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Abstract

We build an effective field theory (EFT) for quasicrystals – aperiodic incommensurate
lattice structures – at finite temperature, entirely based on symmetry arguments and
a well-define action principle. By means of Schwinger-Keldysh techniques, we derive
the full dissipative dynamics of the system and we recover the experimentally observed
diffusion-to-propagation crossover of the phason mode. From a symmetry point of view,
the diffusive nature of the phason at long wavelengths is due to the fact that the internal
translations, or phason shifts, are symmetries of the system with no associated Noether
currents. The latter feature is compatible with the EFT description only because of the
presence of dissipation (finite temperature) and the lack of periodic order. Finally, we
comment on the similarities with certain homogeneous holographic models and we for-
mally derive the universal relation between the pinning frequency of the phonons and
the damping and diffusion constant of the phason.
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1 (Long) Introduction

“How can you govern a country which has 246 varieties of cheese ?”

Charles de Gaulle

All matter is made of atoms yet, the diversity of the phases in which matter can be realized
is both beautiful and astonishing. The most basic phases of matter, solid, liquid and gas have
been realized and discussed since ancient history. A naive classification argument simply relies
on putting them into a container and observing whether they take its shape and volume. A
solid holds its shape and volume, a liquid takes the shape of its container but retains a fixed
volume, and a gas expands to any size, taking both the shape and the volume of the container.

For a more complete understanding of the possible phases of matter, this pragmatic crite-
rion is not satisfactory and a deeper, more fundamental theoretical distinction has to be found.
Moreover, there are many more phases of matter which are not taken into account in this tril-
ogy, which evade the standard criteria of classification. Two such examples are glasses [1, 2]
and topological materials [3,4]. Additionally, the distinction between solids and liquids (and
phases of matter in general) is not so neat and it depends crucially on the length-scale and
time-scale of consideration1.

Classifying phases of matter—whether they are exotic or ordinary—is a full-time job for ev-
ery theoretical physicists and it continues to yield surprising results. An elegant means of clas-
sifying states of matter relates to the concept of universality and renormalization group flow
introduced by Wilson [7]. In this view, a large variety of different materials, with completely
different microscopic features can be described by theories that “flow” down to the same low-
energy descriptions. These low-energy descriptions are solely determined by a small subset of
(relevant) operators and by a specific set of preserved and spontaneoulsy broken symmetries.
From this Wilsonian perspective, symmetries are the key-elements to understand the different
standard2 phases of matter. A simple example is the Landau classification of second order
phase transitions [8] as the separation between two phases with different symmetry-breaking
patterns, e.g. metal/superfluid, ferromagnet/antiferromagnet, etc.

The proper and modern formal language to describe and understand the different phases
of matter is that of effective field theory (EFT) [9,10]. The general idea is that phases of con-
densed matter always spontaneously break the Poincaré group simply because their equilib-
rium states selects a preferred reference frame, i.e. the frame in which the sample of matter is

1A concrete example is the experimental observation of propagating shear waves at low frequencies (solid-like
behaviour) in liquids [5], whose theoretical nature is surprising and under investigation [6].

2By “standard” we mean phases of matter which can be distinguished using symmetries. In this manuscript, we
will restrict ourselves to this subclass and we will ignore more complex phases such as topological ones and more
complicated phase transitions (e.g. quantum phase transitions, metal-insulator transitions, etc) which cannot be
described within the Landau framework.
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stationary. In this picture, the classification of the different phases is in 1-to-1 correspondence
with the classification of the possible symmetry-breaking patterns of the Poincaré group. At
zero temperature, the standard field theory methods are available and the formal construction
has been presented using the coset techniques in [11] and later generalized in [12]. In this low-
energy description the fundamental dynamical degrees of freedom are the Goldstone bosons
corresponding to the specific symmetry breaking pattern (e.g. the phonons in a solids [13]).
Heavier massive modes are integrated out and they do not appear in the EFT description3.

These methods are very powerful and have been employed in a plethora of systems [18–
23]; nevertheless the freedom from microscopics comes at a price. The first, and obvious,
drawback is the impossibility of computing any transport coefficients (or in the EFT language,
Wilson coefficients). As a concrete example, EFT methods can yield the dispersion relations
of the phonons in a solids but they will never give you any information about their speeds.
A second, and perhaps more severe difficulty, arises when trying to extend the EFT meth-
ods to describe finite-temperature systems. In particular, standard action principles and field
theory formulations do not allow for dissipation, which is an important feature of all finite-
temperature systems, e.g. fluids. After some preliminary perturbative solutions [24], two tools
acquired a predominant role in this direction: holography [25] and Schwinger-Keldysh (SK)
techniques [26]. In this work, we will take inspiration from some recent results in holography
and we will apply SK techniques to achieve an EFT description of quasicrystals at finite tem-
perature.

Although Goldstone’s theorem is very well understood in Poincaré-invariant systems that
exhibit spontaneous symmetry breaking (SSB) of internal symmetries (see [27] for a review),
when the underlying theory is not Poincaré-invariant or when Poincaré symmetry is sponta-
neously broken, the phenomenology becomes richer and the physics more complicated. In
these situations, the Goldstone modes may exhibit more unusual dispersion relations (i.e. it
is no longer necessary that ω ∼ k), and the number of Goldstones may be less than the num-
ber of spontaneously broken generators. Using non-relativistic EFT techniques, situations in
which dispersion relations are not linear (i.e. ω∼ k2) can be understood in terms of so-called
type II Goldstone modes [28, 29]. And when spacetime symmetries are broken, extraneous
Goldstones can be removed with so-called Inverse Higgs constraint, thus allowing for fewer
Goldstones than broken generators [29,30].

Recently, the existence of diffusive Goldstone bosons has been advocated in the context
of open-dissipative systems [31–33]. These theoretical expectations have been confirmed in
simple holographic systems with spontaneously broken translations [34–41]. Diffusive Gold-
stones, known as phasons, are also know to be present in aperiodic crystals—quasicrystals.
See the next section for a brief discussion and several references.

The construction of a finite temperature EFT for quasicrystals and the understanding of
the diffusive phasons and their dynamics is the main focus of this paper. We will combine
the techniques of [12] and [42] to build a formal theoretical construction for quasicrystals
which is complementary to their hydrodynamic description [43] and it relies totally on the
symmetries of the system. Although the literature on quasicrystals abounds with statements
such as “Mode counting arguments and the Goldstone theorem lead to the prediction that phason
modes are diffusive-like excitation,” we have not been able to find a single satisfactory formal
explanation based on symmetries. With the present paper, we aim to remedy that situation.

3A counterexample to this statement is the case of soft explicit breaking, which gives rise to pseudo-Goldstone
modes with a parametrically small mass gap (e.g. pions) [14–17].
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1.1 What is a Quasicrystal?

Quasicrystals, or quasiperiodic structures, are materials with perfect long-range order but lack-
ing periodicity [44–47]. From an experimental point of view, the structure of materials is in-
vestigated using diffraction experiments (electrons, X-rays or neutrons) which display intensity
distributions directly related to the (Fourier transform) of the material structure. In this sense,
long-range order is equivalent to the presence of a finite number of Fourier components with
sharp diffraction peaks. From this point of view (see right panel of Fig.1), quasicrystals are
quite similar to standard periodic crystalline structures and they are fundamentally opposite
to amorphous materials such as glasses, which lack any form of long-range order (≡ no sharp
Bragg peaks). Nevertheless, quasicrystals differ from ordinary crystals because of the absence
of periodicity. Ordinary crystalline lattices are unchanged under a discrete translation

~x → ~x + ~Vi , (1)

where ~Vi for i = 1,2, 3 are the lattice vectors defining the unit cell of the periodic structure. By
definition, periodicity means that all the points which are separated by such vectors are totally
identical. From a more theoretical perspective, periodic crystals break translational invariance
down to a discrete subgroup, while quasicrystals break the full continuous translational sym-
metry.

Figure 1: Left: A section perpendicular to the decagonal axis of the Al-Co-Ni qua-
sicrystal from [48]. Right: Electron diffraction pattern from an icosahedral qua-
sicrystal. Notice that the intensity distribution of the diffraction pattern varies over
many orders of magnitude.

As shown in Fig.1, aperiodic quasicrystalline structure are usually associated with the presence
of discrete rotational symmetries which are incompatible with periodicity.4 Interestingly, some
of them display even a discrete form of scale (and conformal) invariance [49].

A simple argument to convince ourselves that long-range order does not necessitate peri-
odicity is the following. Consider a 1D array of atoms organized in a periodic distribution with
lattice size a. The corresponding density is given by:

ρ(x) =
∑

n

δ (x − n a) , (2)

4Five-fold rotations and rotations of order over six-fold are forbidden by periodic space tiling.
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where n is an integer. The Fourier transform displays a periodic structure as well, given by

Fh =
∑

h

δ

�

kh − 2π
h
a

�

, (3)

and labelled by a single integer index h. Clearly, this example will exhibit both long-range
order and periodicity. Let us now superimpose a second periodic structure, whose lattice size
is incommensurate with the previous one. More precisely, let us consider the following distri-
bution:

ρ(a) =
∑

n

δ (x − n a) +
∑

m

δ (x − αm a) . (4)

It is evident that, if α is not a rational number, then the resulting structure is not periodic.
Its Fourier transform cannot be defined using a single index h. Nevertheless, it possesses
long-range order and it displays sharp Bragg peaks. This is the simplest example of an incom-
mensurate structure, which is indeed a specific case of aperiodic crystalline structures.

The mass density of a periodic lattice can always be expressed as:

ρ(~x) =
1
V

∑

~G

ρ( ~G) ei ~G·~r , (5)

with G the vector of the reciprocal lattice which can always be decomposed into a complete
basis as:

~G = n1 x̂1 + n2 x̂2 + n3 x̂3 , (6)

where x̂n span the full reciprocal space. In these notations, the position of a lattice point is
simply described by the triad {n1, n2, n3}.

In a quasicrystal, this description is insufficient. The vector ~G describing the position of
the lattice points in reciprocal space cannot be decomposed as in Eq.(6) but rather as:

~G = n1 x̂1 + n2 x̂2 + n3 x̂3
︸ ︷︷ ︸

d physical dimensions

+
D−d
∑

i=d

ni x̂ i

︸ ︷︷ ︸

D−d

. (7)

In other words, more fundamental vectors than physical dimensions are needed to determine
the position of the lattice points in an aperiodic structure. In the case of an icosahedral phase,
we need for example 6 of them.

This point is fundamental in the description of quasicrystals and it suggests immediately
that aperiodic structures can always be seen as periodic structures in an extra-dimensional
space. The number of extra-dimensions needed depends on the specifics of the quasicrystal
symmetries. Quasicrystals can always be obtained using projection/cut operators from higher-
dimensional periodic structures.

This description is known as the superspace description [50]. One example for a 1D qua-
sicrystal is displayed in Fig.2. Let us consider a two-dimensional square lattice with lattice
spacing = a, defined by the following distribution:

ρ(x , y) =
∑

n,m

δ(x − a)δ(x − m a) . (8)

This corresponds to a two-dimensional reciprocal lattice with wave-vector 2π/a. Let us now
perform a one-dimensional cut on this lattice defined by a single angle α with respect to the
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Figure 2: The superspace description for quasicrystals in a 2D → 1D example. The
blue dots are the positions of the atoms in the extra-dimensional periodic crystal; the
red ones are the position of the atoms in the quasicrystal. The periodic 2D lattice has
lattice spacing a. The figures are adapted from [47]. Top: A rational cut producing a
periodic 1D crystal. Bottom: An irrational cut producing an aperiodic-crystal made
of two lattice sizes L, S incommensurate between them.

horizontal axes of the lattice. If the angle is rational (e.g. 45◦ as in the top panel of Fig.2),
then the resulting 1D structure, obtained by projecting the two-dimensional lattice points on
the line, will be periodic as well, with period l = a cosα. Now, let us to choose an irrational
angle α. In that case, the 1D resulting structure5 (see bottom panel of Fig.2) is not periodic
anymore and it is composed by two types of tiles (long and short) whose lengths are given by:

L = a cosα , S = a sinα . (9)

In the example of Fig.2 we find an aperiodic sequence:

. . . SLLSLLLSLLS . . . (10)

If we take, cosα/ sinα = τ, the golden mean, it is easy to see that the LS sequence obeys a
Fibonacci sequence. This superspace description will play a fundamental role in the analysis

5The technical prescription consists in projecting the 2D lattice points in a strip of thickness∆= a(cosα+sinα)
into the 1D cut.
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of the low-energy excitations in a quasicrystal.

Before moving to the next topic, we will briefly review an interesting case of aperiodic
structure: the modulated crystal. Take a two-dimensional lattice structures whose atomic
positions are defined by the vectors

rn = a (n1 x̂1 + n2 x̂2) , (11)

and apply a modulation to it such that the new positions become

rn = a ( (n1 + ε sin(q n1α)) x̂1 + n2 x̂2) , (12)

where q = 2π/a is the modulation vector. As before, for angles α which are irrational, the
structure becomes aperiodic and takes the name of incommensurate modulate structure. A
d−dimensional modulate structure can again be seen as the intersection of a d + 1− dimen-
sional periodic structure with the d−dimensional physical space. Importantly, the phase of the
modulated function can be chosen arbitrarily. Changing the phase corresponds to rearranging
the atoms in a way that the equilibrium free energy remains unmodified. A continuous shift of
the modulation creates an infinite set of indistinguishable configurations which can be visual-
ized by piling them up on an axis perpendicular to the physical directions. This perpendicular
direction is called phase space and it is exactly analogous to the perpendicular direction in the
superspace description for quasicrystals explained above and depicted in Fig.2. For the sake of
our discussion, modulated structures and quasicrystals share the same physics6.

The dynamics in the perpendicular direction gives rise to the so-called phason mode, which
will be the protagonist of our next section.

In the interest of brevity, we have discussed only the quasicrystal features which will be
necessary for our discussion. We refer the more interested readers to [51–55].

1.2 Phasons dynamics

In the previous section, we outlined the principal differences between a periodic crystalline
structure and an aperiodic one. In particular, we have seen that the lack of periodicity can
be interpreted as the existence of an extra internal dimension—the transverse direction in the
superspace formalism or the phase space in the modulated structures. Given this extra ingre-
dient, which is absent in periodic structures, it is normal to expect an additional dynamical
mode to appear in quasicrystals beyond the usual phonons of standard crystals. Such a mode
is associated with displacement in the extra internal dimension and it is commonly referred to
as the phason.

Complete discussions regarding quasicrystal dynamics and the properties of the phason
mode can be found in [56–62]. Here, we will recall only the key features. We start by spoiling
the end of the story. Quasicrystals, differ from periodic structures in that they display an
additional Goldstone mode called the phason. The name was coined in 1971 by Overhauser
[65] in the context of charge density wave (CDW) systems. In the regime of long wave-lengths
(or equivalently small momenta), the phason mode displays a diffusive dispersion relation:

ω = − i D k2 + . . . , (13)

6Strictly speaking, this is true only in one dimension. In higher dimensions there are subtle differences between
the two. See [47].
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Figure 3: Experimental evidences for the diffusive nature of the phasons. Left: Pha-
son relaxation time τ in function of the momentum q in the i-AlPdMn icosahedral
quasicrystal at T = 650◦ C from [63]. Right: Relaxation rate τ−1(q) for NaNO2 at
T = Tincomm. + 0.55K from [64].

which is experimentally observed [63, 64, 66] (see Fig.3). Phason modes may be responsible
for several distinctive finite-temperature properties such as the deviation of the heat capacity
from the Dulong-Petit law observed experimentally in a quasicrystalline Al-Pd-Mn alloy [67].
Moreover, (I) the diffusion constant D grows with temperature and it vanishes at zero tem-
perature; (II) at large momenta, the dispersion relation turns into a linear propagating mode
ω = v k+ · · · , with v set by a specific new elastic constant. The transition is estimated around
100 Angstroms. Thus, we would expect that light scattering experiments would probe mainly
the diffusive regime, whereas inelastic neutron scattering experiments would probe mainly
the propagating regime. We will come back to this point later.

The rest of this section will be devoted to understand these points and their physical origin
in detail.

In order to understand the nature of the phason mode it is convenient to go back to the
superspace formalism shown in Fig.2. As we have already explained, a quasicrystal can be
described using a set of “parallel” coordinates, which correspond to the physical dimensions,
and a set of (in our example just one) transverse coordinates, which represents the extra-
dimension in the aforementioned internal space. Likewise, the dynamics can be split into these
two orthogonal sets. The displacements in the parallel directions are the standard physical
displacements, which gives rise to the phonons. The additional transverse displacements are
known as phason displacements and are particular to quasicrystals. These displacements do
not corresponds to infinitesimal shifts of the atomic positions. On the contrary, they correspond
to atomic flips or atomic jumps. The idea (see Fig.4) is that the free energy is invariant under
a rigid shift along the transverse directions and therefore a gapless hydrodynamic mode will
be associated with this process. Nevertheless, a rigid shift in the transverse direction has the
effect of flipping some atomic positions in the physical space. More concretely, an internal
shift is associated with a flip of the kind:

. . . LS . . . → . . . SL . . . , (14)

which is shown explicitly in Fig.4. In this sense, phasons do not corresponds to oscillations
of the atoms around the equilibrium position (like phonons) but rather correspond to the
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Figure 4: The equivalence between internal phason-displacements and atomic-
flips/jumps. Left: The effects of the phason-displacement within the superspace de-
scription. The internal shift makes some atoms to flips and the quasicrystal structure
to change locally from LS → SL. Right: A zoom on the atomic flips induced by the
phason-displacement. Notice that in order for the atoms to flips a energy potential
∆E has to be over passed. In this sense, atomic flips/jumps cost energy and they can
happen only at finite temperature and in a diffusive fashion.

rearrangements of their positions. Such atomic re-arrangements have been observed using
high resolution transmission electron microscopy (TEM) [68,69]. The corresponding dynamics
are therefore diffusive and not propagative as that of standard phonons. In a sense, their
motion is much more similar to solid diffusion and mass motion [70]7. The phason mode is
diffusive whenever the free energy is analytic in the gradients of the phason displacements
[43].

From an energetic point of view, in the equilibrium configuration, every atom sits at the
minimum of a potential. As a result, the flips induced by the phasons displacements correspond
to jumps of energy barriers∆E within such potential (see right panel of Fig.4). Fundamentally,
this is why phason can exist only at finite temperature and their diffusion constant vanishes in
the limit of T → 0. At zero temperature, there is no available kinetic energy to overcome the
potential energy barriers. This point is also related to the fact that the generator of infinitesi-
mal shifts in the transverse direction—or, if you want, in the phase—does not commute with
the Hamiltonian H. This is an important feature that we will recover in the EFT formulation.

Finally, it is worth noting that phason modes can be viewed as modes with a wavevector
in the parallel space and a polarization in the perpendicular space [57]. Interestingly enough,
phasons are thought to be essential for the stability of quasicrystals in the same way fleuxural
phonons are for graphene [71].

Moreover, their diffusive nature at short wavelength is responsible for a peculiar linear in
T contribution to the specific heat at low temperature [72, 73]. This contribution is indeed
typical of diffusive modes and it can be explained by means of a simple effective theory [74].
Interestingly, quasicrystals share a lot of anomalous properties with glasses and disordered
systems [75].

Before going to the next section, let us comment on the role of the phason in modulated
structures such as incommensurate superlattices. In 1D incommensurate structures it has been
shown that anharmonicities can pin the sliding mode (analogous to the phason in quasicrys-

7In a closer sight, the diffusive phason dynamics differs from solid diffusion or mass motion because it does not
arise from the conservation of a charge as standard diffusive modes (e.g. charge diffusion, shear diffusion, etc ...)
.
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tals) and remove it from the set of hydrodynamic modes. This process, known as the breaking
of analiticity [76], can be studied by means of simple discrete and continuous models, the
most famous one being the Frenkel-Kontorova model [77]. In that setup, which in the contin-
uous limit reduces to the Sine-Gordon model [78], the fundamental dynamics is played by the
modulation phase φ. Its profile is given by a soliton solution which physically represents a do-
main wall between two commensurate phases, or in other words the extra-atom added to the
commensurate chain. Depending on the strength of interactions, this mode gets pinned in the
commensurate phase. On the contrary, this does not happen for the phason in quasicrystals.
Thus, quasicrystals seem to be different from the other classes of quasiperiodic systems [59].
To the best of our knowledge, a satisfactory explanation is still absent.

1.3 A k−gap intermezzo

The hydrodynamic behavior of phasons modes in quasicrystals was analyzed in the seminal
work [43]. The crucial point consists in adding to the hydrodynamics the phasons displace-
ment ~w together with the standard phonons displacement ~u. Dropping the various technicali-
ties, we can write down the equation of motion for the displacement w.8 A common practice
is to consider the conjugate momentum gw ≡ ρ pw where ρ is the mass density. The equation
of motion for the conjugate momentum reads [43] :

∂t gw + γ gw = −
δF
δw

, (15)

where F is the free energy. By considering the expansion of the free energy in terms of the
gradients of the displacement, one could realize that:

δF
δw
∼ ∇2w . (16)

Finally, we can see that in Fourier space gw = ∂t w = iωw such that the final equation of
motion takes the form

ω2 + i γω = v2 k2 , (17)

which is one of the main results of [43]. This equation predicts that at small momenta the
phason dynamics are diffusive

ω = − i D k2 with D = v2/γ ; (18)

on the contrary, in the opposite regime, ω � γ, the phason becomes a propagating sound
mode

ω = v k . (19)

Notice that if γ= 0 then the diffusive dynamics disappears completely. The term proportional
to γ= τ−1 describes a relaxation process and it is related to the fact that the phason displace-
ments do not commute with the Hamiltonian. As we will see later in the EFT description, this
means that the corresponding internal translation symmetry has no corresponding Noether
current.9 The phason dispersion relation is shown in the left panel of Fig.5 and it is known
as k−gap. The dispersion relation has a gap in momentum space and it displays a crossover
between a diffusive behaviour at large length-scale to a propagating one at small scales. This
crossover has been studied in detail in the context of incommensurate structures [62,79–81].
The connection between the telegraph equation and the dynamics of phasons in quasicrystals

8For simplicity, we consider only one internal dimension; w stands for the displacement along such direction.
9We will see that EFTs describing dissipative systems at finite temperature can possess symmetries without a

corresponding non-trivial Noether current.
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Figure 5: Left: The phason dispersion relation arising from the hydrodynamic de-
scription of quasicrystals [43]. The upper half plane is the real part and the lower
the imaginary part. The blue color indicates the diffusive regime while the red one
the propagating one. k = kg is the crossover point known as k−gap. Right: The
dynamics from the energetic point of view and in the physical space. The jumps in
the potential correspond to te re-arrangement in the physical space of the quasicrys-
tal. The time τ is either the average jump time or the average time of molecular
re-arrangements.

have been already discussed using elasto-dynamics in [82].

The effective relaxation rate γ= τ−1 is physically given by the fact that a phason displace-
ment corresponds to a jump in the potential energy whose average time is given by τ. These
jumping processes are always accompanied by the small vibrations around the equilibrium
configuration, which give rise to the r.h.s. of Eq.(17). In physical space, the term proportional
to τ defines the re-arrangement of the atomic positions. The re-arrangements are possible
only at finite temperature and are crucial for the diffusive nature of the phasons. Therefore
zero-temperature field theories such as [83–86] miss this diffusive dynamics and are not able
to compare successfully with the holographic results [34–41].

This scenario is not new and it can be found in several dissipative systems. A complete re-
view on the topic can be found in [6]. The specific equation (17), which is sometimes known
as telegraph equation, has been observed in several holographic systems [87–90] and recently
described with formal field theory methods [91]. Interestingly enough, it is the typical be-
haviour found in the context of diffusive Goldstone bosons [31–33]. In this last scenario, the
relaxation parameter τ arises because of the “open” nature of the system. For example, it di-
rectly appears in the Langevin equation as a friction term or from the coupling to an external
bath in a open system.

Let us conclude this section by noticing that the phasons dynamics display striking sim-
ilarities with that of the shear modes in liquids (see for example the molecular dynamical
simulations of [92]). To the best of our knowledge, this parallelism has never been noticed
before and it deserves further analysis.
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1.4 A brief introduction to EFT methods

Most many-body systems like quasicrystals exist at finite temperature. As a result, the equilib-
rium state of the system takes the form of a thermal density matrix given by

ρ =
e−βH

tr(e−βH)
, (20)

where H is the Hamiltonian and β ≡ 1/T is the inverse equilibrium temperature of the sys-
tem. For finite values of the temperature, this equilibrium density matrix describes a mixed
state. As a result, the usual quantum field theory techniques designed to compute S-matrix
elements using in-out states and vacuum correlators are of no use. Instead, we must com-
pute time-dependent correlators in the presence of a thermal density matrix. A well-known
technique for doing so is the in-in formalism defined on the Schwinger-Keldysh (SK) con-
tour [26]. In this formalism, the sources that appear in the generating functional are doubled.
Let U(+∞,−∞; J) be the unitary time-evolution operator in the presence of external source
J . We define the SK generating functional by

eW [J1,J2] ≡ tr[U(+∞,−∞; J1)ρ U†(+∞,−∞, J2)] . (21)

Notice that the inclusion of two sources is necessary to obtain a non-trivial generating func-
tional; if J1 = J2, then the cyclicity of the trace ensures that W vanishes.

In general, many-body systems have too many degrees of freedom to keep track of. We
therefore would like a course-grained description of the degrees of freedom that persist over
large distance and time scales. Essentially, we would like to construct an EFT for the infrared
degrees of freedom, denoted by ϕ, that can reproduce the generating functional W [J1, J2].
Often since we are interested in the infrared degrees of freedom, ϕ are just the Goldstone
modes associated with spontaneous breaking of the Poincaré and internal symmetry groups.
Because we have doubled sources, our effective action must have doubled field content, ϕ1
and ϕ2. Coupling to the sources J1 and J2, we define the non-equilibrium effective action
IEFT[ϕ1,ϕ2; J1, J2] such that

∫

SK

D[ϕ1ϕ2] e
i IEFT[ϕ1,ϕ2;J1,J2] = eW [J1,J2] , (22)

where the subscript SK indicates that we impose the SK boundary conditions, namely that in
the distance future the two copies of the fields agree ϕ1(+∞) = ϕ2(+∞). This future-time
boundary condition is a remnant of the trace in (21) and has a very important consequence:
even though the field content is doubled, the global symmetry content is not. Thus there is
just one copy of the global symmetry group.

Often, it is convenient to work in the so-called retarded-advanced basis defined by sym-
metric and anti-symmetric combinations of the fields. We have

ϕr ≡
1
2
(ϕ1 +ϕ2) , ϕa ≡ ϕ1 −ϕ2 . (23)

It turns out that these two fields play very different roles: ϕr plays the role of a classical field
(or expectation value of a quantum field), while ϕa encodes information about thermal and
quantum fluctuations about the classical solution.

The program of non-equilibrium EFT bears a close resemblance to ordinary EFT in that
we use symmetry as the guiding principle. However, there are some additional subtleties that
arise in non-equilibrium EFT. We enumerate the rules for constructing such effective actions
below without proof (see [93] for a review).
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• Unlike ordinary actions, IEFT may be complex. There are three important constraints
that come from unitarity, namely

IEFT[ϕ1,ϕ2; J1, J2] = −I∗EFT[ϕ2,ϕ1; J2, J1]

ImIEFT[ϕ1,ϕ2; J1, J2]≥ 0 for any ϕ1,2, J1,2

I∗EFT[ϕ1 = ϕ2;J1 = J2] = 0 .

(24)

• Any symmetry of the ultraviolet theory is also a symmetry of IEFT except for symmetries
that reverse the direction of time. The fact the time-reversing transformations are not
symmetries of the infrared theory allows the production of entropy and therefore the
introduction of dissipation.

• If the equilibrium density matrix ρ takes the form of a thermal density matrix, then the
effective action is invariant under the so-called dynamical KMS symmetries. Suppose
that the ultraviolet theory is invariant under the time-reversing anti-unitary symmetry
transformation Θ. Then, setting the sources to zero, we have that the infrared theory
enjoys the symmetry transformations

ϕ1(x)→ Θϕ1(t − i θ , ~x) ,

ϕ2(x)→ Θφ2(t + i (β0 − θ ), ~x) ,
(25)

for any θ ∈ [0,β0). It is straightforward to check that these transformations are their
own inverse. To take the classical limit is is convenient to work in the basis (23). Then
the classical dynamical KMS symmetries become

ϕr(x)→ Θϕr(x) ,

ϕa(x)→ Θ [ϕa(x) + i β0 ∂tϕr(x)] .
(26)

Notice that the change in ϕa is related to the time derivative of ϕr . Thus, to have a
consistent derivative expansion, we must count ∂tϕr and ϕa at the same order in the
derivative expansion.

As a quick warm-up we now consider the construction of the non-equilibrium EFT describ-
ing a system in fluid phase such that the only conserved quantity is the stress-energy tensor. It
turns out that the construction of the fluid EFT is most conveniently performed on a manifold
other than the physical spacetime, which we will call the fluid manifold. The coordinates of the
fluid manifold are φM for M = 0,1, 2,3. We expect that the infrared degrees of freedom are
related to conserved quantities because all other quantities can locally relax to equilibrium.
Thus, since only the stress-energy tensor is conserved, the relevant sources in the generating
functional W are the spacetime metric tensors g1µν and g2µν. In this way differentiating with
respect to these metrics yields correlation functions among the stress-energy tensor. Thus, the
generating functional becomes

eW [g1µν,g2µν] ≡ tr[U(+∞,−∞; g1µν)ρ U†(+∞,−∞, g2µν)] . (27)

Since the stress-energy tensor is covariantly conserved, W must be invariant under two inde-
pendent diffeomorphism symmetries. Let Xµs (φ) for s = 1, 2 be two coordinate transforma-

tions. Defining the pull-back metrics GsMN ≡
∂ Xµs
∂ φM gsµν(Xs(φ))

∂ X νs
∂ φN , we have that

W [g1µν, g2µν] =W [G1MN , G2MN ] . (28)

Now we use the Stückelberg trick and promote these coordinate transformations to dynamical
fields Xµs (φ), which we can think of a embedding the fluid worldvolume into the physical
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φM Xµ1 (φ)Xµ2 (φ)

Fluid worldvolumePhysical spacetime (2) Physical spacetime (1)

Figure 6: This figure depicts how the fluid world-volume with coordinates φM is
mapped into two copies of the physical spacetime by the maps Xµ1 (φ) and Xµ2 (φ).
The red and blue lines in the right-and left-hand panels are the images of the red and
blue lines in the middle panel under the maps Xµ1 (φ) and Xµ2 (φ).

spacetime. In particular, we ‘integrate in’ the fields Xµs (φ) such that the generating functional
becomes

eW [g1µν,g2µν] =

∫

D[X1X2] e
i IEFT[G1MN ,G2MN ] . (29)

We thus have our non-equilibrium effective action IEFT[G1MN , G2MN ]. However, at this point,
our action is not guaranteed to describe a system in fluid phase. To describe a system in fluid
phase, it turns out that we must impost the partial diffeomorphism gauge symmetries

φ0→ φ0 + f (φ i) , φ i → g i(φ j) , (30)

where f and g i are generic functions of the spatial coordinates φ i for i = 1, 2,3. At leading
order in the derivative expansion, the EFT constructed with the symmetries (30) is physically
equivalent to the standard EFT with volume preserving diffeomorphisms typical of fluids [12];
see [42] for more details. A more complete discussion of the fluid EFT can be found in [42,
94,95].

2 The EFT construction for quasicrystals

We now turn our attention to the construction of an EFT for quasicrystals. Like fluids, qua-
sicrystals exist at finite temperature and enjoy conservation of the stress-energy tensor. We will
therefore construct our effective action on the fluid worldvolume, whose coordinates, φM , en-
joy the gauge symmetry (30) and we will have the embedding coordinate fields Xµs (φ).

Quasicrystals are most conveniently conceived of in terms of an embedding into a higher-
dimensional space, which we term the quasicrystal space, with coordinatesψA for A= 1,2, 3,4
10. At the level of EFT, we introduce the fields ψA

s (φ), which embed the fluid worldvolume
into the higher-dimensional quasicrystal space.11 If we are concerned with dynamics on dis-
tance scales much larger than the atomic spacing, we expect our theory to be invariant under

10As explained in the introduction, the dimension of the space spanned by the A index parametrizes the rank of
the quasicrystal. For simplicity, we consider only the situation with A= 1,2, 3,4 (e.g. rank D− d = 1) .

11Notice that unlike the fluid worldvolume, the quasicrystal space has no time-like coordinate.
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φ i
ψA

1(φ)ψA
2(φ)

Fluid (spatial) worldvolumeQusicrystal space (2) Quasicrystal space (1)

Figure 7: This figure depicts how, at fixed time φ0, the spatial submanifold of the
fluid worldvolume is mappeed into two copies of the quasicrystal worldvolume with
the embedding maps ψA

1(φ) and ψB
1 (φ). We suppress the φ0-coordinate as the qua-

sicrystal spaces have no intrinsic notion of time. Notice that unlike the mapping into
physical spacetime, the quasicrystal dimension is greater than that of the spatial fluid
worldvolume.

continuous translations in the quasicrystal space. We thus impose the shift symmetries

ψA
s →ψ

A
s +λ

A , (31)

for constants λA. Notice that because our EFT is defined on the SK contour, in the distant future
ψA

1(+∞) = ψ
A
2(+∞). As a result, there can be only one copy of the above shift symmetries

despite the fact that the field content is doubled. The coordinates ψA represent coordinates of
a four-dimensional lattice. Such lattices often enjoy certain rotational symmetries. Suppose
these rotational symmetries form the discrete subgroup S ⊂ SO(4), then we expect the EFT to
be invariant under the transformations

ψA
s →OABψB

s , O ∈ S . (32)

We are now in a position to construct the quasicrystal EFT. Let us begin by constructing
covariant terms. We are currently only interested in the classical EFT. Taking the classical
limit is most conveniently performed in the retarded-advanced basis. Thus, we will construct
covariant terms using the fields

Xµr ≡
1
2
(Xµ1 + Xµ2 ) , Xµa ≡ Xµ1 − Xµ2 , ψA

r ≡
1
2
(ψA

1 +ψ
A
2) , ψA

a =ψ
A
1 −ψ

A
2 . (33)

For ease of notation, define the matrix eµM ≡ ∂M Xµr . Then, in the classical limit, we have

βµ ≡ β0 eµ0 , ∂µX νa ≡ (e
−1)Mµ ∂M X νa , (34)

where β0 is the equilibrium inverse temperature. It turns out that βµ can be interpreted as
the local inverse temperature four-vector. Additionally, we have convariant building blocks
constructed using the quasicrystal fields. Notice that (31) leaves ψA

a invariant while shifting
ψA

r by a constant. Therefore,

∂µψ
A
r ≡ (e

−1)Mµ ∂Mψ
A
r , ψA

a , (35)

are covariant building-blocks of our EFT.
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The last consideration before we can construct the leading-order effective action is to deter-
mine how the fields transform under the classical dynamical KMS symmetries. The spacetime
embedding fields transform by

Xµr → ΘXµr , Xµa → ΘXµa − iΘβµ + i β0δ
µ
0 , (36)

and the quasicrysal fields transform by

ψA
r → Θψ

A
r , ψA

a→ Θψ
A
a − iΘβ0

∂ψA
r

∂ φ0
, (37)

where Θ is a time-reversing symmetry transformation of the ultraviolet theory.12 It will be
convenient to define the local inverse temperature scalar β ≡

Æ

−βµβµ, the fluid four-velocity
uµ ≡ βµ/β , the symmetric matrix Y AB ≡ ∂µψA

r∂
µψB

r , and the column vector (in quasicrystal
space) ZA ≡ βµ∂µψA

r .
In the derivative expansion, βµ and ∂µψ

i for i = 1,2, 3 count as zeroth order because their
equilibrium expectation values are non-vanishing constants. Therefore the effective action
may depend on arbitrary Poincaré-invariant functions of these building-blocks. The phason
building-block ∂µψ

4
r , however, has vanishing expectation value. We therefore count it as first

order in derivatives. Similarly, we count ψA
a and Xµa , which all have vanishing expectation

value, at first order in derivatives. We therefore count ∂µψ
A
a and ∂µX νa at second order in

derivatives. Thus, performing a coodinate transformation so that our EFT is defined on the
physical spacetime xµ ≡ Xµr , the leading order Lagrangian with non-trivial dynamics is

LEFT = Tµν∂µXaν + JAµ∂µψ
A
a + Γ

AψA
a +

i
2

MABψA
aψ

B
a , (38)

where

Tµν = ε(β , Y AB, ZA)uµuν + p(β , Y AB, ZA)∆µν + rAB(β , Y AB, ZA)∂ µψA
r∂
νψB

r , (39)

is the stress-energy tensor such that ∆µν = ηµν + uµuν,

JAµ = FA(β , Y AB, ZA)uµ +HAB(β , Y AB, ZA)∂ µψB
r , (40)

and Γ A and MAB are generic functions of β , Y AB, and ZA. Notice that non-derivative terms in
theψr field (but not in theψa one) are forbidden because of the shift symmetry (31). Finally,
one could include a conserved U(1) charge associated with particle-number conservation. This
will lead to a diffusive mode (e.g. mass diffusion or electric charge diffusion). In the interest
of simplicity, we will not include this U(1)-mode in our theory, but interested readers can con-
sult [42] to understand how to implement it. Importantly, the diffusive behavior of the phason
has nothing to do with the conservation of this charge or any other. In fact, as we will see, it
arises precisely because there is no conserved Noether charge associated with the quasicrystal
shift symmetry ψ4

a→ψ
4
a +λ

4.

The various coefficient functions, ε, p, rAB, FA, HAB, Γ A, and MAB, however are not to-
tally independent on one another as we have not yet imposed the (classical) dynamical KMS
symmetry. It is straightforward (though tedious) to show that the dynamical KMS symmetry
imposes the following relations:

ε+ p = −β
∂ p
∂ β

, rAB =
∂ p
∂ Y AB

, FA =
∂ p
∂ ZA

, HAB = 2
∂ p
∂ Y AB

, Γ A = −MAB ZB . (41)

12The dynamical KMS transformation of X 0
a is somewhat unusual; see [94,95] for more information.
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The first equation is nothing else that the standard thermodynamic law ε+ p = sT . With the
relations (41), this Lagrangian (38) is the most generic EFT at leading order in the derivative
expansion that is consistent with symmetries.

The effective action in Eq.(38) is the leading order result where higher-derivative correc-
tions are neglected. Those corrections would modify the dispersion relations of the collective
modes only at higher frequencies/momenta O(k4),O(ω4), etc and they could be systemati-
cally introduced if necessary. Notice also that our initial effective action 38 is Poincaré invari-
ant. This assumption can be in principle (but not necessarily) be relaxed to non-relativistic
symmetries such as Galilean invariance.

2.1 Noether’s theorem

In ordinary field theory, the relationship between symmetries and conserved quantities is very
straightforward: Noether’s theorem guarantees that there is a one-to-one correspondence
among symmetries and conserved quantities. In non-equilibrium systems, like the quasicrys-
tal; however, such a straightforward relationship no longer exists [96, 97]. To see that this
is so, consider the shift symmetries in (31). Are there conserved quantities associated with
them? If there are, this is quite bad as the only fundamental continuous symmetries that exist
in the ultraviolet theory are the Poincaré symmetries. As a result, the only conserved quantities
should be the stress-energy tensor Tµν.

Ignoring the physical interpretation of our theory, since the Lagrangian (38) possesses the
shift symmetries (31), Noether’s theorem guarantees that the existence of currents that are
conserved when the the equations of motion are satisfied. In particular, they are given by

KAµ =
∂LEFT

∂ (∂µψA
r )

. (42)

However, notice that (I) every term in LEFT and hence every term in KAµ contains at least one
a-type field and (II) when the equations of motion are satisfied, all a-type fields vanish. Thus,
when the equations of motion are satisfied, KAµ vanishes. Thus, it is unphysical and the fact
that it is conserved contains no physical content. In this way, Noether’s theorem can be satisfied
at the level of mathematics, while containing no physical significance. Other examples of non-
equilibrium EFTs that enjoy shift symmetries and no corresponding Noether current can be
found in [96,97].

Now we contrast this result with the conservation of the stress-energy tensor. Notice that
the equations of motion for Xµa give

∂νTµν = 0 . (43)

Thus, the stress-energy tensor is conserved, as desired. The fact that Tµν is conserved, how-
ever, is not a consequence of Poincaré symmetry. To see that this is so, notice that Xµa is a
Lorentz covariant object.13 As such, it is consistent with Poincaré symmetry to include a term
of the form γµXµa , where γµ is some Lorentz four-vector constructed from r− t ype fields. The
inclusion of such a term would yield the equations of motion

∂νTµν = γµ , (44)

thereby killing the conservation of energy and momentum. The way we forbid the inclusion
of Xµa without derivatives is by gauging spacetime translation symmetry. Recall that in the
construction of the fluid EFT, we had to introduce two metric tensors g1µν and g2µν. Because

13Recall that there is only one copy of the global symmetry group because of the future-time SK boundary
conditions. As a result, X µa is translation-invariant.
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gauge symmetries (in this case diffeomorphisms) are local in spacetime, we are allowed to have
two copies of them; that is, the future-time SK boundary condition, Xµ1 (+∞) = Xµ2 (+∞),
permits two independent diffeomorphism symmetries as long as they vanish in the distant
future. With this double copy of diffeomorphism gauge symmetry, Xµs become Stückleberg
fields and can only appear in the forms

GsMN (φ) =
∂ Xµs (φ)
∂ φM

gsµν(Xs(φ))
∂ X νs (φ)

∂ φN
. (45)

Then, to recover the Lagrangian (38), we ultimately remove the metric sources by fixing
gsµν = ηµν. Thus, Xµa is not a permitted building-block and the stress-energy tensor is con-
served.

Finally, it is worth commenting on what happens if we allow a non-trivially conserved
current to exist that corresponds to translations in quasicrystal space. This can be accomplished
by introducing external source U(1) gauge fields corresponding to the shift symmetries (31)
and then setting these source fields to zero at the end. This will have the effect of setting
Γ A = 0, meaning that the equations of motion for ψA

a yield

∂µJAµ = 0 . (46)

The conservation of J iµ for i = 1, 2,3 (i.e. the currents associated with phonons) leads to
the phenomenon of so-called “second sound” in the limit of zero Umklapp scattering [97].
This is to say that in addition to the usual transverse and longitudinal sound waves that exist
in solids and quasicrystals, there is an additional hydrodynamic sound mode that propagates
independently. When J iµ are not conserved, this second sound mode becomes diffusive at
low momentum; Γ i sets the momentum scale below which diffusion occurs. If we are only
interested in momentum states below this momentum scale, then we may integrate out ψi

r/a.

At leading order in the derivative expansion, the equations of motion for ψi
r/a yield

Z i = 0 , ψi
a = 0 . (47)

The first equation can be solved to give ψi
r = α

i(φ j), for arbitrary spatial functions αi . Us-
ing the partial diffeomorphism symmetry of the fluid worldvolume (30), we may gauge-fix
αi = φ i , that is ψi

r = φ
i . After integrating out the solid phonon fields ψi

r/a and gauge-fixing,
we find that “fluid worldvolume” has residual diffeomorphism symmetry

φ0→ φ0 + f (φ i) , φ i → φ i +λi , (48)

where f is a generic function of the spatial coordinates and λi are constants. Since our world-
volume has reduced symmetry, it no longer corresponds to a fluid in any way; we will therefore
re-name it the “solid worldvolume”. Now the remaining fields are

Xµr (φ) , Xµa (φ) , ψ4
r (φ) , ψ4

a(φ) . (49)

The first two fields describe the embedding into the physical spacetime and the last two de-
scribe fluctuations in the quasicrystal space perpendicular to the solid worldvolume and hence
correspond to the phason degrees of freedom.14

Since we have integrated out ψi
r/a, we lose some building blocks, namely Z i , and ψi

a,

whereas other are altered like Y AB. In particular we find that Y AB is replaced by yAB, where15

y i j = (e−1)iµη
µν(e−1) jν , y4i = y i4 = (e−1)iµ∂

µψ4
r , y44 = ∂µψ

4
r∂
µψ4

r . (50)

Thus, our new effective Lagrangian is identical to (38) except with the replacements

Z i → 0, ψi
a→ 0, Y AB → yAB. (51)

14Notice that we are assuming the quasicrystal space has one additional dimension beyond the physical spatial
dimensions for the sake of simplicity.

15Recall that eµM ≡ ∂ X µr /∂ φ
M .
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2.2 Phasons from symmetries with no Noether currents

It is often claimed that at low momentum, phonons propagate via waves whereas phasons
are diffusive. The arguments for why phasons should be diffusive, however, are often quite
vague or depend entirely on empirical observations. Here we will see that the low-momentum
behavior of phasons given by our non-equilibrium EFT are diffusive. We will then recover the
empirically verified result that above a certain momentum, phasons yield propagating waves.

The quickest path to understand the dispersion relation of phasons is as follows. Consider
the Lagrangian (38) and suppose that only the phason is excited, that isψ4 is free to fluctuate,
while Xµ and ψi remain locked in place. Then the linearized equation of motion for ψ4

a is

H44 ∂µ∂
µψ4

r +
∂ F4

∂ Z4
∂ 2

0ψ
4
r −M44 ∂0ψ

4
r = 0 . (52)

Transforming to Fourier space, we have ∂0→−iω and ∂i → ki , yielding

ω2 + i γω= v2k2 , (53)

where

γ≡
M44

H44 − ∂ F4/∂ Z4
, v2 =

H44

H44 − ∂ F4/∂ Z4
. (54)

Thus, at low momentum the phason is diffusive, whereas at high momentum it yields a propa-
gating wave. Notice that the M44 term, producing the finite relaxation time ∼ γ−1 comes from
the non-hermitian part of the action (38) and it is therefore directly connected to dissipation16.
On the contrary, the H44 term can be considered as an additional elastic modulus coming from
phason elasticity, as in the hydrodynamic treatment of [43].

We can see that the diffusive behavior follows directly from the fact that J4µ is not con-
served in the following sense. In the previous subsection, we saw how even though the La-
grangian is invariant under the quasicrystal shift symmetries, there need not be a correspond-
ing conserved current as long as ψA

a is an allowed building-block. However, if we require that
ψa always appear with derivatives, then we do have a conserved current, namely JAµ. Sup-
pose for the sake of argument, we forbid the use of ψ4

a as a building block of the EFT such
that J4µ became conserved. Then we would have to fix M44 = Γ 4 = 0. This yields γ = 0,
so the phonon dispersion relation becomes ω2 = v2k2, that is it is a propagating wave with
no gap. Thus, the fact that at low momentum the phason is diffusive is a direct result of the
absent Noether current associated with the shift symmetry ψ4

s →ψ
4
s +λ

4. Just by computing
the equations of motion from the action (38), we obtain:

∂µJ4µ = −Γ 4 ∼ M44 , (55)

which confirms explicitly the previous arguments.

An equivalent statement often mentioned in the literature, is that the phason shifts leave
the free energy unchanged but they do not commute with the hamiltonian of the system [62].
In particular, letting P4 be the generator of the quasicrystal shift symmetry, we expect that




[H,P4]
�

∼



H†P4 −P4H
�

∼
d



P4

�

d t
∼ M44 , (56)

which follows immediately from the non-Hermitian property of the last term in the action
(38). Again, notice how this last non-Hermitian term, which is the key for the diffusive nature
of the phason and the full story, makes sense only at finite temperature/dissipation.

16See [91] for another field theory with this property.
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Figure 8: The holographic picture. Local (gauge) symmetries in the bulk map into
global symmetries in the boundary field theory. Global symmetries in the bulk (e.g. a
global rotation) correspond to symmetries without Noether currents/charges in the
boundary field theory.

In the above discussion, we have neglected interactions between the phonon and phason
degrees of freedom. These terms merely serve to complicate matters and do not change the
form of the the phason dispersion relation. However, they will change the numerical values of
τ and v in the dispersion relation, so if one wishes to make precise predictions, these interac-
tions ought to be considered. Such interactions can be included by considering all terms from
(38) and are systematically treated in the hydrodynamic description of [43].

2.3 A brief comparison with holographic models

In recent years, in the holographic community (see [25] for a review), there has been fervent
activity in understanding and modelling the spontaneous breaking of translational invariance
and the corresponding elastic properties of the dual field theories, started with the seminal
work [98]. Essentially for the sake of simplicity, a lot of attention has been devoted to the
so-called homogeneous models such as axion-like models [99,100] and Q-lattice models [101].

In these models, spacetime translations P: x i → x i+ai are broken together with an inter-
nal and global shift symmetry S: φ I → φ I + bI to the diagonal subgroup P×diag S. Thanks
to this symmetry-breaking pattern, the matter stress tensor and the resulting geometry do not
display any coordinate-dependence and thus are perfectly homogeneous (making the com-
putations much simpler). There are a number of interesting phenomena that emerge in this
model. In particular, a new diffusive Goldstone boson has been observed in the longitudinal
spectrum of the excitations [35,36,38]. Moreover, it has been explicitly proven that the exis-
tence of such a mode is a direct and unique consequence of the existence of this broken global
symmetry [34,41] living in the extra-dimensional bulk.

Although the dispersion relation of this mode can be captured by an appropriate hydrody-
namic description, its fundamental nature remains elusive. Only recently, [37] has revealed
several striking similarities between the homogeneous holographic models and the physics of
quasicrystals, identifying this additional excitation as the diffusive phason mode.

We are now in the position to understand the holographic results and connect them with
the finite-temperature EFT description. The key-point in our discussion revolves around the
role of the internal shift symmetry (31). Similar such symmetries exist in the standard EFTs
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for ideal fluids and zero-temperature solids [12]; however (and very importantly) our holo-
graphic models do not implement the same number of symmetries in the dual field theory side
exactly because the internal shift symmetry is not gauged in the bulk [102]. In other words,
they do not exactly represent the gravity duals for the field theories of [12]. The point that this
internal symmetry is global in the bulk reflects in the fact that the dual symmetry is a symme-
try of the dual field theory but it does not have any associated Noether current nor conserved
Noether charge (see Fig.8). It was suggested in [103] that symmetries like this one have to be
considered as outer automorphisms of the operator algebra of the dual field theory. This point
deserves further investigation.

In any case, the global nature of the bulk symmetry and the absence of an associated
Noether current are fundamental in determining the low momentum diffusive nature of the
phason mode. Several comments are in order.

• The dynamics which we are discussing and which appear in these specific holographic
models are strictly realized only at zero temperature. In the holographic scenario, at
T = 0 there is no fingerprint left of the global symmetry in the bulk. The phason is
totally frozen, in a way similar to the transverse phonons in a liquid at small wavevector.
The same result is obtained from the EFT under investigation.

• As already emphasized, the phason shift symmetry is not associated to any Noether
charge nor any conserved current. The resulting diffusive mode is a new type of Gold-
stone and not the standard result from a conservation equation + Fick’s constitutive
relation. The physical implication is that the diffusive mode under investigation does
not correspond to the standard mass diffusion in solids as envisaged for example in the
standard hydrodynamic treatment [104]. Also, it is quite unclear to us how the phasons
dynamics and in particular the phasons jumps can be interpreted as some kind of defects
motion17.

• The way to restore the existence of a Noether current and an associated conserved charge
is by mean of gauging the phason shifts. Interestingly, this has been already discussed
and realized in holographic in [102]. Once the symmetry is gauged, we do expect the
phason to become a fully propagating mode. In other terms, the gauging of the sym-
metry coincide with setting M44 and consequently γ to zero. It would be interesting to
understand if this is what happens in other aperiodic crystals such as modulated lattices,
where the phason is indeed propagating and not diffusive.

2.4 Restoring periodicity: incommensurate-commensurate transitions

The phason field ψ4
s is invariant under a shift symmetry ψ4

s → ψ4
s + λ

4. This symmetry in-
dicates that the free energy describing the quasicrystal is left unchanged by the atomic rear-
rangements associated with shifting ψ4

s by a constant. These atomic rearrangements do not
cost any energy as long as the worldvolume associated with the quasicrystal slices through
the higher-dimensional quasicrystal space at an incommensurate angle. Suppose now that
the angle is commensurate, i.e. is a rational number times 2π. Then, the resulting equilib-
rium configuration should be periodic, i.e. we now have a crystalline solid as opposed to a
quasicrystal. Suppose further that the rational number that multiplies 2π is the ratio of two
co-prime integers that are much greater than one. Then, the angle is ‘almost incommensurate’
in the sense that it should be very difficult to distinguish from a truly incommensurate angle.

17In incommensurate structures, this possibility could be related to the dynamics of the soliton degree of freedom
close to commensurability (e.g. Frenkel Kontorova model). In such limit, the incommensurate structure can be
described by a commensurate one plus a single dynamical and mobile solitonic defect.
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Physically, this means that, although the atoms exhibit a repeating pattern, the periodicity of
the repetition is very large compared with the atomic spacing. Thus, shifting ψ4

s should cost
some free energy, but not very much. In the limit the angle becomes incommensurate, the
periodicity of the lattice goes to infinity (that it is loses its periodicity) and the shift of ψ4

s by a
constant leaves the free energy invariant. As a result, when there is a (large) periodic structure
to the atomic positions, we expect

ψ4
s →ψ

4
s +λ

4 (57)

be an approximate symmetry. Thus, ψ4
s has a small gap, whose smallness is protected by this

approximate symmetry. As a result, the EFT may have a weak dependence on ψ4
r without

derivatives.

With this shift symmetry explicitly broken, the effective action looks identical to (38) ex-
cept that the coefficient function ε, p, rAB, FA, HAB, Γ A, and MAB may now freely depend onψ4

r .

From a phenomenological point of view, the loss of periodicity can be viewed as an
incommensurate-commensurate transition in which the phason is indeed known to acquire
a finite gap and disappear from the hydrodynamic spectrum. In the commensurate phase, the
structure becomes fully periodic with a single well-defined lattice wave-vector and the phason
is not free anymore to slide around.

The physics of commensurate-incommensurate phase transitions is very rich [105] and
to the best of our knowledge has been never tackled with modern Schwinger-Keldysh EFT
techniques. We plan to consider this problem in the near future.

2.5 A universal relation between pinning frequency, damping and phason dif-
fusion constant

In this subsection, we consider a slightly different (and simpler) scenario in which both trans-
lations and the phase shift symmetry are softly broken by an external source. The typical
example is given by the role of impurities in incommensurate charge density waves [106].
Impurities prevent the free sliding of the phason mode which gets pinned. In other words,
phase shifts now cost energy and they are no longer associated to a hydrodynamic mode.

Let us start from the EFT action (38), which is invariant under the shift symmetry
ψA→ ψA + λA together with standard spacetime translations xµ → xµ + cµ. Under the shift
symmetry, ψA

a does not transform but ψA
r shifts by a constant. Likewise, by performing a

spacetime translation, Xµa does not transform but Xµr does. Therefore, to break the symme-
tries explicitly it is sufficient to add terms which are not derivatives in ψA

r/a, Xµr/a. At leading
order, the most relevant terms we can write are

Lbreaking = rµν X rµ Xaν + ρ
ABψA

r ψ
B
a − sµνẊ rµXaν −σABψ̇A

rψ
B
a + . . . , (58)

which can be further simplified, by assuming the simplest tensorial structure, into

Lbreaking = ω
2
0 Xµr Xaµ + ω

2
1ψ

A
r ψ

A
a −Ω0Ẋµr Xaµ −Ω1ψ̇

A
rψ

A
a + . . . (59)

Importantly, to mimic what happens in the holographic models we need to break explicitly
shift symmetry and spacetime translations down to their diagonal subgroup. This could be
only achieved by asking that

ω0 = ω1 , Ω0 = Ω1 , (60)

and the structure of the symmetry breaking term is more constrained and given by:

Lbreaking = ω
2
0

�

Xµr Xaµ +ψ
A
r ψ

A
a

�

−Ω0(Ẋ
µ
r Xaµ + ψ̇

A
rψ

A
a) . . . (61)
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Given the structure of this term, this will introduce a constant “mass” term ω2
0 in both the

dispersion relation of the phonons and of the phason. The phonon dispersion relation is now

ω2 + iΩ0ω = ω
2
0 + V2 k2 , (62)

where the symbol V determines the generic speed of propagation (which will be different
accordingly to the direction of propagation). The original massless Goldstone modes acquire
a finite mass ω2

0 and damping Ω0 as expected. In the same spirit, the dispersion relation for
the phason becomes

ω2 + i γ̄ω= v2k2 + ω2
0 , (63)

where γ̄ ≡ γ + Ω0 and γ is the ordinary phason damping coefficient. Notice that the same
“mass” term appears for the phonon and the phason. Expanding the solution at small momenta
and small explicit breaking, ω0� 1, the diffusive phason acquires a finite damping Ω:

ω ≡ − iΩ + O(k2) = − i
ω2

0

γ̄
+ O(k2) , (64)

which is determined by

Ω ≡
ω2

0

γ̄
. (65)

Using the fact that the diffusive constant of the phason is given by D = v2/γ̄, we finally find
that

Ω =
ω2

0 D

v2
+ . . . , (66)

which can be compared directly with the holographic results and in particular with the conjec-
ture of [41]. The . . . include all the corrections which are higher order in the explicit breaking
scale. Borrowing the notations of [41], we can write

Ω = G m2Ξ = χππω
2
0Ξ , (67)

which, using D = GΞ, becomes

Ω = χππω
2
0

D
G
=
ω2

0 D

v2
=
ω2

0 D

V2
, (68)

as derived above.
In this last step, we have used a very non-trivial relation between phason elasticity and phonons
elasticity which arises (again) because of the intertwined symmetry breaking pattern. As al-
ready stressed several times, due to the preservation of the diagonal subgroup between space-
time translations and internal phason shifts, a combination of the two transformations leaves
the system invariant. In other words, the diagonal group D ≡ (x → x + a) × (φ → φ − a) is
never broken, nor spontaneously nor explicitly. Now, notice that a transformation of the type
(φ → φ + b) is a phason shift with its associated phason elastic modulus, while (x → x + a)
is a standard phonon displacement associated to the common elastic moduli. In the end, this
implies a close relation between the phasons and the phonons elastic moduli which leads to
the identification of the phonons and phasons speed, v = V . Not surprisingly, this interplay
can be verified directly in the holographic models with pure SSB of translations and internal
shifts [107,108]. From the holographic perspective, a phonon shift is associated to spacetime
translations and it is encoded in the shear component of the graviton, hx y . The response in the
stress tensor Tx y proportional to that is the phonon shear modulus. Nevertheless, one can also
engineer a phason shift by simply using a scalars configuration of the type φ I = αεI J x J . This
time, the response in the stress tensor characterizes the phasons elastic modulus. Performing
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these procedure, one finds that the response to a spacetime translations is exactly the opposite
of that to a phason shift, which is nothing else than the statement that the diagonal group
is preserved. Importantly, this feature is already encoded in the Stueckelberg nature of the
scalars φ I and can be understood in terms of gravitational dynamics by looking at the gauge
invariant ”strain”, which is indeed a combination of metric strain and scalar strain.

Finally, it is interesting to notice that this universal relation has already appeared implicitly
in the context of incommensurate structures in [81].

In summary, the universal relation found in the holographic models can be robustly derived
using EFT techniques at finite temperature. Moreover, the fact that the relaxation rate of the
phason is proportional to the pinning mass of the phonons is clearly related to the symmetry
breaking pattern preserving the diagonal of phase shifts and spacetime translations. In case
the two breakings were completely independent and not induced by the same breaking term,
those two quantities would not be related by any means.

3 Discussion

In this work we have built a finite temperature effective field theory for quasicrystals starting
from an action principle and exploiting solely the symmetries of the system. Our motiva-
tion was to provide a deeper and formal understanding of the diffusive nature of the phason
mode at large wavelengths, which goes beyond the heuristic and phenomenological arguments
spread in the literature. Employing Schwinger-Keldysh techniques and the superspace formal-
ism, we derived the diffusive-to-propagating dispersion relation of the phason mode typical of
quasicrystals and observed experimentally. From a technical perspective, the diffusive dynam-
ics is a direct consequence of the fact that phason shifts are symmetries of the system with no
associated Noether current nor conserved charge. This is consistent with the EFT requirements
only at finite temperature and in the absence of periodicity. The curious fact that phason shifts
are not standardly realized symmetries coincides with the statement that they leave the free
energy invariant but they do not commute with the hamiltonian of the system.

To the best of our knowledge, our work represents the first description of quasicrystals from
an action principle and it is complementary to the older hydrodynamic formulation of [43].
Moreover, it provides a robust field theory explanation to the recent holographic results [34]
revealing the existence of a diffusive Goldstone mode associated to the spontaneous breaking
of a global bulk symmetry.

Finally, using the Schwinger-Keldysh techniques for states with broken translations, we
were able to derive formally the universal relation between the phason relaxation rate and
the pinning mass of the phonons found in holography [41]. From our construction, it appears
clear that this relation is a direct manifestation of the locked-in breaking of spacetime transla-
tions and phase shifts. How general and necessary is to retain this symmetry breaking pattern,
with their diagonal subgroup preserved, it is not clear to us and it definitely represents an
important open question.

Our results represent another beautiful application of the recent finite temperature EFT
formalism, which extends the previous techniques to the more natural and ubiquitous finite-
temperature systems. Despite the practical use for quasicrystal systems, there are several for-
mal questions floating around our discussion such as the role of the Goldstone theorem for
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dissipative finite-temperature systems, the nature of the corresponding Goldstone bosons and
the boundary interpretation of global symmetries in the bulk within the holographic construc-
tions.

As always, there are several questions left for the future. Among them, it would be interest-
ing to study the consequences of gauging the phason shifts in relation also to the holographic
model of [102], to understand the propagative nature of the phason dynamics in modulated
structures and to formalize from an action principle the physics of incommensurate phases
and the commensurate-incommensurate transition at finite temperature.

We conclude by informing Charles de Gaulle that the only way to govern a country which
has 246 varieties of cheese is to use effective field theories.
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