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Abstract

The Kibble-Zurek mechanism captures universality when a system is driven through
a continuous phase transition. Here we study the dynamical aspect of quantum phase
transitions in the Ising Field Theory where the quantum critical point can be crossed in
different directions in the two-dimensional coupling space leading to different scaling
laws. Using the Truncated Conformal Space Approach, we investigate the microscopic
details of the Kibble-Zurek mechanism in terms of instantaneous eigenstates in a gen-
uinely interacting field theory. For different protocols, we demonstrate dynamical scal-
ing in the non-adiabatic time window and provide analytic and numerical evidence for
specific scaling properties of various quantities. In particular, we argue that the higher
cumulants of the excess heat exhibit universal scaling in generic interacting models for
a slow enough ramp.
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1 Introduction

The Kibble-Zurek mechanism (KZM) describes the dynamical aspects of phase transitions
and captures the universal features of nonequilibrium dynamics when a system is driven slowly
across a continuous phase transition. The original idea is due to Kibble, who studied cosmo-
logical phase transitions in the early Universe [1,2]. He showed that as the Universe cools
below the symmetry breaking temperature, instead of perfect ordering, domains form and
topological excitations are created. Not much later Zurek pointed out that this phenomenon
can be observed in condensed matter systems as well, and that the density of defects depends
on the cooling rate [3,4]. The physical mechanism originates in the fact that at a critical point
both the correlation length and the correlation time (relaxation time) diverge, leading to an
inevitable breakdown of adiabaticity. As a consequence, the final state will not be perfectly
ordered but will consist of domains with different symmetry breaking orders separated by de-
fects or domain walls. However, in the process a typical time scale and a corresponding length
scale emerges related to the instant when the system deviates from the adiabatic course. These
quantities, diverging as the rate at which the phase transition is crossed approaches zero, are
the only scales in the problem. As a consequence, the density of domain walls as well as other
quantities obey scaling laws in terms of the speed of the ramp.

It is a natural question whether the same phenomena occur also at zero temperature,
i.e. for quantum critical points. A systematic study of the KZM in quantum phase transitions
started with the works [5-8]. Quantum phase transitions are different from transitions at finite
temperature: they correspond to a qualitative change in the ground state of a quantum system
and are driven by quantum fluctuations. Importantly, the time evolution is unitary and there
is no dissipation. In spite of these differences, the scaling behaviour essentially coincides with
the classical case [5-10]. The scaling behaviour was extended to other observables beyond
the defect density to correlation functions [11-13], entanglement entropy [13-15], excess
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heat [16-18], and also to different ramp protocols [10, 16, 19-21], including quenches from
the ordered to the disordered phase. The scaling laws can also be derived using the framework
of adiabatic perturbation theory [7,16,17,19,22-25]. The reader interested in the KZM in the
context of quantum phase transitions is referred to the excellent reviews [26-28].

The simplest approximation which leads to the right scaling exponents assumes that when
adiabaticity is lost, the system becomes completely frozen and reenters the dynamics only
some time after crossing the critical point. This freeze-out scenario or impulse approximation
has been refined recently by taking into account the actual evolution of the system in the
non-adiabatic time window [15,29-35]. Since the Kibble-Zurek length and time scales are
the only relevant scales, the non-adiabatic evolution features dynamical scaling, i.e. the time
dependence of various observables is given by scaling functions. This can also be understood
from an adiabatic renormalization group approach [20,21].

The Kibble-Zurek mechanism was also extended beyond the mean values to the full statis-
tics of observables. The number distribution of defects was computed in the Ising chain [13,36]
and was argued to exhibit universality [37]. Similarly, the work statistics and its cumulants
were also studied and found to satisfy scaling relations [38-40].

The quantum KZM has been investigated experimentally in cold atomic systems [41-45],
including the dynamical scaling [46, 47] and very recently, the number distribution of the
defects [48].

The various facets of the quantum KZM were demonstrated and analysed on the quantum
Ising chain [6-8,10, 13, 30, 33, 35, 36, 39, 40, 49-52], the XY spin chain [11, 12, 53] or other
exactly solvable systems [15, 31, 50, 54, 54-56] (see however e.g. [9, 18, 34,57, 58]). Most
studies focused on spin chains or other lattice systems, while field theories received less atten-
tion. Notable exceptions are Refs. [31,54-56] and applications of the adiabatic perturbation
theory approach to the sine-Gordon model [17,23,59]. The KZM in the field theory context
also appeared in the context of holography [60-64].

In this work we aim to study different aspects the quantum Kibble-Zurek mechanism in a
simple but nontrivial field theory, the paradigmatic Ising Field Theory. This theory is an ideal
testing ground as it allows one to study both free and genuinely interacting integrable systems.
Our motivation for this choice is twofold. First, we wish to study the KZM in a field theory
at the microscopic level of states. Second, we would like to test the recent predictions for the
universal dynamical scaling and the scaling behaviour of the higher cumulants of the work in
an interacting model.

As we focus on an interacting theory, we need to use a numerical tool for our studies. We
use a nonperturbative numerical method, the Truncated Space Approach [65-67]. Apart from
its long-standing history to capture equilibrium properties of perturbed conformal field the-
ories [68-80], recent applications demonstrate that it is capable to describe non-equilibrium
dynamics in different models [81-86]. This approach gives us access to the microscopic data
and full statistics of observables so we can investigate the KZM at work at the lowest level, and
being nonperturbative and independent of integrability, it allows us to study the dynamics of
the interacting field theory.

The paper is organised as follows. In Sec. 2 we outline the context of our work and review
the scaling laws predicted by the Kibble-Zurek mechanism for quantum phase transitions. We
proceed by defining the model in which we study the Kibble-Zurek mechanism and discuss the
adiabatic perturbation theory that provides another viewpoint on the scaling laws. The main
body of the text presents an in-depth analysis of the Kibble-Zurek mechanism in the Ising Field
Theory. In Sec. 3 we explore the implications of driving a system across a critical point on
the statistics of work function and examine the behaviour of energy eigenstates to check the
hypothesis of the KZM at a fundamental level. Sec. 4 discusses the dynamical critical scaling
with the time and length scales corresponding to the deviation from the adiabatic course and
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demonstrates that the KZ scaling can be observed in the interacting Eg model. In Sec. 5
we show that the appearance of the scaling connected to the Kibble-Zurek mechanism is not
limited to local observables but it is present also in higher cumulants of the distribution of the
excess heat. Finally, Sec. 6 finishes the paper with concluding remarks and possible future
directions. Technical details concerning the relation of the adiabatic perturbation theory to
the Eg model, the scaling limit of the analytic solution of the dynamics on the transverse field
Ising chain and the applicability of TCSA to the study of KZM are discussed in the Appendices.

2 Model and methods

In this section we describe the context of our work by introducing the concepts of the
universal non-adiabatic behaviour that manifests itself in power-law dependence of several
quantities on the time scale of the non-equilibrium ramp protocol, known under the name of
Kibble—Zurek scaling. Then we discuss the model in which we study the KZ scaling, the Ising
Field Theory which is the low energy effective theory of the transverse field Ising chain in the
vicinity of its critical point. After introducing its main properties, we address the methods that
are going to be used to examine the Kibble-Zurek scaling. In the limit of slow ramps, one can
employ a perturbative approach, the adiabatic perturbation theory (APT) to investigate the
time evolution. We give an overview of this approach, focusing on its application to universal
dynamics near quantum critical points. The non-equilibrium dynamics of the Ising Field The-
ory is amenable to an efficient numerical non-perturbative treatment based on the truncated
conformal space approach (TCSA), which we review briefly at the end of the section.

2.1 The Kibble-Zurek mechanism

In this section we summarise the KZ scaling laws in a fairly general fashion. Let us consider
a perturbation of a quantum critical point (QCP) by some operator with scaling dimension
A. The strength of the perturbation is characterised by a coupling constant 6 with 6 = 0
corresponding to the critical point. Imagine that we prepare the system in its ground state
and drive it through its QCP by changing ¢ in time, i.e. by performing a ramp. For the sake of
generality, we consider ramps that cross the phase transition in a power-like fashion, i.e. near
the QCP

a

Q

where 7, is the rate of the quench. The essence of the KZM is that due to the divergence of the
relaxation time of the system at the QCB known as critical slowing down, the system cannot
follow adiabatically the change no matter how slow it is, and falls out of equilibrium meaning
that it will be in an excited state with respect to the instantaneous Hamiltonian. However, due
to universality near the critical point the time and length scales corresponding to the deviation
from the adiabatic course depend on the quench rate 7 as a power-law. The scaling can be
determined by the following simple argument. The correlation length diverges in the phase
transition corresponding to this particular perturbation as & o< 6" where v is the standard
equilibrium critical exponent related to the scaling dimension A of the perturbing operator
by v = (2— A)~L. Similarly, the correlation or relaxation time diverges as &£, o< &% oc 6%,
where z is the dynamical critical exponent. If the change of £, within a relaxation time is much
smaller than the relaxation time itself, £,&, < &,, then the evolution is adiabatic. This is the
case for times

6 =0 sgn(t), 2.1)

1 TQ %
[t] > Tgy = (avz)o=i a . (2.2)

0
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However, once we reach t ~ —Ty,, the rate of change of the correlation time becomes &, ~ 1
and the evolution becomes non-adiabatic. At this Kibble-Zurek time 7, the correlation time
scales with the quench rate 7 as Tz itself:

T avvazrl
E(—Txz) o< (51—‘/{1) o< Tyz (2.3)

0

The first formulation of Kibble-Zurek arguments depicted the non-adiabatic interval of
time evolution as a simple freeze-out referring to the assumption that the state is literally
frozen in the non-adiabatic regime t € [—Tgy, Txz]- At t = Ty on the other side of the QCB
the system finds itself in an excited state with correlation length &g, = £(—7Tgy). If the system
is now in the ordered phase, it implies that the typical linear size of the ordered domains
are ~ £xy, so the density of excitations corresponding to defects (domain walls) in spatial
dimension d is

()
Nex O &y OC Si/a . (2.4)
0

Recently, the freeze-out scenario was refined by taking into account the evolution of the
system and change of the correlation length in the time interval —Tyg,; < t < Tgz [29-31,33].
The latter is caused by moving domain walls at the typical velocity corresponding to their
typical wave number k ~ & Ezl and energy £(k) ~ k* ~ &.7. The velocity of this “sonic horizon”
[33]isv=¢'(k) ~k*/k ~ Ell(gz. The correlation length at t = T, is then

E(Txz) = E(—Txz) +2v 2Tz = Exz(1 +4Txz/Exy) = Exz(1 + 4Txz/E(—Tkz)) s (2.5)

which, due to Eq. (2.3), is proportional to £i,. This means that i, is still the only relevant
length scale so the scaling laws are not altered.

Still, nontrivial predictions can be made concerning the non-adiabatic or impulse region
—Tgz < t < Tgz [31,33,34] due to the fact that the KZ time and correlation length, Ty
and &g,, are the only relevant scales for a slow enough ramp protocol. Consequently, time-
dependent correlation functions are described in terms of scaling functions of the rescaled
variables t /Ty, and x /&gy in the KZ scaling limit Tx; — ©0. For example, one- and two-point
functions of an operator O, with scaling dimension A, take the form in the impulse regime

t € [—Tkz, Tkz]

—A _92A t—t'  x
<OAO(X’ t)>: ng OFO(t/TKZ)J <OAO(X; t)OAO(OJ t/)>: Kz OGO( ,_) >
Tz Ekz
(2.6)
where F and G are scaling functions depending on the operator O and we assumed transla-
tional invariance. Note that for one-point functions the scaling holds in the adiabatic regime
t < —Tkz as well, since there the expectation value depends only on the distance from the

critical point, which is the function of the dimensionless time t/7:

N t avAp t avAp Ay
(O, (x, 1)) o< E(8) Om(r—) oc(—) T O, (2.7)

Q Tkz

where in the last step we used the relation (2.2).

Considering the generic nature of arguments presented above it is tempting to ask how
precisely they describe the actual non-equilibrium dynamics of quantum systems. The scal-
ing relations are supported by exact calculations in the free fermionic Ising chain where the
dynamics of low-energy modes can be mapped to the famous Landau-Zener transition prob-
lem [5,8,33,87]. In other quantum phase transitions, when exact solutions are not available,
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the scaling can be analysed by a perturbative expansion in the derivative of the time-dependent
coupling as a small parameter. This approach that uses adiabatic perturbation theory predicts
the same scaling as the arguments of Kibble-Zurek mechanism in several models besides the
Ising chain [7,17,19,23]. This formalism is useful to apply the generic scaling arguments
outside the non-adiabatic regime for quantities that are beyond the scope of the initial for-
mulation of KZM [40]. Together with the non-perturbative numerical method employed in
our work it can be used to establish the validity of the scaling relations listed above for an
interacting model as well.

To do so, we have to address the question of finite size effects. These are of importance due
to the fact that the TCSA method requires finite volume, while the arguments presented above
make use of a divergent length scale £y,. Clearly, finite volume can bring about adiabatic
behaviour if

Ea~L = (to/8)™7 ~LJE, 2.8)

where & and &, are the correlation length and time at the initial state. If the quench rate 7 is
significantly larger than this, the transition is adiabatic due to the fact that finite volume opens
the gap. One way to compensate this effect is the rescaling of the volume parameter with the
appropriate power of the quench rate [30]. However, if

avz+1

o/ K (L/E) @, (2.9)

then the finite size effects are negligible. As we are going to illustrate in Sec. 3.3, we can set
the parameters of the numerical TCSA method such that this relation is satisfied and there is
no need to rescale the volume parameter.

2.2 KZM in the Ising Field Theory

After setting up the context of our work, we now turn to the model in consideration: the
Ising Field Theory that is the scaling limit of the critical transverse field Ising chain. The
Hamiltonian of the latter reads

Hppe =—J (Z oro¥, +h D 0F +hZZaf), (2.10)
i i i

where o with a = x, y,z are the Pauli matrices at site i, the strength of the ferromagnetic
coupling J sets the energy scale, and h,.J and h,J are the longitudinal and transverse magnetic
fields, respectively. We set periodic boundary conditions, of ; = o{. The model is fully solv-
able in the absence of the longitudinal field, h, = 0, when it can be mapped to free Majorana
fermions via the nonlocal Jordan-Wigner transformation. The Hilbert space is composed of
two sectors based on the conserved parity of the fermion number. The fermionic Hamiltonian
will be local provided we impose anti-periodic boundary conditions for the fermionic operators
in the even Neveu-Schwarz (NS) sector and periodic boundary conditions in the odd Ramond
(R) sector.

The transverse field Ising model is a paradigm of quantum phase transitions: in infinite
volume, for h, < 1 the ground state manifold is doubly degenerate, spontaneous symmetry
breaking selects the states (|0)ys £ |0)g)/+/2 with finite magnetisation (o) = +(1 — hg)l/ 8
(here |0)ys/r are the ground states in the two sectors). In finite volume, there is an energy
split between the states |0)yg and |0)g which is exponentially small in the volume, and the
ground state is |0)ys. In the paramagnetic phase for h, > 1, the ground state is always |0)yg
and the magnetisation vanishes. The quantum critical point (QCP) separating the ordered
and disordered phases is located at h, = 1, which can also be seen from the behaviour of the
gap, A = 2J|1 —h,|, vanishing at the QCP. In the ferromagnetic phase, the massive fermionic

6
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Eg line

ferromagnetic (F) paramagnetic (P) -

M

n

QCP. free fermion line

Figure 2.1: Phase diagram of the Ising Field Theory. The couplings M and h charac-
terise the strengths of the perturbations of the ¢ = 1/2 conformal field theory by its
two relevant operators, ¢ and o. The KZM is studied for ramps along the integrable
directions indicated by the coloured arrows.

excitations can be thought of AS domain walls separating domains of opposite magnetisations,
and with periodic boundary conditions their number is always even '. In the paramagnetic
phase the excitations are essentially spin flips in the z direction.

For h, # 0 the model is not integrable? for any value of h,, but features weak confine-
ment: the nonzero longitudinal field splits the degeneracy between the two ground states
with an energy difference proportional to the system size. The domain walls cease to be freely
propagating excitations, as the energy cost increases with the distance between two neigh-
bouring domain walls that have a domain of the wrong magnetisation between them. The
new excitations are a tower of bound states, sometimes called ‘mesons’ in analogy with quark
confinement in the strong interaction.

The low energy effective theory describing the model near the critical point is the Ising field
theory, obtained in the scaling limit J — 00, a — 0, h, — 1 such that speed of light ¢, = 2Ja
and the gap A = 2J|1 —h,| are fixed (a is the lattice spacing). The critical point corresponds
to the theory of a free massless Majorana fermion, which is also one of the simplest conformal
field theories (CFT). Due to relativistic invariance, the dynamical critical exponent is z = 1.
The two relevant operators at the quantum critical point are the magnetisation o (scaling
dimension 1/8) and the so-called ‘energy density’ € (scaling dimension 1), corresponding to
the longitudinal and transverse magnetic fields in the scaling limit. The Hamiltonian of the
resulting field theory in finite volume L is given by

L L

s(x)dx+hf o(x)dx. (2.11)

M
Hipr = Hpp + o
n 0

0

Here Hyp is the Hamiltonian of the free massless Majorana fermion, a minimal CFT with cen-
tral charge ¢ = 1/2. The precise relations between the lattice and continuum versions of the

IThis is true even in the Ramond sector, as |0) contains a zero-momentum particle.
2The o} operators are nonlocal in terms of the fermions so the Jordan-Wigner transformation does not lead to
a local fermionic Hamiltonian.
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longitudinal magnetic field and the magnetization operator are

o(x = ja) =§J1/Sa;‘, (2.12)
h=25"1"/8h, (2.13)

with § = 21/12¢71/8 43/2 where A = 1.2824271291... is Glaisher’s constant.

For h = 0 the Hamiltonian describes the dynamics of a free Majorana fermionic field with
mass |[M| (we set the speed of light to one, ¢, = 1). We will refer to this choice of parameters
in the M —h parameter plane of the theory (2.11) as the “free fermion line” (see Fig. 2.1). The
QCP at M = 0 separates the paramagnetic phase M > 0 from the ferromagnetic phase M < 0.
The coupling is proportional to the mass gap and since the correlation length is the inverse of
the gap, v=1.

Interestingly, there is another set of parameters that corresponds to an integrable field
theory: M = 0 with h finite®. The spectrum of this theory can be described in terms of eight
stable particles, the mass ratios and scattering matrices of which can be written in terms of the
representations of the exceptional Eg Lie group. From now on, we are going to refer to this
specific set of parameters as the “Eg integrable line” (see Fig. 2.1). The lightest particle with
mass m; sets the energy scale which is connected to the coupling h as

m, = (4.40490857...)|n|%/1. (2.14)

The exponent reflects that along the Eg line (o perturbation) v = 8/15 and z = 1. Moving
particle states are built up as combinations of particles with finite momenta from the same
or different species. The masses of the these particle species can be expressed in terms of m;
as [88]

m 2m; cos i m 2m, cos i m 2ms, cos n m 2ms, CoS 2n
=2m -, =Z2m _—, =Z2m -_—, = -—,
2 1 5 3 1 30 4 2 30 5 2 15
mg = 2ms, COS T m, =4m cosncos ki mg =4m cosncos 2n (2.15)
6T AT gy T T TR g T gg 0 T TR g T g ‘

The exact relation between m, and the coupling constant h was derived in Ref. [89]. Due to the
integrability of the model, the scattering S-matrix involving all different species is also known
exactly [88]. This, in particular, allows for the identification of multiparticle eigenstates in
finite volume based on the volume dependence of their energy.

In the following we are going to consider ramp protocols along the integrable lines, indi-
cated by the coloured arrows in Fig. 2.1. Using the terminology of Ref. [31], we distinguish
protocols with A; and A corresponding to different phases of the model (ramp crossing the
critical point), and protocols with A; = O (ramp ending at the critical point). We are going
to refer to these two choices as trans-critical protocol (TCP) and end-critical protocol (ECP),
respectively. Certain observables exhibit markedly different behaviour depending on the pro-
tocol [40], hence both of them are of interest.

We focus our attention on linear ramps, where one of the couplings is varied such that the
system reaches or crosses the critical point at a constant rate,

A(D) = —Ag— (2.16)

TQ
where A stands for M or h and the other coupling is set to zero. 7, is the duration of the ramp
that takes place in the time interval t € [-74/2,7q/2] for a TCP ramp and t € [—7g, 0] for
an ECP ramp.

3The lattice model is not integrable for h, = 1 and h, # 0, this is a feature of the field theory in the scaling limit.

8
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Ramps along the free fermion line (h = 0) have been studied extensively, especially in the
spin chain. The time evolution of the free fermion modes with different momentum magni-
tudes decouple and only modes of opposite momenta {k,—k} are coupled by the evolution
equation. One can make progress either by invoking the Landau-Zener description of tran-
sitions between energy levels or by numerically solving the set of two differential equations.
Even analytical solutions are known for various ramp profiles [26,54]. These solutions can
be simply generalised to the continuum field theory, providing us with an analytical tool to
examine the KZ scaling and offering a benchmark for our numerical method. We refer the
reader to Appendix B for the details.

The Kibble—Zurek mechanism is much less studied along the other integrable axis M = 0.
As we noted above, in this direction v = 8/15, so the KZ scaling is modified with respect to the
well-investigated free fermion case. Although the model is integrable, the time evolution can-
not be solved analytically, which highlights the importance of the non-perturbative numerical
method that exploits the conformal symmetry of the critical model: the Truncated Conformal
Space Approach (TCSA). Nevertheless, standard KZ arguments rely only on typical energy and
distance scales of the model, consequently they should apply regardless of the presence of in-
teractions. The scaling arguments can be supported by the analysis of the exactly known form
factors of the model in the context of the adiabatic perturbation theory, to which we turn now.

2.3 Adiabatic Perturbation Theory

The adiabatic perturbation theory (APT) is a standard approach to study the response to
a slow perturbation [27,90]. It was first used to describe the universal dynamics of extended
quantum systems in the vicinity of a quantum critical point in Ref. [7]. Ever since the frame-
work has become more elaborate by exploring the parallelism between APT and the Kibble—
Zurek mechanism and generalising the arguments to a wider variety of scaling quantities in
different models [16,17, 19, 23-25,40]. In particular, it has already been applied with suc-
cess in an integrable field theory, the sine-Gordon model [17]. In our current work we carry
out an analogous reasoning to explore the implications of the APT statements in the Eg Ising
Field Theory. To this end, let us briefly sketch the basic concepts and assumptions underly-
ing the framework of adiabatic perturbation theory as well as introduce some notations. Qur
discussion is based on the presentation of Ref. [24].

Assume that we want to solve the time-dependent Schrédinger equation:

S 0(0) = B 19(0) 2.17)

in a time interval t € [t;, t;]. Using the basis of eigenstates of H(t) that are going to be called
instantaneous eigenstates |n(t)),

H(t)|n(t)) = E,(t) |n(t)) , (2.18)

we can expand the time evolved state with coefficients a,,(t):

[(6)) = an(t) exp{—10,(1)} In(t)) , 2.19)

where the dynamical phase factor ©,(t) = f: E,(t")dt’ is already included. The initial con-
dition is that at t; the system is in its groundl state |0(t;)). Substituting this Ansatz into Eq.
(2.17) yields a system of coupled differential equations for the coefficients a,(t). The re-
sulting system of equations can be solved approximately for a,(t) using a few assumptions.
First, the explicit time-dependence of the Hamiltonian is due to a time-dependent coupling
constant A that couples to some perturbing operator V so H(t) = Hy + A(t)V. Second, A(t) is

9
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a monotonous function of time, hence one can perform a change of variables, and it changes
slowly (that is the adiabatic assumption) such that A — 0. Then the resulting expression can
be expanded in terms of powers of A. Assuming there is no Berry phase, the result up to
leading order in A is

A
an(l)mf dA’ (n(A)| 8y [0(A)) exp{1(©,(A") — ©p (1)}, (2.20)

i

where the dynamical phase with respect to the coupling is ©, (1) = fAEn()V )/AdA with
A = A(t). Note that the phase factor exhibits rapid oscillations in the limit A — 0. This can
be exploited to identify the two possibly dominant contributions of integral Eq. (2.20) in this
limit. First, a non-analytic part that comes from the saddle point of the phase factor at a
complex value of coupling A. It is exponentially suppressed with the inverse of the rate A.
Second, there are contributions coming from the boundaries of the integration domain which
can be obtained by integrating by parts and keeping terms to first order in A yields the result

(n(")| 8, [o(1))

Ae) A~ 1A/
) N N By )

exp{1(©,(1")—© (/1’))} (2.21)

This contribution can be viewed as a switch on/off effect as it is the consequence of a non-
smooth start or end of the ramp: it is nonzero if the first time derivative of the coupling has
a discontinuity at the initial or final times. If )'\i’f = 0 then one has to go to higher orders. In
general, a discontinuity in the ath derivative brings about the scaling a o< 76" with the time
parameter of the ramp 7 [26]. We consider linear ramps (cf. Eq. (2.16)) so higher derivatives
disappear and the small parameter of the perturbative expansion is 1/7g. We remark that Eq.
(2.21) can be modified if the energy difference in the denominator vanishes at some time
instant along the process, in that case the dependence of a on A is subject to change (cf. Eq.
(2.26) for low-momentum modes if the gap is closed).

The applicability of adiabatic perturbation theory, strictly speaking, requires that the over-
lap between the time-evolved state and the instantaneous ground state remains close to 1 [90].
This, however, imposes a constraint on the probability to be in an excited state rather than on
the density of excitations. On the other hand, for quantum many-body systems in the ther-
modynamic limit the physical criterion for a perturbative treatment is to be in a low-density
state [19]. Given that the Kibble-Zurek mechanism predicts that densities decay as a power
law of the time parameter 7, in the limit T, — oo the above approximations are justified
and we can use Eq. (2.20) to examine the Kibble-Zurek scaling. This reasoning predicts the
correct scaling exponents in the transverse field Ising chain for various quantities [24, 40].
Let us illustrate how they work in the case of the density of defects n., after a linear ramp
A(t) = A+ (As—A;)t/ 7. The states of the Ising chain participating in the dynamics are prod-
ucts of zero-momentum particle pair states with momentum k, hence the defect density can

be expressed as*
dk
e = lim 23 eyl = f ool (2:22)
k>0

where a; = a;(Af) is the coefficient of a particle pair state |k,—k) given by Eq. (2.20). To
investigate the dependence on 7, it is practical to introduce the rescaled variables

1
n= k'c“” {=2A15"", (2.23)

“We remark that in principle the normalization of the state should be taken into account, but it is 1 up to first
order in the perturbation theory.
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to remove the 1/7, dependence from the exponent of Eq. (2.20). The heart of the APT
treatment of KZ scaling lies at the observation that the matrix element and energy difference
appearing in the expression of «,, take the following scaling forms:

Ex(A) —Eo(A) = [APPYF (k/IAL”) (2.24)
({k,—k}(D)1 3, 10(2)) = A7 G(k/I1AI™), (2.25)

with the asymptotic behaviour F(x) o< x% and G(x) o< x~/” as x — 00. These considerations
yield that

v d
Nex = TQHM J %K(n): (2.26)

< v 4
f d G('r’/g ) exp(lf dé«/ é«/va(n/g/v))

with
2

K(n)= ) (2.27)

4
Eq. (2.26) is analysed in the limit Tg — 00. In that case the limits of the integral over n are
sent to 00 and one has to check whether the resulting integral converges or not. Substituting
Egs. (2.24) and (2.25) one can perform the integral in (2.27) in the limit n > { 1” ¢ to determine
the asymptotic behaviour

i i

K(n) oc nf =227, (2.28)

The criterion for convergence then is 2z +2/v > 1, or, equivalently 175 < 2 [24]. In the

opposite case the integral is divergent, indicating that to discard the contribution from high-
energy modes in the limit 7o — o0 is not justified. The scaling brought about by all energy

scales is quadratic ng due to the discontinuity of A, cf. Eq. (2.21). Consequently, the case of
14

equality 7 = 2 distinguishes between the Kibble-Zurek scaling determined by the exponent

of 7 in Eq. (2.26) and the quadratic scaling.

2.3.1 Application to the Ising Field Theory

These are the key themes of adiabatic perturbation theory as applied to model the Kibble—
Zurek mechanism. Now we are going to show that these considerations can be generalised to
the two integrable directions of the Ising Field Theory. In the case of the free field theory the
generalisation of the arguments above is straightforward and it yields the same result as for
the free fermion Ising chain. To apply the reasoning to the Eg integrable model requires a bit
of extra work. The complications are mainly technical, details are presented in Appendix A.
Here we would like to highlight the key assumptions of the arguments only.

There are several major differences between the free fermion and the Eg field theory:
the spectrum of the latter exhibits eight stable stationary particles, moving particle states are
built up by combining particles of various species. As a result, there are multiple kinds of
many-particle states in contrast to the pair of a single particle species in the free field theory.
Interactions between particles modify the simple p, = 27n/L quantisation rule of momenta
in finite volume L, leading to a nontrivial density of states in momentum space. Eigenstates of
the theory are asymptotic scattering states labelled by the relativistic rapidity variable ¥ that
is related to the energy and momentum of particle j as E; = m; cosh; and p; = m; sinh 3;.

To investigate the Kibble-Zurek scaling in this model we make several simplifying assump-
tions. First, we consider low-density states which is justified in the limit 75 — co. Apart from
being a necessary assumption to use the framework of adiabatic perturbation theory, it sets
the ground for our second assumption: that is, we assume that the contribution from one- and
two-particle states contribute dominantly to intensive quantities such as the defect and energy
density. In contrast to the free fermion case, the time-evolved state in the Eg model includes
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contributions from multiparticle states that do not factorise exactly to a product of particle
pairs. On the other hand, the many-particle overlap functions still satisfy the pair factorisation
up to a very good approximation given that the energy density of the non-equilibrium state is
low [82,91] compared to the natural scale set by the final mass gap. Intuitively, the essence of
this approximation is that due to large interparticle distance, the interactions between particles
located far from each other can be neglected. Hence, the contribution of genuine multiparti-
cle states is proportional to the probability of more than two particles located within a volume
related to the correlation length. For a low-density state this probability is indeed tiny, hence
the pair factorisation is a good approximation. This assumption is also verified by previous
works modeling the non-equilibrium dynamics of the Ising Field Theory that show that time
evolution after sudden quenches is dominated by few-particle overlaps in the regime of low
post-quench density [81,84,92].

Based on these assumptions, we can show that the arguments of APT generalise to an
interacting field theory as well. Let us sketch the derivation for the excess heat density w that
can be expressed as

1
w(io) = lim — > B0l (AP (2:29)

We evaluate this expression by calculating the a,, coefficients as given by Eq. (2.20) in finite
volume and then take the L — oo limit. Taking into account the finite volume expression
of matrix elements in the Eg model, we find that one-particle states contribute to the energy

density with the right KZ exponent Tém (for details see Appendix A.1). To the best of our
knowledge, this is the first case when the KZ scaling of one-particle states is investigated in
adiabatic perturbation theory.

The contribution of a two-particle state with species a and b is going to be denoted w,
and reads

1
wep(Af) = I Z(ma cosh® + my, cosh ;)| ag(Ag)|2, (2.30)
9

where 4,; is a function of ¥ determined by the constraint that the state has zero overall mo-
mentum. To take the thermodynamic limit one has to convert the summation to an integral
over rapidities. The key observation to proceed is that the effects of the interactions are of
O(1/L) and disappear in the limit L — oco. Consequently, one can change the integration
variable such that it goes over momentum instead of the rapidity. From then on, the deriva-
tion is identical to the free fermion case, although one has to check whether the scaling forms
(2.24) and (2.25) apply for the dispersion and matrix elements of the Eg theory as well. Ob-
serving that ¢ = arcsinh(p/m,) = arcsinh[p/ (c|A|”)] with some constant ¢, one can see that
the former is trivially satisfied with the right asymptotic F(x) o< x*. The latter equation re-
garding the scaling and the high-energy behaviour of the matrix element also holds in general,
as one can verify in the Eg model (see Appendix A). Hence, as long as the initial assumptions
of low energy and approximate pair factorisation are valid, the adiabatic perturbation theory
predicts KZ scaling of intensive quantities in the Eg theory as well.

2.4 Truncated Conformal Space Approach

After introducing the perturbative approach to model the scaling laws of the Kibble-Zurek
mechanism in the Ising Field Theory, let us now address a non-perturbative numerical method
that can be used to verify the arguments above by explicitly simulating the dynamics. In
the following we turn our focus to the Truncated Conformal Space Approach and discuss the
underlying principles and its operation.

Numerical methods that are based on truncating the Hilbert space have a long history of
capturing equilibrium properties of field theories (see [67] for a review). In particular, two-
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dimensional field theoretical models that are defined by perturbing a conformal field theory or
free theory by relevant operators are amenable to a very efficient numerical treatment, called
the Truncated Conformal Space Approach (TCSA) [65,66]. The essential idea of the method
is to compute the matrix elements of the perturbing operators in the basis of the unperturbed
theory in finite volume where the spectrum is discrete. The resulting Hamiltonian matrix is
then made finite dimensional by truncating the basis, hence the name of the method. Recently,
it has been applied with success to model the non-equilibrium dynamics of different theories,
in particular the Ising Field Theory [81,84,86,92]. We dedicate this section to briefly introduce
the method and set up some notation along the course.

To model the Kibble-Zurek mechanism in the Ising Field Theory we define the theory in
a finite volume L using periodic boundary conditions, so the space-time covers an infinite
cylinder of circumference L. The basis states used by TCSA are the energy eigenstates of the
¢ = 1/2 free Majorana conformal field theory on the cylinder. The truncation keeps only a
finite set of states that diagonalise the conformal Hamiltonian H, by discarding those with
energy larger than a given cut-off E_ .. The exact finite volume matrix elements of the primary
fields o and ¢ can be constructed on this basis by mapping the cylinder to the complex plane
where conformal Ward identities can be utilised. Perturbing the CFT opens a mass gap A
that can be used to express the Hamiltonian matrix H in a dimensionless form for numerical
calculations:

2m - L 1T

H/A—(HO+H¢)/A—T(L0+L0—C/12+K(27L.)TA¢M¢), (231)
where [ = AL is the dimensionless volume parameter, M, is the matrix of the operator
¢ = o,¢ having scaling dimension A, with A, = 1/8 and A, = 1. Here & is the dimen-
sionless coupling constant that characterises the strength of the perturbation. The ramping
protocol is thus realised in TCSA by tuning k linearly in the dimensionless time A;t, where A;
is the mass gap at the initial time instant. All quantities are measured in appropriate powers
of A; along the course of the ramp. Referring to the different physical content of the theories
that result from the choice of o or ¢ we use different notation for the mass gap in this work.
The o perturbation yields the Eg spectrum with eight stable particles hence the notation for
the mass gap in this case is m;, the mass of the lightest particle. The ¢ direction corresponds
to a free fermion field theory with a single species so we simply denote A as m the mass of the
elementary excitation.

The success of TCSA to model the physical theory without an energy cut-off relies on its
capability to suppress truncation errors as much as possible. Achieving higher and higher
cut-offs is computationally demanding but the contribution of high energy states can be taken
into account through a renormalisation group (RG) approach [75,79,93-97]. The RG analysis
predicts a power-law dependence on the cut-off. Here we use a simpler extrapolation scheme
using the powers predicted by the RG analysis which improves substantially the results ob-
tained using relatively low cut-off energies. We express the recipe for extrapolation in terms
of the conformal cut-off level N, that is related to the energy cut-off as N, = L/(27)Ey.
One can show that the results for some arbitrary quantity ¢ at infinite cut-off are related to
TCSA data as

- -p
(¢) = (¢p)rcsa + ANoi? + BN * +... (2.32)

where the ay < 8, exponents are positive numbers depending on the scaling dimension of
the perturbation, the operator in consideration and those appearing in their operator product
expansion. Ellipses denote further subleading corrections that decay faster as N.,; — ©o. The
details of the extrapolation in various cases are detailed in Appendix C.

With this we have finished reviewing the basic concepts in the Kibble-Zurek mechanism
and in the Ising Field Theory. We have introduced the two main methods that we use to study
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it: the numerical method of TCSA for simulating the dynamics and the scaling arguments in
the context of APT that predicts that for the KZ scaling the presence of interactions in the Eg
theory makes no difference. We have outlined the following claims: the scaling behaviour
observed on the transverse field Ising chain does not change in the continuum limit and that
the only modification needed for the interacting Eg model is to take into account the different
scaling exponent v. Before putting these claims to test by calculating the dynamics of one-
point functions and observing the statistics of excess heat, we investigate the dynamics of
energy eigenstates along the ramp in order to sketch an intuitive picture of how the Kibble—
Zurek mechanism can be understood at the most fundamental level.

3 Work statistics and overlaps

We aim to study the evolution of the quantum state during the ramp, including the non-
adiabatic regime, in detail. Using the TCSA method, we have access to microscopic data,
which allows us to investigate the details of the dynamics. There are many possible quantities
to consider: the correlation length, excitation densities, etc. In this section we adopt another,
more microscopic perspective: we observe how instantaneous eigenstates get populated in
the course of the ramp, how the adiabatic behaviour breaks down and how excitations are
created. Looking at the fundamental components that conspire to create the well-known KZ
scaling in a wide variety of quantities provides us with an intuitive and visual picture about
what happens during the regime when adiabaticity is lost.

To this end, we first solve the time-dependent Schrédinger equation:

d
R (w(6)) =H(t) [%(t)) , (3.1

in the time interval t € [—74/2, To/2] with the initial state |¥,) chosen to be the ground state
of the initial Hamiltonian H(—7q/2). Since momentum is conserved all along the ramp and
the initial state is a zero-momentum state, |¥(t)) is also a P = 0 state for all t.

To characterise how the energy eigenstates get populated we can generalise the statistics
of work function [98] to each time instance along the course of the ramp, defining an instan-
taneous statistics of work function

P(W,t)= Y6 (W — [E,(t) — Eo(0)]) I, (0)I?, (3.2)

where the sum is running over the spectrum of the instantaneous Hamiltonian H(t) with eigen-
values E,(t) and eigenstates |n(t)). Here g,(t) are the overlaps of the time-evolved state with
the instantaneous eigenstates:

() = (n(O)Iw(1)) . (3.3)

W is called to the total work performed by the non-equilibrium protocol. P(W, t) is non-zero
only if W > Ey(t) — Eo(0). In the following we focus only on the statistics of the excess work
W =W —[Ey(t) — E(0)] so P(W, t) is non-zero if W > 0.

In order to draw a clear picture of what happens for ramps within the reach of KZM, we
present the two sections of P(W, t): first, only the |g,(t)|? overlap amplitudes with respect to
time and second, the snapshot of P(W, t) at some time instant t.

3.1 Ramps along the free fermion line

Let us start with the exactly solvable dynamics, i.e. the free fermion line of the model (2.11)
corresponding to h = 0. The time-dependent coupling is the free fermion mass, A(t) = M(t).

14


https://scipost.org
https://scipost.org/SciPostPhys.9.4.055

Scil SciPost Phys. 9, 055 (2020)

Our ramp protocol is a simple linear ramp profile that is symmetric around the critical point:

M(t) =—2M;t/7q, (3.4

where M, is the initial value of the coupling at t = —7/2. As discussed in Sec. 2.2, the critical
exponents in this case are v =1, z = 1, so the Kibble-Zurek time (2.2) scales as txz ~ ,/To-
For testing the various scaling forms we need to have a specified value of ¢, which we simply

set as
MmTgz = 4/M7Tq, (3.5)

where m = |M;]| is the mass gap at the start of the ramp. Depending on the sign of M;, the
ramp is either towards the ferromagnetic phase or the paramagnetic phase; we are going to
present our results in this order.

3.1.1 The paramagnetic-ferromagnetic (PF) direction

Ramps starting from the paramagnetic phase are defined by M; > 0. In this case the
ground state is non-degenerate and lies in the Neveu-Schwarz sector, so the time evolved
state is orthogonal to the Ramond sector subspace for all times (see Sec. 2.2).

Analogously to the lattice dynamics, starting from the ground state at a given M;, only
states consisting of zero-momentum particle pairs have nonzero overlap with the time evolved
state, moreover, the different pairs of momentum modes {p, —p} decouple completely. In finite
volume L the momentum is quantised as p,, = 27tn/L, where n is half-integer in the NS sector.
To solve the dynamics we follow the approach of [54] and use the Ansatz:

(D) =@ Ie(t),,  with  [W(1), = ay(t)[0),, +b,(t) |1}, , (3.6)
p

where |0), . and [1), . denote the instantaneous ground and excited states of the two-level
system at time t along the ramp. The coefficients a,(t) and b,(t) satisfy IaP(t)I2 + |bp(t)|2 =1
and they can be expressed via the solutions of two coupled first order differential equations (for
details see the Appendix B). The population of mode p is given by n,(t) = |bp(t)|2. Although
the equations can be solved exactly, numerical integration is more suitable for our purposes.
Hence, strictly speaking, referring to this solution as ‘analytical’ is not entirely precise. From
now on, when we use the term ‘analytical’ we mean the ‘numerically exact’ procedure outlined
above.

Apart from this solution of the dynamics, we can calculate the population of energy eigen-
states numerically with TCSA. This is a benchmark for our numerical method as it is contrasted
with a numerically exact calculation. We can compare Eq. (3.6) with Eq. (3.3) to express the
overlap g of a state which consists of only a single particle pair with momentum p:

| {p,—p (1)) I> = 1, ()1 = n, (¢) l_[(l —ny(1)), (3.7)

p'#p

where the product goes over the infinite set of quantised momenta in finite volume. It is
straightforward to generalise Eq. (3.7) to express the overlap of any state with the pair struc-
ture of the free spectrum with the time-evolved state.

In practice, we truncate this product at some finite p,,,,, since the goal is to match the
analytic results with TCSA that operates with a truncation of its own. The one-mode cut-off
of the analytic method and the many-body cut-off of TCSA cannot be brought to one-to-one
correspondence with each other. However, overlaps are very sensitive to the number of states
kept in each expansion, due to the constraint Zn |g,|> = 1. Hence, our choice for the energy
cutoff of TCSA for these figures is motivated by the goal to have the best possible match of the
two approaches. Note that this is a single parameter for all the states.
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Figure 3.1: Overlaps of the evolving wave function with instantaneous eigenstates
for two different ramps from the paramagnetic to the ferromagnetic phase with
mto = 16 and mty = 64 for mL = 50 (m = M; in terms of the initial mass).
The green region indicates the non-adiabatic regime. Solid lines are TCSA data for
Nyt = 25 while dots are obtained from the numerical solution of the exact differen-
tial equations. Analytical results are plotted only for the few low-momentum states
with the most substantial overlap. Lower indices in the legends refer to the quantum
numbers of the modes present in the many-body eigenstate: p,, = nnt/L. The com-
posite structure of some lines is caused by level crossings experienced by multiparticle
states.

The time evolution of the overlaps is presented in Fig. 3.1. Dots correspond to the solution
of the differential equations for each mode and continuous lines denote TCSA data obtained
by solving the many-body dynamics numerically. Fig. 3.1a depicts a curious behaviour of the
second largest overlap in TCSA: the corresponding line seemingly consists of many different
segments. This is a consequence of level crossings and the errors of numerical diagonalisation
near these crossings. The state in question consists of two two-particle pairs and as the mass
scale M is ramped its energy increases steeper than that of high-momentum states with only
a single pair, hence the level crossings. At each crossing the numerical diagonalisation cannot
resolve precisely levels in the degenerate subspace, so the resulting overlap is not accurate.
This accounts for the most prominent difference between the numerical and analytical results.
Apart from that, the agreement is quite satisfactory.

The light green background corresponds to the naive impulse regime t € [—Tgy, Tkz]. Of
course this is only a crude estimate for the time when adiabaticity breaks down as Eq. (3.5)
is strictly valid only as a scaling relation. Nevertheless, most of the change in each state pop-
ulation indeed happens within this coloured region. This statement is even more accentuated
by Fig. 3.1b, that is, for a slower ramp. Comparing the two panels of Fig. 3.1 we observe that
increasing the ramp time the probability of adiabaticity increases while the weight of the mul-
tiparticle states are suppressed. Note that although the two lowest available levels (the ground
state and the first excited state) dominate the time-evolved state, the dynamics is far from be-
ing completely adiabatic that would mean no excitations at all. Hence, in accordance with the
remarks concerning finite size effects in Sec. 2.1, we are within the regime of Kibble-Zurek
scaling instead of being adiabatic.

We can also calculate the energy resolved version of the above figures, i.e. the instanta-
neous statistics of work, P(W, t). We present this quantity in Fig. 3.2. The different ridges cor-
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Figure 3.2: Instantaneous statistics of work P(W, t) along a ramp with mtgy = 16
from the paramagnetic to the ferromagnetic phase for mL = 50, obtained by TCSA
with N, = 45. The height corresponds to the time-dependent overlap squares. The
green region indicates the non-adiabatic regime.

respond to “bands” of 2-particle, 4-particle etc. states with energy thresholds E = 2M,4M,....
The ridges diverge linearly in time, displaying the linear dependence of the gap on the linearly
tuned M coupling. This figure illustrates the validity of the KZ arguments: low-energy bands
dominate the excitations, and in each band, the modes with the lowest momenta (longest
wavelengths) near the thresholds are the most prominent. This feature is similar to what was
observed on the lattice in Ref. [39].

3.1.2 The ferromagnetic-paramagnetic (FP) direction

The ferromagnetic ground state is twofold degenerate in infinite volume. For the initial
state we choose the state with maximal magnetisation corresponding to the infinite volume
symmetry breaking state: |¥;) = % (|0)g + |0)ys)- As both sectors are present in the ini-
tial state, the time-evolved state also overlaps with both sectors. This provides yet another
benchmark for our numerical approach and also a somewhat richer landscape of the overlap
functions.

As one can see in Fig. 3.3, the dynamics are very similar to the PF case with the main
difference coming from the fact that both sectors contribute. The different behaviour of the
two vacua stems from the different available momentum modes in each sector: in the Ramond
sector the momenta are larger in the lowest available modes and consequently they are less
likely to be excited.

3.2 Ramps along the Eg line

After investigating the free fermion line, we now turn to the behaviour of overlaps in the
other integrable direction, i.e. for ramps along the Eg axis defined by the protocol

h(t) = —2h;t/7q (3.8)

for t € [-7/2,7o/2]. The scaling dimension of the perturbing operator o is A, = 1/8, so
critical exponent v is different in this direction from the free fermion case: v =1/(2—A,) =8/15
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Figure 3.3: Overlaps of the evolving wave function with instantaneous eigenstates
for two different ramps from the ferromagnetic to the paramagnetic phase with
mtqo = 16 and mtg = 64 for mL = 50 (m = —M,; in terms of the initial mass).
The green region indicates the non-adiabatic regime. Solid lines are TCSA data for
N = 31 while dots are obtained from the numerical solution of the exact differen-
tial equations. Multiple pair states show several level crossings.

(cf. Eq. (2.14)). This implies that the Kibble-Zurek time (2.2) is given by

)8/23 ’ 3.9)

mq Ty = (ml To
where, similarly to the free fermion case, the choice of the proportionality factor being 1 is
just a convention.

Let us first take an overview of the dynamics by looking at the time-dependent work statis-
tics P(W, t) shown in Fig. 3.4.

Notice that in accordance with the Kibble-Zurek scenario, predominantly low-energy and
low-momentum modes get excited in the course of the ramp. In the Eg theory with multiple
stable particles, the time evolved state has finite overlap not only with states consisting of pairs
but also with states containing standing particles with zero momentum, including multiparticle
states with a single such particle. We can observe that the energy distribution has peaks at some
finite energy values, but low-momentum modes dominate for all branches (denoted by dashed
lines of the same colour). This can be seen more clearly in Fig. 3.5 which presents P(W) at
the end of two ramps that differ in duration. Solid vertical lines indicate the energies of states
consisting of standing particles only, i.e. combinations of particle masses.

Let us remark that the perturbative calculations indicate that the KZ scaling applies to
the overlap of each one-particle state and two-particle branch separately. That is a nontrivial
statement since the spectrum of the Eg field theory is a result of a bootstrap procedure relying
heavily on delicate details of the interaction, however, these details are overlooked by a first
order perturbative calculation. Although we expect that the summed contribution of one-
and two-particle states to the energy density satisfies the KZ scaling (in line with the generic
reasoning of Sec. 2.1), the much stronger statement of APT concerning the scaling behaviour
of separate branches does not necessarily hold true. This is in fact what we observe in Fig.
3.5: as the average excess heat diminishes, the overlap of low-lying states increase instead of
decreasing. However, as we are going to show below, both quench times are within the KZ
scaling region and the scaling of the excess heat does satisfy Eq. (2.6). A remote analogy can
be drawn with the form factor series expansion calculation of the central charge in integrable
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Figure 3.4: Instantaneous statistics of work P(W,t) for a ramp along the Eg axis
with m;7q = 64, m; L = 50, obtained by TCSA with N, = 45. The height corre-
sponds to the time-dependent overlap squares. The green region indicates the non-
adiabatic regime. Notice the curvature of the “ridges” corresponding to the nonlinear
my o< h%15 dependence of the mass gap on the distance from the critical point.
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Figure 3.5: Statistics of work after the ramp P(W, t = 7/2) along the Eg direction
with m;L = 40, N, = 45. States containing only zero-momentum particles are de-
noted by continuous lines, while dashed lines denote different moving multiparticle

states.

perturbed conformal field theories, where the result of the sum over multiparticle states is fixed
by the c-theorem, while the separate terms vary greatly due to the details of the interaction
[99]. We note that in the current case the ambiguity arises from taking the L — oo limit, since
strictly speaking the adiabatic perturbation theory is sensible only if the ground state overlap
remains close to 1, which is impossible for a finite density state in the thermodynamic limit.
Previous calculations within the APT framework illustrate that this condition can be relaxed
when calculating intensive quantities [19, 40], demanding a low-density time-evolved state
instead of one with almost unity overlap with the instantaneous ground state. Although this
approach successfully captures qualitative features of the KZ scaling, the above considerations
indicate that one has to be careful as to what extent to draw conclusions from it.
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3.3 Probability of adiabaticity

To study the Kibble-Zurek scaling using the TCSA, it is important to identify the time scale
on which it is valid. For a finite volume method the time scale is limited from above by the onset
of adiabaticity (cf. Eq. (2.9)) and also from below due to the natural time scale of the theory
that is related to the mass gap before and after the ramp. A control quantity that can be used to
fix the domain of 7y where the Kibble-Zurek scaling applies is the probability to be adiabatic
after the ramp, P(0,t;). This overlap is exponentially suppressed with the volume, but its
logarithm is proportional to the density of quasiparticles n.,, such that —log(P(0))/L o< ng,.
Within the domain of validity for the Kibble-Zurek scaling the density scales according to
Eq. (2.4), i.e. decays as a power law with 7. However, at the onset of adiabaticity it is
exponentially suppressed [6,13]. To explore the time scale mentioned above connected to
volume parameters available for our calculation, we investigate the logarithm of the ground
state overlap P(0) after the ramp.

For ramps along the free fermion line there are two ways to evaluate P(0). The first follows
from the numerically exact solution of the problem in the scaling limit (see Appendix B).
Second, we can use TCSA to calculate the ground state overlap. The onset of adiabaticity
occurs at different quench times 7 depending on the volume parameter. Then the claim that
for a given volume L we can observe the KZ scaling — as opposed to adiabatic behaviour — can
be supported by the observation that changing the volume does not alter the KZ scaling. Fig.
3.6a presents the comparison of the two methods with the slope of the KZ scaling as a guide
to the eye. Apart from the very fast ramps, the two methods coincide with each other. We

note that the onset of adiabaticity signalled by the strong deviation of different volume curves
-1/2
Q

Nevertheless, we can identify that for m7o ~ 5- 10°...102 the Kibble-Zurek scaling is satisfied

to a good precision using the volume parameters available to the numerical method.

In the Eg model we can only resort to the results of TCSA. Fig. 3.6b shows that the loga-
rithm of the ground state overlap scales as the density of quasiparticles for large enough 7.
Although the KZ scaling sets in later, i.e. for larger 7 than in the free fermion case, it is per-
sistent up to the maximum ramp duration available to our numerical method. This is due to
the fact that the exponent appearing in Eq. (2.9) is larger for the Eg model and consequently
the onset of adiabaticity occurs for a slower ramp in the same volume.

from each other and from the © line is not an abrupt change but rather a smooth crossover.

3.4 Ramps ending at the critical point

As detailed in Section 2.3, we expect the generic scaling arguments of APT for the Kibble—
Zurek mechanism (Egs. (2.24) and (2.25)) to be valid for ramps along both integrable lines
of the model. A direct consequence of this claim is that the high-energy tail of the function
|K(1)|? decays as nf with B = —2z—2/v (cf. Eq. (2.28)). This behaviour is important in view
of the convergence properties of the integrals of the form (2.26).

To investigate the decay of high-energy overlaps with TCSA, we consider ramp protocols
along the two integrable lines of the parameter space that end at the conformal point (ECP
ramps). There are two reasons for this choice of protocol: first, TCSA uses the conformal
basis and hence expected to be the most accurate at the critical point. Second, the dispersion
relation is E(k) = |k| in this case, so the high-energy tail of P(W) decays with the same power
law as |a(k)|?. Since k and 7 are related by a simple rescaling with the appropriate power
of Tq, the high energy tail of P(W) should decay as WP at the critical point as far as the
perturbative approach is correct, i.e. for slow enough ramps.

On the free fermion line we have z = v =1, so f = —2z—2/v = —4, while for an Eg ramp
v = 8/15 and the predicted exponent of the decay is 3 = —23/4. We remark that this can be
contrasted with the high-energy tail of pair overlaps for sudden quenches. For quenches along
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Figure 3.6: Logarithm of the probability of adiabaticity after a linear ramp along
the two integrable lines of the Ising Field Theory. (a) Continuous lines and symbols
of the same colour denote analytical and extrapolated TCSA data, respectively for
various volume parameters. Black dashed line denotes the KZ scaling. At the onset
of adiabaticity finite volume results deviate from the KZ slope and each other in a
more pronounced manner. (b) Symbols stand for extrapolated TCSA data and the
slope of the continuous line signals the KZ scaling exponent.

the free fermion line the exact solution yields 3 = —2[81,100,101], while in the Eg model the
high energy tail of the perturbative expression decays with § = —15/4[92], so f =—2/v in
both cases. The additional term of —2z is the result of the adiabatic driving which suppresses
the excitation of high energy modes.

In Fig. 3.7 we present the TCSA data and the slope of the straight line fitted to the log-
arithmic data. The two exponents are well separated and captured approximately correctly
by the data. Let us note that the three highest-energy overlaps for each quench rate 7 do
not follow the power-law decay, in fact, they are several orders of magnitude larger than the
overlap of states with a slightly lower energy (cf. Fig. 3.7b). This an artefact of truncation:
for any cut-off parameter the three overlaps corresponding to the largest available conformal
cut-off level are anomalous in the above sense. However, for different cut-off parameters the
outlying states have different energy, hence this is not a physical effect and the corresponding
states are left out of the fit capturing the power-law decay.

We remark that Fig. 3.7a is analogous to Fig. 2c of Ref. [39] that reported a W2 decay.
This is at odds with the prediction deduced from generic scaling arguments using APT and
also with our TCSA results that favor the § = —4 exponent. Fig. 3.7 is in agreement with the
numerous observations [7, 16, 26,40] that adiabatic perturbation theory captures the correct
Kibble-Zurek scaling in the free fermion theory and demonstrates that it applies also in the
interacting Eg integrable model. This is evidence that the arguments of APT can be generalised
to this nontrivial theory which in turn implies that the Kibble-Zurek scaling can be observed
there as well.
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Figure 3.7: High-energy overlaps for ramp protocols ending at the critical point with
mL = 50, N, = 51. Data from different ramp rates are shifted vertically for bet-
ter visibility. The slopes are linear fits of the logarithmic data and are close to the
exponents predicted by APT: gz = —4 and fBgg = —5.75. Outlying highest-energy
overlaps are omitted from the linear fit.

4 Dynamical scaling in the non-adiabatic regime

In this section we explore the dynamical scaling aspect of the Kibble-Zurek mechanism in
the Ising Field Theory considering two one-point functions. We focus on the energy density
and the magnetisation, both of which are important observables in the theory.

The energy density over the instantaneous vacuum or the excess heat density is defined as

w(t) = 7 (WO~ Ep(O1(0) (4D

where the Hamiltonian H(t) has an explicit time dependence governed by the ramping proto-
col and E,(t) is the ground state of the instantaneous Hamiltonian H(t). In accordance with
Eq. (2.6), the excess heat for different ramp rates is expected to collapse to a single scaling
function:

w(t/Tgz) = SES_AHFH(t/TKz) = ng/z_lFH(t/TKZ) = Tg Fu(t/Txz), (4.2)
where d = 1 is the spatial dimension, Ay = z is the scaling dimension of the energy and
the second equation follows from 7y, = &%,. For ramps along the free fermion line the energy
density can be obtained from the solution of the exact differential equations using the mapping
to free fermions, yielding essentially exact results.

The magnetisation operator o that corresponds to the order parameter has scaling dimen-
sion A, = 1/8 hence is expected to satisfy the following scaling in the impulse regime (z = 1):

(0(t/Tk)) = Trg! “For(t/Tcz) (4.3)

In contrast to the energy density, the magnetisation is much harder to calculate even in free
fermion case as it is a highly non-local operator in terms of the fermions.
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t/Tkz

4

(a) Energy density, PF ramp

(b) Order parameter, FP ramp

t/Trz

Dynamical scaling of the energy density and the magnetisation

for ramps along the free fermion line. Solid lines denote exact analytical so-
lution while dot-dashed lines represent TCSA results for mL = 50 extrapo-
lated in the cutoff. (a) Energy density along ramps of different speed in the
paramagnetic-ferromagnetic direction. Inset illustrates the need for rescaling. (b)
KZ scaling of the magnetisation o in the ferromagnetic-paramagnetic direction.
The fitted function corresponding to the instantaneous one-particle oscillation is
f(t/txz) = 0.612(2) cos ((t/TKZ)2 + 0.830(3)). (Note that (t/7gz)? = m(t)t.)

4.1 Free fermion line

We start with the free fermion line where exact analytical results are available. In Fig.
4.1a we observe the scaling behaviour (4.2) for several ramps from the paramagnetic to the
ferromagnetic phase. Both the analytic calculations and the TCSA data, extrapolated in the
cutoff, retain the scaling and the numerics agree almost perfectly with the exact results. The
inset shows that the non-rescaled curves deviate substantially from each other.

As Fig. 4.1a shows, the collapse of the curves is perfect even well beyond the end of the non-
adiabatic regime, in agreement with the observation and arguments of Ref. [33]. This can be
understood in view of the eigenstate dynamics presented in Sec. 3. The relative population of
energy eigenstates does not change substantially in the post-impulse regime and the increase
in energy density then is merely due to the increasing gap A(t) as the coupling is ramped.
The energy scale increases identically for all quench rates which in turn leads to the collapse
of different curves. This argument can be formalised for the general setup of Sec. 2.1 as

avz avs
— t - t
W(t>>TKZ)%nex(t)'A(t)oc TKg/Z (—) o< TKS/Z (_) TEZI: (4.4)
TQ TKzZ

where n,, is the density of defects that is constant well beyond the impulse regime and scales
as ng/z. The gap scales as (t/TQ)Zv and we used that (TKZ/TQ)MZ o< ngl. The result shows
that w(t > 7¢z) is a function of t/7gy. In the present case a = v =z = 1, which explains the
linear behaviour seen in Fig. 4.1a.

The scaling behaviour of the magnetisation (4.3) is checked in Fig. 4.1b. The scaling is
present most notably in terms of the frequency of the oscillations beyond the non-adiabatic
window. Due to truncation errors of the TCSA method (see Appendix C), the predicted scaling
is not reproduced perfectly in terms of the amplitudes and neither in the first half of the non-
adiabatic regime. This is also the reason why the various curves do not collapse perfectly for
times t < —Tgy Where the scaling should also hold according to Eq. (2.7).
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Figure 4.2: Dynamical scaling of the (a) energy density and (b) magnetisation in fi-
nite ramps across the critical point along the Eg axis. The TCSA results obtained
for m;L = 50 are extrapolated in the energy cutoff. The Kibble-Zurek scaling
is present with Tg, ~ 7828 I panel (a) the inset shows the ‘raw’ curves with-
out rescaling. In (b) the dashed black line shows the exact adiabatic value [102]:

(0)aa = (—1.277578...) - sgn(h)|h] /5.

The frequency of the late time oscillations is increasing with time. The oscillations can be
fitted with the function f(t) = Acos[m(t) -t + ¢ ] which demonstrates that the oscillations
originate from one-particle states whose masses and thus the frequency increases in time with
the gap. We remark that this is analogous to sudden quenches in the Ising Field Theory where
the presence of one-particle oscillations is supported by analytical and numerical evidence
[81,84,100]. The oscillations appear undamped well after the impulse regime t/7g; > 1.
We remark that for sudden quenches the decay rate of the oscillations depends on the post-
quench energy density [100,101]. We expect the same to apply for ramps as well, but here
the energy density is suppressed for slower ramps so the damping cannot be observed during
a finite ramp. In contrast, the decay of oscillations in the dynamics of the order parameter
after the ramp is observed in Ref. [39] in the spin chain.

4.2 Ramps along the E; axis

The dynamical scaling is well understood for the free fermion model on the lattice, and in
the previous sections we demonstrated that they apply in the continuum scaling limit as well.
The same aspect of the other integrable direction of the Ising Field Theory is yet unexplored.
We now present how the simple scaling arguments of the KZM apply in a strongly interacting
model. The dynamics in the Eg model cannot be treated exactly due to the interactions but the
numerical method of TCSA can be applied to simulate the time evolution. Truncation errors
are expected to be less substantial since the ¢ perturbation of the CFT is more relevant and
exhibits faster convergence compared to the free fermion model (cf. Fig. 3.7). Hence using the
conformal eigenstates as a basis of the Hilbert space is expected to be a better approximation.

As discussed above, the scaling is modified compared to the free fermion model due to the
different exponent v = 8/15, so the Kibble-Zurek time scale Ty, depends on the ramp time 7
as Tz = Tg/ 3| We demonstrate this scaling in the following for the dynamics of the energy
density and the magnetisation.

Let us first discuss the scaling of the energy density presented in Fig. 4.2a. Similarly to
the free fermion case, one observes an almost perfect collapse of the curves after crossing the
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critical point, and the collapse is sustained beyond the impulse regime where now Eq. (4.4)
predicts a ~ (t/7x;)%'® behaviour.

Note that the above argument relies on the fact that the scaling properties of the energy
density can be determined by considering it as the product of some defect density and a typical
energy scale. For more complex quantities, such as the magnetisation for example, a similar
argument does not apply, as Fig. 4.2b demonstrates. The curves deviate after the non-adiabatic
regime but the collapse in the early adiabatic regime is perfect.

5 Cumulants of work

So far we have gained insight in the KZM by examining the instantaneous spectrum directly
and demonstrated the relevance of the Kibble-Zurek time scale in dynamical scaling functions
of local observables. In this section we aim to demonstrate that the Kibble-Zurek scaling is
present in an even wider variety of quantities: the full statistics of the excess heat (or work)
during the ramp is subject to scaling laws of the KZ type as well.

A particularly interesting result of the free fermion chain (already tested experimentally, cf.
Ref. [48]) is that apart from the average density of defects and excess heat, their full counting
statistics is also universal in the KZ sense: all higher cumulants of the respective distribution
functions scale according to the Kibble-Zurek laws [36,40]. The scaling exponents depend on
the protocol in the sense that they are different for ramps ending at the critical point (ECP)
and those crossing it (TCP). As Ref. [37] demonstrates, the universal scaling of cumulants can
be observed in models apart from the transverse field Ising spin chain, hence it is natural to
explore their behaviour in the Ising Field Theory.

The cumulants of excess work are defined via a generating function In G(s):

G(s) = (exp[s(H(t) — Eo(t))]) , (5.1

where the expectation value is taken with respect to the time-evolved state. The cumulants k;
are the coefficients appearing in the expansion of the logarithm:

InG(s) = Z ?—:Ki . (5.2)
i=1 b

The first three cumulants coincide with the mean, the second and the third central moments,
respectively. Assuming that the generating functions satisfy a large deviation principle [40,
103], all of the cumulants are extensive o< L. Consequently, we are going to focus on the x;/L
cumulant densities.

Elaborating on the framework of adiabatic perturbation theory presented in Sec. 2.3, we
can argue that the scaling behaviour of the cumulants of the excess heat are not sensitive to the
presence of interactions in the Eg model and take a route analogous to Ref. [40] to obtain the
KZ exponents. The core of the argument is the following: the Kibble-Zurek scaling within the
context of APT stems from the rescaling of variables (2.23) which yields Eq. (2.26) from Eq.
(2.22). The rescaling concerns the momentum variable that originates from the summation
over pair states.

Now consider that cumulants can be expressed as a polynomial of the moments of the

distribution: )
Kn:Aun"_Zall_[:u’nia (5.3)
Abn i=1
where A = {n;,n,,...,n} is a partition of the integer index n with |A| = k > 2, and a;, are
integer coefficients. The moments are defined for the excess heat as

Un = ([H_Eo]n> . (5-4)
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Figure 5.1: Cumulant densities for linear ramps on the free fermion line starting in
the paramagnetic phase and ending at the QCP: a comparison between the numeri-
cally exact solution (solid lines) in the thermodynamic limit and cutoff-extrapolated
TCSA data in different volumes (symbols). For both approaches x3/L is plotted a
decade lower for better visibility.

Let us note that the integration variable subject to rescaling in Eq. (2.23) originates from
taking the expectation value. Consequently, in the limit 7, — 0o terms consisting of powers
of lower moments are suppressed compared to u,, because they are the product of multiple
integrals of the form (2.26). So the scaling behaviour of k,, equals that of u,, which is defined
with a single expectation value, hence its scaling behaviour is given by the calculation in Sec.
2.3. We remark that this line of thought is completely analogous to the arguments of Ref. [40].
According to the above reasoning, all cumulants of the work and quasiparticle distributions in
the Eg model should decay with the same power law as 7o — c0.

To put the claims above to test, we follow the presentation of Ref. [40] and we discuss the
two different scaling for the cumulants: first considering ramps that end at the critical point
then examining ramps that navigate through the phase transition.

5.1 ECP protocol: ramps ending at the critical point

For ramps that end at the critical point one may apply the scaling form in (2.6) since the
final time of such protocols corresponds to a fixed t/7tg; = 0. The resulting naive scaling
dimension of a work cumulant k,, is then easily obtained since it contains the product of n
Hamiltonians with dimension Ay =z = 1. Consequently, we expect

—d/Z—I‘l __ay(d+nz)
K,/L o< Tz o< T avetl (5.5)

where we used Eq. (2.2). However, the arguments of adiabatic perturbation theory [40]
as outlined in Sec. 2.3 demonstrate that this naive scaling is true only if the corresponding
quantity is not sensitive to the high-energy modes. However, using APT one can express the
cumulants similarly to the defect density in Eq. (2.26). If the corresponding rescaled integral
does not converge that means the contribution from high-energy modes cannot be discarded
and the resulting scaling is quadratic with respect to the ramp velocity: 762. The crossover
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Figure 5.2: Cumulant densities for ECP ramps on the Eg integrable line: cutoff-
extrapolated TCSA data and the expected KZ scaling from dimension counting. The
scaling exponents are 16/23, 24/23 and 32/23, respectively.

happens when av(d + nz)/(avz + 1) = 2; for smaller n the KZ scaling applies while for larger
n quadratic scaling applies with logarithmic corrections at equality [24].

For the free fermion line v = 1 (@ = d = 2 = 1) and the crossover cumulant index is
n = 3. Fig. 5.1 justifies the above expectations for the three lowest cumulants by comparing
the numerically exact solutions to TCSA results. TCSA is most precise for moderately slow
quenches and the first two cumulants. There is notable deviation from the exact results in the
case of the third cumulant although the scaling behaviour is intact. The deviation does not
come as a surprise since the fact that the integral of adiabatic perturbation theory does not
converge means that there is substantial contribution from all energy scales including those
that fall victim to the truncation.

Fig. 5.1 also demonstrates that for very slow quenches finite size effects can spoil the
agreement between exact results and TCSA. This is the result of the onset of adiabaticity (cf.
Fig. 3.6a).

We expect identical scaling behaviour from the other integrable direction of the Ising Field
Theory in terms of Ty that translates to a different power-law dependence on 7. Indeed this
is what we observe in Fig. 5.2. In this case there is no exact solution available hence solid
lines denote the expected scaling law instead of the analytic result. The figure is indicative of
the correct scaling although finite volume effects are more pronounced as the duration of the
ramps is larger than earlier.

5.2 TCP protocol: ramps crossing the critical point

For slow enough ramps that cross the critical point and terminate at a given finite value
of the coupling which lies far from the non-adiabatic regime where (2.6) applies, the excess
work density scales identically to the defect density. This is due to the fact that the gap that
defines the typical energy of the defects is the same for ramps with different 7, and the excess
energy equals energy scale times defect density. It is demonstrated in Ref. [40] that higher
cumulants of the excess work share a similar property: their scaling dimension coincides with
that of the mean excess work, consequently all cumulants of the defect number and the excess
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Figure 5.3: The first two cumulant densities for linear ramps crossing the QCP along
the Eg integrable line: the symbols represent cutoff-extrapolated TCSA data while

the solid lines show the expected KZ scaling ~ 768/ =,

work scale with the same exponent. As we argued above, this claim is expected to be more
general than free theories and in particular we claimed that it holds in the Eg model.

Fig. 5.3 demonstrates the validity of this statement for the second cumulant. In line with
the reasoning presented earlier (cf. Eq. (5.3) and below), the subleading terms are more
prominent than in the case of the first cumulant (the excess heat) and KZ scaling is observ-
able only for larger 7. Higher cumulants do not exhibit the same scaling within the quench
time window available for TCSA calculations. Due to the increasing number of terms in the
expressions with moments for the nth cumulant x,, we expect that the Kibble-Zurek scaling
occurs for larger and larger 7, on time scales that are not amenable to effective numerical
treatment as of now. Nevertheless, the behaviour of the second cumulant still serves as a non-
trivial check of the assumptions that were used in Sec. 2.3 to apply APT to the Eg model. As
the argumentation did not rely explicitly on the details of the interactions in the Eg theory,
rather on the more general scaling behaviour of the gap (2.24) and the matrix element (2.25),
we expect that a similar behaviour of the cumulants is observable in other interacting models
exhibiting a phase transition.

6 Conclusions

In this paper we investigated the Kibble-Zurek scaling in the context of continuous quan-
tum phase transitions in the Ising Field Theory. This model accommodates two types of univer-
sality in terms of the static critical exponent v that corresponds to two integrable models for a
specific choice of parameters in the space of couplings. One of them describes a free massive
Majorana fermion and it exhibits a completely analogous KZ scaling to the transverse field
Ising chain that can be mapped to free fermions. The second integrable direction corresponds
to the famous Eg model with its rich energy spectrum exhibiting eight stable particle states.
Our main results concern the microscopic study of the KZ mechanism at the level of eigen-
states, the time-dependent scaling of various observables, and the scaling of the cumulants of
work.
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In the free fermion direction, building on the lattice results, we expressed the nonequi-
librium dynamics through the solution of a two-level problem and explored the Kibble-Zurek
mechanism in terms of instantaneous eigenstates. We have shown that the adiabatic-impulse-
adiabatic scenario is qualitatively correct at the most fundamental level of quantum state dy-
namics. That is, we can identify a non-adiabatic “impulse” regime where the most substantial
change in the population of eigenstates happens, preceded and followed by a regime of adi-
abatic dynamics where these populations are approximately constant. We demonstrated that
the relative length of the impulse regime compared to the duration of the ramp decreases
as the time parameter of the ramp 7, increases, following the scaling forms dictated by the
Kibble-Zurek mechanism. Although this simple picture has been investigated in earlier works,
capturing it at the fundamental level of quantum states in a quantum field theory is still note-
worthy.

We established parallelisms between the lattice and continuum dynamics for an extended
set of scaling phenomena from the dynamical scaling of local observables to the universal be-
haviour of higher cumulants of the work. These analogies do not come as a surprise but their
analysis in a field theoretical context is a novel result. Apart from generalising recently under-
stood phenomena on the lattice to the continuum, these observations serve as a benchmark for
our numerical method, the Truncated Conformal Space Approach. Comparing with analytical
solutions available in the free fermion theory, we illustrated the capacity of this method to cap-
ture the intricate quantum dynamics behind the Kibble-Zurek scaling near quantum critical
points. In spite of operating in finite volume, it is capable of demonstrating the presence of
scaling laws within a wide interval of the time parameter 7, without substantial finite size ef-
fects. This is of paramount importance in the demonstration that the KZ scaling is not limited
to the noninteracting dynamics within the Ising Field Theory.

One of the essential results of our work is that the Kibble-Zurek mechanism is able to
account for the universal scaling of a strongly interacting theory, the Eg model, near its quan-
tum critical point. In order to have a solid case for this observation, we elaborated on the
framework of adiabatic perturbation theory and applied its basic concepts to the Eg model.
While a refined version of the originally suggested adiabatic-impulse-adiabatic scenario pre-
dicts universal dynamical scaling of local observables in the non-adiabatic regime (which we
also verified using TCSA, see Sec. 4), employing APT to address the nonequilibrium dynamics
provides perturbative arguments also for the universal scaling of the full counting statistics of
the excess heat and the number of quasiparticles. This reasoning has been used recently to
explain the universal scaling of work cumulants in a free model [40]. In this work we have
taken the next step and discussed its implications for the interacting Eg field theory. We argued
that the interactions do not alter the universal scaling of cumulants and demonstrated this in
Sec. 5 for the first cumulants both for end-critical and trans-critical ramp protocols. We re-
mark that our argument is in fact quite general and mostly relies on the small density induced
by the nonequilibrium protocol. Since the KZ scaling predicts that the dynamics is close to
adiabatic as T — 09, this is a sensible assumption. Consequently, the result is expected to
hold generally, i.e. all cumulants of the excess work should scale with the scaling exponents
predicted by adiabatic perturbation theory irrespective of the interactions in the model.

This claim can be put to test in various experimental settings, e.g. using Rydberg atoms
[45] to explore the Ising universality class, or in cold-atomic gases realising an interacting
field theory [104]. Analogously to the universality established in the full counting statistics of
kinks [48], we expect that similar signatures can be observed for the cumulants of the excess
heat in an experiment that realises a genuinely interacting quantum system.

We note that there are several possible future directions. It is particularly interesting to test
the scaling behaviour of “fast but smooth” ramps versus sudden quenches in the coupling space
of field theoretical models [105-108]. The presence of universal scaling at fast quench rates
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is remarkable though to implement an infinitely smooth ramp in an interacting theory that
is not amenable to exact analytic treatment is not trivial. Another fruitful direction to take
is the exploration of nonintegrable regimes within the Ising Field Theory and examine the
interplay between the physics related to integrability breaking and the Kibble-Zurek scenario.
Our findings suggest that the latter is in fact quite general but its validity in a generic non-
integrable scenario remains to be tested.
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A Application of the adiabatic perturbation theory to the E; model

To use the framework of adiabatic perturbation theory in the Eg model we assume that the
time-evolved state can be expressed as

[W(0) = > an(t) exp{—10, (D)} n(1)) , A1)

with the dynamical phase factor ©,(t) = f: E,(t')dt’. We also assume that there is no Berry

phase and thus to leading order in the small parameter A the a,, coefficients take the form

A
an(k)mf dA’ (n(2)| 83 [0(A)) exp{1(©, (1)) — ©p(1')} . (A.2)

1

Higher derivatives as well as higher order terms in A are neglected from now on.
The a,, coefficients can be used to formally express quantities that have known matrix
elements on the instantaneous basis of the Hamiltonian:

(O() =D s (M) ap(AE) Oy - (A.3)

In what follows, we present the evaluation of this sum - approximately, under conditions
of low energy density discussed in the main text - for the case of O(t) = H(t) — Ey(t) in the
Eg model. To generalise this calculation to the defect density or to higher moments of the
statistics of work function is straightforward. The work density (or excess heat density) after
the ramp reads

WA) = T DB~ B Ity (R (a9

The spectrum of the model consists of 8 particle species A;,a =1, ...,8 with masses m,. The
energy and momentum eigenstates are the asymptotic states of the model labelled by a set of
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relativistic rapidities {¥;,7,, ...y} and particle species indices {a;,a,,...ay}:

In) = [, ,,.. ‘ﬂN>a1,a2,...aN > (A.5)

with energy E, = Zflzl myg, cosh(;) and momentum p, = Zflzl mg, sinh(1;). The summation
in Eq. (A.4) in principle goes over the infinite set of asymptotic states. As discussed in the main
text, for low enough density we can approximate the sum in Eq. (A.4) with the contribution
of one- and two-particle states, analogously to the calculation in the sine-Gordon model in
Ref. [17].

A.1 One-particle states

Contribution of the one-particle states can be expressed as

8
— 1; 1 2
wyp = lim L;:l:malaa(kf)l : (A.6)

where m, is the mass of the particle species a and the summation runs over the eight species.
We can write the coefficient a, as

Af A

aq(Ae) = f dA ({0},(A)[ 8, [0(Q)) eXP{quJ dl’ma(%’)} , (A.7)
Ai A

where ({0},(1)| denotes the asymptotic state with a single zero-momentum particle. The

matrix elements and masses depend on A through the Hamiltonian that defines the spectrum.

The matrix element can be evaluated as

{03 (MIV I0(A))

{0}, ()] &, 10(2)) = — —r)

(A.8)

For an Eg ramp that conserves momentum, V is the integral of the local magnetisation operator
o(x): V= f OL o(x)dx. Utilising this we further expand
LF7*(A)

ma(A)v/mg(AL’

where the square root in the denominator emerges from the finite volume matrix element
[109] and F{ is the (infinite volume) one-particle form factor of the magnetisation operator.
It only depends on the coupling A through its proportionality to the vacuum expectation value
of o. The particle masses scale as the gap: m,(A) = C,|A|*”, where C, are some constants.

This allows us to write
A Foxp2v-1 A
dla—exp{lTQf da’c |A’|”}
Jli C2/2|A|3/2zv Al ¢

We can perform the integral in the exponent that leads to a TQ|7L|1+Z ¥ dependence there. To
get rid of the large 7, factor in the denominator, we introduce the rescaled coupling { with

{({0},(2)[ 6, [0(1)) = — (A.9)

2

lag(ApI* =L . (A.10)

1
{=2al". (A.11)

The change of variables yields
2
, (A.12)

v(4—3z)

@ (A)P =Lty

43
J C.sgn(OIg1? 1732  exp{aC |17}
4

31


https://scipost.org
https://scipost.org/SciPostPhys.9.4.055

Scil SciPost Phys. 9, 055 (2020)

where C, and C! are constants that depend on C,, the one-particle form factors and the critical
exponents. We note the integral is convergent for large { due to the strongly oscillating phase
factor and also for { — 0 since 2v—1—3/2zv =—11/15 in the Eg model. Substituting z =1
in the exponent of 7, leads to the correct KZ exponent of a relativistic model, v/(1 + v).

A.2 Two-particle states

The contribution of a two-particle state with species a and b is going to be denoted w_,
and reads
1 2
wop(A) = 7 > (g cosh + my, cosh ) ag(A)2, (A.13)
g
where 9,; is a function of ¥ determined by the constraint that the state has zero overall mo-
mentum. The summation goes over the rapidities that are quantised in finite volume L by the
Bethe-Yang equations:

N
Q; = mg Lsinh®; + > 5, (6 —9;) =271, (A.14)
j#i
where I; are integers numbers and

O.p =—110gS,; (A.15)

is the scattering phase shift of particles of type a and b. For a two-particle state Eq. (A.14)
amounts to two equations of which only one is independent due to the zero-momentum con-
straint. It reads

Q(®) =m,Lsinh® +6,,(0—9,,)=2nl, I€Z. (A.16)

In the thermodynamic limit L — oo the summation is converted to an integral with the integral
measure % p (1), where 6(1) is the density of zero-momentum states defined by

0 h
5(8) = 9Q(®) _ m, L cosh® + (1 4+ Macosh?
my, cosh ¥,

ED) )‘Pab(ﬁ—ﬁab), (A.17)

where ®(1) is the derivative of the phase shift function. The resulting integral is

1 (% do .
I f_oo Ep(ﬁﬂaﬁ(lf)lz : (A.18)
The a3(A¢) term can be expressed as (cf. Eq. (A.2)
A A
as(Af) =J dA ({9,9,5} 05 (M| 85, |0(;\)>exp{nQ f dA’[mg(A") cosh ¥ + mb(x’)coshﬁab]}
A A

(A.19)
Analogously to the one-particle case we can evaluate the matrix element in the Eg field theory
as

L8, %apap (M 0 (0)0(V), _ LFZH(8, 0qp) 420
Ep(A) = Eo(2) (Ex(A) — EsO) VP (0, F0p) '

where F? (1;,7,) is the two-particle form factor of operator o in the Eg field theory and the
density factor is the Jacobian of the two-particle Bethe—Yang equations (A.14) arising from the
normalisation of the finite-volume matrix element [109]. It can be expressed as

Pap(V1,0,) = myL cosh¥ymy L coshy + (m,L cosh?; + my L cosh¥,)® 5, (0 —3,). (A.21)
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Observing Eqgs. (A.17) and (A.21) one finds that the details of the interaction enter via the
derivative of the phase shift function but crucially, they are of order 1/L compared to the free
field theory part. So leading order in L we find that

Wap(Ag) = J (ma(lf) cosh ¥ + my(A¢) cosh ;) my(A¢) cosh ¥ x
f Fgy(9,9qp)
X dA X
A (m,(A) cosh® + m;(A) cosh,p)+/m,(A)my (1) cosh ¥ cosh
(A.22)
2

A
X exp(lTQJ dA’ (mg(A") cosh ¥ + mb(l’)coshﬁab)) +0(/L).

A

A change of variables in the outer integral to the one-particle momentum p = m,sinh¥ we

obtain oo
Wop = f ;l—f[Ep(Af) f dAG(H) exp(lTQf dA«IEq‘}()'/))
—00

Now we can introduce the momentum p in the inner integral as well by noting that the energy
can be expressed as a function of momentum via the relativistic dispersion and that the rela-
tivistic rapidity also # = arcsinh(p/m). Since m o< |A|*” with 2 = 1 any expression that is a
function of ¥ can be expressed as a function of p/|A|”. Having this in mind, the result is anal-
ogous to the free case so all the machinery developed there can be used. The key assumptions
from this point regard the scaling properties of the energy gap and the matrix element G()
in this brief notation:

2
(A.23)

E,(A) = |A""F(p/IAI") (A.24)
G(®) =A""G(p/IAl"). (A.25)

These equations are trivially satisfied with the proper asymptotics for F(x) o< x*. For G(x)
one can verify using that in the Eg model we have

(o) Fy (9, 04p)
v/m, cosh®my, cosh ¥, (m, cosh® + my, coshd,;)
:A1/15 8/15— S/ISG(,ﬁ): 1G('ﬁ), (A.26)

Jim ({8, 94, }(A)] 82 [0A)),, =

where we neglected the O(1/L) term from the finite volume normalisation and used (o) o< A1/13,
m o< A8/15. F_, (9,9,,) is the two-particle form factor of the Eq theory that does not depend
on the coupling. They satisfy the asymptotic bound [99]:

o hm FO(0,,0...,7,) <exp(Ay|T:1/2). (A.27)
Since the matrix elements considered here are of zero-momentum states,  — ©o0 means
Uqp — —00 and FJ, (4,0,,) < exp(A,¥) as the form factors depend on the rapidity dif-
ference. Dividing by the factor exp(2¥) in the denominator yields the correct asymptotics
G(x) o< x272 = x71/” as an upper bound due to Eq. (A.27). We remark that the scaling
forms (A.24) hold true for any value of the coupling A in the field theory, in contrast to the
lattice where they are valid only in the vicinity of the critical point. From this perspective Eq.
(A.24) follows from the definition of the field theory as a low-energy effective description of
the lattice model near its critical point.
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As a consequence, one can introduce new variables in place of A and p such that the explicit
T dependence disappears from the integrand. This is achieved by the following rescaling:

v 1
n :pT(12+zv ) g — AT(IQ-FZV . (A.28)
The result for the energy density is
v ©0 dn
=T —E (A 2, A.2
Wap =T f_m O] (4.29)

In terms of scaling there are two options: first, let |A¢| # 0 hence {; — oo in the KZ scaling
limit Ty — oo. Then the energy gap at p — 0 is a constant and E,_y(A¢) can be brought
in front of the integral. If it converges, Eq. (A.29) completely accounts for the KZ scaling.

Second, if |A¢| = 0, the energy gap is E, o< p* and an additional factor of T;T’” appears in
front of the integral. Note that this is the scaling of x; on Fig. 5.2. The high-energy tail of
the integrand is modified due to the extra term of n* from the energy gap. This leads to a
convergence criterion such that once again the crossover to quadratic scaling happens when
the exponent of 7, in front of the integral is less then —2. It is easy to generalise this argument
to the nth moment of the statistics of work which amounts to substituting E; instead of E,, to
Eq. (A.29). As argued in the main text, this is the leading term in the nth cumulant of the
distribution as well, that concludes the perturbative reasoning behind the results of Sec. 5.

B Ramp dynamics in the free fermion field theory

The non-equilibrium dynamics of the transverse field Ising chain is thoroughly studied
in the literature. Due to the factorisation of the dynamics to independent fermionic modes
solving the time evolution amounts to the treatment of a two-level problem parametrised by the
momentum k. This two-level problem can be mapped to the famous Landau—Zener transition
with momentum-dependent crossing time. Its exact solution is known and yields a particularly
simple expression for the excitation probability of low-momentum modes p; (or |a(k)|? with
the notation of adiabatic perturbation theory, cf. Sec. 2.3) in the limit 7o — oco. Then the
KZ scaling of various quantities follows [8,13] and extends to the full counting statistics of
defects [36] and excess heat [40]. For a finite Landau-Zener problem one can express the
solution in terms of Weber functions [26, 33] or for a generic nonlinear ramp profile as the
solution of a differential equation [54,103].

To generalise the analytical solution on the chain to the free field theory we performed the
scaling limit on the expressions of Ref. [54]. We remark that in the works cited above there are
several parallel formulations of this problem on the chain each with a slightly different focus.
Our choice to use this specific one in the continuum limit is arbitrary but the result is the
same for all frameworks. We use the following notation: cl(j) denotes the Fourier transformed
fermionic (creation)-annihilation operators obtained by the Jordan-Wigner transformation.
In each mode k, n(kJ") are the quasiparticle ladder operators and we use n(k'l) to refer to the
operators that diagonalise the Hamiltonian initially before the ramp procedure. The operators
¢ and 7 are related via the Bogoliubov transformation

Nk = Uk — leCik, (B.1)
where the coefficients are Uy, = cos 6, /2 and V} = sin 0, /2 with

g —exp(ik)
V1+g2—2gcosk

exp(16;) = (B.2)
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From a dynamical perspective U and V relate the adiabatic (instantaneous) free fermions and
quasiparticles, hence we are going to refer to them as adiabatic coefficients. The dynamics can
be solved in the Heisenberg picture using the Ansatz

() = w(E)ny i + Wik(f)ﬂ}z’i. (B.3)

The Heisenberg equation of motion yields a coupled first order differential equation system
for the time-dependent Bogoliubov coefficients that can be decoupled as [54]:

02 15}
S0+ (AP 4 B2 21 A0)) 0 =, (5.4

where the upper and lower signs correspond to y;(t) = ui(t) and y,(t) = v*, (t) respectively,
and A, (t) = 2J(g(t) —cosk) and B, = 2J sink. To connect with the expression for the time-
evolved k mode in the main text,

() = ap(t)[0)ie + br(t) [ 1)ie e (B.5)

we have to express a;(t) and by (t) with the time-dependent Bogoliubov coefficients. To do so,
first one has to perform a Bogoliubov transformation that relates the quasiparticle operators
Mk, defined by the initial value of coupling g; to the instantaneous operators 7, that are
given by g(t), then substitute Eq. (B.3) to account for the dynamics. The result can be simply
expressed as the following scalar products:

a(t)=(Ux —W) (;kk((tt))) , bi()=(Vx Uy) (;kk((tt))) , (B.6)

where Uy and Vj, are defined by Eq. (B.2) using the ramped coupling g(t). The population of
the mode k is given by ni(t) = |b,(t)|%. Notice that the slight difference between Eq. (B.6) and
the notation of Refs. [26,33] is due to a different convention of the Bogoliubov transformation.

To take the continuum limit, one has to apply the prescriptions detailed in Sec. 2.2 to Eq.
(B.4). Denoting the momentum of field theory modes with p we get

Ay (t) =M(t), B,=p, (B.7)

where M(t) is the time-dependent coupling of the field theory. The initial conditions read

%,
u,(t=0)=U0,, Eup(t) =—1M;U, —1pV_, (B.8)

t=0

=—1pU, +1M;V_, (B.9)

)
vi(t=0)=V_, Evfp(t) -

-p

where the adiabatic coefficients U and V are defined by the initial coupling M; via the expres-

sions
1 M
Uy=+\| -+ —— (B.10)
and

1 M
3 +1/§—m for p<O0,
v, = T 3 ; S0 (B.11)
J3 W or p>0.

We remark that for a linear ramp profile one can express the solution exactly using the
parabolic Weber functions [54]. However, for practical purposes we opted for the numerical
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Table C.1: Matrix size vs. cutoff

Nyt | matrix size || Ny, | matrix size || N, | matrix size

25 1330 35 9615 45 56867
27 1994 37 14045 47 78951
29 3023 39 20011 49 110053
31 4476 41 28624 51 151270

33 6654 43 40353 53 207809

integration of Eq. (B.4). The results of Sec. 3.1 are obtained by solving the differential
equations substituting the quantised momenta for p. As the excitation probability of a mode p
is suppressed as n,, o< eXp(—TETsz / m), we calculated the solution up to a momentum cut-off
Pmax/m = 27. At volume L = 50 this amounts to 100 modes in the two sectors together.

For the intensive quantities considered in Secs. 4 and 5 we worked in the thermodynamic
limit L. — oo where the sum over momentum modes is converted to an integral. Calculating
the excitation probabilities of several modes up to a cutoff p,,../m = 30 we used interpolation
to obtain a continuous n, function. This was used in the momentum integrals that yield the
energy density and its higher cumulants. The need for the higher cutoff stems from the fact
that n, is multiplied with higher powers of the dispersion relation for higher cumulants.

C TCSA: detailed description, extrapolation

C.1 Conventions and applying truncation

The Truncated Conformal Space Approach was developed originally by Yurov and Zamolod-
chikov [65, 66]. It constructs the matrix elements of the Hamiltonian of a perturbed CFT in
finite volume L on the conformal basis. For the Ising Field Theory the critical point is described
in terms of the ¢ = 1/2 minimal CFT and adding one of its primary fields ¢ as a perturbation
yields the dimensionless Hamiltonian:

H/A = (Hy+ Hy) /A= 2T Ly + Ly—c/12+ & B .1
=(Hy+ ==\ Lo+Ly—c/12+R———c , :

0 ¢ 1 0 0 (2 7I)1_A¢ ¢
where A is the mass gap opened by the perturbation, [ = AL the dimensionless volume pa-
rameter and Ay is the sum of left and right conformal weights of the primary field ¢. The
matrix elements of H are calculated using the eigenstates of the conformal Hamiltonian H, as
basis vectors:

27 - c
Ho|n>=T(Lo+Lo—E)|n) =E,In), (C.2)

where ¢ = 1/2 is the central charge. The truncation is imposed by the constraint that only
vectors with E,, < E; are kept, where E_, is the cut-off energy. It is convenient to characterise
the cut-off with the L, + L, eigenvalue N instead of the energy as it is related to the conformal
descendant level. Table C.1 contains the number of states with

c L
N — E < Ncut = %Ecut (C.3)

for the range of cut-offs that were used in this work. We remark that the maximal conformal
descendant level NV, is related to the cut-off parameter as Np,x = (Neye — 1)/2.
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Table C.2: Extrapolation exponents

Free fermion model Eg model
Observable || Leading | Subleading | Leading | Subleading
K, 1 2 11/4 -15/4
o 1 2 7/4 11/4
Overlap -1 -2 -11/4 -15/4

C.2 Extrapolation details

To reduce the truncation effects, we employ the cut-off extrapolation scheme developed
in Ref. [75]. A detailed description of this scheme is presented in Ref. [81], here we merely
discuss its application to the quantities considered in the main text. For some observable O
the dependence on the cut-off parameter N, is expressed as a power-law:

(O) = (O)resa +ANZ2C + BNPO 4+ ... (C.4)

The exponents a < 3 depend on the observable O, the operator that perturbs the CFT, and
on those entering the operator product expansion of the above two. For the excess energy
and the magnetisation one-point function as well as the overlaps it is straightforward to apply
this recipe to obtain the leading and subleading exponents. In the case of higher cumulants
of the excess heat there is no existing formula. However, as they can be expressed as the
sum of products of energy levels and overlaps, the leading and subleading exponents coincide
with those of the first cumulant, i.e. the excess heat. The exponents are summarised in Table
C.2. Sampling the dynamics using different cut-off parameters we obtained the extrapolated
results by fitting the expression Eq. (C.4) to our data. In certain cases the fit with two ex-
ponents proved to be numerically unstable reflected by large residual error of the estimated
fit coefficients. In these cases, only the leading exponent was used. For dynamical one-point
functions the extrapolation procedure was applied in each “time slice”. As evident from the
exponents, the Eg model exhibits faster convergence in terms of the cut-off. However, in most
of the cases the extrapolation scheme yields satisfactory results in the FF model as well, with
the notable exception of the magnetisation, as discussed in the main text. Let us now present
how the extrapolation works for various quantities to illustrate its preciseness and limitations.

Let us start with calculations concerning dynamics on the free fermion line. Out of the
two dynamical one-point functions, the order parameter is more sensitive to the TCSA cut-off.
Fig. C.1. presents an example of the cut-off extrapolation for this quantity with M;L = 50 and
M;Tqo = 128. The extrapolation error (denoted by a grey band around the curve) is relatively
large and partly explains the lack of dynamical scaling before the impulse regime in Fig. 4.1b.
We remark that in this case the two-exponent fit was unstable hence only the leading term of
Eqg. (C.4) was used. The dependence on the cut-off is less drastic for shorter ramps.

The energy density exhibits much faster convergence in terms of cut-off in both models.
It is in fact invisible on the scale of Figs. 4.1a and 4.2a, consequently we do not present the
details of their extrapolation here. To make contrast with Fig. C.1, we illustrate with Fig. C.2
that the time evolution of the magnetisation operator is captured much more accurately by
TCSA in the Eg model. The two-exponent fit is numerically stable in this case hence we use
both the leading and the subleading exponent to determine the infinite cut-off result. The
change between data obtained using different cut-off parameters and the extrapolation error
falls within the range of the line width in almost the whole duration of the ramp.

Apart from dynamical expectation values of local observables, we also discussed higher
cumulants of work in the main text. Although the use of TCSA to directly calculate such quan-
tities is unprecedented, based on the discussion following Eq. (C.4) we expect that the same
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Figure C.1: Details of the extrapolation for the dynamical one-point function of the
order parameter for a ferromagnetic-paramagnetic ramp along the free fermion line
with mL = 50 and m7q = 128. Raw TCSA data are plotted in dot-dashed lines in the
main figures, the cut-off parameter is in the range N,,,, = 35...51. Extrapolated data
is denoted by solid lines, with the residual error as a grey shading. Dashed red lines
correspond to the time instants that are detailed in the subplots. Green diamonds
denote raw data as a function of N C;% where —1 is the leading exponent. Red dashed
lines denote the fitted function.

expression accounts for the cut-off dependence as in the case of local observables. This is what
we find inspecting Fig. C.3. The depicted data is a small subset of all the extrapolations whose
results are presented in the main text but they convey the general message that cumulants can
be obtained accurately using TCSA. The relative error in the extrapolated value is typically in
the order of 1—3% for cumulants in the free fermion model (with an increase towards higher
cumulants) and around 0.1 —0.7% in the Eg model.
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Figure C.2: Details of the extrapolation for the dynamical one-point function of the
magnetisation ramp along the Eg line with m;L = 50 and m; 7, = 128. Notations
and range of cut-offs is the same as in Fig. C.1. Note the range of the y axis in the
subplots.
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Figure C.3: Extrapolation of various work cumulants for various protocols. The plots
are typical of the overall picture of extrapolating overlaps obtained using TCSA.
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