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We continue the exploration of nonstandard continuum field theories related to fractons
in 3 + 1 dimensions. Our theories exhibit exotic global and gauge symmetries, defects
with restricted mobility, and interesting dualities. Depending on the model, the defects
are the probe limits of either fractonic particles, strings, or strips. One of our models
is the continuum limit of the plaquette Ising lattice model, which features an important
role in the construction of the X-cube model.
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1 Introduction

Fractons are novel lattice models that do not admit conventional quantum field theory descrip-
tions in the continuum limit. (For reviews, see e.g., [1,2] and references therein.) Their main
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characteristics include immobile massive particle excitations, large ground state degeneracy
that grows in the system size subextensively, and exotic global and gauge symmetries.

These models pose possible counterexamples to the lore that the long distance behavior
of every lattice system with local interactions can be captured by a local continuum quantum
field theory. Since this lore is widely accepted as correct, it makes sense to get to the bottom
of the apparent conflict between the lore and the examples. Since this issue is in the interface
of two disciplines, the resolution of this issue has two kinds of possible implications. One of
them can impact condensed matter physics and the other can impact the more abstract study
of quantum field theory and its applications:

e A continuum field theory description of these systems will capture their universal prop-
erties. It will be independent of most of the specific details of the underlying lattice
system. As it will focus on the essential properties of these phases, it could lead to a
coherent conceptual framework to discuss them and to classify them. It can also lead to
the discovery of more examples.

e It is clear that in order to describe these phases, we have to expand the standard notions
of quantum field theory. Such an expansion will clearly lead to new insights into quan-
tum field theory. It will deepen our understanding of this important topic and can have
many unforeseen applications.

In this paper, we continue the exploration in [3-5] of exotic continuum field theory in 3+1
dimensions and discuss new examples. As in [3-5], our theories are not Lorentz invariant. In
fact, they are not even rotationally invariant. The spacetime symmetry of our field theories
consists only of continuous translations and spatial rotations generated by 90 degree rotations.
In 341 dimensions, the latter finite rotation group is isomorphic to S4. In addition, our models
also have parity and time reversal symmetries.

Since many aspects of our discussion are similar to [3-5], we will be brief and we refer the
reader to these papers for further details.

As in [6], we will investigate these nonstandard quantum field theories by following their
exotic global symmetries. Similar to the theories in [3-5], discontinuous field configurations
play an important role in our analysis of the charged spectra under these global symmetries.

We will then consider the U(1) and the Zy gauge theories associated with the exotic global
symmetries. The Z, gauge theories are gapped and have defects exhibit restricted mobility,
i.e., fractons. Depending on the model, the fracton can be a point, a string, or a strip in space.
The gapped Zy theories in this paper are not robust (in the sense of [3]) if we do not impose
any global symmetry. In the language of continuum field theory, it means that certain local
operators can be added to the Lagrangian and destabilize the theory.

1.1 Outline and Summary

This paper has two parts. Part one of the paper, which consists of Sections 2, 3, and 4, studies
the 3 + 1-dimensional generalizations of the models in [3]. In Section 2 we study a 3 + 1-
dimensional XY-model with interactions around a cube. We will refer to this lattice model as
the XY-cube model. Its continuum limit is described by a circle-valued scalar field ¢ ~ ¢ + 27
with continuum Lagrangian [7],

Yo 2 1 2
L=—(9 ——(0,9,0 . )
2 ( 090) ZU( x%y ZSO) (1.1)

This -theory has two exotic global symmetries, which we refer to as momentum and winding.
We analyze the charged spectra of these global symmetries. Similar to the ordinary relativistic
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Table 1: Analogy between the ordinary 1+ 1-dimensional compact scalar theory, the
2 + 1-dimensional ¢-theory of [3], and the 3 + 1-dimensional ¢ theory of Section 2.

(14 1)d compact scalar (2+1)d ¢ theory (3+1)d ¢ theory
lattice XY-model XY-plaquette model XY-cube model
i 2 2
Lagrangian | 4-(60®)* — 17(0,®)* | 5(80$)* — 5;(3:0,9)* | 2(o)* — 5;:(8,:0, 8, 0)
momentum momentum dipole momentum quadruple
80;]0 = axe aOJO == 3x ayJX‘y 30J0 == 3x ayaszyz
2
Jo = 2730‘1’ Jo = oo P Jo = booy
global J*=£L0%¢ JY =—10%0Y ¢ JXYE = 10797 0%p
symmetry winding winding dipole winding quadruple
BoJy =0*J Oody” = 0,8,J* OoJy”" = 0,0,8,J
JE = 21%3’(‘1’ Jy? = %8"83'(1) Jy't = %faxayach
duality T-duality Self-duality Self-duality
R—1/R 41 g < 47 1o >

compact boson in 1+ 1 dimensions and to the ¢ theory of [3] in 2+ 1 dimensions, this theory
also enjoys a self-duality. We compare these models in Table 1.

In Section 3, we study the U(1) gauge theory associated with the momentum global sym-
metry in the @-theory. This gauge theory has been previously studied in [7,8]. The temporal
and spatial components of the gauge fields (B, By, ) are in the (1,1’) representations of the
spatial S, group. (See Appendix A for the representation theory of S, and our conventions.)

Their gauge transformations are

BONBo+80a, Bx‘),Z ~Bxyz+3x3yaza, (1.2)
with a@ ~ a + 27. The gauge invariant field strength is
EX_}’Z = aonyz - axayazBO 5 (13)
and there is no magnetic field. The Lorentzian Lagrangian is
1 0
L=—=E2 +—E,,, (1.4)

gez xyz = o
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Table 2: Analogy between the 1 + 1-dimensional U(1) gauge theory, the 2 + 1-
dimensional U(1) gauge theory of A in [3], and the 3 + 1-dimensional U(1) gauge
theory of B in Section 3.

(1+1)d U(1) (2+1)d U(1) (3+1)d U(1)
gauge theory gauge theory of A gauge theory of B
gauge AU ’\‘A“ + 3“(1 AO ’\-‘AO + aoa BO ~ BO + 30(1
fields Ayy ~Ayy,+0,0,a Byyz; ~Byy, +0,0,0,a
ﬁeld Ex = aoAx —_ aXAO Exy = 30Axy - 3x3yA0 Exyz = aonyZ —_ axayaZBO
strengths
. 0 0 0
Lagrangian | £ = gizEJZC +5-E | L= gieiny +37Eyy L= giezEJZCyZ +37Exys
EoM 30Ex =0 80Exy =0 aoExyZ =0
Gauss law J.E, =0 0x0,Ey, =0 0x0y0,Ey,, =0
electric one-form electric tensor electric tensor
U(1) global BJy = 80J(’;i'( =0 BoJy” i = 0
symmetry oJy =0 ﬁxayJOy =0 0,0, 3.Jy7" =0
_ 2 6 Xy __ 2 0 xyz __ 2 0
Jg—?Ex'i'% ‘]0 _g_gEXy—i_% JO _g_gEXyZ-i_ﬁ

with a 27-periodic 0-angle. This theory has no propagating degrees of freedom and is similar
to the ordinary 1+ 1-dimensional U(1) gauge theory and to the 2+ 1-dimensional U(1) gauge
theory of A in [4]. We compare these models in Table 2.

In Section 4, we Higgs this U(1) gauge theory of B to Zy . The Zy theory admits a BF-type

Lagrangian
N

ﬁ = %wxyzExyz B (1.5)

where ™% is a circle-valued field in the 1’ of S,. We also present two lattice models that
lead to this continuum model at long distances. One of them is a Z,; lattice gauge theory and
the other is the Zy version of the XY-cube model in Section 2, which will be referred to as the
cube Ising model. We compare the Z, B-theory with the ordinary 1+ 1-dimensional Zy gauge
theory and the 2 + 1-dimensional Z, gauge theory of A in [3] in Table 3.

Both the U(1) and the Zy tensor gauge theories of B have defects that are the probe
limits of fracton excitations. These fractons exhibit restricted mobility: while a single fracton
cannot move by itself, four of them, forming a fracton quadrupole, can move collectively. The
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Table 3: Comparison between the ordinary 1 + 1-dimensional Zy gauge theory, the
2 + 1-dimensional Zy gauge theory of A in [3], and the 3 + 1-dimensional Zy gauge
theory of B in Section 4.

(1+1)d zy (2+1)d zy (3+1)d zZy
gauge theory gauge theory of A gauge theory of B
lattice Zy; lattice Zy lattice Zy lattice
gauge theory gauge theory of A gauge theory of B
or or or
Zy Ising model Zy plaquettte Zy cube
Ising model Ising model
fields B~B+2n ¢ ~ ¥ +2m PV~ V421
AMNAH‘l‘aMa A0~A0+30a BONBo+aOa
Ayy ~Ayy +0,0,a Byy; ~Byy; +0,0,0,a
Lagrangian L= %BEX L= év—nquyExy L= %qb"yzExyZ
electric one-form electric tensor electric tensor
exp[iB] expli¢™Y] explig™*]
Zy global
symmetry ordinary zero-form dipole quadrupole
. . X . (X
expli f dxA, ] expli fxlz dx}if dyAy,] | exp[i fxlz dx;f dy _(f dzBy.,]
. 2 . 2
expl[i 39 dx fyl dyA,y] exp[lf dx fyl dyi dzByy;]
expli ff dx f dy le dzBy.y,]
probe particles fractons fractons
defect exp[i fc(d tAg+dxA,)] exp[i ff:o dtAy] exp[i f_ozo dtBy]
ground state N NL L1 N LA LY +LY L4 L* L =L =LY~ 1741
degeneracy
on a torus
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Table 4: The four exotic U(1) global symmetries of [4] and their associated gauge
fields. Each global symmetry is labeled by the S, representations (Ryjpe, Repace) for the
temporal and spatial components of its conserved current. The temporal components
of the currents for the third and the fourth global symmetries obey a differential
condition in addition to the current conservation equation.

global symmetry current conservation gauge fields
& differential condition

(1,3 9oJo = %aiajJij (Ag,A;;) of [4]
dipole symmetry

(2,3) Il = giyik — gigik (AL A7y of [4]
tensor symmetry

(3,2) 0Jy = g (IR 4 gty | (¢, clik) of Section 5
tensor symmetry o; 8J~J51 =0
(3,1 80J(§j =9i31J (C’éj, C) of Section 7
. i ik _ A7j rik
dipole symmetry d'Jy =0dJ

Zy; theory also has large ground state degeneracy. When we regularize the Zy tensor gauge
theory on a lattice with L' sites in the x direction, the theory has N1 1" +L P +L¥ LF =L =L —L*+1
states of zero energy. The ground state degeneracy becomes infinite in the continuum limit.
Similar to the ordinary 14 1-dimensional Zy gauge theory and the 2+1-dimensional Zy tensor
gauge theory of [3], this Zy tensor gauge theory is not robust if we do not impose any global
symmetry.

Part two of the paper, which consists of Sections 5 - 8, investigates two U(1) and Zy gauge
theories related to the models studied in [4].

In Sections 5 and 7, we consider U(1) gauge theories, denoted by C and C, associated
with two of the exotic global symmetries in [4] (see Table 4).! The currents of these two
exotic global symmetries obey a differential condition in addition to the current conservation
equation. Consequently, the gauge parameters in the associated gauge theory have more com-
ponents and have their own gauge transformations. Furthermore, the U(1) C and € theories
have no propagating degrees of freedom. These two properties make the C and C theories
similar to the ordinary two-form gauge theory in 2 + 1 dimensions. We summarize these two
U(1) gauge theories in Table 5 and their relations to the theories of [4] in Figure 1.

In Sections 6 and 8, we Higgs the U(1) gauge group of the C and C theories to Zy using the

!The gauge theories associated with the other two exotic global symmetries of [4], which are denoted as A and
A, were already discussed in that reference. For more detail of these global symmetries, see Table 3 and 4 of [4]
and Table 1 of [5].
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Table 5: The U(1) gauge theories of C in Section 5 and of € in Section 7.

(3+1)d U(1) C-theory

(3+1)d U(1) C-theory

gauge fields

CJ ~ CJ + 8pall — 319
cliilk  clijTk _ gigik 4 gigik

¢l ~ U+ 398l — 3ak)
C~C+35,0;6"

gauge transformations
of gauge parameters

Ay ~ Qo + 80')/
al ~al +313)y

&é)(jk) ~ &é)(jk) + ao?i(jk)
Gl ~ & 4 g k)

field strengths El% = gyclilk 4 pic) —aicik | E=a,C—180,C)
Lagrangian L= %ﬁE[ij]kE[ij]k L= giez 24 %E ,
EoM d,Elik =0 QHE=0
Gauss law 3 EF) = 0 o; 8]-]3" =0
U(1) global symmetry odg P =0, 34 =0 80Jo =0, 8,3;Jy =0
k(ij ij Y
gD = ZEND Jo=HE+ 5

gauge fields A and A of [4], respectively. The two gapped Zy gauge theories admit a BF-type
Lagrangian by pairing up either with the ¢ or the ¢ fields discussed in [4]. The Zy gauge
theory of C is the continuum limit of the Zy plaquette Ising model featured in [9] (see [10] for
a review and earlier references). Both gauge theories have fractonic defects, which are either
strips or strings in space. The two Z, gauge theories are however not robust if no symmetry
is imposed. We summarize these two Zy gauge theories in Table 6.

1.2 Relation to the X-Cube Model

We conclude with a discussion on the relation between these two Zy theories and the X-cube
model [9], one of the simplest gapped fracton models. See [5] for a general characterization
of the various exotic Zy symmetries in these models.

The global and the gauge symmetries of the Z, C-theory are related to those of the X-cube
model in the continuum as follows. The Zy C theory has a Zy (1,3’) dipole global symmetry.
This is the continuum limit of the planar subsystem symmetry in the plaquette Ising model
of [9]. The X-cube model can be interpreted as the pure gauge theory of this symmetry, i.e., as
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Table 6: The Zy gauge theories of C in Section 6 and of € in Section 8. The fields
¢rij)x and ¢ are discussed in [4].

(3+1)d Zy C-theory

(3+1)d Zy C-theory

Zy; global symmetry

(2,3) tensor
exp [i f;;z dxt f dx/ f dka[jk]i]

lattice Zy; lattice gauge theory of C Zy lattice gauge theory of €
or Zy lattice model for q§ or Zy plaquettte Ising model
Lagrangian L= %qg[ij]kE[iﬂk L= %d)ﬁ"
electric tensor electric
exp[i(,i;k(ij)] expli¢]

(1,3’) dipole
exp [i f;{z dxt 56 dx/ 55 dxké‘]

defect

fractonic strips
. oo k . ik
exp [1 f_oo dt f;l,f dxk f dx]C(J) )]

fractonic strings
exp [i ff:o dt § dxiéék]

ground state degeneracy
on a torus

NL"+LY+LZ—1

NL"+LY+LZ—2

a

o

.,
=

BF pair
dual

—

Higgs

Figure 1: The relation between the two U(1) gauge theories A, A of [4], the two non-
gauge theories ¢, q§ of [4], and the two U(1) gauge theories C,C. The solid lines
mean that there is a Zy gauge theory whose BF Lagrangian uses these two fields.
The double lines mean that the two theories are dual to each other. The arrows, for
example, ¢ — A, mean that the former is the Higgs field of the latter. Each solid line
and arrow gives a gapped Zy, theory, with certain equivalences. We use the same
color for the same Zy gauge theory. In total, there are three different Zy gauge
theories. Zy A or A-theory in [5]: (¢ — A) = (q§ — A) = (A—A), Zy C-theory of
Section 6: (A— C) = ((ﬁ —C), Zy C-theory of Section 8: (A— €)= (¢ —C).
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Table 7: Global and gauge symmetries of three Zy gauge theories. The Z) symme-
tries are labeled by the S, representations (Ryjme, Rspace) Of the temporal and spatial
currents for their U(1) versions. See Table 1 of [5] for more detail. The Zy A and
A theories are dual to each other, and they are the continuum limit of the X-cube
model [5]. The Zy C-theory is the continuum limit of the plaquette Ising model
in [9]. Furthermore, the Zy (1,3’) dipole global symmetry is the continuum version
of the planar subsystem symmetry of the plaquette Ising model. We did not include
all the global symmetries of these models in the table above.

Zy C-theory | Zy A-theory = Zy A-theory | Zy C-theory

global symmetry Zy (2,37) Zy (3/,2) and Zy (3/,1) Zy (1,37

pure gauge theory of Zy (3',2) Zy (2,3) or Zy (1,3") Zy (3,1)

a Zy gauge theory of A (see Section 2 of [5]).2

We can repeat the same analysis for the Zy C-theory. The Zy C-theory has a Zy (2,3)
tensor global symmetry. The X-cube model can be interpreted alternatively as the pure gauge
theory of this symmetry, i.e., as a Zy gauge theory of A (see Section 3 of [5]). We have thus
seen that the global symmetry of the Zy C and C-theories are the gauge symmetries of the
X-cube model.

Conversely, the global symmetry of the X-cube model is the gauge symmetry of either the
Zy C-theory or the Zy C-theory. The X-cube model has a Zy (3’,2) dipole global symmetry
and a Zy (3’,1) tensor global symmetry. Indeed, the Zy C-theory is the pure gauge theory of
the (3/,2) dipole symmetry. Similarly, the Zy C-theory is the pure gauge theory of the (3, 1)
tensor symmetry. We summarize these global and gauge symmetries of the three Z, theories
in Table 7.

An analogy to standard 2 + 1d theories

We would like to end the introduction by drawing an analogy with some ordinary relativistic
theories in 2 4+ 1 dimensions.
Let ¢© be a real, circle-valued scalar field and ¢® a two-form gauge field. Consider the

2 + 1-dimensional BF theory
N
L, =—$OAdc@ . 1.6
e 27r¢ ¢ (1.6)
It describes a spontaneously broken zero-form Zjy global symmetry. Let us also consider the
ordinary 2 + 1-dimensional Zy gauge theory

1
Lpy = z—b(z) A(de® —Na®), 1.7)
TT

where b is a two-form Lagrange multiplier, ®© is a scalar, and a®V) is an ordinary U(1) gauge

2See also [5,11] for a BF-type Lagrangian for the X-cube model in the continuum.

10


https://scipost.org
https://scipost.org/SciPostPhys.9.5.073

Scil SciPost Phys. 9, 073 (2020)

field. Equivalently, we can consider its dual BF-type presentation [12-15]

N
Log=—aPada®, 1.8
0t =5 - (1.8)
where both a™ and 4() are one-form gauge fields.
Our Zy gauge theory of C (or of €) is analogous to L., while the continuum limit of the
X-cube model is analogous to L Or L,;. Indeed, the global symmetry of the £, theory is the
gauge symmetry of L4, and vice versa. Specifically, the £, theory has an ordinary Zy global

symmetry generated by e $ C(Z), and L, is the pure gauge theory of this symmetry. Conversely,
the £, theory has a Zy one-form global symmetry generated by, for example, e $ “(U, and L.
is the pure gauge theory of this symmetry.

More generally, let £ be the Lagrangian of a theory with global symmetry group G. It is
common to gauge this global symmetry by coupling £ to gauge fields of G. Denote the resulting
theory as £C. A related theory is the pure gauge theory of G without matter fields. Denote
it by £’. Often, the pure gauge theory £’ can be obtained from the gauge theory with matter
L6 by taking an appropriate limit of the parameters, e.g., making the matter fields heavy and
decoupling them.

Using this notation, the Lagrangian L. (1.6) has a G = Zy zero-form global symmetry. If
we simply gauge it, we find a trivial theory. One way to do it is by writing it as a U(1) theory
Egc = %c(z)(dqﬁ(o) —aM). Instead, the pure G = Zy gauge theory can be written as (1.7)

E;)C = %b(Z)(ch)(O) —Na®W)orasin (1.8) 'C:;bc = év—na(l)dd(l),

2 The ¢-Theory

2.1 The XY-Cube Model

Consider a three-dimensional spatial, cubic lattice with periodic boundary conditions and place
a phase variable e!%s at every site s = (%,§,2). Let L*,LY,L* be the number of sites in the
x,y,z directions, respectively. When we later take the continuum limit, we will use x = aX?
(i =1,2,3), where a is the lattice spacing, to label the coordinates. We will also use (f=aqll
to denote the physical size of the system.

The variable ¢, is 27t-periodic at each site, p; ~ ¢, +27. Let 7, be the conjugate momen-
tum of ;. They obey the commutation relation [¢, i ] = i6, . The 2m-periodicity of ¢
implies that the eigenvalues of n, are integers. The Hamiltonian is

u
H= > Z nsz —KZCOS(Axngos)
S S

Ayyz s = Psi(1,1,1) — Ps+(0,1,1) — Ps+(1,0,1) — Ps+(1,1,0) T Ps+(1,0,0) T Ps+(0,1,0) T Ps+(0,0,1) — ¥s -
2.1

Since the interaction is around a cube, we will refer to this model as the XY-cube model. The
system has a large number of U(1) global symmetries, which grows quadratically in the size
of the system. For every point (X, Jo) in the xy-plane, there is a U(1) global symmetry that
acts as

UlLgyg, 05— s+, Vs =(%,9,8) with (£,9) = (%, 90) , (2.2)

where 4 € (0,27]. Similar, there are U(1); 5, and U(1) z global symmetries associated to
the sites in the yz-plane and xz-plane. There are L, + L, + L, —1 relations among these global
symmetries. The composition of all the U(1); y, transformation with the same % is the same as
the composition of all the U(1); s, with the same %,. This leads to L, relations. Similarly, there
are L, L, relations associated to the y,z directions. These relations are not all independent.

11
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This reduces the number of relations by 1. In total there are L, L, +L, L, +L,L,—L,—L,—L,+1
independent U(1) global symmetries.

2.2 Continuum Lagrangian

The continuum limit of the lattice model is a real scalar field theory with Lagrangian [7]
_ Mo 2 1 2
L=~ 568,00, 23)

where u, and p have mass dimension 2. This theory is a special case of the general class of
theories in [16]. The equation of motion is
82 = ~02825? 2.4)
MO 0 (p - M X"y % (‘p * *
As in the exotic theories in [3-5], discontinuous field configurations play an important
role even in the continuum field theory. More specifically, we will discuss field configurations
that are discontinuous in two of the three coordinates, but not in all three coordinates. These
configurations are more continuous than a typical lattice configuration. See [3-5] for more
discussion on this issue.

In the continuum field theory, this implies that the field ¢ is locally subject to the discrete
gauge symmetry

o(t,x,y,2) ~ @(t,x,y,2) + 2w (x, y) + 2nw”*(y,2) + 2nw**(x, 2) (2.5)

where w(x, x/) € Z. Because of the gauge symmetry, the operators &;p, Jjp are not gauge
invariant, while ¢’ and 2, 9,0, are well-defined operators. The gauge symmetry allows
nontrivial twisted configurations on a spatial 3-torus, for instance,

xyz  yz oy Xz LN XY
2| S — 22 0(x — x0)— 1Oy — Yo) — 75250z —50) 6
X . .
+€—x@(3’ —¥0)O(z —20) + Ely@(x —X0)O(z —320) + E_Z@(x —x0)O(y —}’o)] :
2.3 Global Symmetries
We now discuss the exotic global symmetries of the continuum field theory.
2.3.1 Momentum Quadrupole Symmetry
The equation of motion
90Jo = 0,0,0,J*% , (2.7)
implies a symmetry with currents
Jo = oG ¥
(2.8)

1
I = 88,0,

The currents (Jy,J*Y*) are in the (1,1”) representation of S,. The corresponding symmetry is
a quadrupole global symmetry [16].
The conserved charges are

QU(xt, x7) = f dx* J, . (2.9)
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These charges satisfy constraints

§ dy QY (x,y) =§ dz Q*(x,2),
jg dx Q" (x,y) =§ dz Q*(y,2), (2.10)

j( dy Q*(y,2) =§ dx Q%(x,z) .

On the lattice, these correspond to L, L, +L,L,+L,L,—L,—L,—L,+1 linearly independent
charges. They implement

e(t,x,y,2) = o(t,x,y,2) + 0, y)+ f5(y,2) + f*(x,2) . (2.11)

The Z part of the quadrupole symmetry is gauged, so the global form of the symmetry is U(1) as
opposed to R. This global quadrupole symmetry is the continuum limit of the
U(D)g, 5, U(D)g5,, U(1)g, 5, symmetries on the lattice. We will refer to this symmetry as mo-
mentum quadrupole symmetry.

2.3.2 Winding Quadrupole Symmetry

The continuum theory also has a winding quadrupole symmetry with the conservation equation

0oy = 8,8,8,J . (2.12)
The conserved currents
B =——0.8,8,
1 (2.13)
J= o e

are in the (1/,1) representation of S,. The conserved charges are
Q. (x',x)) = § dx* g7 . (2.14)

Similar to the momentum qudrupole symmetry, there are
LyL,+L,L,+L,L,—L,—L,—L,+1independent charges. The winding quadrupole symmetry
is absent on the lattice.

2.4 Momentum Mode

We start by analyzing the plane wave solutions in R>!:
¢ = Celwtikix' (2.15)

The equation of motion gives the dispersion relation
w? = —1 k?k2 k> (2.16)
pue X YE '

For generic spacetime momenta k;, the quantization is straightforward and leads to a gapless
mode, albeit with a nonstandard dispersion relation.

3Note that the “momentum” here is momentum in the target space, not in spacetime.
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The zero-energy solutions w = 0 are those modes with one of the three k;’s vanishing. The
momentum quadrupole symmetry maps one such zero-energy solution to another. Therefore,
we will refer to these modes as the momentum modes. Classically, the momentum quadruple
symmetry appears to be spontaneously broken, but this will turn out to be incorrect in the
quantum theory.

Let us quantize the momentum modes of ¢:

p(t,x,y,2) = @™ (t,x,¥) + ¢"*(t,5,2) + ¢**(¢, x,2) . (2.17)
All the three fields on the RHS are point-wise 27 periodic by (2.5),
@ (t,x,y) ~ @ (t,x,y) + 2w (x,¥),

©V5(t,y,2) ~ @Y (t,y,2) + 2nwY*(y,2) , (2.18)
@ (t,x,2) ~ @**(t, x,2) + 2w (x,2) .

They share common zero modes, which implies the following gauge symmetry parametrized
by ¢*(t, x),c” (¢, y), c*(t,2),

I (t,x,y)~ @ (t,x,y)+c*(t,x)—=c’(t,y),
@2 (t, y,2) ~ @ % (t,y,2) + I (t,y)—c*(t,2), (2.19)
Soxz(t;xyz) ~ (sz(t’X,z) +Cz(tﬁz)_cx(t:x) .

Note that shifting all ¢/(x!) by the same zero mode does not contribute to the above gauge

symmetry.
The Lagrangian of these momentum modes is

L= % [zz jé dxdy (¢*7)* +€* jﬁ dydz (9**)* + €7 jﬁ dxdz ($**)?

(2.20)
+2§ dxdydz (@™ @Y* + pr2o** + L,bngbxy)] .
The conjugate momenta are
Y (t, X, y) = po (ﬁzsb”(t,x,y) +§ dz [¢7*(t, y,2) + sb”(t,x,z)]) ,
T (t,y,2) = Uo (ﬂ"c?yz(t,y,Z) + jg dx [¢™(t,x,y) + ¢xz(t,x,2)]) ; (2.21)
T (t, x,2) = po (fysb"z(t,x,Z) + jg dy [¢7(t,y,2) + ¢"y(t,x,y)]) :
They are subject to the constraints
}5 dy 7 (x,y) = }5 dz w%(x,z),
f dx 7 (x,y)= § dz ©%(y,2), (2.22)

j(dy % (y,2) = § dx ™% (x,2),

which can be thought of as Gauss laws from the gauge symmetry (2.19). In fact, the momenta
are the charges of the momentum quadrupole symmetry, QV(x', x/) = '/ (x*, x7).

14
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The point-wise periodicity of ¢!/ implies that their conjugate momenta 7t/ are linear com-
bination of delta functions with integer coefficients:

QY (x,y) =7 (x,y) = D N3 60 —x2)5(y — ¥p)
ap

Q" (y,2) = W (y,2) = ZNnyS(y Yp)o(z—z,), (2.23)

Q%(x,2) = T%(x,2) = ZN;;;eS(X —X)5(z—2,),
ay

where N NY* N** ez satisfy the constraints (2.22)

af?” By’ ay
X = Xy _ Xz
Ne N ap ZNaY >
p
Ny — Nx.y ZN)’Z

(2.24)

Nz ZNxz ZN}'Z
NEZNéC:ZNg =D NZ.
o B Y

Here {x,}, {yp}, and {z,} are finite sets of points along x, y, and z axes respectively.
The Hamiltonian can be found to be

H= } dxdy 7 ¢*Y +§ dydz m'*¢Y* +§ dxdz % p** —

1

NE [Wy jg dxdy () + 07 ¢ jg dydz (/%) + £*¢* j§ dxdz (m**)?  (2.25)

2
—} dxdydz (02 + 000V 1% + PV ) + (} dxdy ﬁxy) ] .

The configurations with the lowest nonzero momentum quadrupole symmetry charges are

Y =6(x—x0)0(y —¥0), ™ =0(y—y0)6(z—20), ™ =056(x—x0)6(z—2), (2.26)
for any xq, ¥g, and z,. Their energy is

1

=———[(6X0Y + 0707 +£70%)5(0)> — (0¥ + 0% +£¥)5(0)+ 1] . 2.2
NI )5(0) —( )5(0)+1] (2.27)

The meaning of 6(0) here and elsewhere in this paper is as in [3-5]. On a lattice, §(0) stands
for %, where a is the lattice spacing. So these modes have energy of order é and they becomes
infinite in the continuum limit.

More generally, the energy of the generic momentum mode (2.23) is

1

— Xpy XY\2 2 Yy pz Y252 2 X )z X232 2
= o |1 azﬁ:(N“ﬂ) 5(0)2 +07¢ %(Nm) 5(0)? +£*¢ ;(Nay) 5(0)

(2.28)

—* D (NX)25(0) — £ Y (N3)?5(0)— €% D (NZ)*5(0) + N
@ B

Y
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We conclude that in the quantum theory, the energy of all the momentum modes is infinite.
The momentum symmetry, which is spontaneously broken classically, is restored at quantum
level. Even more so, the energy of the charged states is infinite.

On a lattice with lattice spacing a, this infinity can be regularized to get an energy of the
order of

11

—_ . 2.2
po La? 2:29)

In contrast, the energy of typical fluctuations on the lattice is of the order of 1/(uga®), which
is parametrically larger than the energy of these momentum modes. In the continuum limit
a — 0, the momentum modes are much heavier than generic modes in (2.16) with k, # O,
k, # 0, and k, # 0 whose energy scale is 1/ (uo€?). In finite volume, the ground state is the
unique momentum mode where the momentum quadrupole charges vanish, and the classically
zero-energy configurations with k, =0, or k, =0, or k, = 0 are lifted quantum mechanically.
In infinite volume { — ©0, the energy of the modes with generic k; is gapless, but the states
charged under the momentum quadrupole symmetry still have infinite energy in the contin-
uum limit.

Similar to the discussions in [3-5], the quantitative results for the energy of the momentum
modes are not universal, but their qualitative scaling in 1/a? is. For example, let us consider
adding

(8,89 (2.30)

to the minimal Lagrangian (2.3), with the coupling g of order a®. The term shifts the energy
of the momentum modes by an amount of order g/a* ~ 1/a?.

2.5 Winding Mode

The most general winding configuration can be obtained by taking linear combination of (2.6)

B XYz _ YB Nx y _ Xy 2
p(t,x,y,8) =21 | W WZ X0 (x)— WZwﬁeﬂ(y) Mygwyey(z)

X z
o Wirepe )+ 7 Z Wi0.(x)8, (=) +4; D Woi 0.(x)0p(y) | .
By ap
(2.31)
where ©,(x) = ©(x — x,). All the coefficients are integers and they are related by
WX = ny Z wrE,
y _ Xy __ yz
Wy => w2 Z w;
(2.32)

Wy = ngf Zwsf,
W:ZWj:ZWﬁy=ZW;.
a B y

16


https://scipost.org
https://scipost.org/SciPostPhys.9.5.073

Scil SciPost Phys. 9, 073 (2020)

The winding quadrupole charge density of this configuration is

1 1 1 1
xXyz __ _ X _ Y _ E z
Jo _WEXE)’ZZ 0y ez Za W 8a(x) VEYE Zﬁ Wﬁ 5p(y) £x0y . WYéY(Z)

(2.33)
1 . 1 . 1
+ 7w 2 War 0508, () + 75 D WarBu()5, (@) + £ 2 Woi 6u(x)5p(3)
By ay ap
where 6,(x) = 6(x — x,). The winding configuration has quadrupole charges
1
Q)= 5 e = S IWE 05,0,
By
1
QP (x,2) = o § dy Jg'% = ZW§f5a(x)5y(Z) , (2.34)
ay
1 2
Q) = 5 § 0 = W 8,080,
T i
The energy of the winding configuration is
1
H= ﬂf dxdydz (axayaztp)z
__on? xY\2 2 ¥%\2 2 2 2
R DY (s 1. Ol Y e NS y
. o By af

—0* Y (WEPS(0)— £ Y (W) )25(0)— €% > (W?)*5(0) + W
a B Y

So, the energy of winding modes with nonzero winding quadrupole charges is infinite. Placing
the theory on a lattice with lattice spacing a, the energy of such winding modes scales as
1/(ula?).

Similar to the discussions for the momentum modes, the quantitative results for the energy
of the winding modes are not universal, but their qualitative scaling in 1/a? is. For example,
let us consider adding

8(879,3,¢)* (2.36)

to the minimal Lagrangian (2.3), with the coupling g of order a®.# The term shifts the energy
of the winding modes by an amount of order g/a* ~ 1/a?.

2.6 Self-Duality

The Euclidean Lagrangian of the theory can be rewritten as
cp=topey Lp gy UBora880-F )+ -E(8.0—B) (2.37)
E — 2 2,U, Xyz 2T x%y %P Xyz 2T TP > .
where B, E,,, E,B¥% are independent fields. If we integrate out these fields, we recover the
original Lagrangian.
Instead, we integrate out only B, E,
1 =~
Lp= E*+
E™ 8m2u, 812

U ~ = I~ I~
BxyZBxyZ + EB”E)XB),@ZQO + EEQTQO . (238)

“Under the duality in Section 2.6, this higher derivative term is dual to the term g(3,0, ¢)?.
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Next, we integrate out ¢ to a find a constraint

0.E=03.0,0,B7% . (2.39)

This can be solved locally in terms of a field ¢*?# in the 1’ of S:

£=0,8,8,4"",
Fove _ g e (2.40)
- .
The Lagrangian becomes
ﬁ_ﬁo(a Xyz\2 1333 Xyz)2 2.41
E_? P )+ﬁ(xyz(p ); (2.41)
where
Oy = 0=4nu, . (2.42)

42’
Hence the ¢ theory is dual to the ¢*¥* theory. The momentum and the winding quadrupole
symmetries as well as their charged states are interchanged under the duality. This duality is
analogous to the T-duality of the ordinary 1 + 1-dimensional compact scalar theory.

We refer to this duality between the ¢ and the ¢*Y* theories as a self-duality for the
following reason. Since the spatial rotation symmetry S, is discrete, it can be redefined
by discrete internal global symmetries. Both theories have a charge conjugation symmetry,
C:9——p,C: Y% - —p*Y* The total unitary global symmetry is therefore Zg xS4. Let R
be the 90 degree rotations around the x!-axis of the spatial S, rotation, (R')* = 1. The fields ¢
and p*Y* are in the 1 and 1’ of this S,, respectively. However, we can consider a different S,
subgroup of Z§ x S, generated by R'C. We denote this new subgroup by S$. Then the fields
¢ and p*Y* are in the 1’ and 1 of Sf, respectively. Said differently, the representations for ¢
and p*7* are related by an outer automorphism of Zg x S4. Such a nontrivial map of repre-
sentations by outer automorphisms is common in dualities. (See a related discussion in [3]
and in [17].)

3 U(1) Tensor Gauge Theory of B

We can gauge the momentum quadrupole symmetry by coupling the currents to the tensor
gauge field (By, Byy,):>
JoBo+J*V*B,, . (3.1)

The current conservation equation J,Jy, = 9,0, 0,J*”* implies the gauge transformation

By ~By+ dya ,
0 0T %% (3.2)
Byy; ~Byy, +0,0,0,a.
The gauge invariant electric field is
Exyz = aOBxyz - 8xayazBO > (3.3)

while there is no magnetic field.

>Since there is no magnetic field in this gauge theory, we hope it does not cause any confusion to use B to
denote the gauge fields.
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3.1 Lattice Tensor Gauge Theory

Let us discuss the lattice version of the U(1) tensor gauge theory without matter. We have a
. a3 . . .

U(1) phase variable U, = ¢!* B and its conjugate variable E, at every cube c. The gauge trans-

formation e'* is a U(1) phase associated with each site s. Under the gauge transformation,

U, ~ U, et | (3.4)

where A, a; is a linear combination of a, around the cube c defined in (2.1).

There are two types of gauge invariant operators. The first type is an operator E, at a
single cube. The second type is a product of U,’s along x direction at a fixed y, z, or similar
operators along y or z direction.

The Hamiltonian is

1
H=— > E (3.5)
8"
and the physical states satisfy Gauss law
G=> €L =0, (3.6)

c3s

where the sum over c is an oriented sum (€, = £1) over the 8 cubes that share a common site
s.

The lattice model has an electric tensor symmetry whose conserved charge is proportional
to E,. The electric tensor symmetry rotates the phase of U, at a single cube, U, — e'?U.. Using
Gauss law (3.6), the dependence of the conserved charge E. on ¢ is a function of (X, y) plus a
function of (¥,2) plus a function of (X, 2).

3.2 Continuum Lagrangian

The Lorentzian Lagrangian of the pure tensor gauge theory is [ 7, 8]

L= B+ grBos 3.7)
e

We will soon show that the total electric flux in FEuclidean space is quantized
3§d1dxdydzExyZ € 27nZ, and therefore the theta angle is 27t periodic, 6 ~ 6 + 2m. The
equations of motion are

OEyy; =0, 0,0,0,E,,,=0, (3.8)

where the second equation is the Gauss law.

If 6 =0, «t, the global symmetry includes Zg x S4, where Zg is a charge conjugation sym-
metry that flips the sign of By, B,,,. Other values of 6 break the Zg x S84 to S4. In addition, for
every value of 6 there are parity and time reversal symmetries, under which E,., is invariant.

3.3 Fluxes

We place the theory on a Euclidean 4-torus with lengths £*, £, £*, £*, and explore its bundles.
For that, we need to understand the possible nontrivial transition functions.

19


https://scipost.org
https://scipost.org/SciPostPhys.9.5.073

Scil SciPost Phys. 9, 073 (2020)

Let us take the transition function as we shift T — 7 +£" to be the gauge transformation
(2.6),°

8%, 3,2) = 2 -0(y — y)(z —zO) + 20 —x0)0(z ~20) + -O(x —x0)0(y — ¥o)

XYz
— 2 0(x —x0) = 717700y —Yo) — 73- 0 —5) + S |
(3.9)
ie.,
Byyo (T +L€7,X,,2) = By, (T, X, y,2) + 0,0, 0, 8(r)(x, ¥, 2) . (3.10)
For example, we can have
Baya(.,3,2) = 2= | 72607 = Y0)3( —50) + 7 8(x —x0)0 (3 )
1 1
+_5(X_xo)5(}’_}’o)—eyngs(x_xo)—Exzz5(}’_}’o) (3.11)
1
My 0z =) + zxeyez}'

Such a configuration gives rise to electric flux
e(xy)(x: J’) = } df§ dz Exyz = 271?5()(’ —Xo)5()’ _.yO) P
ey (y,2) = f£ dT}S dx Eyy, =216(y — ¥0)o(2 —20) » (3.12)

e(xz)(X,2) = jg d’r}g dy Eyy, =2m6(x —X0)0(2 —2) -

With more general twists, we can have

e(xy)(x:y) = § dff dz Exyz = Zﬁzﬂ:n§%5(x_xa)5(y_y[j) B
e(yz)(.yyz) = }5 d7§ dx Exyz = znﬁzn%§5(.y —_)//5)5(2 _Zy) B (313)
Y

e(xz)(X,Z)=j§dT§dy Exyz_zﬂ-z x25(x Xa)5(2—2 ),

Yz
where naﬁ, Mg, M ay ? € 7 satisfy

;n Z Moy > Za:nz%=zy:n%i, Za:n§?,= 4 n%i (3.14)

We can also write the above fluxes in the integrated form

X3 Y2
e(ey) (X1, X2, Y1, ¥2) = § er dxf dyjf dz E,, €277,
X1 1
Y2 22
e(yz) (Y1, Y2,21,%2) = jg d’l,'} de dyJ dz Eyy, €27Z, (3.15)
1 21

Xy %
e(xz) (X1, X2,21,%2) = § dTJ dx§ dyf dz Eyy, € 2TZ .
X1 %

®As in all our theories, we allow certain singular configurations provided the terms in the Lagrangian are not
too singular (see [3-5]). Here we follow the same rules as in [3,4]. It would be nice to understand better the
precise rules controlling these singularities.
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3.4 Global Symmetry

The equations of motion can be interpreted as the current conservation equation and a differ-
ential condition for an electric tensor symmetry

3" =0, 8,0,3,J57" =0, (3.16)

with the current 9 0
JV P =Z"F _+—. 3.17
0 gez Xyz 27T ( )

We define the current with a shift by 6 /27 such that the conserved charge is quantized to be
an integer (see (3.34)).
There is an integer conserved charge at every point in space, which coincides with the
current itself:
Q(x,y,2)= ngz =N"(x,y)+N"*(y,z) + N*(x,2), (3.18)

where NY(x!,x/) € Z. The differential condition axayaZJg Y% = 0 constrains the charge Q to
have the above form. This conserved charge exists also on the lattice.
Up to a gauge transformation, the electric tensor symmetry acts on the gauge fields as

Byyz = Byy, + Y (x,y)+c(y,2) + 7 (x,2) . (3.19)

Note that it leaves the electric field invariant.
The charge objects under this electric global symmetry are the gauge-invariant extended
operators defined at a fixed time:

(‘Xz Y2
W(xy)(x1:x2§y1: Y2) =exp|i dxf d.y§ dz Bxyz:| >
X1 1

. (‘}’2 22
W(yz)(yla Y2; 21522) =exp|t dy dz dx Bxyz ) (320)
1 2

rxz 29
Wixz)(xX1,X0;21,%,) = exp| i de dzjg dy Bxy2:| .
X1 2]

Only integer powers of these operators are invariant under the large gauge transformation
(3.9). We can refer to such operators as Wilson tubes. These tube operators are the continuum
version of the lattice operators constructed as products of U, along a line. The symmetry
operator U(f;x,y,z) = eP¥2) transforms the basic Wilson tube by e’? if the symmetry
operator intersects the Wilson tube. Otherwise, the symmetry operator commutes with the
Wilson tube.

3.5 Defects as Fractons

We now discuss defects that are extended in the time direction. The simplest kind of such a

defect is
o
exp [lf dt BO] . (3.21)
—00

Its exponent is quantized by imposing invariance under a large gauge transformation. This
describes a single static charged particle. A single particle cannot move in space because of
the gauge symmetry.

However, four of them that form a quadrupole can move collectively. Consider four par-
ticles in this configuration: +1 charge at (x;, y;) and (x4, y5), and —1 charge at (x;, y,) and
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(x9,¥1). The configuration can move in time along a curve in the (z,t) plane, z(t). Their
motion is described by the gauge-invariant defect

X2 Y2
W(Xl,X2,y1,y2,C):eXp |:lf de dyJ (dt axayBo"l‘dz Bxyz)] . (3.22)
X1 R4 C

The operator is gauge-invariant for any curve C without endpoints. Similarly, we can have
quadrupole moving collectively in the x and y directions.

3.6 Electric Modes

We place the system on a spatial torus with lengths £, £, £* and study its spectrum.
We pick the temporal gauge B, = 0. Using the Gauss law

0,8,8,E,; =0, (3.23)

up to time independent gauge transformations, we have

1 1 1
Buye = 5 f (6, )+ o (6 3, 2) + o (8 x,2) (3.24)

where we picked the normalization for later convenience. Note that there are no modes with
nontrivial momentum in all the three directions.
Only the sum of the zero modes of £*f*Y(t,%,y), etc., is physical. So, there is a gauge
symmetry:
[ x,y) ~ 7 x, y)+ 8 (t,x) = (L, y)
[P y,2) ~ f7(t, y,2) + 0507 (t, y) = £5¢%(¢, 2) (3.25)
Xt x,2) ~ fX2(t,x,2) + 0V P(t,2)— Y c*(t,x) .

Note that shifting all c!(x?) by the same zero mode does not contribute to the above gauge
symmetry. To remove the gauge ambiguity, we define the gauge invariant variables

F(tx,y) = F7 (%, y) + eiyf dz F¥*(t,x,2)+ H dz f*(t,7,2),

FrE 0 = 5 ) + o § dx F(60, )+ o } dx f(t,x,2),  (3.26)
= 1 1
Xt x,8) = £t x,2) + £—§ dy f7*(t, )+ e—zf dy f¥(t,%,y) .
However, these variables are not all independent; they are subject to the constraints
§dy Fx,y)= jg dz f**(t,x,2)
%dz frty,2) = jg dx f(t,x,y), (3.27)
fdx F(t,x,2) = é dy fP%(t,y,2) .

The gauge transformation (3.9) implies the following identifications of f/:

Fx,y)~ FY(t,x,y) +2m8(x — x0)5(y — Yo)
Fr(t,y,8) ~ F2(t,y,2) + 2n8(y — ¥0)8(2 —20) (3.28)
Xt x,2) ~ f%(t,x,2) + 28 (x — x0)5(2 —20) ,
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for each xq, yo, and z,. On a lattice with L! sites in x' direction, it may seem like there
are L*LYL*? identifications. However, there are only L*LY + LYL* + LXL* —L* — LY —L* +1
identifications. To see this, consider z, = 0,

fxy(t,xay) foy(t; X,y) + 27[5(X_X0)5(y _y()) )
FYE(t, y,2) ~ fYE(t, y,2) + 216 (y — ¥0)8(2) (3.29)
£t x,2) ~ F2(t, x,2) + 218 (x — x0)5(2) .

There are L* LY such identifications. Next, consider x, =0,

Y%, y)~ FY(tx,y),

[y, 2) ~ [, y,2) +2n6(y — ¥0)6(2 —20) —2m8(y — ¥0)o(2), (3.30)
£t x,2) ~ F2(t, x,2) + 28 (x)6 (2 — 29) — 2S5 (x)5(2) .

There are LY (L* — 1) such identifications. Finally, consider y, =0,

Fx,y)~ F(tx,y),

Fr(ty,2) ~ fr3(t,y,2),

FXE(t,x,2) ~ F2(t, x,2) + 28 (x — x0)5 (2 — 29) — 218 (x — x4)5(2)
—2m6(x)0(z —2¢) +2md(x)6(2) .

(3.31)

There are (L* — 1)(L* — 1) such identifications.

On a lattice with sites labelled as (X, ¥, %), using the constraints (3.27), we can solve for
FX2(t, % =1,%), f¥%(t,%* # 1,2 = 1), and f?*(t, §,%2 = 1) in terms of the other f¥, and then
the remaining L*LY + LY L?* + L¥L* — L* — LY — L* 4+ 1 f’s have periodicities f ~ f + i—g

The Lagrangian for these modes is

1

L=—[€x£y dxdy (fY +070* ¢ dydz (f7*)* + €% § dxdz (f**)?
g2Ux Ly L=

_jg dxdydsz ((3fXF5 + 0 fX fre 4 g2 fr2 ) (3.32)

. 2 9 .
+(§ dxdyfxy) }+—§dxdyf_xy .
2n

Let [1Y(x’, x/) be the conjugate momenta of f /. The delta function periodicities of (3.29),
(3.30), (3.31) imply that TY(x', x’) have independent integer eigenvalues at each x! and x’.
Due to the constraints (3.27), the momenta are subject to a gauge ambiguity:

Y (x, y) ~ T (e, y) + n* (x) —n? (¥),
7%(y,2) ~ I17%(y,2) + n” (y) —n*(2) , (3.33)
I1*%(x, 2) ~ IT¥*(x, 2) + n*(z) —n*(x) ,

where ni(x!) € Z. Note that shifting all n’(x') by the same zero mode does not contribute to
the above gauge symmetry. The charge of the electric tensor symmetry (3.18) can be expressed
in terms of the conjugate momenta as

2 0 _ _ _
Q(x,y,2) = S Eyy, + o Y (x,y) + 1% (y, z) + II**(x, 2) . (3.34)
g T

e
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The Hamiltonian is
2 2 2 2
— 6xY _ 6Y? B 9xz
H= 8¢ 0 ¢ dxdy (ny— ) +0* ¢ dydz (Hyz— ) +{7 ¢ dxdz (sz_ )
4 271 21 27
_ 9xy _ Y _ 9Y* B Xz
+2¢ dxdydz (H”——) (Hyz— )+2 dxdydz (l'[yz— )(HXZ— )
21 21 27 21
_ [ape: _ QXY
+ 2§ dxdydz (H” — —) (H” — —) i| ,
21 21

where 6% + 6Y* + % = 0. Here, 8' can depend on x!,x/ but not x
depends only on the sum of 6%,

Consider regularizing the above Hamiltonian on a lattice with lattice spacing a, and sites
labelled as (%, 7,2), where ' = 1,...,L!. The conjugate momenta IT(%!, /) have integer
eigenvalues at each %! and %/. States with finitely many nonzero IV (%!, #/) have small ener-
gies of the order of a? which vanish in the continuum limit. This is in contrast to the ¢-theory
where the classically zero energy states are lifted to infinite energies quantum mechanically.
There are states with order L nonzero momenta I[I1Y(%%,%7). For example,
M, y) = [O(X —%1) —©(X —%,)]04 5, with X; < X,. The energies of such states are
of order a, and they vanish in the continuum limit. Finally, there are also states with order L2
nonzero IIY(%%, 7). For example, II"V(x,y) = [O(x—x;)—0(x—x,)]
[0(y —y1) —©(y —y,)] with x; < x, and y; < y,. The energies of such states are of or-
der one.

Similar to the discussions in [3-5], we now discuss the effect of higher derivative terms on
the states in the gauge theory. For example, consider

(3.35)

k  The Hamiltonian

g(3:Eyy,), (3.36)

with the coupling g of order a. As we discussed above, the states with finitely many nonzero
I1Y have energy of order a?. The higher derivative term shifts their energy by an amount of
order g ~ a®. The states with order 1/a nonzero momenta [TV have energy of order a and
their energy is shifted by an amount of order g/a ~ a. Therefore, the energy of these two
types of states remain zero in the continuum theory. The energy of the states with order 1/a?
nonzero momenta [TV is of order one and their energy is shifted by an amount of order one.
To conclude, while the zero-energy states are not lifted by these higher derivative terms, the
finite energy states do receive quantitative corrections leaving the qualitative scaling with a
invariant.

There are no relevant operators that violate the electric tensor symmetry. Hence, we con-
clude that the electric tensor symmetry is robust in the (3+1)-dimensional tensor gauge theory.

4 Zy Tensor Gauge Theory of B

In this section, we discuss a Zy version of the tensor gauge theory. The theory can be obtained
by coupling the U(1) theory to a scalar field ¢ with charge N that Higgses it to Zy
4.1 Lagrangian
The Euclidean Lagrangian is
i

i A N
Lp= EExyz(axayazw—NBxyz)+ﬁB(afcp—NBT) ) (4.1)
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where (B;,By,,) are the U(1) tensor gauge fields and ¢ is a 27-periodic scalar field that
Higgses the U(1) gauge symmetry to Zy. The gauge transformations are

p~p+Na,
B, ~B,+0.a, 4.2)
BxyZ ~ BxyZ + 3x8y82a .

The fields £*Y* and B are Lagrangian multipliers that constrain (B;,Byy;) to be Zy gauge
fields.
We dualize the Euclidean action by integrating out ¢. This leads to the constraint

0,0,0,E* +3.B=0, (4.3)
which is solved locally in terms of a field ¢*?* in the 1’ representation of S,
EXY2 =3 ¢X% | B= —0,0,0,p™* . (4.4)

The winding modes of ¢ mean that the periods of EX¥* and of B are quantized, corresponding
to p*Y* ~ *¥* + 21, The Euclidean action becomes

iN iN
Lg= E(nyz(aeryz - axayazB’r) = E‘nyzExyz . (4.5)

4.2 Global Symmetry
The theory has a Zy electric global symmetry generated by the gauge-invariant local operator

el (4.6)

As we will discuss soon, these local operators can be added to the Lagrangian and destabilize
the theory. There is also a Zy magnetic global symmetry generated by the Wilson tubes

B X2 Y2
W(xy)(xlnxz;}’LJ’z):eXP iJ dxf dyffdz Bxyz:| s
L JXx; n

i Y2 2z
Wiyz) (Y1, Y2521, %2) = exp ijgdxf dyf dz Bxyz] , (4.7)
L R4 %1

B Xo 29
Wies) (X1, X2521,22) = €xp iJ dx}S dyf dz BxyZ:| .
L X1 27

This magnetic symmetry is the Zy version of the quadruple symmetry discussed in Section 2.3.
The exponents of these symmetry operators are quantized to be integers and

iN™* _ 1N _
e = W(l.j) =1. (4.8)

Therefore they are Zy operators. The operators (4.6) and (4.7) do not commute if they inter-

sect:
- xyz . s AXYZ
e'? (X’y’Z)W(xy)(xl,Xzi)’u)’z) = ezm/NW(xy)(xl,Xz;)ﬁ,)’z)ew (x.y.2) >

s XYZ ] [p*YF
e'? (x’y’Z)W(yZ)(yl,yz;zl,zz) = ezm/NW(yz)(yl,J’z;ZbZz)e“p Coys) (4.9)
eupxyZ(x’y’Z)W(xz)(xl, Xy 21,22) — eZm/NW(XZ)(xb xz;zl,zz)eltpxyZ(x,y,Z) .

As we will see, the spectrum is in a minimal representation of this algebra.
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4.3 Defects as Fractons

The defects of the Zy tensor gauge theory are similar to those of the U(1) tensor gauge theory
studied in Section 3.5. The simplest defect is a single static charged particle

exp [lf dt BO] . (4.10)

A single particle cannot move in space because of the gauge symmetry. However, four of them
that form a quadrupole can move collectively. Their motion is described by the gauge-invariant

defect
X3 Y2
exp |:lf de dyf(dt 0,0yBy+dz Bxyz)] , (4.11)
X1 N4l c

where C is a curve in the (z, t) plane. Similarly, we can have quadrupole moving collectively
in the x and y directions. In the special case where C is fixed in time, these operators are the
generators of the Z, quadrupole symmetry (4.7).

4.4 Cube Ising Model and a Lattice Tensor Gauge Theory

The Zy tensor gauge theory arises as the continuum limits of the two different lattice theories,
the Zy lattice tensor gauge theory and the Zy cube Ising model. In this sense, the two lattice
modes are dual to each other at long distance.

4.4.1 Cube Ising Model

The Zjy cube Ising model is the Zy version of the XY-cube model. There is a Zy phase U, and its
conjugate momentum V, at each site. They obey the commutation relation U,V, = e>™/NV,U,.
The Hamiltonian includes the cube interaction and a transverse field term:

H =—hZ(VS +c.c.)

—K > WUy 52Uty 52Uz hu1Us o Vst gnsUsinsenUsgs s Uty gan o +66)
x,¥,2
g (4.12)
We will assume h to be small. The classical spin system with interaction around a cube has
appeared in [18].
The lattice theory has conserved charge operators:
I
W@ 9) =] [Vese » (4.13)
=1
and similar operators along y and z direction. In the continuum, they become the quadrupole
global symmetry operator (4.7). The Zy electric tensor symmetry of the continuum theory is
broken in the lattice theory.
If we only impose the Zy quadrupole symmetry on the lattice, there is no symmetry-
preserving relevant operator at long distances that violates the emergent Zy electric tensor
symmetry. Hence the emergent Zy electric tensor symmetry is robust.

4.4.2 Lattice Tensor Gauge Theory

The Zj lattice tensor gauge theory has a Zy phase variable U, and its conjugate variable V,
on every cube c. They obey U,V. = e*™/NV_U.. The gauge transformation 7; is a Zy phase
associated with each site. Under the gauge transformation,

-1 -1 -1 -1
Ue ~Ues,3,6M5 41,52 M5 541, Me 9 241 M54 1,5412M241, 9,541 M8, 541,840 ek 1 a4 0 (414
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where the product is over the eight sites around the cube c.
Gauss law sets

G =] [ =1, (4.15)
(=1
where the product is an oriented product (¢, = £1) over the eight cubes ¢ that share a common
site s. The Hamiltonian is

H=-h) (V.+cc), (4.16)

and we impose Gauss law as an operator equation. Alternatively, we can impose Gauss law
energetically by adding a term to the Hamiltonian

H=-K Y (G+cc)—h) (V. +cc). (4.17)

The lattice theory has conserved charges V. at each cube. They become the Zy electric
tensor symmetry generateor (4.6) in the continuum. The Zy quadrupole symmetry of the
continuum theory is broken in the lattice theory.

When h and h are both zero, the Hamiltonian (4.17) becomes the Hamiltonian (4.12) of
the cube Ising model if we dualize the lattice and identify U, <> V!, V. <> U,'. At long
distances, they both flow to the Zy tensor gauge theory (4.5).

If we only impose the Z, electric tensor symmetry on the lattice, one can break the emer-
gent Zy quadrupole symmetry by adding operators such as /¥ to the Lagrangian. Hence,
the emergent Zy quadrupole symmetry is not robust.

4.5 Ground State Degeneracy
The ground state degeneracy of this system on a lattice is NL" I/ +L7 L'+ LI LA =L*=L7=1*+1 " pe
way to see this is to study the ground states of the Lagrangian (4.1). Using the equations of

motion (4.2), we can solve for all the fields in terms of ¢, so the solution space is

{¢|e~¢+Na}. (4.18)

This identification removes almost all configurations of ¢ except for the winding modes (2.31)

Xyz
w
0xgy ez ZJ’EZ

o(t,x,y,2)=2n ZWx@a(x) MZ Zwyeﬁ(y)— I ZwZe (2)

X 2 z x
+ o ﬁZ: W, 05 ()0, (2) + ely Z W;70,(x)0,(2) +3 W) 0a(x)0s(y) |
Y ay

ap
(4.19)
where ©,(x) = ©(x — x,), and all the coefficients are integers and they are related by
WX = ny Z W,
Y _ Xy _ yz
Wp = Waﬂ Z Why >
(4.20)

ZW” ZWé‘f)
W= wa Zwy ZWZ.

27


https://scipost.org
https://scipost.org/SciPostPhys.9.5.073

Scil SciPost Phys. 9, 073 (2020)

If we regularize the theory on a lattice, the above winding modes are labelled by
L*LY + LYL* + L*L* — L — LY — L* + 1 integers. The gauge parameter a also has simi-
lar winding modes, so the ones that cannot be gauged away have winding charges W:g ,
Wg; and Wa’f)f that are valued in Zy, i.e., only charges modulo N are physical. This leads
to NL LY +LY L4L* LF =L =LY —1*+1

ground states as advertised above.

Another way to see the ground state degeneracy is from the Zy global symmetries. On a
lattice, the set of commutation relations between Zy quadrupole and electric global symme-
tries (4.9) is isomorphic to L¥XLY + LYL* + LXL* — L* — LY — L* + 1 copies of Zy Heisenberg
algebra: AB = e>™/NBA and AN = BN = 1. The isomorphism is given by

Ay =elv I, Biy = Wiey)(®,9)

- XYz &S\ AXYE o A
A}”,’Q = el‘P (1,y,2)—ip**(1,3,1) , B}A,’ﬁ — W(yz)(ygz) , (421)
Ags = ei(pxyz()Ac,l,ﬁ)—hpxﬂ(fc,l,l)—i(pxyz(1,1,£)+i(pxy2(1,1,1) , Bg,= W(xz)(-)%:ﬁ) ,

o o . L U I L .
where W(,,)(%, ) = exp [la?’ D1 B,y (X, y,z)] is a tube operator along the z direction with
cross section area a?, and similarly for other directions. The minimal representation of the

Zy Heisenberg algebra is N-dimensional. Therefore, the nontrivial algebra (4.9) forces the
ground state degeneracy to be N1 L7 +L7L*+L LA —LI=L —L7+1

5 U(1) Tensor Gauge Theory of C

Consider a (Ryime, Rspace) = (3',2) tensor global symmetry generated by currents (Jéj ,JLIK)
[4]. The currents obey the conservation equation:

oy = B (WY 4 glkily (5.1)
and a differential condition -

We will study the pure gauge theory without matter obtained by gauging this (3’,2) tensor
global symmetry.
We can gauge the (3',2) tensor global symmetry by coupling the currents to the tensor
gauge field (C;, cliflky
1 i i 1 o e
3 Jcd + EJ[”]"C[”]]‘ : (5.3)

The current conservation equation (5.1) and the differential condition (5.2) imply the gauge

transformation g . . .
C(l)J ~ C(l)] + 30aU — 313](10 (5 4)
clilk o clijlk _ gigik 4 gigik .

The gauge parameters (ay, @) are also gauge fields themselves in the (1,3’) representation
of S4. They have their own gauge transformation

ag~ ay+ 9y, al ~all +313)y | (5.5)

where 7y is in the 1 of S4. The gauge transformation (5.5) of (ay, a') does not affect the gauge
transformation (5.4) of (Céj ,C [ij ]k). The gauge-invariant electric field is

Ik = g,clik 4 gic)k —aicik | (5.6)
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which is in 2 of S4, while there is no magnetic field.
It is interesting that the gauge parameters (a,, a") are similar to the gauge fields (A, A;;)

of the A-theory of [4], with their corresponding gauge symmetry (5.5). The (Céj ,Cliilky gauge
fields are similar to the field strengths (E;;, B;jji) of (Ag,A;;). Furthermore, the electric field
ELGIk of (C(l)] , Cl1kY s similar to the Bianchi identity of the A-theory. Physically, it means that
the gauge fields (Ay,A;;) are the Higgs fields of (Céj ,Cli1ky (see Section 6.2). More generally,
this analogy is the same as the relation between higher form gauge theories of different de-
grees, where the gauge fields of one theory are similar to the gauge parameters for the higher
form gauge theory.

5.1 The Lattice Model

In this subsection, we will discuss the U(1) lattice tensor gauge theory of C. We will present
both the Lagrangian and Hamiltonian presentations of this lattice model.

We will consider a Euclidean lattice with lattice spacing a. The gauge parameters are
placed on the temporal links 7, (1n 1 of S;) and on the spatial plaquettes n*¥, n¥* and n**
(in 3’ of S,). We also write 1, = ', and n” — eia*a’
parameters are placed on the sites A = e”’ (in 1 of S4).

The gauge fields are placed on the cubes. On each temporal cube along Txy, there is a
gauge field UYY = ¢i@°C" (in 3’ of 84) and similarly along Tyz and Tzx. On each spatial cube,
there are three gauge fields U/ ela’ct (m 2 of S4), which satisfy U Leylylyzleglexly = 1,

The gauge transformations act on the gauge fields as

. The gauge parameters of the gauge

A A A oa PN A oA oA oav—1 A A
Ur(t,%,3,2) ~U2(%,%,5,20 (1,%,9,2) 0V (2+1,%,7,2)

xn.(%,%,7,8) (4, X+ 1,7 +1,2) (4,2 +1,7,2)n.(%, %, 7 +1,%)
UbYE(E %, 5,8) ~ UPYE(], £, 9,80™(%, %, 5 + LEN(4,%,5,8)
x 0¥ (1,2 +1,9,8)'n"%(%,%,9,2),
(5.7)
and similarly for UY*, Uz, U [yz3x and U*)Y. The gauge transformations themselves have

gauge transformations given by
~ V(T %, ¥, M, %, ¥, MT,x+ 1,7 +1,2) (5.8)
1

and similarly for n”* and n**
Let us discuss the gauge-invariant local terms in the action. There are three kinds of terms
on each spacetime hyper-cube:

LDYE(8,%,9,8) = U (4,%,9 + 1,8) TUX(4, %, 9, 2)UY%(£, % + 1,9,8)U2*(£,%, 7,8)
x U[xy]z(%,fc, 9,8 U R+ +1,%,9,2),

(5.9
and similarly L#™* and LE*1Y| These terms together with their complex conjugate become
the squares of the electric fields in the continuum limit.

In addition to the local, gauge invariant operators above, there are non-local, extended
ones. For example, we have a slab operator along the xy plane:

L* LY

[T T 5.4 - (5.10)

$=13=1
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Similarly, we have slab operators along yz and zx planes. N
In the Hamiltonian formulation, we choose the temporal gauge to set all U = 1. On each
spatial cube, we introduce the electric field EIY such that g%E [ij]k is conjugate to the phase

variable UL/ with g, the electric coupling constant. This definition of the lattice electric field
differs from the continuum definition by a power of the lattice spacing, which can be easily
restored by dimension analysis.

Since UMY Eylyzlxylaxly = 1 the electric fields have a gauge ambiguity EXY ¥ ~ EDY Iy ¢)
EWzlx ~ Elyzlx g Elexly o EXIy 4 atevery given cube. We also define EX(W) = Elkili 4 plkjli
which satisfy EX0®) 4 EY() 4 F#(<Y) = 0 and do not have any gauge ambiguity. Note that both
ElIk and E'UX) have the same number of degrees of freedom.

On every spatial plaquette in the xy direction, we impose the Gauss law

G (%,3,8) = EF*V (2,9, + 1) — EF*V (2, 9,8) — ED*I (%, 9,5 + 1) + EDZ (1, 9, %)
=%, 9,4+ 1) —EF5)(%,9,8) =0,
(5.11)
and similarly in the yz and xz directions. So there are three Gauss laws GV = 0.

The Hamiltonian is the sum of (E1U%))2 over all the cubes, with the three Gauss laws im-
posed as operator equations. Alternatively, we can impose the Gauss laws energetically by
adding a term Zplaquettes(GU )? to the Hamiltonian.

The lattice model has an electric tensor symmetry whose conserved charges are proportional
to

E'0O(%0, Y0, 20) - (5.12)

They trivially commute with the Hamiltonian. The electric tensor symmetry generated by
E*0®) rotates the phase of U7 at a single spatial cube:

ylxylz _, piaglxyls , ylyzlx _, ylyzlx , ylexly _, g—taglexly (5.13)

Using Gauss law (5.11), the conserved charge EX0®) is independent of %. Its  and 2 depen-
dence is further restricted by the constraint EX0®) 4+ EY(#¥) 4 gz(x¥) = 0 (see Section 5.4).

5.2 Continuum Lagrangian
The Lorentzian Lagrangian of the pure tensor gauge theory is

1 e 1 ”
L=——E; Bk = —E  EU0 5.14
2g2 Lk 2g2 iUk (5.14)

where EIUR = 3E;(jk) (see Appendix A). The equations of motion are

%SOE"(U) =0, gE=0, (5.15)
e
where the second equation is the Gauss law.

In many ways, this theory is similar to the U(1) gauge theory in 2+1 dimensions in [3] and
the gauge theory of Section 3. They have only electric field, but no magnetic field, they have
quantized fluxes (see below), and no local excitations (see below). But unlike these theories,
here the electric field is not invariant under the cubic group, and therefore we do not add a
0-parameter.
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5.3 Fluxes

Let us put the theory on a Euclidean 4-torus of lengths £7, £*, £¥, £*. Consider the gauge field
configurations with nontrivial a transition function at time 7 = £7:”

z 1
gy =2n 2| 80— 30+ 506 —m) - 1 |
oty - yo)——], (5.16)

[@(Z—Zo)— K_Z] ,

T
gm0 8= o

Y
gy, y,2) = iy

which has its own transition function at x = £*,

yz]

5.17
9L (5.17)

z
ho(,2) = 27| 20y = y0) + 20(z —20) -

We have ClUk(7 407 x, ¥,2) = C[ij]k(’r,x,y,z)—k g(T)(x ¥,2)—0; g( )(x ¥,2). We also have

80y +05,3,2) = gL (%, ¥,2) + 8,0k (7, ).
A gauge field configuration with these transition functions is

2t [ 1 1
cterte = 28| 6 —50)+ 5260 =0 = 3y |

£7fx | 0y 20y (=
21T
clexly — VT [ o6(y —yo)+ —5(2 20) — 2@'52] ) (5.18)
2nt [ 1
[yzlx _ 20" | = _ _ —
el = 228 | 6 —50) = 528030 |
with the electric fields
21 1 1 1
[xyle — _ il _ il _ _
E oI |:€y5(z 20) + 2€Z5(J’ Yo) 2€y£Zi| ,
2w [ 1 1 1
glexly — o [—5(y—y0) + —5(2—20)_ 2£J’€Z] s (5.19)
21
gl = 22 [2 605 —20)— 5260 — J’o)]

Since the electric field E[1X has mass dimension 4, it is allowed to have delta function singu-
larities following the rules in [3,4]. We have

fdr}g dx}g dy EDYE =—-216(z—2),

% dr§ dx§ dz ElFy = 216(y — o) - (5.20)

fdrffdngdzE[yz]XZO.

By taking linear combinations of similar bundles, we can realize a general electric flux

Z2
e[xy]z(21,22) = f drf dxf dyf dz EMY¥E e 27, (5.21)
21

7As in all our theories, we allow certain singular configurations provided the terms in the Lagrangian are not
too singular (see [3-5]). Here we follow the same rules as in [4]. It would be nice to understand better the precise
rules controlling these singularities.
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and similarly el*1(y,, y,) and el?*™*(x;, x,). In particular, the fluxes can be nontrivial when
integrated over all spacetime, but they satisfy

elYE(0,0%) + el (0, 07) + 71X (0,6%) = 0. (5.22)

On the lattice, these nontrivial fluxes correspond to the products

[TebE=1, []eb=1, J]e=b=1. (5.23)

XY 5% T,X5%

5.4 Global Symmetries and Their Charges

We now discuss the global symmetries of the C theory.
The equation of motion (5.15) is identified as the current conservation equation

30J(i)(jk) —0, (5.24)

with current 5
Ji09 = 2 piGi) (5.25)

8

The second equation of (5.15) is an additional differential equation imposed on J:
8 P =0. (5.26)

We will refer to this current as electric tensor symmetry. This is the continuum version of the
lattice symmetry (5.12). Note that there is no spatial component of the current.
The charges are

QUP(x,y,2) =J 9 (x, y,2) (5.27)

at every point in space. The differential condition (5.26) means that the charges satisfy

QN (x,y,2) =Q7 (x,y),
QO(x,y,2) =Q"*(y,2), (5.28)
Q" )(x, y,2) = Q" (x,2),

where QY(x!, x/) € Z. Since the charges satisfy the constraint Q¥ 4 Q*ra) 4 Q(EX) = 0, we

can write them as

Q) (x,y,2) = Q' (y) —Q*(x),
QU (x,y,2)=Q () —-Q(y), (5.29)
Q")(x,y,2) = Q*(x) — Q*(2),

where Q!(x) € Z. Note that shifting Q!(x') — Q!(x') + n by any n € Z does not change the
charges. So, on a lattice, there are L* + LY + L* — 1 charges.
The symmetry operators are

. 28
UUO(B; x,y,2) = exp [ig—fiElUk)(x, y,Z)] - (5.30)

e
The electric tensor symmetry acts on the gauge fields as
[xylz [xy]lz Z 1 x 1 y

CE(x, y,2) = CEYE(x, y,2) + () = 3¢ (x) = 56 (1),
1 1

Cl* X (x, y,2) = ¥ (x, y,2) + X (x) - S =5 @), (5.31)
1 1

Y (x,y,2) » Y (x, y,2) + ¢ (y) — Ecz(z) — Ecx(x) ,

32


https://scipost.org
https://scipost.org/SciPostPhys.9.5.073

Scil SciPost Phys. 9, 073 (2020)

up to time-independent gauge transformations.
The operators charged under this electric tensor symmetry are slab operators:

X
W,.(xq,x,) = exp (1J dxf dy} dz C[yz]x) ,
X1
Y2
Wy(yl,yz) = exp (i jg de dy% dz C[Zx]y) ) (5.32)
h4!
23
W,(21,25) = €xp (ijgdxj( dyf dz C[Xy]Z) .
21

These correspond to the slab operators (5.10) on the lattice. The symmetry operator (5.30)
and charged operators (5.32) satisfy the commutation relation

UZ(xy)(ﬁ;x;yaz)Wx(xlﬂxZ)=e_iﬂWx(xlﬁ'XZ)uZ(xy)([j;x:y)z)) if X1 <X <x2 >
L{Z(XY)(ﬁ;x,y,z)Wy(yl,yz) = eiﬁwy(Y1:J’2)Uz(xy)(ﬁ;X,y,z) , i y1<y<y;, (5.33)
Z/{Z(xy)(/j;x; yaz)Wz(ZbZZ) = WZ(ZIJZZ)UZ(Xy)(ﬁ;xJ }’;Z) > lf 2 <z< 225

and they commute otherwise. The commutation relations for 2/*®**) and 1/*©* are similar.

Only integer powers of W; are invariant under the large gauge transformations such as
(5.16). It then follows that 3 is 2m-periodic. Therefore, the global structure of the electric
tensor symmetry is U(1), rather than R.

5.5 Defects as Fractonic Strips

There are no particles in the model, however, there are strips fixed between two parallel planes,
whose fibers are oriented normal to the plane and cannot bend. For example, a charge +1,
static strip extended along the y direction with fibers along the z direction (fixed between two
xy planes at z = z; and z = 2,) is described by the defect®

oo Z9
W,(21,2,) = exp |:lJ dtjg dyf dz ch] . (5.34)
—0oQ 2z

More generally, we can have a charge +1 static closed strip along a closed loop C*” in the xy
plane with fibers along the z direction described by the defect

oo Z9
W, (21,2,,C*Y) = exp |:lf dtf dz§ (C2xdx + cgzdy)] . (5.35)
—0Q Z1 cxy

Here, the strip is given by C*Y x [2;,2,]. Each fiber of such a strip is oriented along the z
direction and cannot bend away from that. Similarly, there are static strips in the yz and the
xz planes.

The strips can also move within their planes, but their fibers still cannot bend. For example,
a charge +1, closed strip can move by itself in the xy plane, but its fibers cannot bend away
from the z direction. The corresponding defect is

22
W, (21,25, S*7") = exp |:1f dzé (ngdxdt +C) dydt + C[Xy]zdxdy) , (5.36)
% Sxyt

8In the Euclidean version of this defect, the charge is quantized by invariance under the large gauge transfor-
mation generated by a’* = 2m % [[%5(3/ —Yo) + [iyé(z —2p) — ﬁ], where z; < 2, < 2,, and @ = a** = 0. This
large gauge transformation has a transition function at T = £° given by (5.17).
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where S*Y!' is the world-sheet of the boundary of the strip at, say, z;. For a static strip,
St =(C*Y x R,. Similarly, there are moving strips in yz and xz planes.

At fixed time, with S*Y* = xy plane, we recover the slab operator W,(z;,2,) defined in
(5.32). Similarly, we can recover the other slab operators.

5.6 Electric Modes

We place the system on a spatial 3-torus with lengths £*,¢7,(*. We pick the temporal gauge
Céj = 0, and then the Gauss law 8, EX(/) = 0 implies that up to a (time-independent) gauge
transformation the spatial gauge fields take the form

[xy ] _ y
LY (e, x, y,2) = Myf( z)— sz( x)— 2fo( ),

[yz]lx y _

cl(t,x, y,2) = sz( x)— fo( ) 2m,yf (tz),  (537)
[zx]y — y _ x
CE(t,x,7,2) = o f/(6,3) = 5o () = s X ().

Note that there is no mode with nontrivial momenta in all the x, y, z directions, therefore the
theory has no propagating degrees of freedom.’
The three zero modes of f'(t,x") are not all physical. Indeed, the shift

Fie, xD) ~ Fi(e, x)+ 00kc(t) , (5.38)

leaves gauge fields !¢ invariant. To remove this gauge ambiguity, we define gauge invariant
variables

fi(e,xH) = f(tx)——}gdx]f](t x])——j{dx FRee, x5y . (5.39)

However, these variables are not all independent; they satisfy a constraint

jgdxf_x(t,x)+§dyf«"(t,y)+j§dzfz(t,z)=0. (5.40)

Large gauge transformations of the form (5.16) imply the following identifications in f':
f_i(t,xi)~fi(t,xi)+2n5(xi—x6) . (5.41)

Naively there appear to be L*LYL* identifications on a lattice. However, there are only
L* + LY + L* — 1 identifications. The constraint (5.40) 1mp11es that f (t,£=1) can be solved
in terms of the other f’s. The remaining L* + LY + L —1 f’s have periodicities f ~ f + 2%

The Lagrangian for these modes is

3 x 7 x z . -
=W[‘ %dx(f )zwfdy(fy)%e %dz(f Y

o (5.42)
2ffdxdyfxfy+ jédydzfyfZ jgdxdzfxf2:| .

®Let us check this by counting the on-shell local degrees of freedom. Locally, we can use the freedom in y to set
a, = 0. The remaining gauge freedom is in a'/. We use it to fix the temporal gauge Cj = 0. We are left with the
two spatial degrees of freedom C!V)*, or equivalently E/VJ* (in 2) and we need to impose Gauss law in 3’. So we
are left with no local degrees of freedom. This counting is similar to the counting in the ordinary two-form gauge
theory in 2 + 1 dimensions.

34


https://scipost.org
https://scipost.org/SciPostPhys.9.5.073

Scil SciPost Phys. 9, 073 (2020)

Let IT{(x") be the conjugate momenta of f(x'). Because of the delta functions periodicities
of (5.41), the momentum IT'(x!) has independent integer eigenvalues at each x'. Due to the
constraint (5.40), the momenta are subject to a gauge ambiguity:

Mi(x) ~T(xH)+n, (5.43)

for any integer n € Z. The charges of the electric tensor symmetry (5.27) can be written in
terms of the momenta as

o 2 .. _ .
QU(x, y,2) = SEUN = MM (x) IV (x) (5.44)
8¢
which agrees with (5.29). Therefore, on a lattice with L' sites in x! direction, there are
L*+ LY + L* —1 charges.

The Hamiltonian for these modes is

2
H= % [MZ § dx ()2 +sz( dy (V)2 + 0507 jg dz (I1%)?
(5.45)
—szg dxdy ﬁxﬁy—ﬂxf dydsz ﬁyﬁz—ﬂyfdxdz f[xﬁz] .

On a lattice with lattice spacing a, since [1'(*') have integer eigenvalues at each point %,
an electric mode with a finite number of nonzero charges has energy of order g eéza which
goes to zero in the continuum limit a — O when £ is kept finite. The energy of the electric
modes become order one if they have order 1/a number of nonzero charges. Similar to the
discussions for the electric modes in B-theory, the zero energy modes are not lifted by higher
derivative terms while the modes with energy of order one can receive quantitative corrections
of order one. Nevertheless, the qualitative scaling with a remains universal.

6 Z, Tensor Gauge Theory of C

6.1 Z, Version of the Lattice Model of $ and Zy Version of the C Tensor Gauge
Theory

We consider two lattice models that have the same continuum limit, the lattice Zy version of
the ¢-theory of [4] and the Zy lattice tensor gauge theory of C. The two lattice models are
dual to each other at long distance.

6.1.1 Z, Lattice Model of q’3

The first lattice model is the Zy version of the gi;i(jk) lattice model in Section 4.1 of [4].
There are three Zy phase variables U, UK and their conjugate momenta V*

s = (X, §,%), which satisfy UX(yZ)Uy(ZX)UZ(Xy) 1 and V( ” ~ 7V ( e

Zy; phase. They obey the canonical commutation relations Ul(] Rs = e2mi/Nys l(] R We

l(Jk)
also define V, Lijlk — ))_ which satisfy V[Xy ]ZV[y 2l [Zx]y = 1. Note that both V*

i(jk)

i(jk) at every site

where 7); is an arbitrary

N l(Jk)( J(ki
and Vs[l] J have the same number of degrees of freedom.
The Hamiltonian is

H=-K Z(ixy Ly, + L) —h D (VUEE L Pl L Ly yee
S

(6.1)
_ Z(xy) z(xy)\—
Ux yz+1(Ux V.2 )
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We will assume h to be small. N
There are symmetry operators that are products of \A/'S[U Jk along ij plane. For example, the
symmetry operator along xy plane is

X Ly

ﬂﬂ Oein (62

=1y=1

and similarly along yz and xz planes. There are L* + LY + L* — 1 such operators on the
lattice [4]. In the continuum, they become the Zy (2, 3’) tensor symmetry.

6.1.2 Lattice Tensor Gauge Theory of C

The second lattice model is the Zj lattice tensor gauge theory of C. There are three Zy phase

variables UC[U ]k, and their conjugate momenta VC[U ¥ on every cube ¢, which satisfy the con-

straint Uc[xy I Uc[y 2l Uc[zx]y =1 and Vc[ij LN fr]CVC[ij ]k, where 7). is an arbitrary Zy phase, and

i,j,k are cyclically ordered. They obey the canonical commutation relations
U[U:| V[U]k = 2Ny U]kU[U]k. We also define Vcl(]k) = Vc[kl]JVC[k]]l, which satisfy
Vx(y Z)Vy (ZX)VZ(Xy ) = 1. Note that both V; [k and Vcl(] %) have the same number of degrees

of freedom.
For each spatial plaquette along the ij direction, there is a a Zy gauge parameter nx i
Under the gauge transformation,

U[xy]z ~ U[xy]z §2y+1 Z(nxy z) 1(,rlx+1 yz) 117%3’"% , (6.3)

where the product is over four plaquettes in xz and yz planes around the cube ¢, and similarly
for U2 and Ut=*ly,
Gauss law sets

G (%,9,8)= Vi (vE WIS vk

— AZ(AX)A’) ( z(xy))— l_[ (ch(xy))ec =1 , (64)

X,¥,8+1% " %,9,2
C3pyy

where the product is an oriented product (e, = 1) over the two cubes c that share a common
plaquette p,, in the xy direction. Similarly, there are two more Gauss laws in yz and xz
directions. The Hamiltonian is

H=—h) (VU4 vy Ly 4 ee, (6.5)
C

with Gauss law imposed as operator equations.

The symmetry operators are Vci(j %) at each cube c. Because of the Gauss laws, there are
L* + LY + L¥ — 1 such operators. They become the Zy electric tensor symmetry generators in
the continuum.

Alternatively, we can relax the Gauss and impose it energetically by adding a term to the
Hamiltonian

H=—R> G,—h Yy (V0 4 VY& 4 vy 4 e (6.6)
p c

When both h of (6.1) and h of (6.6) vanish, the Hamiltonian (6.6) becomes the Hamilto-

nian (6.1) of the plaquette model if we dualize the lattice and identify Uc[ij PN (\A/S[ij ]k)_l,
Vi(jk) s Ui(jk)
C S .
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6.2 Continuum Lagrangian

We can obtain a continuum description of the Zy theory by coupling the U(1) C-theory to an
A-theory with charge N that Higgses it to Zy. The Euclidean Lagrangian is

Lp= (BA7 —8'37A0)—NCy' ) + E[U]k((afAkl 2'a") —Nclilk) | (6.7)

;'gij (
227) 2(2 )

where (Céj ,Cliilky are the U(1) tensor gauge field in the (3’,2) representation of S,, and
(Ag,A”) are the U(1) gauge field in the (1, 3') representation of S, that Higgses gauge sym-
metry of (C;’, C!/)) to Zy. The gauge transformations are

AO NAO + 90[3 +Na0 5

AT~ AU £ 8107+ Nal |

cJ ~c +dpall — 3197 a,

clilk ~ cliilk _gigik 4 gight

(6.8)

The equations of motion are

dAY —8197A —NC) =0, A —giA*—Nclik=0, B;=0, E;yr=0. (6.9
We can dualize the Euclidean action by integrating out (Ay,A”). We rewrite the Lagrangian
(6.7) as
i o i -
Lp=— Ag0'37By; — ———AY (0,B;; — 30" Eyij)) —
E 2(27.[) 0 1 2(27.5) ( 0"1j k(l]))

EijC(l)J + E[ij]kc[ij]k) .
(6.10)

We now interpret the Higgs fields (A,,A”) as Lagrangian multipliers implementing the con-
straints

iIN
TeISL

3131511 :0, 30§i]' :38kEk(U) . (611)
Locally, these constraints can be solved by a field (ﬁi( jky in 2:
Ek(l]) aod’k(u) ) Eij = 3ak‘]§k(ij) . (6.12)

The Euclidean Lagrangian (6.7) then becomes

a.cliile 4 gi Clk oicik) = gLk 6.13
The equations of motion are
Elill=0,  Gyduu=0, 9 iy=0. (6.14)

To see that the value of N is quantized, let us place the theory on a Euclidean 4-torus.
Under the (large gauge) transformation ¢p*0?) ~ ¢*02) 427, $¥E) ~ $YEX) _ 27 and
$20Y) ~ p*) the action of (6.13) shifts by

2 2
§ dtdxdydz ?E[Xy] — ?NED’Z]X — ?TCE[ZXD’) = iNj( dtdxdydz EMYE - (6.15)

Since the fluxes are quantized (see Section 5.3), for the path integral to be invariant under
this (large gauge) transformation, we need

NeZ. (6.16)
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6.3 Global Symmetries

Let us study the global symmetries of the Zy tensor gauge theory. They are summarized in
Figure 2. Since the U(1) electric tensor symmetry of the A theory is gauged, it turns the U(1)
magnetic tensor symmetry to Zy. Recall that this symmetry is dual to the (2,3’) momentum
tensor symmetry of the ql;i(j k) theory [4]. In addition, coupling the matter field A to the pure
gauge C theory breaks the U(1) electric tensor symmetry of the C theory to Zy.

The Zjy electric tensor symmetry is generated by the local operators ei‘ﬁi(jk), and the Zy
(2,3’) tensor symmetry is generated by the slab operators Wi(xi, xé) of (5.32). They are both
charged under each other, and satisfy the commutation relations

eid;Z(xy)(x’y’Z)Wx(Xbxz) = e_zm/NWx(xlaxz)ei&(xy)(x’y’z) , i X <x<xy,
ei(ﬁZ(xy)(x,y’Z)Wy(yl)yZ) = ezqri/NWy(le yz)ei(ﬁZ(xy)(x,y,Z) > lf N4l < Yy < Y2 (617)

- 22(xy) i bhz(xy) .
el YW, (31,5,) = W,(21,2,)e' " C0H | if 7 <z <z,

. . . iy i §x0®) .
and they commute otherwise. The commutation relations of e!*”"" and e!*"”" are similar.
Because of the second equation of motion of ¢U%) in (6.14), the electric tensor symmetry
operator factorizes, for cyclically ordered i, j, k, into

019" 0000y2) — i) (xN—igk (") (6.18)

where ¢! (*) have a gauge ambiguity, e/® ") ~ $e!?'(*) where 7 is an arbitrary Zy phase.

Depending on the global symmetry we impose in the microscopic model, the local operator
¢9"" of the continuum theory may or may not be added to the Lagrangian to destabilize the
theory. Let us demonstrate it in the two microscopic lattice models of Section 6.1.

In the Zy plaquette lattice model discussed in Section 6.1.1, there is a microscopic (2,3")
tensor symmetry (6.2). So its continuum limit is robust since there are no relevant local oper-
ators that are invariant under this symmetry.

On the other hand, the (2, 3) tensor symmetry is absent in the lattice tensor gauge theory
discussed in Section 6.1.2. In this lattice gauge theory, only the electric tensor symmetry,
which is generated by Vci(j k), is manifest. Therefore we can deform the short-distance theory
by adding local operators ei‘ﬁi(jk), which are charged under the (2,3’) tensor symmetry. This
will generically lift the ground state degeneracy discussed in Section 6.4, and break the Zy
(2,3’) tensor symmetry.

6.4 Ground State Degeneracy

In the presentation (6.7), all the fields can be solved in terms of the gauge fields (A,,AY), and
the solution space reduces to

{A0, AT |Ag~Ag+ 30 +Nay , AV~ AT +3'37B +Na} . (6.19)

The only modes that survive after gauging are the magnetic modes of the A theory. If we
regularize the theory on a lattice, these magnetic modes are labelled by L*+ LY +L*—1 integers
[4]. Large gauge transformations of (a,, a”’) identify these integers modulo N. Therefore,
there are N +1"+L°~1 nontrivial magnetic modes and this is the ground state degeneracy.

There are other ways to see this. One can start with the BF-type presentation (6.13), find
the solution space of the equations of motion (6.14) in the temporal gauge Céj =0, and then
quantize these modes on a lattice. Yet another way to see this is by studying the symmetry
operators on the lattice:

eiéi(jk)(’?’f”ﬁ) , Wl-(fci) ) (6.20)
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A-theory C-theory
U1 (3',2) u(1) (2,3) U@
electric tensor magnetic tensor electric tensor
symmetry symmetry symmetry
Zy (2,3) Zy
tensor symmetry electric tensor
symmetry
Zy gauge theory

Figure 2: The global symmetries of the U(1) A-theory, the U(1) C-theory, the Zy
C-theory, and their relations. The electric tensor symmetry of the A-theory is gauged
and therefore it is absent in the Z, gauge theory. Note that the U(1) C-theory does
not have a magnetic symmetry.

The former factorizes, for cyclically ordered i, j, k, into
A R A B L I R B 6.21)

because of the equation of motion (6.14) of (ﬁi(ﬂ‘) (or the Gauss law (6.4) of the Zy electric
tensor symmetry), where /¢ ") have a gauge ambiguity,
BLACO PN RILCON (6.22)

where 7 is an arbitrary Zy phase. In addition, we have the constraint
L L L?
[ [wo ] [wmo][we=1. (6.23)
2=1 y=1 2=1

Using the gauge ambiguity (6.22), we can fix e!?"¢=1 = 1, and using the constraint (6.23),
we can solve for W, (2 = 1) in terms of other W;(%'). Therefore, there are L* + LY + L* —1
operators of each kind.

The set of commutation relations (6.17) of these operators is isomorphic to L*+ LY +L*—1
copies of Heisenberg algebra, AB = ¢2"/NBA and A = BN = 1. The isomorphism is given by

A = el ELY B;=W,(%), %=1,...,L%,

—ip*2) (1 9 A A
Ay = @I By=W,(§), y=1,...,L7, (6.24)
Ay = VIALDZGIALY B w2, g=2,...,1%,

These commutation relations force the ground state degeneracy to be NL™+7+1°=1,

7 U(1) Tensor Gauge Theory of C

Consider a (Ryime, Rspace) = (3’,1) dipole global symmetry generated by currents (Jéj ,J) [4].
The currents obey the conservation equation:

aJy =atalr, (7.1)
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and a differential condition

. 'k _ . ‘k
o =alJi . (7.2)

We will study the pure gauge theory without matter obtained by gauging this (3’,1) dipole
global symmetry.

We can gauge the (3’,1) dipole global symmetry by coupling the currents to the tensor
gauge field (ééj ,6):

1 ijaij | o
EJ(‘)J G +JC . (7.3)

The current conservation equation (7.1) and the differential condition (7.2) imply the gauge
transformation a - K
Al Al ATT A K(1
Cj ~C) +pa" — o4,
~ a1 o 7.4)
C~C+ —3l~3ja” 5
2

where &g(] ®) satisfies a constraint &g(y 2 +&g (zx)+&g(xy )= 0. The gauge parameters (&B(] k), &)

are also gauge fields themselves in the (2, 3”) representation of S,. They have their own gauge
transformation
&E,(jk) N &E,(jk) 4+ 3,700 .
&' ~ &l 4 g PR | '
where 7109 is in the 2 of S4. The gauge transformation (7.5) of (&f)(j k), &) does not affect the
gauge transformation (7.4) of (€ b ,€). The gauge-invariant electric field is

A A1 T

which is in 1 of S4, while there is no magnetic field.

Similar to the discussion in Section 5, we see that the gauge parameters (&é(j k), &) are sim-
ilar to the gauge fields (Ai)(j k),Aij ) of the A-theory of [4], with their corresponding gauge sym-
metry (7.5). The (C Y ,C) gauge fields are similar to the field strengths (£, B) of (Ai)(j k),Aij ).
Furthermore, the electric field £ of (CA,’(i)j ,C) is similar to the Bianchi identity of the A-theory.
Physically, it means that the gauge fields (Ai)(j k),Aij ) are the Higgs fields of (ééj ,€) (see Section
8.2). Again, this analogy is the same as the relation between higher form gauge theories of
different degrees.

7.1 The Lattice Model

In this subsection, we will discuss the U(1) lattice tensor gauge theory of €. We will present
both the Lagrangian and Hamiltonian presentations of this lattice model.

We will consider a Euclidean lattice with lattice spacing a. The gauge parameters are
placed on the links. On each spatial link along k direction of the Euclidean lattice, there is
a gauge parameter 7'/ = €14’ in 3’ of S4.1% On each temporal link, there are three gauge
parameters ﬁir(j k) = ei“&lf(jk) in 2 of S, satisfying ﬁir(j k)ﬁ]%(ki)ﬁlé(ij )=1. The gauge parameters of
the gauge parameters are placed on the sites. On each site, there are three such parameters
A0 = o179 i 2 of S, satisfying ALK 3D RGT) = 7

1%When the theory has a charge conjugation symmetry Z$, we can label our fields using the representations of
Sf defined in Section 2.6, instead of the original S,. The two choices are related by an outer automorphism of
the global symmetry Z$ x S,. Then the Sf representations for the ¢ gauge fields are (Riime> Rypace) = (3, 1'). This
convention is more natural for the lattice models here where the spatial gauge parameters ", which is in the 3 of
Sy, are placed on the links.
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The gauge fields are placed on the cubes and plaquettes. On each spatial cube, there is

a gauge field U = ei@’C in 1 of S4. On each plaquette in Tz direction, there is a gauge field
XY = pla®Cy”

, and similarly in the Ty and 7z directions. They are in 3’ of S,.
The gauge transformations act on the gauge fields as

02 (4,2.5,6) ~ D2 (4.2, 7. 007 (£.2,9,8) 1 (4 1,2,9.9

U(t,%,9,8)~U(%, %, j/,ﬁ)ﬁxy('r X+1, y+1 z)nxy(% X,¥,2)
x (T, x+1,5,2) nxy( L\ X, j/+1,z)_1
AvZrA A n A (7.7)
x V(% % y+1 z+1)nyz('z,' ¥,%)

and similarly for U}* and ﬁjx . The gauge transformations themselves have gauge transforma-
tions given by

U0, %,9,8) ~ AUO(E, £, 9,)A00(F + 1, %, 9,9)A00(¢,%,5,2)77 78
N (8,%,9,2) ~ (4,2, 5, 00008, %, 5,2+ DICI(8,2,5,8) 77, '

and similarly for /7% and ©**
Let us discuss the gauge-invariant local terms in the action. There is only one kind of term

on each spacetime hyper-cube:

+1,%)” ny(r x+1 y,z)ny(T X, y+1,%)
5 1
P p z+1) Uyz(r ,y,z+1)U%’Z(T, X, 7+1,%)
X jx(%,fc,j/,z“)_l ij(%,fc +1,9,2+1) ij(f,x + 1,)“/,%)[7?(%,3%,3“/,2 +1)

1

»—1K<>

(7.9
This term together with its complex conjugate becomes the square of the electric field in the
continuum limit.
In addition to the local, gauge-invariant operators above, there are non-local, extended
ones. For example, we have a slab operator along the xy plane:

LX

LY
BB EESZED) (7.10)

=13=1

Similarly, we have slab operators along yz and zx planes. -

In the Hamiltonian formulation, we choose the temporal gauge to set all U = 1. We
introduce the electric field £ such that 2 F is conjugate to the phase of the spatial variable U
with g, the electric coupling constant (up to some dimensionful factors of the lattice spacing
a).

On every spatial link in the z direction, we impose the Gauss law

GV (%,9,8)=ERX+1,7+1,8)—E®+1,9,8)—ER®, 7+ 1,8)+E&,7,2)=0, (7.11)

and similarly in the x and y directions. So there are three Gauss laws G/ = 0.

The Hamiltonian is the sum of £? over all cubes, with the three Gauss laws imposed as
operator equations. Alternatively, we can impose the Gauss laws energetically by adding a
term Y ;. (G)? to the Hamiltonian.

41


https://scipost.org
https://scipost.org/SciPostPhys.9.5.073

Scil SciPost Phys. 9, 073 (2020)

The lattice model has an electric symmetry whose conserved charges are proportional to
EA‘()%O’.)/)O:QO) . (712)

They trivially commute with the Hamiltonian. The electric symmetry shifts the phase variable
U at a single spatial cube:

U—el. (7.13)
Using Gauss law (7.11), the dependence of the conserved charge £ on the spatial cube is a
function of % plus a function of j plus a function of 2.

7.2 Continuum Lagrangian

The Lorentzian Lagrangian of the pure tensor gauge theory is
E, (7.14)

where the 6 parameter is 27-periodic due to the quantization of the electric flux (7.21). The
equation of motion are
2 4 R
— k=0, 49E=0, (7.15)
e
where the second equation is the Gauss law.

If 6 = 0,m, the global symmetry includes Zg x S4, where Zg is a charge conjugation
symmetry that flips the sign of CA,’(I)] ,C. Other values of § break the Zg x S, symmetry to S,
where the latter group is defined in Section 2.6. In addition, for every value of 0 there are
parity and time reversal symmetries, under which E is invariant.

7.3 Fluxes

Let us put the theory on a Euclidean 4-torus with lengths £%, £, £, £*. Consider gauge field
configurations with a nontrivial transition function at T = £7:!!
AXY 2xy i|

8= [Waz )+ 0y = o) + O —x)— o

5YE _ 7.16
AZX O

8n =

which has its own transition function at x = £*
px(yz) _ 2z _ Yoo, oy YE
S = 21| Ze(y — y0)+ 06 —5) = 2 |

hy(zX) -0 (7.17)
(x) ’

22(xy) _ _ 4x(yz)
h(X) - h(X) ’

and the transition function at y = £

2x(yz) _

hyy " =0,

2 y(zx) _ 2 ofv Xo(y—zy— X2

h(y) 27T[ O(x x0)+€x®(z 20) KXKZ] , (7.18)
hZ(xy) hy(ZX)

) o)

" As in all our theories, we allow certain singular configurations provided the terms in the Lagrangian are not
too singular (see [3-5]). Here we follow the same rules as in [4]. It would be nice to understand better the precise
rules controlling these singularities.
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and there is no nontrivial transition function at g = [~ We have
Clr + (%,x,y,2) = C(r,x,y,2) + 8x8yg( (x,y,2). We also have

g(T)(X'i‘g ,y;z)_g( )(X y,2)+ahz( xy) and g(”;(x,y+£ ,z)—g( )(X y’z)_i_ath(xy).

A gauge field configuration with the above transition functions is

A 21T 2 R

€= ey (8 —20)+ £ 8(y = y0) + £*6(x —x0) = 2] , (7.19)
with the electric field

A 271

E= g 06 —20) +076(y = yo) +£76(x —x0) —2] . (7.20)

Since the electric field £ has mass dimension 4, it is allowed to have delta function singularities
according to the rules in [3,4]. Such configurations have nontrivial electric flux

£
€)(21,22) = jg d’cf dx§ dyf dzE e2nz, (7.21)
%1

and similarly there are fluxes &(,)(x1, x,) and €(,)(y1, y,) along x and y direction. In particular
when integrated over the whole spacetime, the flux is an integer multiple of 27.
On the lattice, these nontrivial fluxes correspond to the products

[[i=1. []i=1, J]i=1. (7.22)

XY Y2 T,X,2

7.4 Global Symmetries and Their Charges

We now discuss the global symmetries of the C-theory.
The equation of motion (7.15) is identified as the current conservation equation

aoJO =0 5 (723)
with current .
2. 0
Jo= —E +—. (7.24)
ge 2m

We define the current with a shift by % so that the conserved charge is properly quantized
(see (7.47)). The second equation of (7.15) is an additional differential equation imposed on
Jo:

0;0;Jy = (7.25)

We will refer to this current as electric symmetry. This is the continuum version of the lattice
symmetry (7.12). Note that the current does not have spatial components.
The charges are
Q(x,y,2) =Jo(x,¥,2) , (7.26)

at every point in space. The differential condition (7.25) means the charge satisfies

Qlx,y,2) =Q (x) + Q7 (¥) +Q*(2), (7.27)

where Q!(x!) € Z. Only the sum of zero modes of Q!(x') is physical because, the shift

Q) ~Q () +n", QU)~Q)+n”, Q(=)~Q(z)—n"—n", (7.28)
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where n*,nY € Z, does not change the charges. So, on a lattice, there are L* + LY + L* — 2
charges.
The symmetry operator is

UB;x,y,z)=exp [ig—gﬁ(x,y,z)} . (7.29)

e

The electric symmetry acts on the gauge fields as
C(x,y,2) = Clx,y,2) +c*(x)+ ¥ (y) +*(2) . (7.30)

The operators charged under this electric tensor symmetry are slab operators:

X2
W, (x1,%5) =exp(iJ dx§ dy§ dz C’) ,
X1
Y2
Wy (y1,¥2) = exp (ijgdxf dy§ dz c) , (7.31)
1
2
W,(21,2,) = exp (i jé dx§ dyJ dz C’) .
%

These correspond to the slab operators (7.10) on the lattice. The symmetry operator (7.29)
and charged operators (7.31) satisfy the commutation relation

UB;x, y, )W, (xq, x5) = ePW, (xxy, xUB;x,y,2), if x;<x<xy, (7.32)

and they commute otherwise. Similarly, there are commutation relations for Wy (¥1,Y2) and
W, (21,22). .

Only integer powers of W; are invariant under the large gauge transformation (7.16). It
then follows that 3 is 27t-periodic. Therefore, the global structure of the electric symmetry is
U(1), rather than R.

7.5 Defects as Fractonic Strings

The theory has no probe particles but it has probe strings. There are three types of strings
associated to three spatial directions. A charge +1 string associated to the x' direction can
extends only in the x' direction. For example, the string along the x direction is described by

the defect: o
exp (1f dtf dx C’gz) s (7.33)
—0o0

and similarly for the defects along the other directions. We can study the Euclidean version of
the surface defects and let it wrap around the Euclidean time. The charge is quantized because

of the large gauge transformation a@”* = ezfeﬁ , @Y = a** = 0. The large gauge transformation

has its own transition function at T = £%, &'*(7 +£7) = &Y*(7) + 8,70 with $*0®) = %
The string above cannot move in the y or the z directions, but a pair of them with opposite

charges separated in the z direction can move collectively in the y direction. The motion is

described by the defect
zz A A
exp |:1J dzjg dxf (azcgzdt+cdy):| , (7.34)
21 C

where C is a spacetime curve in (t, y).
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More generally, a pair of strings separated in the z direction can form a closed loop in
xy-plane that can evolve in time:

22
exp[if dzjg (azégzdxdt—(azc“gx+ayégy)dydt+édxdy)] , (7.35)
27 S

where S is a spacetime sheet in (¢, x, y).'? It is straightforward to check that these defects are
gauge invariant. We have similar defects for the other directions.

7.6 Electric Modes

We place the system on a spatial 3-torus with lengths £*,¢Y,£*. We pick the temporal gauge
éé] = 0 and then Gauss law J; 6}]@ = 0 states that up to a (time-independent) gauge transfor-
mation the field takes the form

1
£x¢z

1 4
eyngx(t,x) . (7.37)

FAt,2)+ —fr(t,y)+

5 1
Cltx,y,2) =0

Note that there is no mode with nontrivial momenta in all the x, y, z directions, therefore the
theory has no propagating degrees of freedom.!?

Only the sum of the zero modes of ﬁfz(t,z), ﬁfy(t,y) and ﬁf"(t, x) is physical.
This implies a gauge symmetry:

FX(t, %) ~ FX(6,x) + 07 0%y () + 07 03¢y (t),
Frty)~ fr(E y) =007 (b)), (7.38)

A A

At 2) ~ fR(6,2) — 650 cp(1).

To remove this gauge ambiguity, we define the gauge-invariant variables f! as
_x A.X' 1 A 1 AZ
f (t,X) :f (t,X)+ E_xj{ d.)’fy(t:}’)+ e_x§d‘zf (t,Z) >
_ ) 1 ’y 1 :
fy(f,J’) :fy(f,J’) + K_ng de (t)z) + e_y§ dex(t,X), (739)
- A 1 A 1 A
fAt,z)=f*(t,2) + E_Zf dx f*(t,x) + e—zfdyfy(t,y)-
These variables are subject to a constraint

%dxf_x(t,x) = 5{ dy fY(t,y) = f dz f*(t,z) . (7.40)

12 The x and y indices of the defect appear to be on different footings in (7.35). This is not the case, however,
since we can rewrite it as

22
exp|:if dzjg ((azégz+axégY)dxdt—azéngydt+édxdy)], (7.36)
21 S

using Stokes’ theorem SEs(axégydxdt +0,CYdydt)=0.

BBLet us check this by counting the on-shell local degrees of freedom. Locally, we can use the freedom in PGk
to set &g(’ %) = 0. The remaining gauge freedom is in 4. We use it to fix the temporal gauge €y = 0. We are left
with one degrees of freedom C, or equivalently £ and we need to impose Gauss law in 3. So we are left with no
local degrees of freedom. This counting is similar to the counting in the ordinary two-form gauge theory in 2 + 1

dimensions and in the C theory.
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By performing a large gauge transformation of the form (7.16), we obtain the following
identifications on f*':

FX(t,x) ~ FX(t,x) + 218 (x — x4)
I, y)~ (6, ) +2m6(y) (7.41)
F2(t,2) ~ f2(t,2) + 25 (2)

for each x(, and

fre,x) ~ f(t,x)
U y) ~ F (6 y) +218(y — yo) — 218 (y) (7.42)
FE(t,2) ~ f3(t,2)
for each y,, and ) )
[t x) ~ (8, x)
Frey)~ (e y) (7.43)
Fo(t,2) ~ f2(t,2) + 2n8 (2 —29) — 215 (2)
for each z. On a lattice with L' sites in the x! direction, we can solve the first f¥(§ = 1) and
f#(Z=1) in terms of the other coordinates using (7.40), then the remaining L* + L + L* —2
f’s have periodicities f ~ f + 27”
The Lagrangian for these modes is

- i - - 2 é E3
L =W [Exjgdx(fx)2+£y§dy(fy)2+ﬁz§ dz(fz)2—2(§ dfo) ]+ §§ dx f*.

(7.44)

Let IT*(x), I1” (y) and IT*(z) be the conjugate momenta of f'. The delta function periodicity
(7.41), (7.42) and (7.43) imply that IT'(x") have independent integer eigenvalues at every x".
Due to the constraint (7.40) on f!, the conjugate momenta IT' are subject to a gauge ambiguity
generated by the constraint:

M¥(x) ~ T (x)+1,

Py~ -1, (7.45)

[F(z) ~ I°(2),
and _ _

M (x)~TI*(x)+1,

Y (y) ~ 17 (y), (7.46)

M (z) ~M*(z)— 1.

The charge of the electric global symmetry (7.26) is expressed in terms of the conjugate mo-
menta as

A

AZZE + b _ IT*(x) + 17 (y) + [I(2) . (7.47)
8 27

Qlx,y,2) =

The Hamiltonian is
"9 A2 Ay \2 Ax N\ 2
H= g—Q[MZfd:« (ﬁx _ 9—) +€x€Zj€dy (ﬁy _ 9—) +MY§ dz (ﬁZ— 9—)
4 27 21 21
~ Ax _ Ay _ Ax ~ Az
+ 207 j( dxdy (Hx - 9—) (Hy - 9—) + 2€y§ dxdz (Hx - 9—) (Hz - 9—)
21 21 21 21
} 3\ ( - )=
+2€xj€dydz(l'[y—0—) (Hz—e—)] ,
21 21
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where é + é + é = f. One can show that the Hamiltonian depends only on the sum of

Gx, Oy, 6,. Let us regularlze the Hamiltonian on a lattice with lattice spacing a. States with
finitely many nonzero IT(x') have energy of order gzé 2a. States with order 1/a many nonzero
IT'(x") have energy of order one. Similar to the discussions for the electric modes in B-theory;,
the zero energy modes are not lifted by higher derivative terms while the modes with energy
of order one can receive quantitative corrections of order one. Nevertheless, the qualitative
scaling with a remains universal.

8 Zy Tensor Gauge Theory of C

8.1 Plaquette Ising Model and Lattice Tensor Gauge Theory

We consider two lattice model that have the same continuum limit, the Zy plaquette Ising
model and the Zy lattice tensor gauge theory of C. In this sense, the two lattice models are
dual to each other at long distance.

8.1.1 Plaquette Ising Model

The Zy plaquette Ising model is the Z,; version of the XY-plaquette model. In 3+ 1 dimensions,
it has featured in the construction of the X-cube model [9]. See [10] for a review on this model.

There is a Zy phase variable U, and its conjugate momentum V; at every site s = (X, ¥, 2).
They obey the commutation relation U,V, = e?™/NV,U,. The Hamiltonian is

H=-K > (Ly+Ly,,+Lz)—h> V,+cc,
2,34 s (8.1)

U; UL L UL

ny = Y23.2Y%+1,9.6 Y2 941, ZU>A5+1,JA’+1,f :

We will assume h to be small.
The symmetry operators are products of V, along any plane — for example, along the xy
plane,

LX

LY
[T Tv@.5.20. (8.2)

£=13=1

and similarly along the yz and the xz planes. They become the (1,3") dipole symmetry. There
are L* + LY + L* — 2 such operators on the lattice [4].

8.1.2 Lattice Tensor Gauge Theory of C

The second lattice model is the Zy lattice tensor gauge theory of €. There is a Zy phase
variable U, and its conjugate variable V. on every cube c. They obey UV, = e2"/NV_{J.. For
each link along the k direction, there is a Zy gauge parameter %" (X, ¥,2). Under the gauge
transformation,

3 fr AXY o (A —15XY

U U x Vs z(nx+1 Vs z) (nx ,y+1, z) T’fc+1 41,2

Ayz 1 1.4aY2
% s z(nx ,y+L, z) (nx Vs z+1) % ,y+1,2+1 (8.3)

AXZ 1 AXZ
x RA z(nx+1 RA z) (nx R z+1) x+1 ,V,2+1°

where the product is over the 12 links around the cube.
Gauss law sets

G =] [0 =1, 8.4)

¢l
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where the product is an oriented product (e, = 1) over the four cubes ¢ that share a common
link ¢. The Hamiltonian is

H=-h) V. +cc., (8.5)
C

with Gauss law imposed as an operator equation.

The symmetry operators are V. at each cube c. Because of the Gauss laws, there are
L* + LY + L* — 2 such operators. They become the Zy electric symmetry generators in the
continuum.

Alternatively, we can impose Gauss law energetically by adding a term to the Hamiltonian

H=-KY G—hy U +cc. (8.6)
I c

When h in (8.1) and hin (8.6) vanish, the Hamiltonian (8.6) becomes the Hamiltonian (8.1)
of the plaquette Ising model if we dualize the lattice and identify U, < Vs_l, V. e U,.

8.2 Continuum Lagrangian

We can obtain a continuum description of the Zy theory by coupling the U(1) C-theory to a
A-theory with charge N that Higgses it to Zy. The Euclidean Lagrangian is

i

= "2em

y o Ak(ii nii L v (1 oo A
B;; (@AY — 344 ) - Ny ) - ﬁE (EaiajAU —NC) . @7

where (é(gij ), ¢) are the U(1) tensor gauge field in the (3’, 1) representation of S4, and (A’f)(ij ),Aij )

are the U(1) gauge field in the (2,3’) representation of S4. These couplings Higgs the gauge
symmetry of (éé” ), €) to Zy. The gauge transformations are

riCik riCik . ik
AIO(J )NALO(J )+30ﬁl(1k)+Nag(J ),
AT~ AT+ 3 R L NG

G~ G 4 3al) — 5,65 88
Aooa 1 i
C~CH+ —aiaj&l] .
2
The equations of motion are
o, k(i Aji 1 At A v y
AT — A —NEY =0, Sa9AT-NC=0, B;=0, E=0. (8.9)

We can dualize the Euclidean action by integrating out (Ag(ij ),Aij ). We rewrite the La-
grangian (8.7) as

IN (1. 4
eom (1,00

y i
T an\ 270

2(2m)

Nj (A ; L Ak f ;s ;
A (8,B;; — 8,0,E) — sz Y(20,B;; — 8;Bji — 3;By)
(8.10)

where we have used A’g(”)(akéij + aiéjk + ajé,.k) = 0. We now interpret the Higgs fields

+Eé)+

(A’é(ij ),Aij ) as Lagrangian multipliers implementing the constraints
28k]§ij - ai.éjk - ajéik =0 5 30]§ij = 313]EV' 5 (811)
where the first constraint can also be written as
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These constraints can be solved locally by a scalar field ¢ in 1:

The Euclidean Lagrangian (8.7) then becomes
iN 1 NT A iN | 4
Lr=—¢|=30C]—2a c) =——¢E. 8.14
E 2n¢(2”° 0 2n? (814
The equations of motion are

E=0, 8¢=0, 838¢=0. (8.15)

To see that the value of N is quantized, let us place the theory on a Euclidean 4-torus.
Since the fluxes of £ are quantized (see Section 7.3), invariance under ¢ ~ ¢ + 27 leads to

NeZ. (8.16)

8.3 Global Symmetries

Let us study the global symmetries of the Z, tensor gauge theory. They are summarized in
Figure 3. Since the U(1) electric tensor symmetry of the A theory is gauged, it turns the U(1)
magnetic dipole symmetry to Zy. Recall that this symmetry is dual to the (1,3’) momentum
dipole symmetry of the ¢ theory [4]. In addition, coupling the matter field A to the pure gauge
C theory breaks the U(1) electric symmetry of the € theory to Zy.

The Zy electric symmetry is generated by the local operators e!?, and the Zy (1,3’) dipole
symmetry is generated by the slab operators Wi(xi, xé) in (7.31). They are both charged under
each other, and satisfy the commutation relations

ei‘p(x’y’Z)VAVi(xi,x;) = ezni/NWi(xi,xé)eid’(’(’y’z) , if xi <xi< x; , (8.17)

and they commute otherwise.
Because of the second equation of motion of ¢ in (8.15), the electric symmetry operator

factorizes into
plP(0..2) — (i  (X)+ip? (¥)+ig?(2) , (8.18)

where ¢¢'*) have a gauge ambiguity,
90 BT GIBYO) Y i) G o (XY )L ) (8.19)

where n*, Y are arbitrary Zy phases.

Depending on the global symmetry we impose in the microscopic model, the local operator
e'® of the continuum theory may or may not be added to the Lagrangian to destabilize the
theory. Let us demonstrate it in the two microscopic lattice models of Section 8.1.

In the Zy plaquette lattice model discussed in Section 8.1.1, there is a microscopic (1, 3")
dipole symmetry generated by (8.2). So its continuum limit is robust since there are no rele-
vant local operators that are invariant under this symmetry.

On the other hand, the (1,3’) dipole symmetry is absent in the lattice tensor gauge theory
discussed in Section 8.1.2. In this lattice gauge theory, only the electric symmetry, which is
generated by V., is manifest. So, we can deform the short-distance theory by adding local
operators e'?, which are charged under the (1,3’) symmetry. This will generically lift the
ground state degeneracy discussed in Section 8.4, and break the Zy (1, 3’) tensor symmetry.
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A-theory C-theory
U (3,1 U ,3) uQ)
electric dipole magnetic dipole electric symmetry
symmetry symmetry
Zy (1,3") Ly
dipole symmetry electric symmetry
Zy gauge theory

Figure 3: The global symmetries of the U(1) A-theory, the U(1) C-theory, the Zy
C-theory, and their relations. The electric dipole symmetry of the A-theory is gauged
and therefore it is absent in the Zy gauge theory. Note that the U(1) C-theory does
not have a magnetic symmetry.

8.4 Ground State Degeneracy

In the presentation (8.7), all the fields can be solved in terms of the gauge fields (A’é(ij ),Aij ),
and the solution space reduces to

A i
{4, Al

D~ AR 4 g B0 1 NGO | AT~ AU 4 8N 4 NGT) . (8.20)

The only modes that survive after gauging are the magnetic modes of the A theory. If we
regularize the theory on a lattice, these magnetic modes are labelled by L* + LY + L* — 2
integers [4]. Large gauge transformations (&g(j k), &') identify these integers modulo N. As a
result, there are N*" *1"*+1°=2 pontrivial configurations leading to this ground state degeneracy.

There are other ways to see this. One can start with the BF-type presentation (8.14), find
the solution space of the equations of motion (8.15) in the temporal gauge CA?(I)J =0, and then
quantize these modes on a lattice. Yet another way to see this is by studying the symmetry
operators on the lattice:

PRACED) , Wi(fci) . (8.21)
The former factorizes into
(IPB5E) — (9 P DHE) g 4 g s (8.22)

because of the equation of motion (8.15) of ¢. Here ¢?'®) have a gauge ambiguity,
el (D) Xl (X GiT () gy el®T () G0N | (Y )Ll (8.23)

with n*,n” arbitrary Zy phases. The latter satisfy two constraints
L* L’ L*
[ W@ =]]w,o =] ["®. (8.24)
£=1 y=1 2=1

Using the gauge ambiguity (8.23), we can fix ¢!*¢=1 = 1 and ¢/*”=Y = 1, and using the
two constraints (8.24), we can solve for W, (2 = 1) and Wy(y = 1) in terms of other W;(%?).
Therefore, there are L* + LY + L* — 2 operators of each kind.
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The set of commutation relations (8.17) of these operators is isomorphic to L* + LY +L*—2
copies of Heisenberg algebra, AB = ¢2>™/NBA and AN = BN = 1. The isomorphism is given by

Ag = 91D By =W,(%), £=1,...,L%,
Ay = el P(LID=ip(LL1) By =W,(3), §=2,...,L7, (8.25)
Ay = PWLATOMLD B = W(2), £=2,...,17.

These commutation relations force the ground state degeneracy to be N1 +17+L°=2,
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A Representation Theory of S,

The symmetry group of the cubic lattice (modulo translations) is the cubic group, which consists
of 48 elements. We will focus on the group of orientation-preserving symmetries of the cube,
which is isomorphic to the permutation group of four objects S,.

The irreducible representations of S, are the trivial representation 1, the sign represen-
tation 1/, a two-dimensional irreducible representation 2, the standard representation 3, and
another three-dimensional irreducible representation 3’. The representation 3’ is the tensor
product of the sign representation and the standard representation, 3' =1’ ® 3.

It is convenient to embed S, C SO(3) and decompose the SO(3) irreducible representations
in terms of S, representations. The first few are

S0(3) D S,
1 = 1
= 3
5 = 203 &.1)
7 = 1e303
9 = 1920303 .

We will label the components of S, representations using SO(3) vector indices as follows.
The three-dimensional standard representation 3 of S, carries an SO(3) vector index i, or
equivalently, an antisymmetric pair of indices [ jk].'* Similarly, the irreducible representations

14We will adopt the convention that indices in the square brackets are antisymmetrized, whereas indices in the
parentheses are symmetrized. For example, A;j) = —A;;; and Agjy = Ajy)-
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of S4 can be expressed in terms of the following tensors:

1 : S

UV Ty » i#FJ#k

2 ¢ By > (#FJjFk Bt B+ Bpay =0
By » 1#J#k  Bigiy+Bjkiy + Biap =0

3 V

3/ . El] B l;é_] 5 El]:E]l

(A.2)

In the above we have two different expressions, By;jjx and B;(jx), for the irreducible repre-
sentation 2 of S4. In the first expression, By;;yc is the component of 2 in the tensor product
3®3=1®2®3®3’. In the second expression, B;(j) is the component of 2 in the tensor
product3®3’' =1e2¢303'.

In most of this paper, the indices i, j, k in every expression are not equal, i # j # k (see
(A.2) for example). Equivalently, components of a tensor with repeated indices are set to be
zero, e.g. E; = 0 and B;;; = 0 (no sum). Repeated indices in an expression are summed over
unless otherwise stated. For example, E;;E' = 2EZ, +2E5 +2E; . As in this expression, we
will often use x, y,z both as coordinates and as the indices of a tensor.

We generally do not distinguish the upper and lower indices with only one exception for
the 2 of S,. The upper indexed tensors B [ij]k and BIUK) are related as

BiUK) — plilk 4 gkl plijlk — %( iGK) _ iR | (A.3)

whereas the lower indexed tensors By;;} and B;(jy are related as'®

1
Bigry = 5 (Brijm +Bra)) > Brijik = Bigio — B - (A-4)
The upper and lower indexed tensors are related as
Bi(jk) == ‘?’Bi(jk) 5 B[ij]k == B[ij]k . (AS)

Because of this convention, we can freely raise and lower the [ij]k indices, but not the i(jk)
indices. Finally, any two tensors A and B in the 2 of S, can be contracted in the following
ways: o -
ArijeBrije = AVTIBLIE = ARy (A.6)
= AUBy(j = 34BN = 34, Bi(y -
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