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Abstract

We analyze and discuss convergence properties of a numerically exact algorithm tailored
to study the dynamics of interacting two-dimensional lattice systems. The method is
based on the application of the time-dependent variational principle in a manifold of
binary and quaternary Tree Tensor Network States. The approach is found to be competitive
with existing matrix product state approaches. We discuss issues related to the convergence
of the method, which could be relevant to a broader set of numerical techniques used
for the study of two-dimensional systems.
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Figure 1: Illustration of binary TTNS structure for a 4x4 lattice. The physical degrees
of freedom are on the topmost layer and the top node is in the bottom-layer of the
figure.

1 Introduction

The exact simulation of the non-equilibrium dynamics of interacting quantum lattice systems
is generally an unsolved challenge, due to the exponential growth of the Hilbert space with
the size of the system. Tensor network state (TNS) methods allow for a significant extension
of accessible length scales by trading in the exponential cost in system size for an exponential
cost in time. This becomes possible due to a reduction of the exact Hilbert space in terms of a
structured product of low-order tensors, referred to as a tensor network. The set of the states
expressible by a given tensor network spans only a small region in the full Hilbert space, but the
coverage can be improved systematically by increasing the number of variational parameters,
i.e. the bond dimension. For partitions of the lattice that lead to simply-linked tensor network
parts, the logarithm of the bond-dimension gives an upper bound to the entanglement entropy.
Since the entanglement of a generic system after a global quench grows linearly with time
[1–3], the accessible timescales are limited. In one-dimensional systems, these timescales are
often comparable to those attainable in experimental realizations [4], however going to higher
spatial dimensions becomes extremely challenging due to a number of reasons.

While in one-dimensional systems, matrix product states (MPS) are known to efficiently
represent area-law entangled states (which includes ground-states of gapped one-dimensional
systems), this does not hold in two spatial dimensions [5–7]. The generalization of MPS to
two-dimensional lattices is called Projector-Entangled Pair States (PEPS) [8], which provides
an efficient representation of two-dimensional area-law entangled states [9], but PEPS are
challenging to manipulate numerically [10] (see also Ref. [11] for a recent review).
Approximations that are hard to control are typically used in PEPS algorithms in order to
tame the computational effort. Even with such approximations, the computational scaling is
usually unfavorably steep. Nonetheless, PEPS-derived methods are state-of-the art numerical
techniques for computing ground-states of two-dimensional systems [12]. Extensions of PEPS
methods to the time-domain have been recently developed, however the accessible timescales
are extremely limited [13–16]. An alternative approach is to use tensor network structures,
which are more numerically tractable. One way to achieve this is to map the two-dimensional
lattice into a one-dimensional chain and apply MPS methods, which are adjusted to handle
the long-ranged interactions that arise from the mapping [17–22]. Ref. [20], for example,
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Figure 2: Same as Fig. 1 but for a quaternary TTNS.

introduced an algorithm which expresses the propagator as a matrix product operator (MPO)
acting on the states encoded as MPS. The application of this approach to two-dimensional
lattices shares the very limited timescale of the more recent approaches based on PEPS, since
the advantages in the computational scaling of simpler tensor networks are balancing out the
disadvantages in non-optimal representation of entanglement by the tensor network structure
for the problem at hand. A novel development is the use of artificial neural networks (ANN)
to encode the wavefunction and its time-evolution [23]. They have been shown to perform
competitively with state-of-the art TNS techniques in recent applications to two-dimensional
systems [24,25]. However, much remains to be learned about the possibilities and limitations
of such methods.

It is important to explore computationally tractable tensor network structures other than
MPS, since they may enable progress in the computation of the exact dynamics of interacting
two-dimensional systems. For this purpose, in this work we propose to employ Tree Tensor
Network States (TTNS), which encompass all loop-free tensor network states. While similarly
to MPS, hierarchical, tree-like TTNS can only efficiently encode states with area-law
entanglement in one dimensional systems they offer a more robust description of ground states
of critical one dimensional systems [26, 27], and therefore might provide more flexibility in
encoding complex entanglement structures in two and higher dimensional systems. TTNS are
used in the context of interacting lattice systems [28–36], but they feature more prominently
in applications like electronic structure methods [37–39] or molecular quantum dynamics
in the chemical physics literature. In this context they are called the Multi-Configuration
Time-Dependent Hartree (MCTDH) method and its multi-layer generalization (ML-MCTDH)
[40–42]. In ML-MCTDH, the time-dependent variational principle [43,44] (TDVP) is applied
to a TTNS as a variational ansatz for the wavefunction. Up to differences in the numerical
integrations scheme, these methods are similar to the more recent applications of the TDVP
tailored specifically to matrix product states [45–49].

The TDVP applied to TNS has been discussed as a method that may enable the accurate
description of hydrodynamic transport in non-integrable systems when used with a moderate
bond dimension [50], but was shown to not be a robust approximation for generic systems
[51]. Several tensor network techniques have been designed to circumvent the entanglement
growth on intermediate timescales with the goal of a reliable approximation to the long-time
dynamics [52–58]. Despite promising results, the stability of such approximations for generic
systems, especially beyond one dimension, is not sufficiently established at this point. In this
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work, we thus consider the TDVP applied to TNS as a numerically exact technique, allowing
to compute the dynamics of a system within a controllable accuracy up to some finite time,
and generalize the algorithms of Refs. [48, 49, 59] to general TTNS. We note in passing that
such algorithms have been used to find the ground state of a two-dimensional spin system [60]
and to obtain the dynamics of a zero-dimensional model [61]. Recently, similar versions of
this algorithm were reported in detail in Refs. [62, 63], which we became aware of during
the preparation of this manuscript. While in our work we focus on two-dimensional systems,
Ref. [62] showcases a promising application of a TTNS as an impurity-solver, which is an
effectively zero-dimensional problem. On the other hand, Ref. [63] proves the algorithm’s
exactness property as well as a linear error-bound for the total time evolution in the time-step.

The purpose of this work is to investigate the performance of TTNS as a numerically exact
method to study the dynamics of two-dimensional systems. In Sec. 2, we introduce the main
concepts of TTNS along with the TDVP before presenting the algorithm and commenting on
some caveats which are relevant to the applications of the TDVP. We benchmark the method
on an exactly solvable, non-interacting two-dimensional system, and compare our approach
to previously published results for two-dimensional interacting hardcore bosons in Sec. 3.
Notably, we identify the reachable timescales and investigate convergence properties of the
algorithm alongside with practical considerations regarding how to assess the accuracy of the
results. We conclude by placing the results in the context of existing techniques and recent
developments in Sec. 4.

2 Theory

Tensor network states represent a pure state, |Ψ〉=
∑

s1...sN
Ψs1...sN

|s1 . . . sN 〉, of a lattice system
as a product of tensors {T}. Each tensor Ti may have a number of indices corresponding to
physical degrees of freedom and also auxiliary indices which do not correspond to physical
degrees of freedom. Consider the Schmidt decomposition, corresponding to a bipartition of
the lattice into a set of sites A and its complement B, Ψs1...sN

=
∑

i, jφ
A
isA
λi jφ

B
jsB

with λi j = δi jλi .
This expression can be also understood as a product of three tensors, where a single auxiliary
index of each tensor is shared with the diagonal matrix of the Schmidt coefficients (or singular
values) λi . In a general tensor network any auxiliary index will appear on two tensors, and
summation over the common index implies contraction of the two tensors. Tensor networks
can be represented diagrammatically, see Fig. 3a, where the nodes correspond to tensors and
the links, dubbed legs in the following, indicate a shared index between the two tensors. Any
tensor network for which the legs do not form closed loops is considered a Tree Tensor Network
(TTN), with matrix product states (MPS) serving as a prominent special case, which is mostly
applicable for one-dimensional lattices. Here, we focus on more general TTNS with a simple
hierarchical structure: n-ary TTNS in which every node has one parent node and n child nodes,
except for those in the top and bottom layers. We group all physical degrees of freedom into
the bottom layer such that all layers above the bottom layer contain only nodes with auxiliary
legs (see Figs. 3a)–2 for illustration). Without restricting the generality, in this Section we
will limit the discussion to binary TTNS. In such TTNS, a general node represents a third
order tensor Λ[l,i], where l denotes the layer of the tree to which the node belongs, and i
enumerates the nodes in that layer. Each such node has two child nodes. Due to the lack
of loops in the tensor network, the physical degrees of freedom separate naturally into two
groups from the perspective of a node Λ[l,i]: those reachable by only descending in the tree
towards the bottom layer, i.e. those in the subtree of Λ[l,i], and their complement. We define
the number of non-zero singular values of the Schmidt decomposition along this bipartition
as the rank r of node Λ[l,i]. For a state with volume law entanglement, the exact rank r will
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a) b)

Figure 3: a) A binary TTNS for an 8-site system. The black dots correspond to
physical sites and the square boxes with n legs represent n-th order tensors. b)
Application of the QR decomposition to tensors in the TTNS. The upper and lower
diagram represent the same TTNS. The arrow on the link indicates the direction along
which the tensor is orthonormalized.

generally scale exponentially with the system size. Thus we introduce a cutoff in the number of
kept singular values, namely the bond dimension of the tree χ. In the following, we consider
a TTNS of rank χ, which implies that all its tensors Λ[l,i] have a rank of min

�

χ, dN(l,i)
�

, where
d denotes the local Hilbert space dimension and N(l, i) is the number of sites in the subtree of
Λ[l,i]. The set of TTNS with a given rank χ constitutes a smooth manifold of states Mχ . The
computational complexity for a binary TTNS is O

�

N log Nχ3
�

in memory and O
�

N log Nχ4
�

in computation where N is the number of physical degrees of freedom.
We next present a method for time-propagation on the manifoldMχ of tree tensor networks

with tree rank χ using a time-dependent variational principle (TDVP) [43, 44]. We start by
introducing a few properties and manipulations of TTNS and then describe TDVP and its
application to TTNS. We finally highlight important technical details in the use of the TDVP.

2.1 TTNS - Basics

A TTNS of a rank χ is unique up to unitary transformations. This can be seen by inserting a
unit matrix between two linked nodes of the tree

Λ[l,i]α1α2α3
Iα3β1

Λ
[l+1, j]
β1β2β3

= Λ[l,i]α1α2α3
U∗α3γ

Uγβ1
Λ
[l+1, j]
β1β2β3

= Λ̃[l,i]α1α2γ
Λ̃
[l+1, j]
γβ2β3

, (1)

where repeated indices are summed over, I represents a χ × χ unit matrix and U∗ indicates
complex conjugation of the corresponding tensor. This property can be exploited to isometrize
the tree around any of its nodes [32, 64], which is a generalization of the mixed canonical
representation of MPS. To illustrate this concept, consider the isometrization about the top-
node. In this perspective, every tensor in the tree, except the top-node, represents a truncated
orthonormal basis in the space of the bases of child nodes, called isometry in the language
of real-space or tensor RG. Through recursion, a structured, incomplete basis for the physical
lattice sites is obtained. The coefficients for these basis functions are contained in the top
node. Any general TTNS can be brought into this form using a sequence of QR decompositions.
Practically, one applies QR factorization Λ[l,i]α1α2α3

= Q[l,i]
βα2α3

R[l,i]
βα1

with Q[l,i]∗
βα2α3

Q[l,i]γα2α3
= δβ ,γ, for
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a) b)

Figure 4: A TTNS isometrized about node [1,1], a), and its shorthand notation,
b). The thick black bars on the environment tensors represent the set of physical
sites belonging to each of the environment tensors. Note that orthogonality of the
environment tensors in b) is not indicated by arrows on the legs, but implicit in their
definition.

each of the nodes proceeding layer by layer from bottom to top and absorbing the matrices R
into the parent node after each factorization (see also Fig. 3b). Graphically, the direction along
which the tensors are orthogonalized is indicated by an arrow on the linking leg. Isometrization
around a specific node in the tree translates into arrows pointing in the direction of this node
on any (direct) path between the node and a physical site, see Fig. 4b). We may rewrite the
TTNS in the following manner:

Ψ[l, i]s = Λ
[l,i]
α1α2α3

V [l−1,p(i)]
α1s1

V [l+1,c1(i)]
α2s2

V [l+1,c2(i)]
α3s3

. (2)

Here, we take the TTNS to be isometrized about node [l, i], indicated as Ψ[l, i], and an

environment tensor V
[l±1,p(i)/c j(i)]
α js j

is the contraction of all tensors between the legs of node

Λ[l,i], labeled by α j , and the physical sites s j , linked by paths from leg α j that do not cross node
Λ[l,i]. c j(i) and p(i) are placeholders for the child and parent of node Λ[l,i], respectively. We
note in passing that similarly to MPS methods, such a contraction is never explicitly carried out,
and we only use it for notational convenience. For future reference, we define projectors onto
environment tensors of the lower and upper levels in the hierarchy:
�

Ω[l+1,c j−1(i)]
�

s′js j
= V

[l+1/c j−1(i)]
α js′ j

V
[l+1/c j−1(i)]∗
α js j

and
�

Ω[l−1,p(i)]
�

s′1s1
= V [l−1/p(i)]

α1s′1
V [l−1/p(i)]∗
α1s1

. A

useful property of the environment tensors is their orthogonality, which allows for efficient
calculation of certain physical quantities. For example, if the state is isometrized about node
[l, i], the norm of the state is given by 〈Ψ[l, i]|Ψ[l, i]〉 = Λ[l,i]∗α1α2α3

Λ[l,i]α1α2α3
since

V
[l±1,p(i)/c j(i)]∗
α js j

V
[l±1,p(i)/c j(i)]
α′js j

= δα′jα j
. To improve the readability of the presentation, in the

following we will omit the indices specifying the elements of the tensors.

2.2 TDVP

The time-dependent variational principle generates classical dynamics in the space of variational
parameters, α, described by the Lagrangian

L[α, α̇] = 〈Ψ[α]| i∂t |Ψ[α]〉 − 〈Ψ[α]| Ĥ |Ψ[α]〉 . (3)

The associated action is minimized along a path on a certain variational manifold, which in
our case is the manifold of TTNS with tree rank χ, Mχ . The principle of least-action yields
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the following equation of motion,

i∂t |Ψ[α]〉= PT (Ψ[α])Ĥ |Ψ[α]〉 , (4)

where PT (Ψ[α]) is the projector onto the tangent space of the manifold Mχ at the point Ψ[α].
An expression for PT (Ψ[α]) was derived for general binary TTNS in Refs. [65, 66]. Here, we
will use an additive splitting of PT (Ψ[α]), in an analogy to those presented for TTNS with only
two layers, i.e. Tucker tensors [59] and matrix product states [48,49], respectively. Note that
the latter two TNS are subclasses of a general TTNS and that the expressions for the projector,
PT (Ψ[α]), is not restricted to binary TTNS and is valid for any TTNS with straightforward
modifications. In particular,

PT (Ψ[α]) = P0 +
∑

[l,i]

P[l,i]+ − P[l,i]− , (5)

with

P0 = Ω[1,1]Ω[1,2] (6)

P[l,i]+ = Ω[l+1,c1(i)]Ω[l+1,c2(i)]Ω[l−1,p(i)] (7)

P[l,i]− = Ω[l,i]Ω[l−1,p(i)]. (8)

Inserting this splitting into (4) leads to a set of projected Schrödinger equations for the tensors
Λ[l,i] and matrices R[l,i]. For example under the action of P[l,i]+ (see also Eq. (5)):

i∂tΨ[α] = iΛ̇[l,i](V [l−1,p(i)]V [l+1,c1(i)]V [l+1,c2(i)]) + iΛ[l,i]∂t(V
[l−1,p(i)]V [l+1,c1(i)]V [l+1,c2(i)])

= (V [l−1,p(i)]V [l+1,c1(i)]V [l+1,c2(i)])H[l,i]e f f Λ
[l,i], (9)

with the effective Hamiltonian environment

H[l,i]e f f = (V
[l−1,p(i)]V [l+1,c1(i)]V [l+1,c2(i)])∗Ĥ(V [l−1,p(i)]V [l+1,c1(i)]V [l+1,c2(i)]). (10)

We choose a convenient gauge in which the time-derivative of any tensor of the TTNS
representation is orthogonal to itself. This must be done to avoid over-completeness of the
basis of the tangent space. In this gauge the time derivative simplifies to

iΛ̇[l,i] = H[l,i]e f f Λ
[l,i], (11)

which is obtained by contracting Eq. (9) with (V [l−1,p(i)]V [l+1,c1(i)]V [l+1,c2(i)])∗. Similarly, we
obtain for R[l,i], which results from the action of P[l,i]− ,

iṘ[l,i] = H̃[l,i]e f f R[l,i] , (12)

with the effective Hamiltonian environment

H̃[l,i]e f f = (V
[l−1,p(i)]V [l,i])∗Ĥ(V [l−1,p(i)]V [l,i]) . (13)

Time-evolution is obtained by integrating the linear differential equations Eqs. (11) and (12)
using the projector splitting integrator. Evaluating the action of the Hamiltonian environments
in Eqs. (10) and (13) generally requires a compressed representation of the Hamiltonian, for
example as a matrix product operator (MPO) or tree tensor network operator (TTNO), in
which case the environments are recursively contractible with the TTN. Alternatively one can
express the Hamiltonian as a sum of rank-1 terms, in which case evaluating Eqs. (11) and
(12) simplifies to a sum over matrix multiplications applied to the tensor for which the time-
derivative is calculated. The number of Hamiltonian terms to be evaluated for a given site can
be reduced by combining terms in the rank-1 decomposition of the Hamiltonian during the
recursive contraction.
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Figure 5: Graphical representation of the last line of Eq. (9), with identification of
the effective Hamiltonian environment, H[l,i]e f f , of Eq. (5) as well as part of the tangent

space projector, P[l,i]+ , of Eq. (7). In contrast to Fig. 4, the environment tensors have
been brought on the same level regardless of layer for better readability.

2.3 Splitting integrator

Formally, the splitting integrator is obtained using a Trotter splitting applied to the additive
decomposition of the tangent-space-projected evolution operator. Practically, it consists of a
forward walk on the tree, propagation of the top-level tensor Λ[0,1] for a full time step, and
a backward walk on the tree. A pseudo-code is given in algorithms 1-3. During the walks
on the tree, isometrization of the TTNS is always maintained about the currently visited node
and the effective Hamiltonian matrices are updated when going from one node to another
along the direction of the step. The forward walk (backward walk) starts from the top-level
node and proceeds from the current node to the adjacent node in a clockwise direction (in a
counter-clockwise direction) closest to the previous/incoming node and propagation for half
a time step is performed only while ascending (descending). A walk on the tree is finished
once the top-node is reached after visiting all physical sites, i.e. after each tensor (and the
associated matrix R) is propagated save those of the top node.

2.4 Remarks

The algorithm introduced above is a generalization of a previously published projector-splitting
integrator for TTNS with a single-layer [59,67]. Ref. [63] describes an algorithm for a general
TTNS, which is identical to the above algorithm with a single (either forward or backward)
walk per time-step. The main differences between the algorithm of Ref. [62] and the one
presented here are in the definition of the walk on the tree and in the absence of a top-node,
including it’s separate propagation routine.

While the TDVP applied to MPS has been demonstrated to be capable of simulating dynamics
in two-dimensional systems [21], a detailed analysis and comparison with other tensor network
structures is absent in the literature. In particular, the numerical stability of the TDVP cannot
be taken for granted [68], especially when interactions between sites are long-ranged and not
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Algorithm 1 Forward walk

Input: Ψ[l, i], current node [l, i], next node [l − 1, p(i)]
Output: Ψ[l − 1, p(i)]

1: if in forward loop then:
2: Λ[l,i](t1/2)← propagate(Λ[l,i](t0), h/2)
3: compute QR fact. Λ[l,i](t1/2) =Q[l,i](t1/2)R[l,i](t1/2)
4: Λ[l,i](t1/2)←Q[l,i](t1/2)
5: R[l,i](t0)← propagate(R[l,i](t1/2),−h/2)
6: Λ[l−1,p(i)](t0)←←Q[l−1,p(i)](t0)R[l,i](t0)
7: else
8: compute QR fact. Λ[l,i](t1) =Q[l,i](t1)R[l,i](t1)
9: Λ[l,i](t1)←Q[l,i](t1)

10: Λ[l−1,p(i)](t1)←Q[l−1,p(i)](t1)R[l,i](t1)
11: end if

Algorithm 2 Backward walk

Input: Ψ[l, i], current node [l, i], next node [l + 1, c j(i)]
Output: Ψ[l + 1, c j(i)]

1: if in backward loop then:
2: compute QR fact. Λ[l,i](t1) =Q[l,i](t1)R[l,i](t1)
3: Λ[l,i](t1)←Q[l,i](t1)
4: R[l,i](t1/2)← propagate(R[l,i](t1),−h/2)
5: Λ[l+1,c j(i)](t1/2)←Q[l+1,c j(i)](t1/2)R[l,i](t1/2)
6: Λ[l+1,c j(i)](t1)← propagate(Λ[l+1,c j(i)](t1/2), h/2)
7: else
8: compute QR fact. Λ[l,i](t0) =Q[l,i](t0)R[l,i](t0)
9: Λ[l,i](t0)←Q[l,i](t0)

10: Λ[l+1,c j(i)](t0)←Q[l+1,c j(i)](t0)R[l,i](t0)
11: end if

Algorithm 3 Propagation of top-node’s tensor

Input: Ψ[0, 1](t0)
Output: Ψ[0, 1](t1)

1: Λ[0,1](t1)← propagate(Λ[0,1](t0), h)
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smoothly decaying, as discussed in the following.
The application of TDVP formally requires the TTNS corresponding to the initial condition

to possess a full tree rank of r. However, many physical initial conditions of interest can be
represented with a low rank TTNS or even as a product state. If the initial condition is not
contained in the manifold of TTNS with tree rank of r due to rank deficiency, the TDVP doesn’t
provide a prescription for how to choose and evolve the redundant parameters, which will
gain weight in the wavefunction representation at later times. Stability and exactness of the
dynamics under such circumstances is then dependent on details of the implementation and
the model. For the projector splitting integrator, the initial rank-deficiency translates into non-
uniqueness of the matrix decompositions employed in the change of isometrization. While
the algorithm is not guaranteed to be exact in this case, numerical experiments and prior
applications of the algorithm in one-dimensional systems indicate that it is generally reliable
even for product state initial conditions. As a check, one may choose to regularize the initial
condition by the addition of weak noise, and test for invariance of the resulting dynamics at
short times. The initial evolution of redundant variational parameters depends on arbitrary
choices such as their initialization, the choice of regularization (if applied), as well as the
details of the linear algebra routines used. Thus, different initializations of the same physical
state may not converge to the same solution [69,70]. Several approaches have been developed
to address this problem. In one-dimensional systems with nearest-neighbour interactions,
the commonly used two-site version of the TDVP algorithm of Ref. [49] is free of this issue,
although this comes at the cost of breaking unitarity of the evolution when the results cease
to be close to the exact solution. For generic interactions and arbitrary TTNS, a scheme to
optimally initialize redundant parameters was introduced [70]. However, this scheme requires
the evaluation of an effective Hamiltonian matrices for Ĥ2 and its compatibility with the
integration scheme employed here is an open question. Recently, another approach based
on a global basis expansion for MPS has been presented, and should also be applicable to
general TTNS [68].

Practically, we observe that the dependence of our results on non-optimal initializations of
redundant parameters systematically decreases with increasing bond-dimension, which is also
expected from the derivation of the optimization scheme mentioned above. The dependence
on initialization becomes noticeable only when the wavefunction markedly departs from the
exact result, which provides an additional handle to access the convergence of the method.

3 Results

We first benchmark the method developed in this work by comparison with exact results
obtained for non-interacting fermions on a 2D lattice. In the second stage we propagate a
2D system of hard-core bosons with nearest neighbor interactions and compare our results to
propagation using MPS [20]. The mapping of physical sites to the respective tensor network
structure is illustrated in Figs. 1 and 2. All calculations employ a regularization of the initial
product state, which consists of addition of white noise sampled uniformly from the interval
[−10−20, 10−20] and subsequent renormalization of the TTNS.

3.1 Non-interacting fermions

We compute the dynamics of non-interacting fermions on a 2D lattice with on-site disorder

Ĥ = J
∑

<i, j>

�

ĉ†
i ĉ j + ĉ†

j ĉi

�

+
∑

i

hi

�

ĉ†
i ĉi −

1
2

�

, (14)
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where the index i = (x , y) indicates the position of the fermion on the lattice, 〈.〉 is a sum
over nearest-neighbours, hi is drawn from a uniform distribution [−W, W ] and J = 1. All
simulations use an identical initial state which is a random product state at half-filling, and
use a time step d t = 0.01. The tensor network state calculations employ the Jordan-Wigner
transformation of (14)

Ĥ =
∑

< j,k>, j<k

Ŝ+j

 

∏

j≤l<k

2Ŝz
l

!

Ŝ−k + Ŝ−j

 

∏

j<l≤k

2Ŝz
l

!

Ŝ+k +W
∑

i

hi Ŝ
z
i . (15)

Different paths along which the sites are enumerated can be chosen, and this choice potentially
influences the performance of the TNS algorithm. Here, we choose the path such that the
Jordan-Wigner strings span a minimal distance on the graph of the tree tensor network structure.
While solving the non-interacting problem in the fermionic representation is trivial, the presence
of Jordan-Wigner strings renders its solution with tensor network states just as difficult as
that of an interacting problem. We compute the dynamics of this mode both for a clean
system (W = 0) and for one realization of a moderately strong quenched disorder (W = 10).
Two-dimensional non-interacting fermions show Anderson localization at any finite disorder
strength. While the localization length may exceed the lattice dimensions chosen, disorder
nonetheless slows the growth of entanglement and should allow access to longer timescales.
Indeed, we observe good agreement for the density profiles, n̂x ,y = ĉ†

x ,y ĉx ,y with x , y ∈ [1, L],
along a horizontal cut of the lattice between the exact result and data from both binary and
quaternary TNS only up to times t ≤ 1 for the clean system, while longer times are accessible in
the disordered case (see Fig. 6). If the time-step is chosen sufficiently small, errors associated
to the linearization of Eq. (4) are negligible compared to inaccuracies related to the finite bond
dimensions at all but the earliest times (see lower panel of Fig. 6). To get a more complete
picture of the growth of errors with time as well as their dependence on TNS structure and bond
dimension, in Fig. 7 we show the average error in the expectation value of the local density as
a function of time. Both TNS structures show systematic improvement with increasing bond
dimension, and the error grows more mildly at intermediate times in the disordered case.
In both cases, smaller deviations from exact results are achievable for binary TTNS than for
quaternary TTNS at the employed bond dimensions. We find that a convergence criterion of
an average error in the local density of about 2 % agrees well with the qualitative analysis of
Fig. 6 and gives a good estimate of the times up to which the TNS results are reliable.

3.2 Hard-Core Bosons (XXZ model in 2D)

We consider the dynamics of hard-core bosons on a 2D lattice ,

Ĥ = −J
∑

<i, j>

�

b̂†
i b̂ j + b̂†

j b̂i

�

+ V
∑

<i, j>

b̂†
i b̂i b̂†

j b̂ j ,

with nearest-neighbor interactions and we set V = J = 1. We choose an initial condition
with a central square sublattice occupied and all other lattice sites empty. This system and
initial condition have been studied previously in Ref. [20] using MPS, where results up to
tJ = 2.0 were presented for a square lattice of linear length L = 14. To establish the numerical
exactness of the algorithm for this non-integrable model, we compare the results for the local
bosonic density n̂x ,y = b̂†

x ,y b̂x ,y with x , y ∈ [1, L], for both binary and quaternary tensor
networks with exact diagonalization for a square lattice of linear length L = 4, with the central
4 lattice sites occupied (see Fig. 9). Deviations from the exact result become noticeable only
for times t ≈ 2.

Having established the validity of the algorithm, we investigate the dynamics of an initial
product state of a filled, central 4x4 sublattice in a square lattice of a linear length L = 16,
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Figure 6: Density profiles of a central, horizontal cut in the fourth row for a random
product state configuration of non-interacting fermions on a 8x8 lattice. Upper
panels: Profiles for W = 0 (left) and W = 10 (right). Later times are spaced upwards
by 1 for readability. TDVP results for binary tensor network with χb = 64 (light blue
crosses) and quaternary tensor network with χb = 16 (dark blue crosses), both with
d t = 0.01, shown on top of exact results (solid lines). Lower panels: The caps of the
error bars represent the maximal and minimal deviation of the profiles in the above
panels from the exact result for different bond-dimensions, tensor network structures
and time-steps.

see Fig. 8. In the upper panel of Fig. 10, we focus on the bosonic density for the site in
the fourth row and fourth column of the lattice. In contrast to the non-interacting model
and the small two-dimensional lattice discussed above, no exact results are available for this
interacting system and L = 16. Therefore, the convergence of the results is assessed by
comparing the deviation of the local density between different bond dimensions. All examined
bond dimensions agree well up to times t ∼ 1.0. For later times we see agreement for all
but the lowest bond dimensions in both quaternary and binary TNS. However, quantitative
agreement (within a deviation of 0.001) up to t = 1.5 only holds between the binary TNS
results with χb = 128, χb = 64 and the MPS results of Ref. [20] at χ = 400 and χ = 500.
Since the accuracy of n-ary TTNS can show site-dependence [60], we also report the average
density deviation with respect to the best available calculation in the respective TNS structures
in Fig. 10. The averaged density supports the observations made for a diagonal site both
quantitatively and qualitatively. Particularly, an average deviation of 0.001 is reached at
t = 1.5 for binary TNS, while quaternary TNS saturate the threshold at t = 1.2. The MPS
results of Ref. [20] are converged to within this accuracy up to t = 1.3, while the deviation
between the reference results of both binary TNS and MPS reach the threshold at t = 1.4.

Furthermore, since the Hamiltonian and the initial condition are isotropic, distance from

12

https://scipost.org
https://scipost.org/SciPostPhys.9.5.070


SciPost Phys. 9, 070 (2020)

0.0 0.5 1.0
t

10−4

10−3

10−2

10−1

∆
〈n̂
〉

W = 0.0

0.0 0.5 1.0
t

W = 0.0

0 2 4

t

10−4

10−3

10−2

10−1

∆
〈n̂
〉

W = 10.0

χb = 16

χb = 32

χb = 64

0 2 4

t

W = 10.0

χq = 4

χq = 8

χq = 16

Figure 7: Average deviation from exact 〈n̂ (t)〉 expectation value per site for non-
interacting fermions on a clean (top panels) and a disordered (bottom panels,
W = 10) 8x8 lattice with open boundary conditions. Left panels are binary TTNS
and right panels are quaternary TTNS.The time step used is d t = 0.01.

the exact solution can also be assessed by the anisotropy
A(t) = 1

∑L
x ,y=1 nx ,y (t)

∑L
x ,y=1

�

�n̂x ,y(t)− n̂y,x(t)
�

� of the bosonic density, also reported in Fig. 10.

We note however, that while the isotropy of the numerical solution is required, it is not a
sufficient condition for the solution to be numerically exact. For both quaternary and binary
TTNS, small anisotropies (< 0.3%) are obtained up to their respective convergence times.
In Ref. [20], an anisotropy of 4% was reported at t = 2.0 using MPS, a threshold which
neither binary nor quaternary TTNS saturate at the longest simulated times. Generally, the
quaternary TTNS has less anisotropic error since the partitioning of the lattice through the
tree structure is isotropic, although the result is less tightly converged than the binary TTNS.
Thus, anisotropy is only a useful indicator of convergence when comparing TTNS of the same
structure. Given the small deviations in both anisotropy and local densities, we consider our
results to be numerically exact up t = 1.5 for binary TTNS with χb = 128 , and up to t = 1.2 for
quaternary TTNS with χq = 16. The performance of the TDVP applied to binary TTNS is thus
comparable with the results of Ref. [20], providing the gain of better isotropy of the solution.
Note that the bond dimension used for MPS calculations do not correspond to the current state-
of-the-art, and larger bond dimension may be feasible for binary TNS when using symmetries of
the Hamiltonian. Due to the lack of an exact solution to compare to, the convergence criterion
employed is significantly tighter than in the case of free fermions to ensure quantitatively
accurate results.

4 Discussion

In this work we have assessed the performance of TTNS for simulating the dynamics of two-
dimensional many-body lattice systems. We introduced an algorithm based on the time-
dependent variational principle for arbitrary TTNS and benchmarked it on systems of non-
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Figure 8: Spreading of hard-core boson density



n̂x ,y

�

, initially occupying the central
4-by-4 sublattice of a square lattice with L = 16. Time step used is d t = 0.01, and
the scale is restricted to a maximum of ni = 0.5 for clarity.
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Figure 9: Bosonic site density as a function of time for a 4x4 lattice with the central
2x2 sites filled at t = 0. Two special sites are shown (corner and central). Exact
results (solid lines) and TNS results for binary (dashed lines) and quaternary (dotted
lines) TNS. Time step used for both panels is d t = 0.01.

interacting fermions and interacting hard-core bosons in two dimensions, comparing the
performance to previously published results using matrix product states. During the
preparation of the manuscript we became aware of a recent complementary work introducing
a similar versions of the algorithm, which were applied in rather different settings (as an
impurity solver [62], and in a more formal derivation of the algorithm [63]).

Currently, no efficient technique exists for exactly simulating the non-equilibrium dynamics
of interacting, two-dimensional quantum systems. Despite recent progress, the timescales
accessible by tensor network techniques for such systems are generally extremely short. We
have found tree tensor networks to perform at least as well as matrix product state techniques,
with binary TTNS generally providing a more robust performance than their quaternary
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Figure 10: Measures of convergence for hard-core bosons in 16x16 lattice for binary
(left panels) and quaternary (right panels) TTNS as well as MPS [20] (all panels, blue
shades). Upper panels: Bosonic density for the 4th left and 4th topmost site. Middle
panels: Average deviation of the local bosonic density with respect to best available
result within the respective TNS structure, for binary TTNS and MPS (left panel) as
well as quaternary TTNS and MPS (right panel). For χmps = 500, the deviation is
reported with respect to χb = 128. . Bottom panels: Anisotropy (see text) of bosonic
density. The time step used is d t = 0.01.

counterparts. The issue of analyzing the convergence, and thus ensuring the numerical
exactness of the computed result, was discussed. We believe the availability of an alternative to
matrix product states in the form of more general TTNS is important and can offer additional
insight in situations when slow convergence is observed.

Our analysis has been mostly qualitative and a promising future avenue is the exploration
of the entanglement structure of out-of-equilibrium states in 2D lattices . This will aid in
the identification of optimal tensor network structures in order to best exploit the increased
flexibility of TTNS, which already has proven to be important in applications for
zero-dimensional systems, such as impurity models and also for molecular quantum dynamics
[61, 62, 71–73]. The dynamics of one-dimensional systems quenched to a critical point is
another application where such an increased flexibility may be of advantage. For critical
systems in equilibrium, the multi-scale entanglement renormalization (MERA) [74,75] ansatz
provides an efficient tensor network structure, which bears resemblance with the n-ary tree
structures employed here. However, since a time-evolution approach for MERA is missing, it
is interesting to compare the performance of MPS and n-ary TTNS for critical systems out-of-
equilibrium. We leave such an investigation to a future work.
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