead connected to reservoirs).
The dual particles move on the internal edges like the particles in the original process did
(self-duality). Furthermore, a dual particle sitting on a site that in the original process was
connected to a lead, is absorbed at rate 1 in the corresponding extra site. As a consequence,
the dual dynamics voids the sites of the graphs and all particles are eventually absorbed at the
extra sites.

In this paper, to keep working always on the same Hilbert space, we will avoid the in-
troduction of the extra sites. As we shall see, the price we will need to pay is a transformed
Hamiltonian which is not stochastic, but only as an intermediate step.

2.2 Energy transport models

KMP processes. The first microscopic stochastic model of energy transport, in the context
of Fourier’s law, was introduced in 1982 by Kipnis, Marchioro and Presutti (KMP) [2], who
studied a chain of oscillators randomly exchanging their energies between themselves and
with two energy reservoirs at different temperatures. In the same spirit, we consider here a
family of systems called (generalized) KMP processes [20]. The family is labelled by a positive
real s > 0. In the course of time, the random jumps occur as follows:

• Rule for transport from a vertex k to a vertex `: the internal edge (k,`) is chosen with
rate proportional to Ak`. Energies zk and z` of vertices k and ` are randomly redistributed
by allotting a fraction B(zk+ z`) on site k, and the remaining fraction (1−B)(zk+ z`) on
site l. Here B is a beta-distributed random variable with parameters (2s, 2s), i.e. it is a
law on in the interval [0, 1] with probability density f (b)∝ b2s(1− b)2s. Thus the case
s = 1/2 gives the uniform redistribution rule of the original KMP model.

• A lead i is chosen with rate Γi . The energy of the site i is refreshed with an equilibrium
rule of temperature Ti (heat bath or Monte Carlo).

Dual process. Similarly to the previous example, KMP processes have dual processes made
of particles and absorbing extra sites [2,19–21]. In the dual process, an internal edge (k,`) is
chosen with rate proportional to Ak` and then, out of the available nk+n` particles, a random
number M of them is put on site k and the remaining number on site `. The random number
M has a beta-binomial distribution 1 with parameters (nk+n`, 2s, 2s). The case s = 1/2 gives a
uniform discrete redistribution of dual particles. Furthermore, a dual particle sitting on a site
that in the original process was connected to a lead, is absorbed in the corresponding extra
site at rate 1.

1The beta-binomial distribution with parameters (n, a, b) gives the number of heads in n Bernoulli experiments
with a coin whose head probability is fixed but randomly drawn from a beta distribution with parameters (a, b).
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2.3 Other models

Other group-based diffusive models, that have physical properties similar to those discussed
above, are introduced.

Integrable models. Models that guarantee integrability play a special role as they offer the
possibility of getting explicit formulas. In the framework of partially excluded processes of
Section 2.1, the integrable model is obtained for n = 1, which gives the Symmetric Exclusion
Process made of particles with hard core exclusion [12]. The non-equilibrium stationary state
is constructed by the Matrix Product Ansatz [3], from which large deviations of the density
and of the current may be computed, see [4] for a review of the exact solution. An alternative
construction of the stationary measure was recently obtained in [13] using duality within the
algebraic framework of the quantum inverse scattering method [22]. For the SEP model, the
mapping from non-equilibrium to equilibrium has been described in [6] at the hydrodynamic
level, by exploiting results from the macroscopic fluctuation theory [5]. As we will discuss in
Section 5 the results of [13] allow for such mapping on the microscopic level.

As for the energy transport model of Section 2.2, none of the KMP processes is integrable.
A family of boundary-driven integrable energy transport model has been recently introduced
in [23] (see the discussion on Section 3.3 for the relation of these models to other models in
the probability theory/field theory literature). For spin s = 1/2 the model is a Lévy process
described as follows:

• On the internal edge (k,`) with energies zk and z`, an amount α of energy (with
0< α < zk) is moved from site k to site ` as a Poisson process with intensity dα

α . Similarly
for a jump from ` to k.

• At the sites i connected to leads, jumps decreasing the energy by an amount α (with
0 < α < zi) occur with intensity dα

α and jumps increasing the energy by any amount
α > 0 occur with intensity dα

α e−λiα with λi > 0.

The absorbing dual process of this model is made of particles with clustered jumps. Namely,
if ni particles are sitting on site i then a jump of r particles (with 1 ≤ r ≤ ni) occurs at rate
1/r. From a site i, the particles are moved, with the same probability, either to a neighbouring
site (connected by an internal edge) or to the extra site (connected by lead). The general
integrable model, labelled by spin value s > 0, is analyzed in [23].

Diffusions. For energy transport models one can replace the evolution through Markovian
jumps of the generalized KMP processes with a diffusions having continuous paths. This gives
the so-called Brownian energy processes introduced in [20] or the Brownian momentum pro-
cesses [21, 24]. The dual processes of those are called inclusion processes [25], they are the
bosonic counterpart of partially excluded processes. More precisely, in the model with spin
s > 0, the particles jump from vertex k to a vertex ` with rate nk(2s+ n`).

Inhomogeneiteis and/or multispecies. One can add inhomogeneities to allow different
maximal occupancy at each site keeping the key duality property [26]. Several kinds of par-
ticles or continuous quantities, with mutual exclusion properties, are also possible, leading to
higher rank algebras [27,28].
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3 Probability evolution generators

In this section we develop the algebraic description of the Markov processes discussed above.
Such algebraic approach relies on applying to the equation describing the evolution of the
probability for the system of interest – the so-called forward Kolmogorov equation – tools that
are standard for the Schrödinger equation. It is well-known [16] that exclusion processes can
be expressed in terms of a Hamiltonian (in fact, the generator of the probability evolution)
with spin operators of the su(2) Lie algebra. For the energy transport models it was realized
in [20, 21] that also KMP processes can be described in this way, just replacing the compact
spin algebra by the non-compact su(1,1) algebra. See [29] for an extended presentation of
the algebraic approach, and its use in finding dual processes.

3.1 Symmetric partially excluded processes

The evolution operator of these processes can be written as the Hamiltonian H of the half-
integer spin j = n/2 ferromagnet [16]

H =
∑

k,l∈V 2

Akl

�

J+k J−l + J−k J+l + 2J0
k J0

l − 2 j2
�

(1)

+
∑

i∈V

Γi
�

ρi(J
+
i + J0

i − j) + (1−ρi)(J
−
i − J0

i − j)
�

.

The operators J+i , J−i , J0
i act on the Hilbert space corresponding to 0≤ r ≤ n particles per site

i as follows:

J+i |r〉i = (2 j − r)|r + 1〉i
J−i |r〉i = r|r − 1〉i
J0

i |r〉i = (r − j)|r〉i . (2)

We order the states like |2 j〉, |2 j−1〉, . . . , |0〉 so that the J−i operators are lower-triangular. The
Hamiltonian (1) acts on the tensor product space with states ⊗i∈V |r〉i and it is easy to read off
the (negative) transition rates. For instance the first term −J+k J−l gives the rate n`(2 j−nk) for
the jump of a particle from site ` with n` particles to site k with nk particles. The operators
J+i , J−i , J0

i satisfy the commutation relations of the su(2) Lie algebra:

[J0
i , J±i ] = ±J±i [J−i , J+i ] = −2J0

i . (3)

Representations are labeled by the spin value j related to the squared angular momentum
operator via:

(~Ji)
2| j, m〉i =

�

[J0
i ]

2 +
1
2
[J+i J−i + J−i J+i ]

�

| j, m〉i (4)

= j( j + 1)| j, m〉i .

Here j = n/2, so that the ordinary SEP with (0, 1) occupation corresponds to a representation
of spin j = 1/2. For a given j half-integer, there are 2 j + 1 eigenstates of the J0

i operator

J0
i | j, m〉i = m| j, m〉i , (5)

with m = r − j and m ∈ {− j,−( j − 1), . . . , j}. In other words, for a given half-integer j we
identify |r〉i = | j, r − j〉i , cf. (2).

6

https://scipost.org
https://scipost.org/SciPostPhys.9.4.054


SciPost Phys. 9, 054 (2020)

3.2 KMP processes

We discuss here the diffusion processes associated to KMP, i.e. having the same algebraic struc-
ture. Moreover, following Kac’s idea of energy transfer via random collisions [1], we think of
kinetic energies, and thus discuss a velocity diffusion process where energy transfer is obtained
by ‘random rotations’ of velocity vectors [30].

Thus we consider, on each site i ∈ V , a velocity vector with M ∈ N components, i.e. vi,α
with α = 1, . . . , M . Suppose that they evolve as a diffusion process with Markov generator
(acting on the core of C∞ functions with compact support)

L =
∑

k,`∈V 2

Ak`Lk` +
∑

i∈V

Γi Li , (6)

where

Lk` =
M
∑

α,β=1

�

vk,α
∂

∂ v`,β
− v`,β

∂

∂ vk,α

�2

, Li =
M
∑

α=1

�

Ti
∂ 2

∂ v2
i,α

− vi,α
∂

∂ vi,α

�

.

Each term in Lk` represents a rotation in the plane (vk,α, v`,β), therefore it conserves the total
kinetic energy of the edge v2

k,α+ v2
`,β ; on top of this, Li gives a Langevin bath with temperature

Ti and strength of coupling Γi .
The Fokker-Planck equation, yielding the evolution of the time-dependent probability den-

sity p(v, t), reads
∂ p(v, t)
∂ t

= L∗p(v, t) , (7)

where L∗ is the adjoint (in L 2(dv)) of L. Expanding the brackets in (6) and defining

S+i =
M
∑

α=1

1
2

v2
i,α S−i =

M
∑

α=1

1
2
∂ 2

∂ v2
i,α

S0
i =

M
∑

α=1

1
4

�

vi,α
∂

∂ vi,α
+

∂

∂ vi,α
vi,α

�

we can rewrite this as an imaginary time Schrödinger equation with Hamiltonian H = L∗ and

L =
∑

k,`∈V 2

Ak`

�

S+k S−l + S−k S+l − 2S0
kS0

l +
M2

8

�

+
∑

i∈V

Γi

�

TiS
−
i − S0

i +
M
4

�

. (8)

The generators Sa satisfy the su(1,1) Lie algebra relations:

[S0
i , S±i ] = ±S±i [S−i , S+i ] = 2S0

i . (9)

Representations are labeled in an analogous manner by the spin value s > 0 with the Casimir
operator:

(~Si)
2|s, m〉i =

�

[S0
i ]

2 −
1
2
[S+i S−i + S−i S+i ]

�

|s, m〉i (10)

= s(s− 1)|s, m〉i .

Note the sign difference with respect to su(2). To identify the representation (i.e. the value
of s), we compute the eigenvalue of S0 and (~S)2i when acting on the (constant) lowest weight
state |−〉i , which is the eigenvector with zero eigenvalue of L∗:

S0
i |−〉i =

M
4
|−〉i , (11)

(~Si)
2|−〉i =

M
4

�

M
4
− 1

�

|−〉i . (12)

Hence s = M/4, and in particular s = 1/4 for the process with one velocity per site.
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3.3 Integrable version of the energy transport model

For integrable transport models one may perform explicitly the mapping from non-equilibrium
to equilibrium. However, in principle integrability is not necessary for the mapping to exist.

Once one identifies the KMP energy diffusion model with an su(1, 1) chain, the question
immediately arises as to its integrability. While the chain with Hamiltonian (8) is not inte-
grable, its integrable cousin has been known for a long time [31]. It remains to check that
such a model may indeed be interpreted as a stochastic system, which it is indeed [23]. It
turns out that the particle version of such a system has also been introduced in the probability
literature, in the asymmetric form, by Sasamoto-Wadati [32] for spin s = 1/2 and by Povolot-
sky [33] and Barraquand-Corwin [34] for higher spin, just constructing it on the basis of the
Bethe ansatz properties – without making a connection with integrable spin chain explicit. For
the latter we refer the reader to [23] and [35].

The boundary driven integrable version of the energy transport model recently introduced
in [23] is the Lévy process described in Section 2.3. In the corresponding particle version, the
probability evolves with a generator of the form (6) where now

Lk,` = 2(ψ(Sk,`)−ψ(2s)) , (13)

Li = eβiS
+
i e

1
βi−1 S−i ψ(S0

i + s)e−
1

βi−1 S−i e−βiS
+
i −ψ(2s) .

Here ψ is the digamma function (the logarithmic derivative of the gamma function), βi is a
parameter tuning the density of the reservoirs and the operator Sk,` is related to the two-site
Casimir acting on two sites k and ` via (~Sk + ~S`)2 = Sk,`(Sk,` − 1).

4 Duality transformations

As discussed in previous sections, dual Markov processes of transport models are usually ob-
tained by introducing extra sites, one for each lead with Γi > 0. The key property of the dual
process is the absorbing property of the extra sites, which is reflected in the fact that the dual
generator has a triangular structure. Here we fully exploit the consequences of this crucial
property. To keep working always on the same Hilbert space we avoid the extra sites, yielding
a non-stochastic transformed Hamiltonian.

4.1 Microscopic mapping

Let us for definiteness concentrate on the SEP(n) case (the same reasoning can be repeated
in the other cases). As pointed out by Schütz and Sandow [16], one can make a “duality”
transformation of the Hamiltonian H in (1) as follows. From the Hadamard formula for the
su(2) algebra one obtains

eµJ±J0e−µJ± = J0 ∓µJ±

eµJ±J∓e−µJ± = J∓ ± 2µJ0 −µ2J± . (14)

Setting µ= 1, we get that the boundary terms of (1) transform into

eJ+i Γi
�

ρi(J
+
i + J0

i − j) + (1−ρi)(J
−
i − J0

i − j)
�

e−J+i = Γi
�

(J0
i − j) + (1−ρi)J

−
i

�

. (15)

This is essentially equivalent to the general notion of duality of Markov processes [20, 29].
Indeed (15) can be rewritten as

�

ρi(J
+
i + J0

i − j) + (1−ρi)(J
−
i − J0

i − j)
�t r

Rie
−J+i = Rie

−J+i
�

ρiJ
−
i − J0

i − j
�

, (16)
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where t r denotes transposition and Ri is the diagonal matrix (with entries the inverse of the
Binomial distribution) such that RiJ

±
i R−1

i = J∓i . If we introduce an extra site, called c(i) and
associated to site i, this can be further rewritten as

H t r
i Di = DiH

dual
i , (17)

where the duality function Di =
∑

mρ
m
i 〈m|Rie

J+i , and Hdual
i = a+c(i)J

−
i − J0

i − j is the stochastic
Hamiltonian that describes the dual absorbing process at site i (here a+c(i) is a bosonic creation
operator in the extra site). Equation (17) is the standard form of a duality relation between
two Markov processes [12, 29], that allows to connect expectations of the original process
to expectation of the dual process. For a general discussion on the relation between duality
relation and symmetries we refer the reader to [20] and reference therein; for a constructive
approach aiming to introducing group-based models with duality we refer to [36].

Transforming further, with an arbitrary 0< ρ̄ < 1, we have

e−(1−ρ̄)J
−
i eJ+i Γi

�

ρi(J+i + J0
i − j) + (1−ρi)(J−i − J0

i − j)
�

e−J+i e(1−ρ̄)J
−
i =

= Γi
�

(J0
i − j) + (ρ̄ −ρi)J−i

�

. (18)

All in all, defining J±tot =
∑

i∈V J±i we get that the original Hamiltonian (1) is mapped into:

HB = e−(1−ρ̄)J
−
tot eJ+tot He−J+tot e(1−ρ̄)J

−
tot = H0 +

∑

i∈V

Γi(ρ̄ −ρi)J
−
i

︸ ︷︷ ︸

B

. (19)

This defines B as the underbraced term and H0 as

H0 =
∑

k,l∈V 2

Akl

�

J+k J−l + J−k J+l + 2J0
k J0

l − 2 j2
�

+
∑

i∈V

Γi(J
0
i − j) . (20)

In H0, the bulk term of (1) is left invariant, precisely because of the global su(2) symmetry. If
all the ρi = ρ̄ are the same, we may eliminate the B term. Note that HB does not correspond to
a probability conserving process.

Since the Hamiltonian H0 commutes with J0
tot , we may simultaneously diagonalize the

two operators so that J0
tot |Λk, mtot〉 = mtot |Λk, mtot〉 and H0|Λk, mtot〉 = Λk|Λk, mtot〉 where

k = 1, . . . , (n+1)|V | and mtot labels the corresponding number of particles. If we order this set
of vectors by decreasing values of mtot , and since each J−i lowers the value of mtot by one, the
matrix elements of B are lower diagonal in this base. Hence it becomes apparent that the J−i
in B do not modify the spectrum. We conclude that the spectra of HB and H coincide with that
of H0. We remark that such isospectrality property for spin chain Hamiltonians differing by
operators that are lower triangular in the right basis was also observed in [37]. By inspection
of (20) we see that the spectrum depends only on the Γi ’s, but not on the ρi ’s. We conclude
that there exists an operator W such that

HB =W H0W−1. (21)

In particular, denoting |Rk
0〉 ≡ |Λk, mtot〉, 〈Lk

0| and |Rk
B〉, 〈L

k
B| the right and left eigenvectors of

H0 and HB, and Λk the corresponding eigenvalues labelled by k, we have the relation

W |Rk
0〉= |R

k
B〉 . (22)

The transformation W can be written as

W = lim
ε→0

ε
∑

k

[Λk −HB + ε]
−1 |Rk

0〉〈L
k
0| . (23)
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Alternatively, one may also write an equivalent expression that, introducing an additional
integral, does not require the knowledge of the spectrum of HB:

W = lim
ε→0

ε lim
ε̄→0
ℑ
∮

dΛ [Λ−HB + ε]
−1 [Λ−H0 + iε̄]−1 . (24)

Here ℑ denotes the imaginary part. This expression in fact is essentially formal and it does not
seem to be useful at this stage.

To recap, we have up to now a similarity transformation relating H to H0:

W−1e−(1−ρ̄)J
−
tot eJ+tot He−J+tot e(1−ρ̄)J

−
tot W = H0. (25)

One further transformation gives the final result

P H P−1 = Heq , (26)

with
P = e−J+tot e(1−ρ̄)J

−
tot W−1e−(1−ρ̄)J

−
tot eJ+tot (27)

and Heq denoting the Hamiltonian (1) in equilibrium with ρi = ρ̄ for all i ∈ V . Thus we found
a mapping of the non-equilibrium process H (with chemical potentials ρi) to the equilibrium
process with Hamiltonian Heq with reservoirs having the same chemical potential ρ̄ at all leads!
The coupling intensities Γi of H and Heq remain the same. If |ψ〉 is the ket vector which encodes
the probability distribution of the original process as d

d t |ψ〉= H|ψ〉, and |ψ〉eq is the ket vector
which encodes the probability distribution of the transformed process as d

d t |ψ〉eq = Heq|ψ〉eq
then, as consequence of (26), one has |ψ〉 = P−1|ψ〉eq. It would be interesting to study the
relation of our approach to the matrix product ansatz [3] and [44–46].

For later use, it is convenient to define A by

W = eA . (28)

The transformation (26) may be written in terms of A as

e−[J
+
tot , ]e(1−ρ̄)[J

−
tot , ]e−[A, ]e−(1−ρ̄)[J

−
tot , ]e[J

+
tot , ]H = Heq , (29)

where we used the notation e[X , ]Y = eX Ye−X .

4.2 Perturbative approach

For all systems, the expression for W we introduced in the previous paragraph may be evalu-
ated perturbatively. To this aim we insert ∆, a bookkeeping parameter we shall set to one at
the end, to order the perturbation series. We start by writing

H∆ = H0 +∆B , (30)

and define A∆ by
W∆ = eA∆ , (31)

which reduce to HB and W for ∆ = 1 respectively. The relation between HB and H0 in (21)
becomes

e−A∆ [H0 +∆B] eA∆ = e−[A∆, ]H∆ = H0 . (32)

Then we may write a power series for A∆ by putting A∆ =∆A(1) +∆2A(2) + ..., so that

B = [A(1), H0]
1
2
[B, A(1)] = [A(2), H0] (33)

...
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or, in the basis where H0 is diagonal

Bi j(Λi −Λ j)
−1 = A(1)i j

1
2
[B, A(1)]i j(Λi −Λ j)

−1 = A(2)i j (34)

...

This allows to compute the coefficients A(i) of W∆ recursively.

4.3 Integrable models

As we have seen in the previous sections, of all the transformations we need to perform, the
only one that is non-local in the sites, and does not have an explicit expression, is W . Consider
now the expressions for the matrix W (23): it depends on H0 and HB. It is easy to see that
if we have an operator QB (conserved charge) that commutes with HB, and an operator Q0
that commutes with H0, with Q0 and QB iso-spectral, we may just as well substitute the H ’s
by the Q’s in (23). The change of basis induced by W will be the same. If, furthermore, the
spectrum of Q0 is known explicitly, we may obtain an important simplification and sum up the
perturbative series. This is what integrability gives us.

We illustrate this procedure in the prototype case of boundary-driven SEP on a 1D chain
of N sites. In the bulk, particles jumps at rate 1 to their nearest neighbors, provided there is
space in the arrival site. The reservoir connected to the first site (resp. last site) inject particles
at rate α (resp. δ) and remove particles at rate γ (resp. β). We consider the Hamiltonian (1)
with j = 1/2 and define J±i = σ

±
i , J0

i = σ
0/2 with σ±i = (σ

x
i ±σ

y
i )/2 and σ0

i = σ
z
i where σi

are the Pauli matrices at site i, so that

H =
N−1
∑

i=1

�

σ+i σ
−
i+1 +σ

−
i σ
+
i+1 +

1
2
σ0

i σ
0
i+1 −

1
2

�

(35)

+
∑

i∈{1,N}

Γi
�

ρi(σ
+
i +σ

0
i /2− 1/2) + (1−ρi)(σ

−
i −σ

0
i /2− 1/2)

�

,

with Γ1 = α+ γ , ΓN = δ+ β ,ρ1 = α/(α+ γ) ,ρN = δ/(δ+ β). It is convenient to set ρ̄ = ρN
so that, after performing the transformation in (19), one gets HB = H0 + B with

H0 =
N−1
∑

i=1

�

σ+i σ
−
i+1 +σ

−
i σ
+
i+1 +

1
2
σ0

i σ
0
i+1 −

1
2

�

+
∑

i∈{1,N}

Γi
2

�

σ0
i − 1

�

(36)

and
B = Γ1(ρN −ρ1)σ

−
1 . (37)

The study of the Hamiltonian H0 using the coordinate Bethe ansatz goes back to [38,39] and to
Sklyanin [22] using the quantum inverse scattering method. For its relation to the Hamiltonian
of the SEP within the latter framework we refer the reader to [40–42]. The isospectrality of
the Hamiltonians (35) and (36) is straight-forwardly obtained. The transformation W , cf.
Section 4.1, however was only obtained recently [13]. Without going into the details of the
quantum inverse scattering method [31], which allows to obtain the conserved charge, we take
the operator QB as given and show how the results of [13] fit into our perturbative framework.
We further present some alternative ways of writing the resulting similarity transformation,
see in particular (47) and (51).

As mentioned before, the explicit computation of the similarity transformation W relies on
the existence of a “charge” operator

Q∆ =Q0 +∆Q− , (38)
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that commutes with the Hamiltonian H∆ for any ∆, i.e.

[H∆,Q∆] = 0 . (39)

The operator Q∆ has the same eigenvectors as the Hamiltonian H∆ which reduce to the eigen-
vectors of H0 (or Q0) for ∆= 0 and to the ones of HB for ∆= 1. Thus the transformation W∆
maps Q0 to Q∆:

Q∆ =W∆Q0W−1
∆ , (40)

cf. (32). The operator Q∆ follows from the transfer matrix of the integrable spin chain, see [13]
for further details. The unperturbed part only depends on the total spin

Q0 =
σ0

tot

2
Γ1ΓN

�

σ0
tot

2
+ Γ−1

1 + Γ−1
N

�

, (41)

while the lower triangular part is given by the non-local expression

Q− = Γ1(ρN −ρ1)

�

σ−tot + ΓN
N
∑

i=1

σ−i

�

σ0
i − 1

2
+

N
∑

k=i+1

σ0
k

��

. (42)

The similarity transformation can then be computed using the algebraically more simple
operator Q∆:

W∆ = lim
ε→0

ε
∑

m

�

ΛQ
m −Q∆ + ε

�−1 |Rm
0 〉〈L

m
0 | . (43)

The eigenvalues ΛQ
m can be read off immediately from the explicit form of Q0 in (41). One way

to determine the W∆ is by recursively solving (40) in powers of ∆ as discussed in Section 4.2.
Writing

W∆ = 1+
N
∑

k=1

∆k gk (44)

we get
gkQ0 =Q0 gk +Q− gk−1 k = 1, . . . N , (45)

with g0 = 1. From this it follows that gk must annihilate k particles which implies its exchange
relation with Q0:

gkQ0(σ
0
tot) =Q0(σ

0
tot + 2k)gk .

This allows us to solve the recursion and explicitly write gk in terms of Q0 and Q−. By using
then the definition of Q0 (41) we find

W∆ =
N
∑

k=0

∆k

k!

�

Q−
Γ1ΓN

�k Γ
�

σ0
tot + Γ

−1
1 + Γ−1

N − k
�

Γ
�

σ0
tot + Γ

−1
1 + Γ−1

N

� . (46)

The final expression for W can be obtained by taking ∆ = 1. From this expression, the non-
local character of the W -transform is clearly seen, cf. (42).

Curiously, W can be written as an exponential function

W = exp

� N
∑

k=1

A(k)
�

, (47)

with

A(k) = γk
(−1)k+1

k! Γ k
1 Γ

k
N

Γ
�

1+σ0
tot + Γ

−1
1 + Γ−1

N

�

Γ
�

2k+σ0
tot + Γ

−1
1 + Γ−1

N

�Qk
− , (48)
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where the function γk are related to the Clebsch-Gordan coefficients (compare [43]),
γk = (1,1, 3,14, 80,468, 2268,10224, 313632,9849600, . . .). This exponential form of W al-
lows to read off its inverse.

The expression for W may be expressed in terms of Bessel function which may be more
suitable to take the hydrodynamic limit. To see this, we define Pj the projector on the subspace
of total spin j. Then we may rewrite (46) for ∆= 1 as

W =
∑

j

N
∑

k=0

1
k!

�

Q−
Γ1ΓN

�k Γ
�

2 j + Γ−1
1 + Γ−1

N − k
�

Γ
�

2 j + Γ−1
1 + Γ−1

N

� Pj . (49)

Now, writing the gamma function in the numerator as Γ (z) =
∫

d x xz−1e−x we may perform
the sum over k, to obtain:

W =
∑

j

∫

d x e−x+ Q−
Γ1ΓN

x−1

x(2 j+Γ−1
1 +Γ

−1
N −1) 1

Γ
�

2 j + Γ−1
1 + Γ−1

N

� Pj . (50)

We recognize the generator of the Bessel function Kn(z), so that we may write:

W = 2
∑

j

K−2 j−Γ−1
1 −Γ

−1
N

�

2
r

−Q−
Γ1ΓN

�

Γ
�

2 j + Γ−1
1 + Γ−1

N

�

�
√

√−Q−
Γ1ΓN

�2 j+Γ−1
1 +Γ

−1
N

Pj . (51)

This is an explicit expression for W acting on a function of given σ0
tot .

One final remark: when we map a probability distribution via this transformation, we
will not necessarily obtain a function that is positive definite, and may be interpreted as a
probability. This is no real problem if the system is ergodic: one may add to the function
an equilibrium distribution multiplied by a sufficiently large factor, and normalize the result
to one. The evolution of this linear combination, which may be interpreted as a bona-fide
probability, is just a linear combination of the one of the original vector and the equilibrium
one, and the latter does not evolve.

5 Fluctuating hydrodynamics

Fluctuating hydrodynamics is obtained by coarse graining a system: the quantities obtained
depend on space and have fluctuations that are the smaller, the larger the coarse graining.
The hydrodynamic limit consists formally of two parts: one first goes to a continuous chain,
and then performs the long-wavelength (infrared) limit. These cases amount to a ‘semiclas-
sical’ approximation in the following sense: just as the probability evolution can be seen as
a Schrödinger equation with imaginary time, its coarse-grained limit correspond to the semi-
classical limit of it – the role of ħh being played by the intensity of fluctuations. The (WKB)
treatment of this with the usual classical tools is variously known as ‘Freidlin-Wentzel’ or
‘Hamilton-Jacobi’ approach in the mathematical physics literature. Exactly the same problem
arises in the AdS/CFT literature, where the long-wavelength limit becomes the high angular
momentum regime of the string [47]. Let us stress again the role of group theoretical nature
of these problems: it is because of this structure that ‘coarse graining’ amounts to ‘large spin
representation’, and through it the semiclassical limit.

At the fluctuating hydrodynamics level, the transformations connecting non-equilibrium
to equilibrium can be read from the previous Section 4.1; just changing commutators into
Poisson brackets:

{J 0
k ,J ±k }= ±J

±
k {J −k ,J +k }= −2J 0

k . (52)
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For the one-dimensional SEP(2j), a realisation of (52) can be obtained starting from a repre-
sentation of the su(2) algebra on the lattice, cf. [6]:

J+k = (2 j −ρk)e
ρ̂k , J−k = ρk e−ρ̂k , J0

k = −(ρk + j) , (53)

where ρ̂k =
∂
∂ ρk

. Redefining ρk→
ρk
2 j , so that the commutator is 1

2 j , and going to the continu-
ous limit, in terms of a density variable ρ(x) and its conjugate field ρ̂(x), then (53) becomes:

J + = 2 j(1−ρ(x))eρ̂(x) , J − = 2 jρ(x) e−ρ̂(x) , J 0 = −2 j(ρ(x) + 1/2) . (54)

We obtain the small-noise, hydrodynamic limit as a ‘semiclassical’ one in the usual way. The
transition probability between ρ(x , t1) and ρ(x , t2) reads (see [5,18,48])

P(ρ(x , t),ρ(x , t ′)) =

∫

Dρ̂Dρ e−2 j N S[ρ,ρ̂] , (55)

S[ρ, ρ̂] =

∫ t2

t1

∫ 1

0

d xd t
�

ρ̂∂tρ −H[ρ, ρ̂]
	

. (56)

This is a path integral with boundaries ρ(x , t1) and ρ(x , t2) with ‘classical’ Hamiltonian

H[ρ, ρ̂] =
1
2
σ(ρ)(∇ρ̂)2 −

1
2
∇ρ∇ρ̂ , (57)

where σ(ρ) = ρ(1 − ρ). The fields ρ are constrained, in the hydrodynamic limit, to satisfy
the spatio-temporal boundary conditions

∀t, ρ(0, t) = ρ0, ρ(1, t) = ρ1 . (58)

The quantum model suggests that, at the fluctuating hydrodynamics level, the mapping
(29) between non-equilibrium and equilibrium is replaced by

e−{J
+
tot , }e(1−ρ̄){J

−
tot , }e−{A, }e−(1−ρ̄){J

−
tot , }e{J

+
tot , }H =Heq , (59)

where Heq coincides in form with H but the field ρ′ satisfies the boundary conditions

∀t, ρ′(0, t) = ρ′(1, t) = ρ̄. (60)

This is a canonical transformation that may be seen as mapping (ρ(x), ρ̂(x)) into another pair
(ρ′(x), ρ̂′(x)), but not a simple contact transformation mapping ρ(x) into another pair ρ′(x).

Now, in principle A can be obtained with the classical perturbation equations:

B+ {H0,A(1)} = 0
1
2
{B,A(1)}+ {H0,A(2)} = 0 (61)

...

Here A,H0 and B denote the ’semiclassical’ counterparts of A, H0 and B introduced in the
microscopic model.

One has to solve these equations under the assumption that A(r) are functions of the spins,
or of ρ(x), ρ̂(x). This will have a solution to the extent that H0 and HB are classically inte-
grable. In that case, one may take advantage of the fact that H0 may be written in action-angle
variables. It turns out that the fluctuating hydrodynamic limit equations for all the models con-
sidered here are classical integrable models. One may understand this by arguing that several
models (e.g. all the partial exclusion models) share a common hydrodynamic limit with an in-
tegrable one (in this case the SEP). The same is true, for example, with the KMP model, which
is not integrable, but shares the same hydrodynamic limit as the model of (13). In models that
are not classically integrable, the classical perturbation would be applied on a trajectory – the
instanton in this case.
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6 Discussion

The results in this paper have to be seen in the light of the work of Graham [49], who long
time ago observed, in the case of Langevin dynamics, that the distinction between processes
that do satisfy reversibility and processes that do not is somewhat artificial. Our results are
in this vein, although here the mapping is of the system driven out of equilibrium to the same
system with equilibrium baths.

As mentioned above, the transformation mapping the driven problem into the undriven one
is not a function between particle occupations of the two respective systems, but it involves the
whole set including the auxiliary ‘spin’ variables. For example, in a problem where occupation
numbers are associated with the spins s0

i , the transformation is not only non-local in the site
i of the form {s0

i } → {s
′0
j }, but it involves all the spin operators on a site: in other words,

the mapped occupation numbers are a function, not only of the original occupation numbers, but
also of the current operators on each link. This explains an apparent paradox about Onsager’s
principle: in the driven problem closed trajectories form a loop, while in the undriven one
they do not. A pure ‘contact’ transformation can only transform loops into loops.

The mapping P in (26) allows one to obtain the non-equilibrium steady state by trans-
forming the equilibrium measure. At the hydrodynamic level, the mapping reproduces the
non-equilibrium free energy found as the density large deviation function in MFT [5,6,50].

A recurrent question in driven out of equilibrium problems concerns the existence of an ‘out
of equilibrium free energy’. Here we have, for the driven system, a distinguished candidate: it
is the (usual) free energy of the mapped system. This may in principle be written as a function
of the old density fields and, from the discussion above, their time derivatives. All in all, we
believe that this angle of study of these problems provides an excellent framework in which
one may discuss what properties one can expect, and which ones one cannot expect, from
problems driven out of equilibrium.
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