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Abstract

For simulations where the forward and the inverse directions have a physics meaning,
invertible neural networks are especially useful. A conditional INN can invert a detector
simulation in terms of high-level observables, specifically for ZW production at the LHC.
It allows for a per-event statistical interpretation. Next, we allow for a variable number
of QCD jets. We unfold detector effects and QCD radiation to a pre-defined hard process,
again with a per-event probabilistic interpretation over parton-level phase space.
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1 Introduction

The unique feature of LHC physics from a data science perspective is the comparison of vast
amounts of data with predictions based on first principles. This modular prediction starts with
the Lagrangian describing the hard scattering, then adds perturbative QCD providing precision
predictions, resummed QCD describing parton showers and fragmentation, hadronization, and
finally a full detector simulation [1]. In this so-defined forward direction all simulation mod-
ules are based on Monte Carlo techniques, and in the ideal world we would just compare
measured and simulated events and draw conclusions about the hard process. This hard pro-
cess is where we expect to learn about new aspects of fundamental physics, for instance dark
matter, extended gauge groups, or additional Higgs bosons.

Because our simulation chain works only in one direction, the typical LHC analysis starts
with a new, theory-inspired hypothesis encoded in a Lagrangian as new particles and couplings.
For every point in the new physics parameter space we simulate events, compare them to
the measured data using likelihood methods, and discard the new physics hypothesis. This
approach is inefficient for a variety of reasons:

1. The best way to compare two hypotheses is the log-likelihood ratio based on new physics
and Standard Model predictions for the hard process. Using this ratio in the analysis is
the idea behind the matrix element method [2–7], but usually this information is not
available [8].

2. New physics hypotheses have free model parameters like masses or couplings, even if
an analysis happens to be independent of them. If the predicted event rates follow a
simple scaling, like for a truncated effective theory, this is simple, but usually we need
to simulate events for each point in model space.

3. There is a limit in electroweak or QCD precision to which we can reasonably include
predictions in our standard simulation tools. Beyond this limit we can, for instance,
only compute a limited set of kinematic distributions, which excludes these precision
prediction from standard analyses.

4. Without a major effort it is impossible for model builders to derive competitive limits on
a new model by recasting an existing analysis.

All these shortcomings point into the same direction: we need to invert the simulation chain,
apply this inversion to the measured data, and compare hypotheses at the level of the hard
scattering. For hadronization and fragmentation an approximate inversion is standard in that
we always apply jet algorithms to extract simple parton properties from the complex QCD
jets. For the detector simulation either at the level of particles or at the level of jets this
problem is usually referred to as detector unfolding. For instance in top physics we also unfold
kinematic information to the level of the decaying top quarks, assuming that the top decays
are correctly described by the standard model [9,10]. Going beyond detector effects we know
what for many analyses QCD jet radiation adds little to our new physics search. This is certainly
true whenever soft and collinear radiation can be simulated by spin-averaged parton showers
depending only logaritmically on the global energy scale of the hard process. In that case we
should also be able to also unfold QCD jet radiation as the last simulation step. This is the
final goal of our paper.

Technically, we propose to use invertible networks (INNs) [11–13] to invert part of the LHC
simulation chain. This application builds on a long list of one-directional applications of gen-
erative or similar networks to LHC simulations, including phase space integration [14,15], am-
plitudes [16,17], event generation [18–22], event subtraction [23], detector simulations [24–
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32], parton showers [33–36], or searches for physics beyond the Standard Model [37]. INNs
are an alternative class of generative networks, based on normalizing flows [38–41]. In par-
ticle physics such normalizing flow networks have proven useful for instance in phase space
generation [42], linking integration with generation [43,44], or anomaly detection [45].

Our INN study on unfolding detector-level events [46] to the hard scattering builds on
similar attempts with a standard GAN [47] and a fully conditional GAN analysis [48]. In Sec. 3
we show how the bijective structure of the INN makes their training especially stable. If we add
sufficiently many random numbers to the INN we can start generating probability distributions
in the parton-level phase space. The conditional INN (cINN) [49,50] adds even more sampling
elements to the generation of unfolded configurations. For arbitrary kinematic distributions
we can test the calibration of this generative network output using truth information and find
that unlike GANs the cINN lives up to its generative promise: for a single detector-level event
the cINN generates probability distributions in the multi-dimensional parton-level phase space.

Next, we show in Sec. 4 how the inversion can link two phase spaces with different dimen-
sion. This allows us to unfold based on a model with a variable number of final state particles
at the detector level and is crucial to include higher-order perturbative corrections. We show
how the cINN can account for jet radiation and unfolds it together with the detector effects.
In other words, the network distinguishes between jets from the hard process and jets from
QCD radiation and it also unfolds the kinematic modifications from initial state radiation, to
provide probability distributions in the parton-level phase space of a hard process.

We note that our examples only cover analyses where subjet information factorizes from
the hard process, for instance in terms of (mis-)tagging efficiencies. For analyses going beyond
this level, like searches for long-lived particles, we need to skip the jet algorithm stage and
instead include the full calorimeter and tracking information. In principle and assuming the
availability of a proper detector simulations our ideas might still work for these applications,
but for the time being we ignore these complications.

2 Unfolding basics

Unfolding particle physics events is a classic example for an inverse problem [51–53]. In the
limit where detector effects can be described by Gaussian noise, it is similar to unblurring
images. However, actual detector effects depend on the individual objects, the global energy
deposition per event, and the proximity of objects, which means they are much more com-
plicated than Gaussian noise. The situation gets more complicated when we add effects like
QCD jet radiation, where the radiation pattern depends for instance on the quantum numbers
of the incoming partons and on the energy scale of the hard process.

What we do know is that we can describe the measurement of phase space detector-level
distributions dσ/dxd as a random process, just as the detector effects or jet radiation can be
simulated by a set of random numbers describing a Markov process. This means that also the
inversion or extraction of the parton-level distribution dσ/dxp is a statistical problem.

2.1 Binned toy model and locality

As a one-dimensional toy example we can look at a binned (parton-level) distribution σ(p)j

which gets transformed into another binned (detector-level) distribution σ(d)j by the kernel or
response function gi j ,

σ
(d)
i =

N
∑

j=1

gi jσ
(p)
j . (1)
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We can postulate the existence of an inversion with the kernel ḡ through the relation

σ
(p)
k =

N
∑

i=1

ḡkiσ
(d)
i =

N
∑

j=1

� N
∑

i=1

ḡki gi j

�

σ
(p)
j with

N
∑

i=1

ḡki gi j = δk j . (2)

If we assume that we know the N2 entries of the kernel g, this form gives us the N2 conditions
to compute its inverse ḡ. We illustrate this one-dimensional binned case with a semi-realistic
smearing matrix

g =





1− x x 0
x 1− 2x x
0 x 1− x



 . (3)

We illustrate the smearing pattern with two input vectors, keeping in mind that in an unfolding
problem we typically only have one kinematic distribution to determine the inverse matrix ḡ,

σ(p) = n





1
1
1



 ⇒ σ(d) = σ(p) ,

σ(p) =





1
n
0



 ⇒ σ(d) = σ(p) + x





n− 1
−2n+ 1

n



 . (4)

The first example shows how for a symmetric smearing matrix a flat distribution removes all
information about the detector effects. This implies that we might end up with a choice of
reference process and phase space such that we cannot extract the detector effects from the
available data. The second example illustrates that for bin migration from a dominant peak the
information from the original σ(p) gets overwhelmed easily. We can also compute the inverse
of the smearing matrix in Eq.(3) and find

ḡ ≈
1

1− 4x





1− 3x −x x2

−x 1− 2x −x
x2 −x 1− 3x



 , (5)

where we neglect the sub-leading x2-terms whenever there is a linear term as well. The un-
folding matrix extends beyond the nearest neighbor bins, which means that local detector
effects lead to a global unfolding matrix and unfolding only works well if we understand our
entire data set. The reliance on useful kinematic distributions and the global dependence of
the unfolding define the main challenges once we attempt to unfold the full phase space of an
LHC process.

2.2 Bayes’ theorem and model dependence

Over the continuous phase space a detector simulation can be written as

dσ
dxd

=

∫

dxp g(xd , xp)
dσ
dxp

, (6)

where xd is a kinematic variable at detector level, xp the same variable at parton level, and g
a kernel or transfer function which links these two arguments. We ignore efficiency factors for
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now, because they can be absorbed into the parton-level rate. To invert the detector simulation
we define a second transfer function ḡ such that [54–56]

dσ
dxp

=

∫

dxd ḡ(xp, xd)
dσ
dxd

=

∫

dx ′p
dσ
dx ′p

∫

dxd ḡ(xp, xd)g(xd , x ′p) . (7)

This inversion is fulfilled if we construct the inverse ḡ of g defined by
∫

dxd ḡ(xp, xd)g(xd , x ′p) = δ(xp − x ′p) , (8)

all in complete analogy to the binned form above. The symmetric form of Eq.(6) and Eq.(7)
indicates that g and ḡ are both defined as distributions. In the g-direction we use Monte Carlo
simulation and sample in xp, while ḡ needs to be sampled in g(xp) or xd . In both directions
this statistical nature implies that we should only attempt to unfold sufficiently large event
samples.

The above definitions can be linked to Bayes’ theorem if we identify the kernels with proba-
bilities. We now look at ḡ(xd |xp) in the slightly modified notation as the probability of observ-
ing xd given the model prediction xp and g(xp|xd) gives the probability of the model xp being
true given the observation xd [57, 58]. In this language Eq.(6) and (7) describe conditional
probabilities, and we can write something analogous to Bayes’ theorem,

ḡ(xp|xd)
dσ
dxd
∼ g(xd |xp)

dσ
dxp

. (9)

In this form ḡ(xp|xd) is the posterior, g(xd |xp) as a function of xp is the likelihood, dσ/dxp
is the prior, and the model evidence dσ/dxd fixes the normalization of the posterior. From
standard Bayesian analyses we know two things: (i) the posterior will in general depend on
the prior, in our case the kinematics of the underlying particle physics process or model; (ii)
when analyzing high-dimensional spaces the prior dependence will vanish when the likelihood
develops a narrow global maximum.

If the posterior ḡ(xp|xd) in general depends on the model dσ/dxp, then Eq.(7) does not
look useful. On the other hand, Bayesian statistics is based on the assumption that the prior
dependence of the posterior defines an iterative process where we start from a very general
prior and enter likelihood information step by step to finally converge on the posterior. The
same approach can define a kinematic unfolding algorithm [59]. We will not discuss these
methods further, but come back to this model dependence throughout our paper.

2.3 Reference process pp → ZW

To provide a quantitative estimate of unfolding with an invertible neural networks we use the
same example process as in Ref. [48],

pp→ ZW±→ (`−`+) ( j j) , (10)

W

Z

j

j

`+

`−

Figure 1: Sample Feynman diagram contributing to ZW production, with intermedi-
ate on-shell particles labeled.
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One of the contributing Feynman diagrams is shown in Fig. 1. With jets and leptons in the final
state we can test the stability of the unfolding network for small and for large detector effects.
We generate the ZW events using MADGRAPH5 [60] without any generation cuts and then
simulate parton showering with PYTHIA8 [61] and the detector effects with DELPHES [62]
using the standard ATLAS card. For jet clustering we use the anti-kT algorithm [63] with
R= 0.6 implemented in FASTJET [64]. All jets are required to have

pT, j > 25 GeV and |η j|< 2.5 . (11)

For the hadronically decaying W -boson the limited calorimeter resolution will completely dom-
inate over the parton-level Breit-Wigner distribution. After applying the cuts we have 320k
events which we split into 90% training and 10% test data.

In a first step, corresponding to Ref. [48] we are only interested in inverting these detector
effects. These results are shown in Sec. 3. For the simulation this implies that we switch off
initial state radiation as well as underlying event and pile-up effects and require exactly two
jets and a pair of same-flavor opposite-sign leptons. The jets and corresponding partons are
separately ordered by pT . The detector and parton level leptons are assigned by charge. This
gives us two samples matched event by event, one at the parton level (xp) and one including
detector effects (xd). Each of them is given as an unweighted set of four 4-vectors. These 4-
vectors can be simplified if we assume all external particles at the parton level to be on-shell.
Obviously, this method can be easily adapted to weighted events.

In a second step we include initial state radiation and allow for additional jets in Sec. 4.
We still require a pair of same-flavor opposite-sign leptons and at least two jets in agreement
with the condition in Eq.(11). The four jets with highest pT are then used as input to the
network, ordered by pT . Events with less than 4 jets are zero-padded. This second data set is
only used for the conditional INN.

3 Unfolding detector effects

We introduce the conditional INN in two steps, starting with the non-conditional, standard
setup. The construction of the INN we use in our analysis combines two goals [11]:

1. the mapping from input to output is invertible and the Jacobians for both directions are
tractable;

2. both directions can be evaluated efficiently. This second property goes beyond some
other implementations of normalizing flow [38,40].

While the final aim is not actually to evaluate our INN in both directions, we will see that
these networks can be extremely useful to invert a Markov process like detector smearing.
Their bi-directional training makes them especially stable.

In Sec. 3.3 we will show how the conditional INN retains a proper statistical notion of
the inversion to parton level phase space. This avoids a major weakness of standard unfold-
ing methods, namely that they only work on large enough event samples condensed to one-
dimensional or two-dimensional kinematic distributions. This could be a missing transverse
energy distribution in mono-jet searches or the rapidities and transverse momenta in top pair
production. To avoid systematics or biases in the full phase space coverage required by the ma-
trix element method, the unfolding needs to construct probability distributions in parton-level
phase space, including small numbers of events in tails of kinematic distributions.
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INN

{ x̃p, r̃p}

{ x̃d , r̃d}{xp, rp}

parton

LMMD, MSE

{xd , rd}

detector

LMMD, MSE

ḡ(xd , rd)

g(xp, rp)

Figure 2: Structure of INN. The {xd,p} denote detector-level and parton-level events,
{rd,p} are random numbers to match the phase space dimensionality. A tilde indicates
the INN generation.

3.1 Naive INN

While it is clear from our discussion in Ref. [48] that a standard INN will not serve our purpose,
we still describe it in some detail before we extend it to a conditional network. Following the
conventions of our GAN analysis and in analogy to Eqs.(6) to (8) we define the network input
as a vector of hard process information xp ∈ RDp and the output at detector level via the vector
xd ∈ RDd . If the dimensionalities of the spaces are such that Dp < Dd we add a noise vector r
with dimension Dd − Dp to define the bijective, invertible transformation,

�

xp
r

�

PYTHIA,DELPHES:g→
←−−−−−−−−−−−−−−−→

← unfolding: ḡ
xd . (12)

A correctly trained network g with the parameters θ then reproduces xd from the combination
xp and r. Its inverse ḡ instead reproduces the combination of xp and r from xd .

The defining feature of the INN illustrated in Fig. 2 is that it learns both directions of
the bijective mapping in parallel and encodes them into one network. Such a simultaneous
training of both directions is guaranteed by the building blocks of the network, the invertible
coupling layers [12, 65]. For notational purposes we ignore the random numbers in Eq.(12)
and assume that this layer links an input vector xp to an output vector xd after splitting both of
them in halves, xp,i and xd,i for i = 1, 2. The relation between input and output is given by a
sub-network, which encodes arbitrary functions s1,2 and t1,2. Using an element-wise multipli-
cation � and sum one could for instance define an output xd,1(xp) = xp,1� s2(xp,2)+ t2(xp,2).
In order to avoid numerical instabilities caused by the division with s(x) in the inverse direc-
tion, we include an exponential to obtain
�

xd,1
xd,2

�

=

�

xp,1 � es2(xp,2) + t2(xp,2)
xp,2 � es1(xd,1) + t1(xd,1)

�

⇔
�

xp,1
xp,2

�

=

�

(xd,1 − t2(xp,2))� e−s2(xp,2)

(xd,2 − t1(xd,1))� e−s1(xd,1)

�

. (13)

By construction, this inversion works independent of the form of s and t. If we write the
coupling block function as g(xp)∼ xd , again omitting the random numbers r, the Jacobian of
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the network function has a triangular form

∂ g(xp)

∂ xp
=

�

diag es2(xp,2) finite
0 diag es1(xd,1)

�

, (14)

so its determinant is easy to compute. Such coupling layer transformations define a so-called
normalizing flow, when we view it as transforming an initial probability density into a very
general form of probability density through a series of invertible steps. We can relate the
two probability densities as long as the Jacobians of the individual layers can be efficiently
calculated.

Since the first use of the invertible coupling layer, much effort has gone into improving its
efficiency. The All-in-One (AIO) coupling layer includes two features, introduced by Ref. [12]
and Ref. [13]. The first modification replaces the transformation of xp,2 by a permutation of the
output of each layer. Due to the permutation each component still gets modified after passing
through several layers. The second modification includes a global affine transformation to
include a global bias and linear scaling that maps x → sx + b. Finally, we apply a bijective
soft clamping after the exponential function in Eq.(13) to prevent instabilities from diverging
outputs.

The INN in our simplified example combines three contributions to the loss function. First,
it tests if in the DELPHES direction of Eq.(12) we indeed find g(xp) = xd via the mean squared
error (MSE) function. While this is theoretically sufficient to obtain the inverse function, also
testing the inverse direction ḡ(xd) = xp greatly improves the efficiency and stability of the
training. Third, to resolve special sharp features like the invariant mass of intermediate par-
ticles we use the maximum mean discrepancy (MMD) as a distance measure between the
generated and real distribution of these features.

Because we will also use the MMD in another function function [21] we review it briefly.
An MMD loss allows us to compare any pre-defined distribution. For a relativistic phase space
a critical narrow phase space feature is the invariant mass of intermediate particles. We can
force the network to consider this one-dimensional distribution of the 4-vectors xp for batches
of parton-level and detector-level events,

MMD=
�

〈k
�

x , x ′
�

〉x ,x ′∼Pp
+ 〈k

�

y, y ′
�

〉y,y ′∼Pd
− 2〈k (x , y)〉x∼Pp ,y∼Pd

�1/2
. (15)

In Refs. [21] and [48] we compare common choices, like Gaussian or Breit-Wigner kernels

kGauss (x , y) = exp
− (x − y)2

2σ2
or kBW (x , y) =

σ2

(x − y)2 +σ2
, (16)

with a fixed or variable widthσ [48]. Inside the INN architecture the Breit-Wigner kernel is the
best choice to analyze the distribution of the random numbers as part of the loss function [11].

We now use the INN network to map parton-level events to detector-level events or vice-
versa. In a statistical analysis we then use standard kinematic distributions and compare the
respective truth and INN-inverted shapes for both directions. The left panels of Fig. 3 shows the
transverse momentum distributions of the two jets and their invariant mass for both directions
of the INN. The truth events at parton level and at detector level are marked as dashed lines.
Starting from each of the truth events we can apply the INN describing the detector effects
as xd = g(xp) or unfolding the detector effects as xp = ḡ(xd) in Eq.(12). The corresponding
solid lines have to be compared to the dotted truth lines, where we need to keep in mind that
at the parton level the relevant objects are quarks while at the detector level they are jets.

For the leading jet the truth and INNed detector-level agree very well, while for the second
jet the naive INN fails to capture the hard cut imposed by the jet definition. For the invariant
mass we find that the smearing due to the detector effects is reproduced well with some small
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Figure 3: INNed pT,q and MW,reco distributions from a naive INN (left) and the noise-
extended eINN (right). In green we compare the detector-level truth to INNed events
transformed from parton level. In blue we compare the parton-level truth to INNed
events transformed from detector level. The secondary panels show the ratio of
INNed events over parton-level truth. More distributions can be found in the pdf
files submitted to the arXiv.

deviations in the tails. In the unfolding direction both pT distributions follow the parton level
truth. The only difference is a systematic lack of events in the tail for the second quark. This is
especially visible in the ratio of the INN-unfolded events and the parton-level truth, indicating
that also at small pT the network does not fill the phase space sufficiently. Combining both
directions we see that in forward direction the INN produces a too broad pT -distribution, the
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unfolding direction of the INN produces a too narrow distribution. The conceptual advantage
of the INN actually implies a disadvantage for the inversion of particular difficult features.
Finally, the invariant mass of the W is reproduced perfectly without any systematic deviation.

3.2 Noise-extended INN

While our simplified example in the previous section shows some serious promise of INNs, it
fails to incorporate key aspects of the physical process. First of all, the number of degrees
of freedom is not actually the same at parton level and at detector level. External partons
are on their mass shell, while jets come with a range of jet masses. This mismatch becomes
crucial when we include missing transverse momentum in the signature. We generally need
fewer parameters to describe the partonic scattering than the detector-level process. For a
fixed set of parton-level momenta we usually smear each momentum component to simulate
the detector measurement. These additional degrees of freedom are of stochastic nature, so
adding Gaussian random variable on the parton side of the INN could be a first step to address
this problem.

To also account for potentially unobservable degrees of freedom at the parton level we
extend each side of the INN by a random number vector. The mapping in Eq.(12) now includes
two random number vectors with dimensions Drd

= Dp and Drp
= Dd ,

�

xp
rp

�

PYTHIA,DELPHES:g→
←−−−−−−−−−−−−−−−→

← unfolding: ḡ

�

xd
rd

�

. (17)

In addition, a pure MSE loss can not capture the fact that the additional noise generates a
distribution of detector-level events given fixed parton momenta. It would just predict of a
mean value of this distribution and minimize the effect of the noise. A better solution is an
MMD loss for each degree of freedom in the event and the masses of intermediate particles,
as well as the Gaussian random variables. On the side of the random numbers this MMD loss
ensures that they really only encode noise. Again it is beneficial for the training to use the
inverse direction and apply additional MMD losses to the parton level events as well as the
corresponding Gaussian inputs. Finally we add a weak MSE loss on the four vectors of each
side to stabilize the training.

In the right panels of Fig. 3 we show results for this noise-extended INN (eINN). The
generated distributions are similar to the naive INN case and match the truth at the parton
level. A notable difference appears in the second jet, the weak spot of the naive INN. The
additional random numbers and MMDs provide more freedom to generate the peak in the
forward direction and also improve the unfolding in the low-pT and high-pT regimes.

Aside from the better modeling, the noise extension allows for a statistic interpretation of
the generated distributions and a test of the integrity of the INN-inverted distributions. In the
left panel of Fig. 4 we illustrate the goal of the statistical treatment: we start from a single
event at the detector level and generate a set of unfolded events. For each of them we evaluate
for instance pT,q1

. Already in this illustration we see that the GAN output is lacking a statistical
behavior at the level of individual events, while the noise-extended eINN returns a reasonable
distribution of unfolded events.

To see if the width of this INN output is correct we take 1500 parton-level and detector-
level event pairs and unfold each event 60 times, sampling over the random variables. This
gives us 1500 combinations like the one shown in the left panel of Fig. 4: a single parton-
level truth configuration and a distribution of the INNed configuration. To see if the central
value and the width of the INNed distribution can be interpreted statistically as a posterior
probability distribution in parton phase space we analyse where the truth lies within the INN
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Figure 4: Left: illustration of the statistical interpretation of unfolded events for one
event. Right: calibration curves for pT,q1

extracted from the FCGAN and the noise-
extended eINN.

distribution for each of the 1500 events. For a correctly calibrated curve we start for instance
from the left of the kinematic distribution and expect 10% of the 1500 events in the 10%
quantile of the respective probability distribution, 20% of events in the 20% quantile, etc. The
corresponding calibration curves for the noise-extended eINN are shown in the right panel of
Fig. 4. While they indicate that we can attempt a statistical interpretation of the INN unfolding,
the calibration is not (yet) perfect. A steep rise for the lower quantile indicates that too many
events end up in the first 10% quantile. In other words, the distributions we obtain by sampling
over the Gaussian noise for each event are too narrow.

While our noise-extended eINN takes several steps in the right direction, it still faces ma-
jor challenges: the combination of many different loss functions is sensitive to their relative
weights; the balance between MSE and MMD on event constituents has to be calibrated care-
fully to generate reasonable quantile distributions; when we want to extend the INN to include
more detector-level information we have to include an equally large number of random vari-
able on the parton level which makes the training very inefficient. This leads us again [48] to
adopt a conditional setup.

3.3 Conditional INN

If a distribution of parton-level events can be described by n degrees of freedom, we should
be able to use normalizing flows or an INN to map a n-dimensional random number vector
onto parton-level 4-momenta. To capture the information from the detector-level events we
need to condition the INN on these events [48,66,67], so we link the parton-level data xp to
random noise r under the condition of xd . Trained on a given process the network should now
be able to generate probability distributions for parton-level configurations given a detector-
level event and an unfolding model. We note that the cINN is still invertible in the sense that
it includes a bi-directional training from Gaussian random numbers to parton-level events
and back. While this bi-directional training does not represent the inversion of a detector
simulation anymore, it does stabilize the training by requiring the noise to be Gaussian.

A graphic representation of this conditional INN or cINN is given in Fig. 5. We first process
the detector-level data by a small subnet, i.e. xd → f (xd), to optimize its usability for the
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cINN

{ x̃p}

{r̃}{xp}

parton

LMMD

{r}

L

condition

subnet{xd}detector

f (xd)

ḡ(r, f (xd))

g(xp, f (xd))

Figure 5: Structure of the conditional INN. The input are random numbers {r} while
{xd,p} denote detector-level and parton-level data. The latent dimension loss L fol-
lows Eq.(18), a tilde indicates the INN generation.

cINN [49]. The subnet is trained alongside the cINN and does not need to be reversed or
adapted. We choose a shallow and wide architecture of two layers with a width of 1024
internally, because four layers degrade already the conditional information and allow the cINN
to ignore it. When a deeper subnet is required we advertize to use an encoder, which is
initialized by pre-training it as part of an autoencoder. We apply this technique when using
the larger ISR input, where it leads to a more efficient training. After this preprocessing,
the detector information is passed to the functions si and t i in Eq.(13), which now depend
on the input, the output, and on the fixed condition. Since the invertibility of the network is
independent of the values of si and t i , the network remains invertible between the parton-level
events {xp} and the random variables {r}. This feature stabilizes the training. The cINN loss
function is motivated by the simple argument that for the correct set of network parameters

Table 1: INN and noise-extended eINN setup and hyper-parameters, as implemented
in PYTORCH (v1.2.0) [68].

Parameter INN eINN

Blocks 24 24
Layers per block 2 2
Units per layer 256 256
Trainable weights ∼ 150k ∼ 270k
Epochs 1000 1000
Learning rate 8 · 10−4 8 · 10−4

Batch size 512 512
Training/testing events 290k / 30k 290k / 30k
Kernel widths ∼ 2, 8,25, 67 ∼ 2,8, 25,67
Dp + Drp

12+ 4 12+ 16
Dd + Drd

16+ 0 16+ 12
λMMD 0.1 (masses only) 0.2
λMMD increase - -
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Figure 6: cINNed pT,q and mW,reco distributions. Training and testing events include
exactly two jets. In the left panels we use a data set without ISR, while in the right
panels we use the two-jet events in the full data set with ISR. The lower panels give
the ratio of cINNed to parton-level truth.

θ describing si and t i we maximize the (posterior) probability p(θ |xp, xd) or minimize

L = −



log p(θ |xp, xd)
�

xp∼Pp ,xd∼Pd

= −



log p(xp|xd ,θ ) + log p(θ |xd)− log p(xp|xd)
�

xp∼Pp ,xd∼Pd

= −



log p(xp|xd ,θ )
�

xp∼Pp ,xd∼Pd
− log p(θ ) + const.

= −
�

log p(g(xp, xd)) + log

�

�

�

�

∂ g(xp, xd)

∂ xp

�

�

�

�

�

xp∼Pp ,xd∼Pd

− log p(θ ) + const. ,

(18)
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Figure 7: Left: illustration of the statistical interpretation of unfolded events for one
event. Right: calibration curves for pT,q1

extracted from the FCGAN and the noise-
extended eINN, as shown in Fig. 4, and the cINN.

where we first use Bayes’ theorem, then ignore all terms irrelevant for the minimization, and
finally apply a simple coordinate transformation for the bijective mapping. The last term is
a simple weight regularization, while the first two terms are called the maximum likelihood
loss. Since we impose the latent distribution of the random variable p(g(xp, xd)) to produce
a normal distribution centered around zero and with width one, the first term becomes

log p(g(xp, xd)) = −
||g(xp, xd))||22

2
. (19)

The final network setup after tuning of the hyper-paramaeters are liste In Tab. 2. We verified
that the network performance is stable under small changes of these parameters.

In the left panels of Fig. 6 we show the unfolding performance of the cINN, trained and
tested on the same exclusive 2-jet events as the simpler INNs in Fig. 3. Unlike the naive and the
noise-extended INNs we cannot evaluate the cINN in both direction, detector simulation and
unfolding, so we focus on the detector unfolding. The agreement between parton-level truth
and the INN-unfolded distribution is around 10% for the bulk of the pT distributions, with the
usual larger relative deviations in the tails. An interesting feature is still the cut pT, j > 20 GeV
at the detector level, because it leads to a slight shift in the peak of the pT, j2 distribution.
Finally, the reconstructed invariant W -mass and the physical W -width agree extremely well
with the Monte Carlo truth owing to the MMD loss.

As in Fig. 4 we can interpret the unfolding output for a given detector-level event sta-
tistically. First, in the left panel of Fig. 7 we show a single event and how the FCGAN, INN,
and cINN output is distributed in parton level phase space∗. The separation between truth and
sampled distributions does not have any significance, but we see that the cINN inherits the ben-
eficial features of the noise-extended eINN. In the right panel of Fig. 7 we again reconstruct
the individual probability distribution from the unfolding numerically. We then determine the
position of the parton-level truth in its respective probability distribution for the INN and the

∗Throughout this paper we only compare to the FCGAN analysis [48], which we fully control. For standard
unfolding methods used by ATLAS and CMS and for the new Omnifold method [46] we refrain from comments
which would need to be based on an in-depth comparison.
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cINN. We expect a given percentage of the 1500 events to fall into the correct quantile of its
respective probability distribution. The corresponding calibration curve for the cINN is added
to the right panel of Fig. 7, indicating that without additional calibration the output of the
cINN unfolding can be interpreted as a probability distribution in parton-level phase space for
a single detector-level event, as always assuming an unfolding model. Instead of the transverse
momentum of the harder parton-level quark we could use any other kinematic distribution at
parton level. This marks the final step for a statistically interpretable unfolding.

4 Unfolding with jet radiation

In the previous chapter we use a simplified data set to explore different possibilities to unfold
detector level information with invertible networks. We limit the data to events with exactly
two jets, by switching off initial state radiation (ISR). This guarantees that the two jets come
from the W -decay, so the network does not have to learn this feature. In a realistic QCD
environment we do not have that information, because additional QCD jets will be radiated
off the initial and final state partons. In this section we demonstrate how we can unfold
a sample of events including ISR and hence with a variable number of jets. We know that
with very few exceptions [69, 70] the radiation of QCD jets does not help us understand the
nature of the hard process. In such cases, we would like to interpret a measurement with
an appropriately defined hard process, leading to the question if an unfolding network can
invert detector effects and QCD jet radiation. Technically, this means inverting jet radiation
and kinematic modifications to the hard process as, in our case, done by PYTHIA.

We emphasize that this approach requires us to define a specific hard process with any
number of external jets and other features. We can illustrate this choice for two examples.
First, a di-tau resonance search typically probes the hard process pp → µ+µ− + X , where
X denotes any number of additional, analysis-irrelevant jets. We invert the corresponding
measurements to the partonic process pp→ µ+µ−. A similar mono-jet analysis instead probes
the process pp → Z ′ j( j) + X , where Z ′ is a dark matter mediator decaying to two invisible
dark matter candidate. Depending on the analysis, the relevant process to invert is pp→ Z ′ j
or pp→ Z ′ j j, where a reported missing transverse momentum recoils against one or two hard
jets. Because our inversion network in trained on Monte Carlo data, we automatically define
the appropriate hard process when generating the training data. This covers any combination
of signal and background matrix elements contributing to such a hard process, even non-SM
processes to quantify a remaining model dependence. A final caveat — in the hard process we
do not include subjet aspects at this stage. As long as subjet information is used for tagging
purposes it factorizes from the hard process information and can easily be included in terms
of efficiencies. A problem would arise in unfolding or inverting analyses relying on different
hard processes, like a fat mono-jet analysis, where the above choice of recoil jets is left to a
sub-jet algorithm.

4.1 Individual n-jet samples

In Sec. 3.3 we have shown that our cINN can unfold detector effects for ZW -production at
the LHC. The crucial new feature of the cINN is that it provides probability distribution in
parton-level phase space for a given detector-level event. The actual unfolding results are
illustrated in Fig. 6, focusing on the two critical distribution known from the corresponding
FCGAN analysis [48]. The event sample used throughout Sec. 3 includes exactly two partons
from a W -decay with minimal phase space cuts on the corresponding jets. Strictly speaking,
these phase space cuts are not necessary in this simulation. The correct definition of a process
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described by perturbative QCD includes a free number of additional jets,

pp→ ZW± + jets→ (`−`+) ( j j) + jets . (20)

For the additional jets we need to include for instance a pT cut to regularize the soft and
collinear divergences at fixed-order perturbation theory. The proper way of generating events
is therefore to allow for any number of additional jets and then cut on the number of hard jets.
Since ISR can lead to jets with larger pT than the W -decay jets, an assignment of the hardest
jets to hard partons does not work. We simply sort jets and partons by their respective pT and
let the network work out their relations. We limit the number of jets to four because larger jet
number appear very rarely and would not give us enough training events.

Combining all jet multiplicities we use 780k events, out of which 530k include exactly two
jets, 190k events include three jets and 60k have four or more jets. We split the data into
80% training data and 20% test data to produce the shown plots. For the network input we
zero-pad the event-vector for events with less than four jets and add the number of jets as
additional information. The training samples are then split by exclusive jet multiplicity, such
that the cINN reconstructs the 2-quark parton-level kinematics from two, three, and four jets
at the detector level.

As before, we can start with the sample including exactly two jets. The difference to the
sample used before is that now one of the W -decay jets might not pass the jet pT condition in
Eq.(11), so it will be replaced by an ISR jet in the 2-jet sample. Going back to Fig. 6 we see in
the right panel how these events are slightly different from the sample with only decay jet. The
main difference is in pT,q2

, where the QCD radiation produces significantly more soft jets. Still,
the network learns these features, and the unfolding for the sample without ISR and the 2-jet
exclusive sample has a similar quality. In Fig. 8 we see the same distributions for the exclusive
3-jet and 4-jet samples. In this case we omit the secondary panels because they are dominated
by the statistical uncertainties of the training sample. For these samples the network has to
extract the parton-level kinematics with two jets only from up to four jets in the final state. In
many cases this corresponds to just ignoring the two softest jets and mapping the two hardest
jets on the two W -decay quarks, but from the pT,q2

distributions in Fig. 6 we know that this is

Table 2: cINN setup and hyper-parameters, as implemented in PYTORCH

(v1.2.0) [68].

Parameter cINN no ISR cINN ISR incl.

Blocks 24 24
Layers per block 2 3
Units per layer 256 256
Condition/encoder layers 2 8
Units per condition/encoder layer 1024 1024
Condition/encoder output dimension 256 256
Trainable weights ∼ 2 M ∼ 10 M
Encoder pre training epochs - 300
Epochs 1000 900
Learning rate 8 · 10−4 8 · 10−4

Batch size 512 512
Training/testing events 290k / 30k 620k / 160k
Kernel widths ∼ 2, 8,25, 67 ∼ 2,8, 25,67
Dp 12 12
Dd 16 25
λMMD 0.5 0.04
λMMD increase - 1.6 / 100 epochs
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Figure 8: cINNed pT,q and mW,reco distributions. Training and testing events include
exactly three (left) and four (right) jets from the data set including ISR.

not always the correct solution. Especially in the critical m j j peak reconstruction we see that
the network feels the challenge, even though the other unfolded distributions look fine.

4.2 Combined n-jet sample

The obvious final question is if our INN can also reconstruct the hard scattering process with its
two W -decay quarks from a sample with a variable number of jets. Instead of separate samples
as in Sec. 4.1 we now interpret the process in Eq.(20) as jet-inclusive. This means that the
hard process includes only the two W -decay jets, and all additional jets are understood as jet
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Figure 9: cINNed example distributions. Training and testing events include two to
four jets, combining the samples from Fig. 6 and Fig. 8 in one network. At the parton
level there exist only two W -decay quarks.

radiation, described either by resummed ISR or by fixed-order QCD corrections. The training
sample consists of the combination of the right panels in Fig. 6 and the two panels in Fig. 8.
This means that the network has to deal with the different number of jets in the final state and
how they can be related to the two hard jets of the partonic ZW → `` j j process. The number
of jets in the final state is not given by individual hard partons, but by the jet algorithm and
its R-separation.

In Fig. 9 we show a set of unfolded distributions. First, we see that the pT, j thresholds at the
detector level are corrected to allow for pT,q values to zero. Next, we see that the comparably
flat azimuthal angle difference at the parton level is reproduced to better than 10% over the
entire range. Finally, the m j j distribution with its MMD loss re-generates the W -mass peak at
the parton level almost perfectly. The precision of this unfolding is not any worse than it is
for the case where the number of hard partons and jets have to match and we only unfold the
detector effects.

In Fig. 10 we split the unfolded distributions in Fig. 9 by the number of 2, 3, and 4 jets in
the detector-level events. In the first two panels we see that the transverse momentum spectra
of the hard partons are essentially independent of the QCD jet radiation. In the language of
higher-order calculations this means that we can describe extra jet radiation with a constant
K-factor, if necessary with the appropriate phase space mapping. Also the reconstruction of
the W -mass is not affected by the extra jets, confirming that the neural network correctly
identifies the W -decay jets and separates them from the ISR jets. Finally, we test the transverse
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Figure 10: cINNed example distributions. Training and testing events include two
to four events, combining the samples from Fig. 6 and Fig. 8 in one network. The
parton-level events are stacked by number of jets at detector level.

momentum conservation at the unfolded parton level. Independent of the number of jets in
the final state the energy and momentum for the pre-defined hard process is conserved at the
10−4 level. The kinematic modifications from the ISR simulation are unfolded correctly, so we
can compute the matrix element for the hard process and use it for instance for inference.

5 Outlook

We have shown how an invertible network (INN) and in particular a conditional INN can be
used to unfold detector effects for the simple example process of ZW → `` j j production at
the LHC. The cINN is not only able to unfold the process over the entire phase space, it also
gives correctly calibrated posterior probability distributions over parton-level phase space for
given detector-level events. This feature is new even for neural network unfolding.

Next, we have extended the unfolding to a variable number of jets in the final state. This
situation will automatically appear whenever we include higher-order corrections in perturba-
tive QCD for a given hard process. The hard process at parton level is defined at the training
level. We find that the cINN also unfolds QCD jet radiation in the sense that it identifies the ISR
jets and corrects the kinematics of the hard process to ensure energy-momentum conservation
in the hard scattering.

In combination, these features should enable analysis techniques like the matrix element
method and efficient ways to communicate analysis results including multi-dimensional kine-

19

https://scipost.org
https://scipost.org/SciPostPhys.9.5.074


SciPost Phys. 9, 074 (2020)

matic distributions. While the ZW production process used in this analysis, we expect these
results to carry over to more complex processes with intermediate particles [21] and the im-
pact of a SM-training hypothesis should be under control [48], the next step will be to test this
new framework in a realistic LHC example with proper precision predictions and a focus on
uncertainties. As for any analysis method suitable for the coming LHC runs, the challenge will
be to control the full uncertainty budget at the per-cent level.†

Acknowledgements

We would like to thank Ben Nachman for great discussions and Hans-Christian Schultz-Coulon
for the experimental encouragement. RW and MB acknowledge support by the IMPRS-PTFS.
The research of AB, MB, and TP is supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under grant 396021762 – TRR 257 Particle Physics Phenomenol-
ogy after the Higgs Discovery. GK acknowledges support by the DFG under Germany’s Excel-
lence Strategy – EXC 2121 Quantum Universe – 390833306.

References

[1] J. Campbell, J. Huston, and F. Krauss, The black book of quantum chromodynamics, Oxford
University Press (2017), https://global.oup.com/academic/product/the-black-book-of-
quantum-chromodynamics-9780199652747.

[2] K. Kondo, Dynamical likelihood method for reconstruction of events with miss-
ing momentum. I. Method and toy models, J. Phys. Soc. Jpn. 57, 4126 (1988),
doi:10.1143/JPSJ.57.4126.

[3] T. Martini and P. Uwer, Extending the matrix element method beyond the Born approxima-
tion: Calculating event weights at next-to-leading order accuracy, J. High Energ. Phys. 09,
083 (2015), doi:10.1007/JHEP09(2015)083.

[4] A. V. Gritsan, R. Röntsch, M. Schulze and M. Xiao, Constraining anomalous Higgs boson
couplings to the heavy-flavor fermions using matrix element techniques, Phys. Rev. D 94,
055023 (2016), doi:10.1103/PhysRevD.94.055023.

[5] T. Martini and P. Uwer, The matrix element method at next-to-leading order QCD for
hadronic collisions: Single top-quark production at the LHC as an example application,
J. High Energ. Phys. 05, 141 (2018), doi:10.1007/JHEP05(2018)141.

[6] M. Kraus, T. Martini and P. Uwer, Matrix element method at NLO for (anti-) kt-jet algo-
rithms, Phys. Rev. D 100, 076010 (2019), doi:10.1103/PhysRevD.100.076010.

[7] S. Prestel and M. Spannowsky, HYTREES: Combining matrix elements and parton shower
for hypothesis testing, Eur. Phys. J. C 79, 546 (2019), doi:10.1140/epjc/s10052-019-
7030-y.

[8] K. Cranmer, J. Brehmer and G. Louppe, The frontier of simulation-based inference (2019),
arXiv:1911.01429.

†We are very happy to share our code upon request, if colleagues are interested in tackling any such open
questions.

20

https://scipost.org
https://scipost.org/SciPostPhys.9.5.074
https://global.oup.com/academic/product/the-black-book-of-quantum-chromodynamics-9780199652747
https://global.oup.com/academic/product/the-black-book-of-quantum-chromodynamics-9780199652747
http://dx.doi.org/10.1143/JPSJ.57.4126
http://dx.doi.org/10.1007/JHEP09(2015)083
http://dx.doi.org/10.1103/PhysRevD.94.055023
http://dx.doi.org/10.1007/JHEP05(2018)141
http://dx.doi.org/10.1103/PhysRevD.100.076010
http://dx.doi.org/10.1140/epjc/s10052-019-7030-y
http://dx.doi.org/10.1140/epjc/s10052-019-7030-y
https://arxiv.org/abs/1911.01429


SciPost Phys. 9, 074 (2020)

[9] V. Khachatryan et al., Measurement of the differential cross section for top quark
pair production in pp collisions at

p
s = 8 TeV, Eur. Phys. J. C 75, 542 (2015),

doi:10.1140/epjc/s10052-015-3709-x.

[10] ATLAS Collaboration, Measurements of top-quark pair differential cross-sections in the lep-
ton+jets channel in pp collisions at

p
s = 8 TeV using the ATLAS detector, Eur. Phys. J. C

76, 538 (2016), doi:10.1140/epjc/s10052-016-4366-4.

[11] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen, L. Maier-
Hein, C. Rother and U. Köthe, Analyzing inverse problems with invertible neural networks
(2018), arXiv:1808.04730.

[12] L. Dinh, J. Sohl-Dickstein and S. Bengio, Density estimation using Real NVP (2016),
arXiv:1605.08803.

[13] D. P. Kingma and P. Dhariwal, Glow: Generative flow with invertible 1x1 convolutions
(2018), arXiv:1807.03039.

[14] M. Klimek and M. Perelstein, Neural network-based approach to phase space integration,
SciPost Phys. 9, 053 (2020), doi:10.21468/SciPostPhys.9.4.053.

[15] J. Bendavid, Efficient Monte Carlo integration using boosted decision trees and generative
deep neural networks (2017), arXiv:1707.00028.

[16] F. Bishara and M. Montull, (Machine) Learning amplitudes for faster event generation
(2019), arXiv:1912.11055.

[17] S. Badger and J. Bullock, Using neural networks for efficient evaluation of
high multiplicity scattering amplitudes, J. High Energ. Phys. 06, 114 (2020),
doi:10.1007/JHEP06(2020)114.

[18] S. Otten, S. Caron, W. de Swart, M. van Beekveld, L. Hendriks, C. van Leeuwen, D.
Podareanu, R. Ruiz de Austri and R. Verheyen, Event generation and statistical sam-
pling for physics with deep generative models and a density information buffer (2019),
arXiv:1901.00875.

[19] B. Hashemi, N. Amin, K. Datta, D. Olivito and M. Pierini, LHC analysis-specific datasets
with Generative Adversarial Networks (2019), arXiv:1901.05282.

[20] R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat, and S. Palazzo, DijetGAN: a
Generative-Adversarial Network approach for the simulation of QCD dijet events at the LHC,
J. High Energy Phys. 08, 110 (2020), doi:10.1007/JHEP08(2019)110.

[21] A. Butter, T. Plehn, and R. Winterhalder, How to GAN LHC events, SciPost Phys. 7, 075
(2019), doi:10.21468/SciPostPhys.7.6.075.

[22] Y. Alanazi et al., Simulation of electron-proton scattering events by a Feature-Augmented
and Transformed Generative Adversarial Network (FAT-GAN) (2020), arXiv:2001.11103.

[23] A. Butter, T. Plehn and R. Winterhalder, How to GAN event subtraction (2019),
arXiv:1912.08824.

[24] M. Paganini, L. de Oliveira and B. Nachman, Accelerating science with generative adversar-
ial networks: An application to 3D particle showers in multilayer calorimeters, Phys. Rev.
Lett. 120, 042003 (2018), doi:10.1103/PhysRevLett.120.042003.

21

https://scipost.org
https://scipost.org/SciPostPhys.9.5.074
http://dx.doi.org/10.1140/epjc/s10052-015-3709-x
http://dx.doi.org/10.1140/epjc/s10052-016-4366-4
https://arxiv.org/abs/1808.04730
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1807.03039
http://dx.doi.org/10.21468/SciPostPhys.9.4.053
https://arxiv.org/abs/1707.00028
https://arxiv.org/abs/1912.11055
http://dx.doi.org/10.1007/JHEP06(2020)114
https://arxiv.org/abs/1901.00875
https://arxiv.org/abs/1901.05282
http://dx.doi.org/10.1007/JHEP08(2019)110
http://dx.doi.org/10.21468/SciPostPhys.7.6.075
https://arxiv.org/abs/2001.11103
https://arxiv.org/abs/1912.08824
http://dx.doi.org/10.1103/PhysRevLett.120.042003


SciPost Phys. 9, 074 (2020)

[25] M. Paganini, L. de Oliveira and B. Nachman, CaloGAN: Simulating 3D high energy particle
showers in multilayer electromagnetic calorimeters with generative adversarial networks,
Phys. Rev. D 97, 014021 (2018), doi:10.1103/PhysRevD.97.014021.

[26] P. Musella and F. Pandolfi, Fast and accurate simulation of particle detectors using genera-
tive adversarial networks, Comput. Softw. Big Sci. 2, 8 (2018), doi:10.1007/s41781-018-
0015-y.

[27] M. Erdmann, L. Geiger, J. Glombitza and D. Schmidt, Generating and refining particle
detector simulations using the Wasserstein distance in adversarial networks, Comput. Softw.
Big Sci. 2, 4 (2018), doi:10.1007/s41781-018-0008-x.

[28] M. Erdmann, J. Glombitza and T. Quast, Precise simulation of electromagnetic calorimeter
showers using a Wasserstein generative adversarial network, Comput. Softw. Big Sci. 3, 4
(2019), doi:10.1007/s41781-018-0019-7.

[29] ATLAS Collaboration, Deep generative models for fast shower simulation in ATLAS, Tech.
Rep. ATL-SOFT-PUB-2018-001, CERN, Geneva, (2018).

[30] ATLAS Collaboration, A. Ghosh, Deep generative models for fast shower simulation in AT-
LAS, Tech. Rep. ATL-SOFT-PUB-2019-007, CERN, Geneva, (2019).

[31] D. Belayneh et al., Calorimetry with deep learning: Particle simulation and reconstruction
for collider physics, Eur. Phys. J. C 80, 688 (2020), doi:10.1140/epjc/s10052-020-8251-
9.

[32] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol and K. Krüger,
Getting high: High fidelity simulation of high granularity calorimeters with high speed
(2020), arXiv:2005.05334.

[33] E. Bothmann and L. Del Debbio, Reweighting a parton shower using a neural network: The
final-state case, J. High Energ. Phys. 01, 033 (2019), doi:10.1007/JHEP01(2019)033.

[34] L. de Oliveira, M. Paganini and B. Nachman, Learning particle physics by example:
Location-aware generative adversarial networks for physics synthesis, Comput. Softw. Big
Sci. 1, 4 (2017), doi:10.1007/s41781-017-0004-6.

[35] J. W. Monk, Deep learning as a parton shower, J. High Energy Phys. 12, 021 (2018),
doi:10.1007/JHEP12(2018)021.

[36] A. Andreassen, I. Feige, C. Frye and M. D. Schwartz, JUNIPR: A framework for
unsupervised machine learning in particle physics, Eur. Phys. J. C 79, 102 (2019),
doi:10.1140/epjc/s10052-019-6607-9.

[37] J. Lin, W. Bhimji and B. Nachman, Machine learning templates for QCD factorization in
the search for physics beyond the standard model, J. High Energ. Phys. 05, 181 (2019),
doi:10.1007/JHEP05(2019)181.

[38] D. Jimenez Rezende and S. Mohamed, Variational inference with normalizing flows
(2015), arXiv:1505.05770.

[39] G. Papamakarios, E. Nalisnick, D. Jimenez Rezende, S. Mohamed and B. Lak-
shminarayanan, Normalizing flows for probabilistic modeling and inference (2019),
arXiv:1912.02762.

22

https://scipost.org
https://scipost.org/SciPostPhys.9.5.074
http://dx.doi.org/10.1103/PhysRevD.97.014021
http://dx.doi.org/10.1007/s41781-018-0015-y
http://dx.doi.org/10.1007/s41781-018-0015-y
http://dx.doi.org/10.1007/s41781-018-0008-x
http://dx.doi.org/10.1007/s41781-018-0019-7
http://cds.cern.ch/record/2630433
http://cds.cern.ch/record/2680531
http://dx.doi.org/10.1140/epjc/s10052-020-8251-9
http://dx.doi.org/10.1140/epjc/s10052-020-8251-9
https://arxiv.org/abs/2005.05334
http://dx.doi.org/10.1007/JHEP01(2019)033
http://dx.doi.org/10.1007/s41781-017-0004-6
http://dx.doi.org/10.1007/JHEP12(2018)021
http://dx.doi.org/10.1140/epjc/s10052-019-6607-9
http://dx.doi.org/10.1007/JHEP05(2019)181
https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/1912.02762


SciPost Phys. 9, 074 (2020)

[40] I. Kobyzev, S. Prince and M. Brubaker, Normalizing flows: An introduction
and review of current methods, IEEE Trans. Pattern Anal. Mach. Intell. (2020),
doi:10.1109/TPAMI.2020.2992934.

[41] T. Müller, B. McWilliams, F. Rousselle, M. Gross and J. Novák, Neural importance sampling
(2018), arXiv:1808.03856.

[42] E. Bothmann, T. Janßen, M. Knobbe, T. Schmale and S. Schumann, Explor-
ing phase space with neural importance sampling, SciPost Phys. 8, 069 (2020),
doi:10.21468/SciPostPhys.8.4.069.

[43] C. Gao, J. Isaacson and C. G. Krause, i-flow : High-dimensional integration and sam-
pling with normalizing flows, Mach. Learn.: Sci. Technol. (2020). doi:10.1088/2632-
2153/abab62.

[44] C. Gao, S. Höche, J. Isaacson, C. Krause and H. Schulz, Event generation with normalizing
flows, Phys. Rev. D 101, 076002 (2020), doi:10.1103/PhysRevD.101.076002.

[45] B. Nachman and D. Shih, Anomaly detection with density estimation, Phys. Rev. D 101,
075042 (2020), doi:10.1103/PhysRevD.101.075042.

[46] A. Andreassen, P. T. Komiske, E. M. Metodiev, B. Nachman and J. Thaler, OmniFold: A
method to simultaneously unfold all observables, Phys. Rev. Lett. 124, 182001 (2020),
doi:10.1103/PhysRevLett.124.182001.

[47] K. Datta, D. Kar and D. Roy, Unfolding with generative adversarial networks (2018),
arXiv:1806.00433.

[48] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn and R. Winterhalder, How to GAN away
detector effects, SciPost Phys. 8, 070 (2020), doi:10.21468/SciPostPhys.8.4.070.

[49] L. Ardizzone, C. Lüth, J. Kruse, C. Rother and U. Köthe, Guided image generation with
conditional invertible neural networks (2019), arXiv:1907.02392.

[50] C. Winkler, D. Worrall, E. Hoogeboom and M. Welling, Learning likelihoods with condi-
tional normalizing flows (2019), arXiv:1912.00042.

[51] N. Gagunashvili, Machine learning approach to inverse problem and unfolding procedure
(2010), arXiv:1004.2006.

[52] F. Spanò, Unfolding in particle physics: A window on solving inverse problems, EEPJ Web
Conf. 55, 03002 (2013), doi:10.1051/epjconf/20135503002.

[53] A. Glazov, Machine learning as an instrument for data unfolding (2017),
arXiv:1712.01814.

[54] G. Cowan, A survey of unfolding methods for particle physics, Conf. Proc. C 0203181, 248
(2002).

[55] V. Blobel, Unfolding methods in particle physics, in Proceedings of the PHYSTAT 2011
Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and
Unfolding, 240 (2011), doi:10.5170/CERN-2011-006.240.

[56] L. Brenner, P. Verschuuren, R. Balasubramanian, C. Burgard, V. Croft, G. Cowan
and W. Verkerke, Comparison of unfolding methods using RooFitUnfold (2019),
arXiv:1910.14654.

23

https://scipost.org
https://scipost.org/SciPostPhys.9.5.074
http://dx.doi.org/10.1109/TPAMI.2020.2992934
https://arxiv.org/abs/1808.03856
http://dx.doi.org/10.21468/SciPostPhys.8.4.069
http://dx.doi.org/10.1088/2632-2153/abab62
http://dx.doi.org/10.1088/2632-2153/abab62
http://dx.doi.org/10.1103/PhysRevD.101.076002
http://dx.doi.org/10.1103/PhysRevD.101.075042
http://dx.doi.org/10.1103/PhysRevLett.124.182001
https://arxiv.org/abs/1806.00433
http://dx.doi.org/10.21468/SciPostPhys.8.4.070
https://arxiv.org/abs/1907.02392
https://arxiv.org/abs/1912.00042
https://arxiv.org/abs/1004.2006
http://dx.doi.org/10.1051/epjconf/20135503002
https://arxiv.org/abs/1712.01814
http://dx.doi.org/10.5170/CERN-2011-006.240
https://arxiv.org/abs/1910.14654


REFERENCES REFERENCES

[57] L. B. Lucy, An iterative technique for the rectification of observed distributions, Astron. J.
79, 745 (1974), doi:10.1086/111605.

[58] G. Zech, Iterative unfolding with the Richardson–Lucy algorithm, Nucl. Instrum.
Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 716, 1 (2013),
doi:10.1016/j.nima.2013.03.026.

[59] G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem, Nucl. In-
strum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 362, 487 (1995),
doi:10.1016/0168-9002(95)00274-X.

[60] J. Alwall et al., The automated computation of tree-level and next-to-leading order differen-
tial cross sections, and their matching to parton shower simulations, J. High Energ. Phys.
07, 079 (2014), doi:10.1007/JHEP07(2014)079.

[61] T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159
(2015), doi:10.1016/j.cpc.2015.01.024.

[62] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, and M. Sel-
vaggi, DELPHES 3: A modular framework for fast simulation of a generic collider experi-
ment, J. High Energ. Phys. 02, 057 (2014), doi:10.1007/JHEP02(2014)057.

[63] M. Cacciari, G. P. Salam and G. Soyez, The anti-ktjet clustering algorithm, J. High Energ.
Phys. 04, 063 (2008), doi:10.1088/1126-6708/2008/04/063.

[64] M. Cacciari, G. P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72, 1896
(2012), doi:10.1140/epjc/s10052-012-1896-2.

[65] L. Dinh, D. Krueger and Y. Bengio, NICE: Non-linear independent components estimation
(2014), arXiv:1410.8516.

[66] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville
and Y. Bengio, Generative adversarial networks (2014), arXiv:1406.2661.

[67] M. Mirza and S. Osindero, Conditional generative adversarial nets (2014),
arXiv:1411.1784.

[68] A. Paszke et al., PyTorch: An imperative style, high-performance deep learning library
(2019), arXiv:1912.01703.

[69] T. Plehn, D. Rainwater and D. Zeppenfeld, Determining the structure of Higgs cou-
plings at the CERN large hadron collider, Phys. Rev. Lett. 88, 051801 (2002),
doi:10.1103/PhysRevLett.88.051801.

[70] M. R. Buckley, T. Plehn, and M. J. Ramsey-Musolf, Top squark with mass close to the top
quark, Phys. Rev. D 90, 014046 (2014), doi:10.1103/PhysRevD.90.014046.

24

http://dx.doi.org/10.1086/111605
http://dx.doi.org/10.1016/j.nima.2013.03.026
http://dx.doi.org/10.1016/0168-9002(95)00274-X
http://dx.doi.org/10.1007/JHEP07(2014)079
http://dx.doi.org/10.1016/j.cpc.2015.01.024
http://dx.doi.org/10.1007/JHEP02(2014)057
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1912.01703
http://dx.doi.org/10.1103/PhysRevLett.88.051801
http://dx.doi.org/10.1103/PhysRevD.90.014046

	Introduction
	Unfolding basics
	Binned toy model and locality
	Bayes' theorem and model dependence
	Reference process pp ZW

	Unfolding detector effects
	Naive INN
	Noise-extended INN
	Conditional INN

	Unfolding with jet radiation
	Individual n-jet samples
	Combined n-jet sample

	Outlook
	References

