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Abstract

Driving a two-dimensional Mott insulator with circularly polarized light breaks time-
reversal and inversion symmetry, which induces an optically-tunable synthetic scalar spin
chirality interaction in the effective low-energy spin Hamiltonian. Here, we show that
this mechanism can stabilize topological magnon excitations in honeycomb ferromag-
nets and in optical lattices. We find that the irradiated quantum magnet is described by
a Haldane model for magnons that hosts topologically-protected edge modes. We study
the evolution of the magnon spectrum in the Floquet regime and via time propagation
of the magnon Hamiltonian for a slowly varying pulse envelope. Compared to similar
but conceptually distinct driving schemes based on the Aharanov-Casher effect, the di-
mensionless light-matter coupling parameter λ = eEa/~ω at fixed electric field strength
is enhanced by a factor ∼ 105. This increase of the coupling parameter allows to in-
duce a topological gap of the order of ∆ ≈ 2 meV with realistic laser pulses, bringing an
experimental realization of light-induced topological magnon edge states within reach.
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1 Introduction

The experimental realization of magnetic van der Waals (vdW) materials with a thickness
down to the monolayer limit has sparked a new interest in fundamental aspects of two-
dimensional magnetism [1–4]. Due to a competition of strong anisotropy, fluctuations, and
spin-orbit effects, two-dimensional vdW materials are known to exhibit diverse magnetic or-
ders ranging between semiconducting ferromagnetism, itinerant ferromagnetism, and insulat-
ing antiferromagnetism [5–8]. However, these properties also make them prime candidates
to host topological phenomena such as Berezinskii-Kosterlitz-Thouless phase transitions [9],
quantum spin liquids [10,11], magnetic skyrmions [12], and fractional excitations [13].

In addition to the intrinsic topological properties of vdW magnets, the tremendous progress
in functionalization of materials through light-matter coupling [14–21] shows that it is pos-
sible to manipulate the magnetic and topological order of such materials using laser fields.
In recent theoretical studies it has been shown that driving a two-dimensional Mott insula-
tor with circularly polarized light breaks both time-reversal and inversion symmetries. This is
reflected by an induced scalar spin chirality interaction that governs the transient dynamics
of low-energy spin excitations [11,22]. Remarkably, optical irradiation red-detuned from the
Mott gap can limit heating and absorption to enable a controlled realization of such Floquet-
engineered spin dynamics, and it has been argued for a Kagomé lattice antiferromagnet that
the spin chirality term leads to a chiral spin liquid ground state in herbertsmithite and kapell-
asite [11]. Experimental realizations of Floquet-engineered spin Hamiltonians have also been
demonstrated for both classical [23] and quantum magnetism [24] using ultracold atoms in
driven optical lattices [25].

In this work, we demonstrate that the photo-induced scalar spin chirality has consequences
for the low-energy magnetic excitations of ferromagnetic systems. In particular, for honey-
comb ferromagnets it leads to a magnon Haldane model [26] with a topological gap and
chiral magnon edge states [27]. To this end, we first derive the magnitude of the induced
time-reversal symmetry breaking contribution for a honeycomb Mott insulator. We then show
that application of the effective spin Hamiltonian, with parameters taken from the prototyp-
ical monolayer vdW magnet CrI3 [2, 28–30], can lead to a gap ∆ ≈ 2 meV in the magnon
spectrum for a realistic field strength E = 109 V/m and photon energy ~ω = 1 eV, inducing
non-zero Chern numbers and leading to chiral magnon edge states. Importantly, we find that
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the dimensionless Floquet parameter that describes the magnitude of light-matter interaction
is enhanced by a factor ∼ 105 compared to similar but conceptually distinct driving schemes
based on the Aharanov-Casher effect for pure spin models [27, 31], since the electric field
couples to the charge instead of the magnetic moment. This amplification is shown to be cru-
cial for a potential experimental realization of a topological magnon phase in monolayer vdW
magnets.

2 Model

To assess the magnitude of photo-induced time-reversal symmetry breaking for honeycomb
Mott insulators, we commence by deriving an effective transient spin-1/2 Hamiltonian from a
single-band Mott insulator

H =− t
∑

〈i j〉σ

eiθi j(τ)c†
iσc jσ + U0

∑

i

n̂i↑n̂i↓ +
V
2

∑

〈i j〉

n̂i n̂ j − JD

∑

〈i j〉

Ŝi · Ŝ j , (1)

where c†
iσ creates an electron at site i with spin projection σ, n̂iσ = c†

iσciσ is the local spin
density, n̂i = n̂i↑+ n̂i↓ is the local electron density, t is the hopping amplitude between nearest
neighbor sites i and j, and U0 is a local interaction. We also consider nearest neighbor direct
and exchange interactions V and JD, the later being expressed in terms of the spin operator
Ŝi = c†

iσσσσ′ ciσ′ where σ is the vector of Pauli matrices 1. We use the Einstein summation
convention for repeated spin indexes.

The electrons interact with an external electromagnetic field described via the Peierls
phases

θi j(τ) = −
e
~

∫ ri

r j

dr ·A(r,τ). (2)

To break time-reversal symmetry and induce a scalar spin chirality, we use a circularly polarized
laser with vector potential ∂tA(r,τ) = −E(τ)(cosωτ,ζ sinωτ) in the dipole approximation,
where ζ = ±1 for right/left-handed polarization. Assuming a constant envelope E(τ) = E
and writing δi j = ri − r j = a(cosφi j , sinφi j) with a the lattice constant, the Peierls phases are
θi j(τ) = −λ sin(ωτ−ζφi j). The dimensionless quantity λ= eEa/~ω determines the effective
field strength of the laser. In an optical lattice, eE is replaced by the driving force F , which
may result from an acceleration of the lattice [32] or a magnetic field gradient [33].

Although the above model provides a simplified description of realistic monolayer vdW
magnets, neglecting both the multi-orbital structure of the transition metals ions and the su-
perexchange processes induced by interactions with the surrounding halides [34, 35], it pro-
vides a starting point for more advanced treatments. Further, since the topological properties
of honeycomb ferromagnets are determined by the lattice structure and the presence or ab-
sence of time-reversal symmetry [26], we expect the model to give a correct description of the
topological features of the magnon excitations.

3 Effective spin Hamiltonian

We now construct an effective spin Hamiltonian for driving frequencies J � ~ω� U , where
J ∼ t2/U is the leading order Heisenberg exchange in equilibrium. We have followed the

1The Heisenberg term arises by writing the exchange interaction as c†
iσciσc†

jσ′ c jσ =
1
2 n̂i n̂ j+2Ŝi ·Ŝ j , and absorbing

the first term into the direct interaction by a renormalization of V .
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method of Ref. [11] to obtain the effective Hamiltonian to fourth order in t/U for a periodic
external field. For a slowly varying envelope E(τ) the Hamiltonian is almost periodic with
the period H(τ + 2π/ω) = H(τ). This allows us to employ Floquet theory and rewrite the
electronic Hamiltonian exactly using a Fourier expansion

H =− t
∑

〈i j〉σ

∑

mm′
Jm−m′(λ)e

i(m−m′)ζφi j c†
iσc jσ ⊗ |m〉〈m′|+HI ⊗ 1−

∑

m

mω⊗ |m〉〈m|, (3)

expressed in the product space of the electronic Hamiltonian and the space of periodic func-
tions [36] denoted by Fourier modes |m〉, which can be identified with the classical limit of
m absorbed or emitted virtual photons. Here, Jm(x) is the Bessel function of the first kind of
order m. The interaction Hamiltonian is HI = U

∑

i n̂i↑n̂i↓ − JD
∑

〈i j〉 Ŝi · Ŝ j , where the nearest
neighbor direct interaction has been absorbed by a renormalization of the Hubbard U [37].
Using quasi-degenerate perturbation theory to simultaneously integrate out the doubly occu-
pied states and the m 6= 0 Floquet states [11, 38, 39], the effective honeycomb lattice spin
Hamiltonian corresponding to the electronic system is given to fourth order in t/U by

H =
∑

〈i j〉

Ji jŜi · Ŝ j +
∑

〈〈ik〉〉

J ′ikŜi · Ŝk +
∑

〈〈ik〉〉

χikŜ j · (Ŝi × Ŝk). (4)

Here J and J ′ are respectively the nearest and next-nearest neighbor light-induced Heisen-
berg exchanges, and χ is a synthetic scalar spin chirality. A non-zero value of χ signals a
non-coplanar spin texture and can appear in equilibrium due to e.g. Dzyaloshinskii-Moriya
interactions or geometric frustration [40, 41]. For electrons hopping around closed loops in
such a spin texture the spin chirality acts as an effective magnetic field that can give rise to
the topological Hall effect [42]. The full expressions for the spin parameters are given in
Appendix A.

We note that J has contributions from all even orders in t/U , while J ′ and χ appear
only at fourth order. On the honeycomb lattice, a non-zero spin chirality arises due hopping
processes that enclose an isosceles triangle within the hexagons, as indicated schematically in
Fig. 1a (and discussed further in Appendix B). Such processes lead to a net phase accumulation
in analogy with electrons moving in closed loops in an external magnetic field, and lead to
time-reversal symmetry breaking. However, in contrast to using an external magnetic field,
driving with a circularly polarized electric field conserves the SU(2) spin symmetry. In the
non-interacting limit the corresponding complex next-nearest neighbor tunneling has already
been implemented in optical lattices using circular driving [43].

4 Antiferromagnetic systems

In the following we assume |χ| � |J |, so that depending on the sign of J the system is ei-
ther ferromagnetic (J < 0) or antiferromagnetic (J > 0). It has previously been shown that
topological magnon edge states can be induced by a constant electric field gradient that splits
the magnon bands into Landau levels and leads to a magnon version of the quantum (spin)
Hall effect in (anti-) ferromagnets [44, 45]. In the present work the homogeneous but time-
dependent electric field instead opens a gap at magnon band crossings, leading to a magnon
analog of the quantum anomalous Hall effect. In the antiferromagnetic regime we find that
the bands are nearly degenerate with no crossings, and the system remains in a topologically
trivial phase. This agrees with previous work where the edge modes of the Néel state were
shown to be topologically trivial [46,47]. However, by adding an in-plane magnetic field [46]
or considering an antiferromagnetically coupled bilayer [48], topological magnon edge states
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Figure 1: Chiral light-induced topology. (a) Illustration of the different fourth-
order hopping processes available on the honeycomb lattice: (1) a process where the
second intermediate state contains a holon-doublon pair at non-zero Floquet index.
(2) A process where the system returns to half-filling in the second step (at the site
indicated in orange) at non-zero Floquet index. (3) A process where the system
returns to half-filling and zero Floquet index in the second step (at the site indicated
in orange). The right panel gives an example of a process in class (1) that breaks time-
reversal symmetry and induces a scalar spin chirality. (b) Portion of the honeycomb
lattice illustrating the lattice vectors bi , colored in black or orange depending on the
sublattice, and the nearest neighbor lattice vectors δi (purple). The lattice vectors
shown correspond to positive Haldane phases (νik = 1) arising from hopping in a
clockwise direction. (c) Topological magnon bands for a ferromagnetic system with
S = 3/2, J = 2.27 meV, J ′ = 0.005 meV and χ = 0.13 meV, giving a light-induced
gap of magnitude ∆ = 6

p
3χS = 2.07 meV at the Dirac points. (d) Magnon bands

for a zig-zag ribbon with ny = 100 for the same parameters as in (c). The chiral
topological edge states are indicated in pink.
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can be induced. Although we focus below on the ferromagnetic state, we expect that an appli-
cation of our formalism to the non-collinear and bilayer antiferromagnetic cases would lead
to similar conclusions.

5 Magnons on the honeycomb lattice

We denote the lattice vectors of the honeycomb lattice by bi and the vectors between nearest
neighbor sites by δi (see Fig. 1b). On the honeycomb lattice the angles Φik = ζ(φi j − φk j)
between next-nearest neighbor sites are given by Φik = 2πζνik/3, where νik = 1 (νik = −1)
for hopping in a clockwise (anti-clockwise) direction (see Fig. 1b). This leads to a spin chirality
of the form χik = ζνikχ where the sign alternates depending on the bond direction.

For a ferromagnetic ground state we can solve the system to leading order in S−1 using the
Holstein-Primakoff transformation Ŝz

i = S − a†
i ai , Ŝ−i ≈

p
2Sa†

i and Ŝ+i ≈
p

2Sai for the spins
on sublattice A, and similarly but with ai → bi for the spins on sublattice B. In terms of its
Fourier components the Hamiltonian can be written asH =

∑

kΨ
†
kHkΨk, whereΨk = (ak, bk)T ,

Hk = h01+h ·σ, h= (hx , hy , hz) and σ is the vector of Pauli matrices. The eigenvalues of this
matrix are ε±(k) = h0(k)±

p

h(k) · h(k), where h0 = 3JS + 6J ′S + 2J ′Sξk, hx + ihy = −JSρk

and hz = 2ζχSσk. To simplify the notation we have defined the quantities ρk =
∑

i e−ik·δi ,
ξk =

∑

i cos(k · bi) and σk =
∑

i sin(k · bi).
In Fig. 1c we show the magnon band structure for equilibrium spin parameters of bulk

CrI3 [28]. For χ = 0 the system has Dirac points at Kη = η(4π/3
p

3,0) (where η= ±), while
for χ > 0 a gap is opened of magnitude ∆ = 6

p
3χS. As shown below, the gap opening is

associated with a transition to a non-trivial topological state.

5.1 Chern numbers and edge states

To determine the topological structure of the system for χ > 0, we calculate the Chern numbers
of the dressed magnon bands. Since the dominant contribution to the Berry curvature comes
from the regions around the Dirac points, we expand the Hamiltonian around Kη. To linear
order in κ= k−K we find the Hamiltonian Hη = vηκxσx− vκyσy+wησz , where v = 3JS/2,
w= −3

p
3ζχS, and we have neglected constant terms proportional to J and J ′.

The Berry potential for the quasi-stationary state is obtained from the expression [49]

vηs (k) = Im
〈ψks|∇Hη|ψk,−s〉 × 〈ψk,−s|∇Hη|ψks〉

(ε+(k)− ε+(k))2
, (5)

where |ψks〉 are the eigenstates of Hη and s = ± denotes the upper/lower magnon branch.
It is clear from the cross product that v−s = −vs and so it is sufficient to compute v+. We
calculate the matrix elements by noting that ∂κx

Hη = vησx and ∂κy
Hη = −vσy , and defining

d2 = h · h = 1
4(ε+(k) − ε−(k))

2 we find the Berry potential vηs = −sηv2hz/(2d3). Since the
Chern number is the integral over the Berry potential we have

Cs =
1

2π

∑

η

∫

d2κvηs (k) = sζ sgn(χ). (6)

For positive χ the upper (lower) band has a Chern number C = ζ (C = −ζ).
The non-zero Chern numbers imply the existence of topological magnon edge states. We

verify this explicitly for a ribbon geometry with zig-zag edges, periodic in the x-direction and
with ny sites in the y-direction. In Fig. 1d we show the band structure of the ribbon for
ny = 100, where chiral edge states are situated in the bulk band gap and connect the Dirac
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Figure 2: Energy scales of light-induced chirality. (a) Ratio of the synthetic scalar
spin chirality χ to the field-renormalized Heisenberg exchange J as a function of
field strength λ and photon energy ~ω. The results are for a system with t = 50
meV, U = 1.25 eV and JD = 12 meV, giving an effective ferromagnetic exchange in
equilibrium of J = 4.0 meV and J ′ = 13 µeV. (b) χ as a function of photon energy
~ω for different values of the effective field strength λ. (c) χ as a function of electric
field strength E for different values of the photon energy ~ω.

points at K+ and K−. We find no qualitative differences between the edge states of a zig-zag
and armchair ribbon, and also in the latter case the magnon band structure is topological.
However, for an armchair ribbon the K and K′ points of the two-dimensional Brillouin zone
are projected onto the same momentum of the surface Brillouin zone, which could have impor-
tant consequences when trying to populate the magnon states, since this process is typically
restricted to small momentum transfers.

We note that in contrast to the edge states of a quantum spin Hall insulator, the edge
magnons of different chirality are located on opposite edges of the sample. Since the sign of the
Chern numbers and thereby the chirality of the edge states are determined by the polarization
of the optical field, this allows to control the propagation direction of the edge magnons by
changing the helicity of the field.

6 Parameter dependence of the scalar spin chirality

We have seen that a non-zero value of the scalar spin chirality χ leads to a topological magnon
state. We now discuss the values of the frequency and electric field strength needed to induce
this state in a system with the spin parameters of CrI3.

We start by considering the ratio χ/J as a function of the photon energy ~ω and effective
field strength λ, which is a measure of the ratio between the bandgap and the bandwidth.
The results are shown in Fig. 2a for the electronic parameters t = 50 meV, U = 1.25 eV and
JD = 12 meV corresponding approximately to monolayer CrI3

2. We find a resonant behavior

2We have calculated the value of U by DFT+U simulations of monolayer CrI3 using the Octopus TD-DFT code.
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in χ/J when the frequency ~ω= U/n with n integer, which corresponds to the thresholds for
n-photon excitation across the Mott gap. In addition, the diagonal feature extending across
Fig. 2a indicates the transition from a ferromagnetic to an antiferromagnet effective exchange
parameter [38]. Approaching this transition while simultaneously ensuring |χ| > |J ′| will
bring the system into a state dominated by the spin chirality term. This could potentially lead
to new exotic physics such as a skyrmion lattice [50] or chiral spin liquid ground state [11,51].

Naively these results suggest employing a sub-gap driving protocol that exploits the reso-
nant enhancement of χ for ~ω ≈ U/n while simultaneously minimizing electronic interband
transitions. However, numerical studies have shown that for driving frequencies close to the
multi-photon resonances the system heats immediately and the spin description becomes in-
valid [11]. In addition, since the real Mott gap is not at U but at the slightly smaller value
U − x t (with x a numerical factor of order unity) [52], the frequency has to be chosen below
this gap to avoid heating. In the following we therefore focus on photon energies ~ω/U ≈ 0.8,
which is below the Mott gap for x < 5.

Assuming a realistic field strength E ≈ 109 V/m, U = 1.25 eV, a = 5 Åand ~ω ≈ 1 eV, an
effective field strength λ≈ 0.5 can be achieved. Because interband transitions are avoided in
this driving protocol, larger field strengths may still yet be applied without inflicting material
damage or other detrimental effects that would disrupt the induced scalar spin chirality. How-
ever, even for λ≈ 0.5 it is possible to open a bandgap of magnitude ∆≈ 2 meV (see Fig. 2b).
In contrast, a treatment based on the Aharanov-Casher effect in pure spin systems leads to a
field strength λm = (gµB Ea)/(~c2) [27], which is smaller than the electronic equivalent by a
factor λm/λe = (gµBω)/(ec2) ≈ 10−5. Since χ ∼ λ2 for small λ, this leads to a reduction of
the gap size by about 10−10 making an experimental realization of topological magnon sys-
tems based on the Aharanov-Casher effect highly challenging. In contrast, the driving protocol
proposed here opens a topological gap well within reach of experimental probes.

In optical lattices, heating rates have been shown to be manageable even for λ > 1 [53].
The magnon band gap can hence be enhanced to values above the currently accessible tem-
perature scales [54].

7 Validating the Floquet treatment

To validate the Floquet treatment we compare the results obtained via the static Floquet Hamil-
tonian with numerical results from time-propagating the system with a quasi-periodic spin
Hamiltonian (for details see Appendix C). We take the external field to be switched on adia-
batically over approximately 350 periods T = 2π/ω, after which we propagate the system for
an additional 1750 periods.

To visualize the magnon edge states we consider the spectral function Ak(ε,τ). For a non-
equilibrium system the time-dependent spectral function is defined by

Ak(ε,τ) = i

∫

dτ̄
2π

eiετ̄[G>k − G<k ](τ+
τ̄

2
,τ−

τ̄

2
). (7)

The lesser Green’s function is proportional to the distribution function f of the initial state,
and therefore G<k (τ,τ′) = 0 since we start the time-evolution from the magnon ground state.
The greater Green’s function is given by

G>k (τ,τ′) = −i
∑

s

Tr
�

|sk(τ)〉〈sk(τ′)|
�

, (8)

The values of t and JD were then chosen by comparison to the equilibrium values of J and J ′ reported in Ref. [28].
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Figure 3: Spectral functions for a ribbon geometry. (a) Floquet spectral func-
tion AF

k(ε) for a ribbon with ny = 20 and spin parameters S = 3/2, J = 2.26 meV,
J ′ = 0.05 meV and χ = 0.13 meV. (b) Non-equilibrium spectral function Ak(t,ε) at
τ = 8.2 ps for a zig-zag ribbon with ny = 20 and electronic parameters t = 50 meV,
U = 1.25 eV and JD = 12 meV. The optical field has a frequency ~ω= 1 eV and field
strength E = 109 V/m. The values of the spectral functions are normalized to the
highest value, and the values range from zero (black) to one (white).

where |sk(τ)〉 = U(τ)|sk〉 are the time-evolved single-magnon eigenstates |sk〉 of the equi-
librium Hamiltonian, U(τ) = T {e−i

∫ τ

0 dτ̄H(τ̄)} is the time-ordered evolution operator, and
the trace is over all single-magnon states. Since Gk is diagonal in k, we can calculate the
spectral function by separately time-propagating the states |sk〉 for each k. In equilibrium
|sk(τ)〉= e−iεskτ|sk〉, and we find the Floquet spectral function

AF
k(ε) = 2π

∑

s

δ(ε− εsk). (9)

In Fig. 3 we compare the Floquet spectral function AF
k(ε) and the non-equilibrium spectral

function Ak(ε,τ) for a ribbon with ny = 20. We find a very good agreement between the Flo-
quet and non-equilibrium spectral functions, indicating that for the given parameters the static
Floquet Hamiltonian provides a good description of the non-equilibrium magnon dynamics.

8 Suggested experimental realizations

We end the paper with a discussion of possible materials and experiments that would support
the presence of a topological magnon band structure in a driven system. We note that so far,
there has been no experiments that address topological magnons in a non-equilibrium set-
ting. However, equilibrium studies of ferromagnetic bulk CrI3 and antiferromagnetic Cu3TeO6
have found a magnon band structure consistent with a non-trivial topology attributed to ei-
ther next-nearest neighbor Dzyaloshinskii-Moriya interactions [28], nearest neighbor Kitaev
interactions [55], or the lattice structure [56].

Since our effective Hamiltonian was derived for S = 1/2, it gives a simplified description
of S = 3/2 ferromagnets such as CrI3. However, similar spin Hamiltonians have been used to
successfully describe the magnon excitations in CrI3 [28, 57]. The main effects of including
the t2g orbitals of Cr3+ via a Kanamori-Hubbard model (except for an obvious renormalization
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of the spin parameters), are spin-orbit coupling and the appearance of biquadratic exchange
terms (Ŝi · Ŝ j)2 [58,59]. Biquadratic exchange can generate nematic instabilities [60,61] and
break the C6 rotation symmetry down to the C3 subgroup, generating a trivial mass term that
competes with Haldane mass generated from the breaking of time-reversal symmetry and can
trivialize the magnon band topology. To estimate this effect, we performed density functional
theory calculations in the DFT+U formalism with the Octopus code [62,63] to estimate the size
of the trivial mass term in monolayer CrI3 (with the value of U self-consistently determined via
the ACBN0 hybrid functional [64]). We find a ground state with C6 symmetry to a numerical
accuracy 10−6, and thus conclude that the effects of the biquadratic terms on the topology
of the magnon bands should be negligible in CrI3. This indicates that CrI3 is a promising
candidate to study photo-induced topological magnons, although more tailored studies are
needed to verify this claim.

Ultracold fermions in optical lattices naturally realize the Hubbard Hamiltonian, and V
and JD are typically negligible [65]. Nevertheless, ferromagnetic spin models can be imple-
mented using near-resonant periodic driving [24]. For most systems, S = 1/2 (where we
expect our results to still hold approximately), but magnetic correlations for larger S have also
been observed using alkali-earth-like atoms [66].

As shown above, a non-zero scalar spin chirality leads to a topological gap, and can gen-
erally be probed by Faraday or Kerr rotation measurements [22]. The associated gap opening
at the K-point in the magnon dispersion will affect the two-magnon optical excitation spectra,
as probed by THz spectroscopy [67] or Raman and Brillouin spectroscopy [68]. However, the
details of the optical spectra in these types of experiments would require dedicated calcula-
tions. The magnon edge states could potentially be probed directly using non-local magnon
transport techniques, where magnons can be (detected) injected via the (inverse) spin Hall
effect in platinum strips [69]. Finally, resonant inelastic X-ray scattering can be used to probe
the magnon dispersion [70].

In optical lattices, a spectroscopic probe could be implemented using oscillating magnetic
field gradients. In addition, static gradients can be used to imprint magnons with specific
wavenumbers. Their subsequent dynamics gives access to the magnon dispersion and can be
probed using spin- and site-resolved detection [71].

9 Conclusions

To summarize, we have demonstrated that non-equilibrium driving based on periodic laser
fields coupling to charge degrees of freedom can induce topological magnon edge states in the
spin sector of prototypical two-dimensional quantum magnets. Specifically, for recently dis-
covered monolayer van der Waals magnets such as CrI3, we predict that a scalar spin chirality
term can be induced leading to a sizeable magnon bandgap under realistic driving conditions.
This opens the door for potential all-optical topological spintronics applications.

However, an important open problem for future studies is the question of how magnon edge
states can be populated in a controlled fashion. Here we note that the situation is different
compared to optical engineering of electronic systems, where the generation of dressed Floquet
bands, their population, as well as the associated material heating, are intimately linked [20].
In the present work the separation between photon and magnon energy scales means that
driving does not automatically populate the magnon bands, and as discussed above heating
is largely avoided by adopting a sub-gap driving protocol. Populating the magnon states thus
becomes a separate issue to be dealt with in addition to the generation of the non-trivial
Floquet bands. We note that population by direct optical pumping have been discussed and
experimentally verified for chiral edge states in topological exciton-polariton systems [72–76].
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However, direct optical population of chiral magnon edge states through dipolar excitation is
usually not possible and one should rather explore indirect mechanisms, for instance through
two-magnon Raman scattering.

As an alternative route towards engineering topological magnon edge states with light,
non-classical photon fields in cavities can be employed to control magnetic exchange interac-
tions [77,78] and induce nontrivial topology with chiral light modes [79,80]. We also envisage
the possibility to combine optical engineering with the control offered by bilayer Moiré sys-
tems [81] to induce and control topological magnons.
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A Details on the effective spin Hamiltonian

We here provide some additional details on the derivation of the effective spin Hamiltonian
used in the main text. Assuming that the electronic system is at half-filling and that U � t,
doubly occupied sites will be strongly penalized and the effective Hilbert space is defined by
projecting the full Hilbert space onto the subspace of states without doubly occupied sites. For
virtual excitations out of the low-energy subspace, where exactly one doubly occupied site is
involved, we can rewrite the Hamiltonian up to an irrelevant constant as [37]

H1 = −t
∑

〈i j〉σ

eiθi j(τ)c†
iσc jσ + U

∑

i

n̂i↑n̂i↓ − JD

∑

〈i j〉

Ŝi · Ŝ j , (10)

where U = U0 − V . For a circularly polarized laser with a slowly varying envelope E(τ), the
Hamiltonian is almost periodic with the period H(τ+ 2π/ω) = H(τ) and the Peierls phases
are given by θi j(τ) = −λ sin(ωτ− ζφi j). Here ζ = ±1 for right/left-handed polarization and
the dimensionless quantity λ = eEa/~ω determines the effective field strength of the laser.
We can then rewrite the electronic Hamiltonian exactly using a Fourier expansion as

H = −t
∑

〈i j〉σ

∑

mm′
Jm−m′(λ)e

i(m−m′)ζφi j c†
iσc jσ ⊗ |m〉〈m′|+HI ⊗ 1−

∑

m

mω⊗ |m〉〈m|, (11)

expressed in the product space of the electronic Hamiltonian and the space of periodic func-
tions [36] denoted by Fourier modes |m〉, which can be identified with the classical limit of
m absorbed or emitted virtual photons. Here, Jm(x) is the Bessel function of the first kind of
order m and the interaction Hamiltonian is HI = U

∑

i n̂i↑n̂i↓ − JD
∑

〈i j〉 Ŝi · Ŝ j .
Using quasi-degenerate perturbation theory to simultaneously integrate out the doubly

occupied states and the m 6= 0 Floquet states [11, 38], the effective honeycomb lattice spin
Hamiltonian corresponding to the electronic system is given to fourth order in t/U by

H =
∑

〈i j〉

J Ŝi · Ŝ j +
∑

〈〈ik〉〉

J ′Ŝi · Ŝk +
∑

〈〈ik〉〉

νikχŜ j · (Ŝi × Ŝk).
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Here J and J ′ are respectively the nearest and next-nearest neighbor light-induced Heisen-
berg exchanges, and χ is the synthetic scalar spin chirality. The full expressions for the spin
parameters are given by

J = −JD +Λ
(0) +

1
2

∑

m

�

Λ(1)m cos
�

π(m1 −m3)
3

�

+Λ(1)m cos
�

π(m1 −m2 +m3)
3

�

(12a)

−
1
2
Λ(2)m cos

hπm2

3

i

− 2Λ(2)m cos[πm2])− 3Γm
�

J ′ = −
1
2

∑

m

�

Λ(1)m cos
�

π(m1 −m2 +m3)
3

�

−Λ(2)m cos
hπm2

3

i

− 2Γm
�

(12b)

χ =
∑

m

�

Λ(1)m sin
�

π(m1 −m2 +m3)
3

�

−Λ(2)m sin
hπm2

3

i
�

, (12c)

where m = {m1, m2, m3} are Floquet indexes counting how many virtual photons have been
absorbed or emitted and

Λ(0) = 4t2
∑

m

Jm(λ)2

U −mω
(13a)

Λ(1)m = 8t4
Jm1
(λ)Jm2−m1

(λ)Jm2−m3
(λ)Jm3

(λ)

(U −m1ω)(U −m2ω)(U −m3ω)
(13b)

Λ(2)m = 16t4(1−δm2,0)(−1)m1−m3 cos2
hπm2

2

i Jm1
(λ)Jm2−m1

(λ)Jm2−m3
(λ)Jm3

(λ)

m2ω(U −m1ω)(U −m3ω)
(13c)

Γm = 4t4

�

δm3,0

U −m1ω
+

δm3,0

U −m2ω

� J 2
m1
(λ)J 2

m2
(λ)

(U −m1ω)(U −m2ω)
. (13d)

B Details on the processes inducing a scalar spin chirality

After integrating out the doubly occcupied states and the Floquet states with non-zero index m,
the fourth order contributions to the spin Hamiltonian separate into three physically distinct
processes, depending on the state at the second intermediate step of the virtual process. In
the first class of processes the second intermediate state contains a single doublon-holon pair
and non-zero Floquet index, as described by terms of the form

H(1) = −
∑

i jkl

∑

σ1σ2
σ3σ4

∑

m1m2
m3

�

c†
iσ1

c jσ1
c†

jσ2
ckσ2

c†
kσ3

clσ3
c†

lσ4
ciσ4

t−m3
i j tm3−m2

jk tm2−m1
kl tm1

l i

(U −m1ω)(U −m2ω)(U −m3ω)

(14)

+ c†
jσ2

ckσ2
c†

iσ1
c jσ1

c†
kσ3

clσ3
c†

lσ4
ciσ4

t−m3
jk tm3−m2

i j tm2−m1
kl tm1

l i

(U −m1ω)(U −m2ω)(U −m3ω)

+ c†
jσ2

ckσ2
c†

kσ3
clσ3

c†
iσ1

c jσ1
c†

lσ4
ciσ4

t−m3
jk tm3−m2

kl tm2−m1
i j tm1

l i

(U −m1ω)(U −m2ω)(U −m3ω)

+ c†
kσ3

clσ3
c†

jσ2
ckσ2

c†
iσ1

c jσ1
c†

lσ4
ciσ4

t−m3
kl tm3−m2

jk tm2−m1
i j tm1

l i

(U −m1ω)(U −m2ω)(U −m3ω)

�

.
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In the second class of processes the second intermediate state returns to half-filling at non-zero
Floquet index, as described by terms of the form

H(2) = −
∑

i jl

∑

σ1σ2
σ3σ4

∑

m1m2
m3

�

c†
iσ1

c jσ1
c†

jσ2
ciσ2

c†
iσ3

clσ3
c†

lσ4
ciσ4

(1−δm2,0)t
−m3
i j tm3−m2

ji tm2−m1
il tm1

l i

(U −m1ω)(m2ω)(U −m3ω)
(15)

+ c†
jσ2

ciσ2
c†

iσ1
c jσ1

c†
iσ3

clσ3
c†

lσ4
ciσ4

(1−δm2,0)t
−m3
ji tm3−m2

i j tm2−m1
il tm1

l i

(U −m1ω)(m2ω)(U −m3ω)

�

−
∑

i jk

∑

σ1σ2
σ3σ4

∑

m1m2
m3

�

c†
jσ2

ckσ2
c†

kσ3
c jσ3

c†
iσ1

c jσ1
c†

jσ4
ciσ4

(1−δm2,0)t
−m3
jk tm3−m2

k j tm2−m1
i j tm1

ji

(U −m1ω)(m2ω)(U −m3ω)

+ c†
kσ3

c jσ3
c†

jσ2
ckσ2

c†
iσ1

c jσ1
c†

jσ4
ciσ4

(1−δm2,0)t
−m3
k j tm3−m2

jk tm2−m1
i j tm1

ji

(U −m1ω)(m2ω)(U −m3ω)

�

.

In the third class of processes the second intermediate state returns to half-filling at zero Flo-
quet index, as described by terms of the form

H(3) =
1
2

∑

i jl

∑

σ1σ2
σ3σ4

∑

m1m2

�

c†
kσ1

clσ1
c†

lσ2
ckσ2

c†
iσ3

c jσ3
c†

jσ4
ciσ4

t−m2
kl tm2

lk t−m1
i j tm1

ji (16)

×
�

1
(U −m1ω)(U −m2ω)2

+
1

(U −m1ω)2(U −m2ω)

��

.

In order for a process to induce a non-zero scalar spin chirality the electrons need to ac-
cumulate a net phase in the light field. Equivalently, the sites involved in the process needs to
enclose a non-zero area. Such processes lead to time-reversal symmetry breaking in analogy
with the net phase accumulation of electrons moving in closed loops in an external magnetic
field, however with the difference that driving with a circularly polarized electric field con-
serves the full SU(2) spin symmetry.

On the honeycomb lattice, a scalar spin chirality arises due hopping processes that en-
close an isosceles triangle within the hexagons, as indicated schematically in Fig. 4. Here the
pink and blue lines encircle the sites involved in a process, and the orange dot shows the site
at which the system returns to half-filling in the second intermediate step. The gray areas
show the enclosed area corresponding in the non-zero cases to an isosceles triangle. We note
that processes in the third class, described by the Hamiltonian H(3) above, can be viewed as
two separate second-order processes and so does not lead to a net spin chirality. Also shown
in Fig. 4 is a process in the first class, containing a single doublon-holon pair in the second
intermediate state.

C Details on the time-evolution and non-equilibrium spectral func-
tions

In the main text we validate the Floquet treatment based on the effective spin Hamiltonian
by a comparison to numerical results obtained via time-propagating the system with a quasi-
periodic spin Hamiltonian. We take the external electric field as

E(τ) = E sin
�

πτ

2τ0

�

(cosωτ,ζ sinωτ)(θ (τ)− θ (τ−τ0)) + E(cosωτ,ζ sinωτ)θ (τ−τ0),

(17)
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(1)

(2)

(3)

i
j

k

Figure 4: Light-induced scalar spin chirality. Illustration of the three classes of
fourth-order hopping processes possible on the honeycomb lattice: (1) a process
where the second intermediate state contains a single holon-doublon pair at non-zero
Floquet index. (2) A process where the system returns to half-filling in the second
intermediate step (at the orange site) at non-zero Floquet index. (3) A process where
the system returns to half-filling and zero Floquet index in the second intermediate
step (at the site indicated in orange). The right panel gives an example of a process
in class (1) that breaks time-reversal symmetry and induces a scalar spin chirality.

where the envelope provides an adiabatic switch-on of the external field and τ0 is assumed to
be so large that the envelope can be taken as constant over the period of the field (τ0� 2π/ω).
We can then approximate the Peierls phases as θi j(τ) ≈ −λ(τ) sin(ωτ − ζφi j) where
λ(τ) = (eEa/~ω) sin(πτ/2τ0). The dynamic spin Hamiltonian is of the same form as its
static counterpart but with the time-dependent spin parameters

J(τ) =− JD +
∑

m

Λ(0)m (τ) cos(2m4ωτ) (18a)

+
1
2

∑

m

�

2Λ(0)m (τ) +Λ
(1)
m (τ) cos

�

π(m1 −m3)
3

+m4ωτ

�

+Λ(1)m (τ) cos
�

π(m1 −m2 +m3)
3

+m4ωτ

�

−
1
2
Λ(2)m (τ) cos

�πm2

3
+m4ωτ

�

− 2Λ(2)m (τ) cos(πm2 +m4ωτ)− 3Γm(τ)
�

J ′(τ) =−
1
2

∑

m

�

Λ(1)m (τ) cos
�

π(m1 −m2 +m3)
3

+m4ωτ

�

−Λ(2)m (τ) cos
�πm2

3
+m4ωτ

�

− 2Γm(τ)
�

(18b)

χ(τ) =
∑

m

�

Λ(1)m (τ) sin
�

π(m1 −m2 +m3)
3

+m4ωτ

�

−Λ(2)m (τ) sin
�πm2

3
+m4ωτ

�
�

.

(18c)

Here m = {m1, m2, m3, m4} gives a sum over four Floquet indexes, and the parameters Λ(n)m
and Γm are given by

Λ(0)m (τ) = 4t2δm2,0δm3,0

Jm1
(λ)Jm1−2m4

(λ)

U −m1ω
(19a)
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Λ(1)m (τ) = 8t4
Jm1
(λ)Jm2−m1

(λ)Jm2−m3
(λ)Jm3−m4

(λ)

(U −m1ω)(U −m2ω)(U −m3ω)
(19b)

Λ(2)m (τ) = 16t4(1−δm2,0)(−1)m1−m3 cos2
hπm2

2

i Jm1
(λ)Jm2−m1

(λ)Jm2−m3
(λ)Jm3−m4

(λ)

(U −m1ω)(m2ω)(U −m3ω)
(19c)

Γm(τ) = 4t4

�

δm3,0

U −m1ω
+

δm3,0

U −m2ω

� J 2
m1
(λ)Jm2

(λ)Jm2−m4
(λ)

(U −m1ω)(U −m2ω)
. (19d)

The time-dependence of these parameters is given implicitly by the dependence on λ(τ), but
for the sake of readability we have suppressed the time dependence of λ in the equations
above.

Writing the Hamiltonian in the spin-wave approximation we evaluate the time-dependent
spectral function

Ak(ε,τ) = i

∫

dτ̄
2π

eiετ̄[G>k − G<k ](τ+
τ̄

2
,τ−

τ̄

2
). (20)

As noted in the main text the lesser Green’s function is proportional to the distribution function
f of the initial state, and therefore vanishes if we start the time-evolution from the magnon
ground state. The greater Green’s function is given by

G>k (τ,τ′) = −i
∑

s

Tr
�

|sk(τ)〉〈sk(τ′)|
�

, (21)

where |sk(τ)〉 = U(τ)|sk〉 are the time-evolved single-magnon eigenstates |sk〉 of the equi-
librium Hamiltonian, U(τ) = T {e−i

∫ τ

0 dτ̄H(τ̄)} is the time-ordered evolution operator, and the
trace is over all single-magnon states. Since Gk is diagonal in k, we can calculate the spectral
function by separately time-propagating the states |sk〉 for each k.

For the results presented in the main text we considered a zig-zag ribbon with ny = 20
and electronic parameters t = 50 meV, U = 1.25 eV and JD = 12 meV. The electric field has
a frequency ~ω = 1 eV and field strength E = 109 V/m, and was switched on over a time
τ0 = 1.3 ps.
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