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Abstract

Employing the fracton-elastic duality, we develop a low-energy effective theory of a
zero-temperature vortex crystal in a two-dimensional bosonic superfluid which naturally
incorporates crystalline topological defects. We extract static interactions between these
defects and investigate several continuous quantum transitions triggered by the Higgs
condensation of vortex vacancies/interstitials and dislocations. We propose that the
quantum melting of the vortex crystal towards the hexatic or smectic phase may occur via
a pair of continuous transitions separated by an intermediate vortex supersolid phase.
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1 Introduction

Vortices in superfluids are characterized by the quantized circulation of superfluid velocity and
thus manifest quantum mechanics on macroscopic scales. The physics of vortices proved to be
central for the understanding of numerous phenomena in superfluids such as turbulence [1,2],
dissipation [3, 4], the thermal Berezinskii-Kosterlitz-Thouless (BKT) and the quantum Mott-
superfluid phase transitions [5–10]. Today vortex matter in superfluids is a broad and active
area of experimental and theoretical research [11,12].

As first predicted by Abrikosov [13], quantum vortices form regular crystals in type-II su-
perconductors in an external magnetic field. In neutral superfluids similar vortex crystals
emerge under an external rotation [14–17]. These were first investigated theoretically by
Tkachenko, who treated the problem in the incompressible limit [18–20]. He discovered that
the triangular lattice is favored energetically and determined the nature of collective excita-
tions which are known today as Tkachenko waves [21]. These predictions were later supported
by the hydrodynamic approach [22,23]. Compressible rotating superfluids exhibit Tkachenko
waves with a soft quadratic dispersion at low momenta. These were investigated theoreti-
cally [24–26] and experimentally [27]. The softness of the Tkachenko mode implies that true
off-diagonal long-range U(1) order is destroyed by quantum fluctuations in two-dimensional
vortex crystals at vanishing temperature and the system exhibits only algebraically decaying
U(1) order [28–30]. More recently, low-energy effective field theories of vortex crystals of
two-dimensional superfluids were developed [31–33]. These shed new light on the nature of
spontaneous symmetry breaking and Hall responses in this system.

While the physics of the two-dimensional superfluid vortex crystal phase is rather well-
understood, outstanding unsolved questions in this field are concentrated around thermal and
quantum meltings of the vortex lattice. Although the Abrikosov mean-field theory predicts a
direct second-order transition between the vortex crystal in a superconductor and the normal
phase [13], fluctuations are expected to invalidate this result [34]. It was proposed already
in [35] that, at a sufficiently large temperature, a vortex crystal in a two-dimensional super-
conductor should melt into a vortex fluid via a pair of BKT-like phase transitions triggered by
unbinding of dislocation and disclination defects of the crystal. New experiments with clean
superconducting films appear to agree with this scenario [36,37]. On the other hand, extensive
theoretical investigations of this problem [38–44] gave contradictory predictions for the na-
ture of the thermal melting phase transition of vortex crystals. Most studies indicated a weakly
first-order thermal transition towards an isotropic vortex fluid, see [45] for a review. When the
density of quantum vortices becomes of the order of the density of elementary boson particles,
the vortex crystal at zero temperature is believed to undergo a quantum melting transition into
a strongly correlated vortex fluid phase. Various estimates based on the Lindemann criterion,
reviewed in [17], predict for bosons with short-range interactions the transition to happen at
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filling1 ν ∼ 10. Early exact diagonalization calculations [46] are consistent with this result,
while the later study [47] indicates that the vortex lattice might survive even at the filling fac-
tor ν = 2, where it energetically competes with the quantum smectic phase. Despite all these
results, it is fair to say that in the thermodynamic limit, the nature of the quantum melting
transition and the resulting quantum vortex fluid phase(s) (at fillings close to the critical) are
currently not well understood.

It is well known that proliferation of topological defects induces thermal melting of a two-
dimensional crystal. The idea was first suggested by Kosterlitz and Thouless in [9,10], where
they used renormalization group (RG) to analyze the dislocation mediated melting. An im-
portant next step was done by Halperin and Nelson [48] who extended this approach by in-
corporating also disclinations. Later on, Young [49] performed the RG calculation to derive
the correlation length critical exponent near the crystalline-hexatic melting transition.

Since it is expected that dislocations and disclinations play an important role in thermal
and quantum melting of two-dimensional vortex crystals, it is desirable to develop a theory,
where these topological defects are naturally incorporated. In time-reversal invariant crystals,
such a formalism was first developed by Kleinert [50–53], who rewrote the theory of classical
elasticity as a dual gauge theory with symmetric tensor gauge fields. Under this duality, topo-
logical defects are mapped to matter fields charged under the dual gauge fields. This duality
was extended to the quantum realm in [54], and the general theory was developed in [55,56].

In an unrelated line of work, a new type of topological phases of matter [57–60] was
discovered. These phases are characterized by the presence of local excitations, referred to
as fractons, that cannot freely move through space – the property that is often referred to
as restricted mobility. In a parallel yet unrelated line of work, a new class of algebraic spin
liquids has been discovered [61–63]. At long distances, these spin liquids were described by
an emergent Abelian gauge theory reminiscent of linearized Horava-Lifshitz gravity [62]. It
was noticed by Pretko [64, 65] that gauge theories of [61–63] must couple to particles with
restricted mobility. The restricted mobility effect follows directly from the Gauss law con-
straint of these theories. These gauge theories, when considered in two spatial dimensions,
are precisely dual to the two-dimensional elasticity [66–69]. Indeed, crystalline defects in the
quantum theory of elasticity are characterized by restricted mobility: dislocations can only
move along their Burgers vector, while disclinations are immobile. Moreover, a disclination
dipole is equivalent to a dislocation, with the Burgers vector perpendicular to the dipole mo-
ment. The duality has been generalized in several different directions and was used to revisit
the melting transition in quantum crystals [70–73]. It was also generalized to three spatial
dimensions [74] and to quantum smectic phases [75], that are dual to more general multipole
theories studied in [76–78].

In addition to the proliferation mechanism of dislocations and disclinations, the physics of
vacancies and interstitials plays a central role in the quantum melting of solids [68, 70, 71].
Specifically, if these defects carry a finite charge under a global symmetry, dislocations cannot
proliferate unless that symmetry is broken spontaneously, which requires proliferation of va-
cancy/interstitial defects. In the context of finite-temperature three-dimensional vortex crys-
tals in charged superconductors entropic proliferation of vacancies and interstitials has been
discussed in detail already in [79,80]. More recently, Ref. [71] briefly discussed condensation
of these defects in zero-temperature two-dimensional superfluid vortex crystals.

In the present work, we utilize the duality between crystalline defects and fractons to study
the vortex crystals and their quantum melting transitions. Our main findings are:

• We extract static interactions between topological defects of the vortex crystal phase
such as vortex defects (vacancies/interstitials) and dislocations. We discover that the

1In a homogeneous bosonic system the filling factor ν is defined as the ratio of the density of bosons nb to the
density of vortices nv .
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vortex-vortex interaction is generically short-ranged due to screening caused by the vor-
tex crystal, see Eq. (4.3). Similar to the inter-vortex potential in superconductors, this
interaction can be either repulsive (type-II) or attractive (type-I). The sign of the inter-
action depends on a linear combination of the two elastic moduli of the vortex crystal.
The inter-dislocation interaction that we find agrees with the previous work [81]. Fi-
nally, we compute the interaction between a vortex vacancy/interstitial and a dislocation
(4.7) and find that at distances much larger than the screening length, it is identical to
the electrostatic dipole-charge interaction in two spatial dimensions.

• Since the vortex number is conserved in the superfluid phase, in the presence of intersti-
tials/vacancies, the vortex crystal must satisfy the modified glide constraint (3.17). In
addition, a bound state of two dislocations of opposite charge carries the vortex number
charge and cannot unbind without condensing vortices. These two observations imply
that a conventional continuous dislocation-assisted quantum melting transition between
the vortex crystal and a hexatic or smectic phase is not allowed [71]. As a result, the
quantum melting transition is either a first-order phase transition or two conventional
continuous quantum transitions separated by an intermediate phase.2 In this paper, we
restrict our attention to the latter two-step scenario, see Fig. 1. First, we study the pre-
cursor of the quantum melting and investigate a direct continuous quantum transition
between the vortex crystal and a chiral crystal that we find to satisfy the ordinary glide
constraint. The transition is driven by condensation of vortex vacancies/interstitials,
which is governed by the abelian Higgs mechanism. Since this phase exhibits transla-
tion symmetry breaking simultaneously with vortex defect condensation, we will refer
to it as the vortex supersolid crystal3. We determine the relationship between the elastic
moduli of the vortex supersolid crystal and the vortex crystal. Second, we analyze the
continuous quantum melting of the vortex supersolid crystal governed by the prolifera-
tion of dislocations. We investigate two different possible Higgs transitions and derive
the effective gauge theories of resulting quantum nematic and smectic phases.

Figure 1: A two-step continuous quantum melting scenario of the two-dimensional
vortex crystal to the vortex nematic or smectic phase via the intermediate vortex
supersolid phase.

2 Effective theory of vortex crystal

The starting point of our investigation is the effective field theory of a two-dimensional vor-
tex crystal derived in [32, 33]. Its low-energy degrees of freedom are the dynamical u(1)

2One can also envision an unconventional continuous melting transition where both vortex defects and dislo-
cations are proliferated simultaneously, but we will not investigate such possibility in this paper.

3In charged three-dimensional superconductors a related finite-temperature phase was investigated in detail
in [79, 80]. In that problem, it is related via the boson-vortex duality to the quantum supersolid phase of short-
range interacting bosons [82].
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gauge field aµ (which via the boson-vortex duality encodes the physics of the coarse-grained
superfluid degree of freedom) and coarse-grained displacements of vortices ui from their equi-
librium crystal positions. It will be sufficient to work with the quadratic Lagrangian which has
the form

L= Lg(aµ)−
B0n0

2
εi ju

i∂tu
j −

1
2

Ci j;klui jukl + B0eiu
i + aµ jµv . (2.1)

Specifically, in this paper aµ denotes the u(1) gauge field fluctuation around a static back-
ground āµ which produces a magnetic field fixed by the superfluid density in the ground state,
i.e., n0 = εi j∂i ā j . The quadratic Lagrangian Lg(aµ) governs the dynamics of the gauge field
fluctuation aµ. For now its concrete form is unimportant for us, but see [32, 33] for the spe-
cific examples. The second term fixes the dynamics of quantum vortices and ensures that in a
superfluid of a fixed density n0 subject to a constant magnetic field4 B0 the cartesian compo-
nents of the displacement ux and uy form a canonically conjugate pair of variables. The next
term depends on the strain ui j = (∂iu j + ∂ jui)/2 and fixes the potential elastic energy of the
two-dimensional vortex crystal, which henceforth is assumed to be triangular, implying the
elasticity tensor of the form5

Ci j;kl = 8C1P(0)i j;kl + 4C2P(2)i j;kl , (2.2)

where we introduced the compression and shear projection operators [56]

P(0)i j;kl =
1
2
δi jδkl , (2.3)

P(2)i j;kl =
1
2

�

δikδ jl +δilδ jk −δi jδkl

�

. (2.4)

In contrast to an ordinary crystal, in the vortex crystal the compression modulus C1 does not
have to be positive [18–20,26,81]. On the other hand, the shear modulus C2 > 0. The deriva-
tion of the constraints on the elastic moduli is presented in Appendix A, where we perform the
stability analysis of the quadratic effective theory. In the Lagrangian (2.1) vortices couple to
the superfluid only via the dipole term∼ eiu

i , where the electric field6 ei = ∂t ai−∂iat . Finally,
the last term in the Lagrangian allows us to incorporate the vortex defects, such as vacancies
and interstitials, on top of the vortex lattice, whose current jµv couples minimally to the u(1)
gauge field. Importantly, as will be explained in some detail in Sec. 5, in this paper vortex
defects couple only to the fluctuation aµ, but not to the background āµ.

Notice that Ci j;kl is symmetric under both i↔ j and k↔ l exchanges. Consequently, the
stress tensor

σi j = −
δS

δ(∂iu j)
(2.5)

is symmetric in space indices
εi jσi j = 0 , (2.6)

which is sometimes referred to as the Ehrenfest constraint [56]. We can rewrite the symmetric
strain as ui j = ∂iu j − θεi j where θ is the bond angle

θ =
1
2
εi j∂iu j . (2.7)

In the next section, we will treat θ as an independent field. It enters the action as a Lagrange
multiplier which enforces the Ehrenfest constraint.

4In a neutral superfluid an effective constant magnetic field can be realized by external rotation or with artificial
gauge fields, see [15–17,83].

5Our notation for elastic moduli C1 and C2 follows Refs. [26,32,33,81].
6From the boson-vortex duality the superfluid current jµ = εµνρ∂νaρ. This implies that the electric field ei is

equal in magnitude and is perpendicular to the superfluid current j i .
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3 Symmetric tensor gauge theory of vortex crystal elasticity

In this section we will apply elastic duality transformation to the vortex lattice theory (2.1).
For ordinary crystals, the formalism was introduced first by Kleinert [50–53] to study the
thermal melting and then adapted to supersolids [54] and to quantum liquid crystals [56].
This formalism was revised recently [66–68, 71] in the context of duality between crystalline
defects and fractons.

First, we introduce the Hubbard-Stratonovich (HS) fields π̃i and σ̃i j and obtain the equiv-
alent Lagrangian

L= Lg(aµ)+
1

2B0n0
εi jπ̃i∂tπ̃ j+π̃i∂tui+

1
2

C−1
i j;klσ̃i jσ̃kl−σ̃i j(∂iu j−θεi j)+B0eiui+aµ jµv , (3.1)

where we denoted [56]

C−1
i j;kl =

1
8C1

P(0)i j;kl +
1

4C2
P(2)i j;kl , (3.2)

as the formal inversion of Ci j;kl , which is defined as C−1
i j;kl Ckl;mn = P(0)i j;mn + P(2)i j;mn. Integrating

out the HS fields in (3.1) gives us back the Lagrangian (2.1). Next we separate the fields ui
and θ into singular and (smooth) elastic parts as follows

ui = us
i + ue

i , θ = θ s + θ e . (3.3)

The singular part of the strain us
i j = ∂iu

s
j −εi jθ

s is related to the density of crystalline defects.
Integrating out the elastic components gives us the conservation law

−∂tπ̃i + ∂ jσ̃ ji + B0(∂t ai − ∂iat) = 0, (3.4)

and the Ehrenfest constraint
εi jσ̃i j = 0. (3.5)

We now define
πi = π̃i − B0ai , σi j = σ̃i j − B0δi jat , (3.6)

and introduce elastic-electromagnetic fields, which are determined by πi and σi j

Bi = εi jπ j , E i j = εikε jlσkl (3.7)

to rewrite (3.4) and (3.5) as

∂t B
i + ε jk∂

j Eki = 0, (3.8)

εi j Ei j = 0. (3.9)

The Bianchi identity (3.8) and the Ehrenfest constraint (3.9) are satisfied automatically if Bi

and Ei j are expressed in terms of a symmetric tensor gauge field Ai j and a scalar potential ϕ

Bi = ε jk∂
jAki , (3.10)

Ei j = −∂tAi j − ∂i∂ jϕ. (3.11)

After all the above manipulations, we obtain the dual Lagrangian

L= Lg(aµ) +
1

2B0n0
εi j(B

i + B0ε
ikak)∂t(B

j + B0ε
jl al)

+
1
2

C̃−1
i j;kl

�

E i j + B0δ
i jat

� �

Ekl + B0δ
kl at

�

+ Ai jJ
i j +ϕρ + aµ jµv , (3.12)
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with7 C̃−1
i j;kl = ε

ii′ε ji′εki′εl i′C−1
i′ j′;k′ l ′ . We also defined the dislocation current

J i j = εilε jk(∂l∂t − ∂t∂l)u
s
k, (3.13)

and the disclination density
ρ = ρθ + ε

i j∂iχ j , (3.14)

where we have introduced the Burgers vector density of dislocation χi = εl j∂l∂ ju
s
i . Above the

disclination density was separated into the “free” part ρθ = εi j∂i∂ jθ
s and the part coming

from gradients of the dislocation density εi j∂iχ j [84].
We point out that the coupling between the tensor elastic gauge fields and the u(1) gauge

field in Eq. (3.12) is very different to the axion-like coupling found recently in the dual elas-
ticity theory of a time-reversal invariant supersolid [68, 70, 71]. We attribute this to a funda-
mental difference in the symmetry breaking pattern of the vortex crystal and the supersolid.

The dual theory (3.12) is invariant under the following gauge transformations

Ai j → Ai j + ∂i∂ jα+ B0δi jβ , ϕ→ ϕ − ∂tα, aµ→ aµ + ∂µβ . (3.15)

In addition to the conservation of the disclination density

∂tρ + ∂i∂ jJ
i j = 0, (3.16)

the gauge symmetry implies the modified glide constraint

B0δi jJ
i j − ∂µ jµv = 0. (3.17)

This deserves a clarification: In absence of interstitials and vacancies, in classic elasticity dis-
locations satisfy an ordinary glide constraint [85] which is encoded in the relation

δi jJ
i j = 0. (3.18)

Here in addition to vortices forming the periodic crystal, we also include the vortex interstitial
and vacancy excitations on top of the crystal with the density j0v . In the vortex crystal the total
vortex number is conserved which ensures that to the glide constraint (3.18) is modified to
(3.17).

Finally, we compute excitation modes of the vortex crystal encoded in the dual Lagrangian
(3.12). To this end one must specify the superfluid part of the Lagrangian Lg(aµ). Following
[32], we first consider only the non-dynamical magnetic Lagrangian Lg(aµ) = −mc2

s b2/2n0,
where m denotes the mass of the elementary boson, cs is the velocity of sound and b = εi j∂ia j .
This term is of leading-order in the derivative expansion developed in [32] and thus contains
information about the low-energy and low-momentum part of the energy spectrum. By solving
equations of motion derived from the Lagrangian (3.12) we find the Tkachenko mode with
the quadratic dispersion relation [26]

ω2 =
2mC2c2

s

B2
0n0

k4. (3.19)

It is straightforward now to add the electric term me2/(2n0) to the Lagrangian Lg(aµ) which
within the derivative expansion constitute a next-to-leading order correction. In addition to
higher-momentum corrections to the Tkachenko dispersion, this term gives rise to the gapped
Kohn mode in the energy spectrum, which is in agreement with Ref. [32]. As discussed in
Ref. [33], in addition to the electric term me2/(2n0) the u(1) gauge theory contains another

7Notice that with the definition (3.2), one can check that C̃−1
i j;kl = C−1

i j;kl .
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next-to-leading contribution: a time-reversal breaking Berry term which survives in the lowest
Landau level limit (m → 0) and is entirely responsible for the gauge field dynamics in that
regime.

We notice that the dual theory (3.12) exhibits a global shift symmetry Bi → Bi + c i which
corresponds to the magnetic translation symmetry of a time-reversal breaking crystal in the
dual description. This symmetry prohibits the quadratic term Biδi jB

j to appear in the dual
quadratic Lagrangian and thus protects the quadratic dispersion relation of the soft Tkachenko
mode from linear corrections at low momenta.

4 Static interactions between topological defects in vortex crystal
phase

In this section we will extract static interaction potentials between different defects of the
vortex crystal from the dual theory (3.12). The relevant static part of the dual Lagrangian is

Lst =
m(∂iat)2

2n0
+

1
2
(C̃−1)i jkl(∂i∂ jϕ + B0δi jat)(∂k∂lϕ + B0δkl at) +ϕρ + atρv . (4.1)

Here the first term originates from the electric part me2/(2n0) of the Lagrangian Lg(aµ). After
integrating out the gauge fields at and ϕ, we find in Fourier space

L= −1
2

�

ρ(−q) ρv(−q)
�





8C2(B2
0 n0+4C1mq2)

q4(B2
0 n0+2(2C1+C2)mq2) − 4B0C2n0

q2(B2
0 n0+2(2C1+C2)mq2)

− 4B0C2n0

q2(B2
0 n0+2(2C1+C2)mq2)

2(2C1+C2)n0

B2
0 n0+2(2C1+C2)mq2





�

ρ(q)
ρv(q)

�

,

(4.2)
which contains all information about static potentials between topological defects. In the
crystalline phase pairs of disclinations are tightly confined into dislocations and thus here we
consider only vortex vacancies/interstitials and crystal dislocations.

The static potential between two vacancy/interstitial vortex defects is

Vv(q) =
2 (2C1 + C2)n0

B2
0n0 + 2 (2C1 + C2)mq2

=
n0/m

q2 +λ−2
v

, (4.3)

where we introduced the vortex screening length λv =
q

2(2C1 + C2)m/B2
0n0.8 Since in the

vortex crystal the combination 2C1+C2 can be either positive or negative [26,81], see Section
A, we should distinguish three different cases. For 2C1+C2 > 0 the inter-vortex potential is re-
pulsive and falls off as K0(r/λv). It is screened due to the presence of the elastic vortex crystal.
As a result it does not decay logarithmically, as in a non-rotating superfluid, but exponentially
at distances much larger than λv . Formally, it is identical to interaction of vortices in a type-II
superconductor. For 2C1 + C2 = 0 we have λv = 0 and the inter-vortex potential disappears.
This is similar to what happens if a superconductor is tuned to the Bogomolny point [12].9

For 2C1 + C2 < 0 the screening length becomes imaginary and we cannot trust our quadratic
theory at q ∼ λ−1

v . Within the regime of validity, i.e., for q� λ−1
v , the intervortex potential is

now attractive similar to what happens in a type-I superconductor.
We can extract the dislocation-dislocation static potential by assuming there are no free

disclinations, i.e., ρθ = 0, and thus ρ = εi j∂iχ j . Given that, in momentum space we obtain

8A similar length scale was introduced in [81]. According to that paper λ2
v changes sign as one crosses over

from the incompressible Tkachenko regime to the compressible lowest Landau level regime of the vortex crystal.
9 Note that in this regime the actual interaction between vortices is fixed by higher derivative terms that were

not incorporated into the dual Lagrangian (3.12).
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the inter-dislocation Lagrangian

Ldisl = −
1
2
χ i

T (−q)
�8C2

q2
−

C2

2C1 + C2

8C2
�

q2 +λ−2
v

�

�

χ i
T (q) , (4.4)

where χ i
T (q) = (δ

i j−qiq j/q2)χ j(q). This result is in agreement with the previous work [81].10

In the limit λ−1
v = 0, Eq. (4.4) reduces to the well-known static interaction between two dislo-

cations in a time-reversal invariant two-dimensional crystal [84]. At momenta much smaller
than the inverse of the vortex screening length λv our result simplifies to

Ldisl = −
1
2
χ i

T (−q)
8C2

q2
χ i

T (q). (4.5)

Finally, we find a long-range static vacancy/interstitial-dislocation interaction

Lv−disl = −
1
2
ρv(−q)Vi(q)χi(q) , (4.6)

with

Vi(q) = iεi jq j
4λ−2

v C2/B0

q2(q2 +λ−2
v )

. (4.7)

At distances much larger than the vortex screening length this is identical with the electrostatic
dipole-charge potential in two spatial dimensions.

5 Higgs condensation of vortex vacancy/interstitial defects

A conventional continuous dislocation-mediated quantum transition between a superfluid vor-
tex crystal and a vortex hexatic or smectic phase is not possible. Due to the conservation of
the vortex number, one cannot proliferate dislocations and restore translation symmetry with-
out simultaneously proliferating quantum vortex defects [71]. This is reflected in the form
of the modified glide constraint (3.17). Mathematically, the problem is that in the vortex
crystal phase, dislocations couple non-locally to the long-range gauge field aµ and so one
cannot condense them. In this section, we investigate the Higgs condensation of vortex va-
cancy/interstitial defects and find that the vortex crystal transforms into a vortex supersolid
chiral crystal, which obeys the ordinary glide constraint. Condensation of vortex defects in the
vortex crystal has been recently studied in Ref. [71]. Our findings, however, somewhat differ
from [71], and we discuss the differences at the end of this section.

In an ordinary bosonic crystal an isolated vacancy defect costs a positive elastic energy
Ev , but since it is mobile and can hop on a lattice, its energy spectrum forms a band whose
minimum has an energy that is lower than Ev . If the energy of the band minimum is lower
than zero, the crystal ground state becomes unstable and condensation of the bosonic va-
cancy defects occurs resulting in a supersolid ground state [87]. Similar arguments can be
applied to interstitial defects. In this section we extend the mechanism presented above to
two-dimensional vortex crystals in bosonic superfluids.

To condense vortex vacancy/interstitial defects, first, we must replace aµ jµv in the La-
grangian (3.12) by a low-energy effective Lagrangian that depends on the vortex defect bosonic

10To make a direct comparison with Eq. (18) in [81] one must Fourier transform (4.4) to position space using
for example Appendix A of [86].
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field ψv . Microscopically, the vortex Lagrangian can be fixed by studying vacancies and inter-
stitials hopping in the vortex crystal. Specifically, one can adopt the tight-binding approxi-
mation for the hopping defects, determine their band structure and expand the resulting dis-
persion around its minimum. Vacancies and interstitials must be treated separately since the
former hop on the original triangular lattice, whereas the latter live on the dual (honeycomb)
lattice. In this paper we will restrict our discussion to condensation of vacancies, but very
similar arguments apply if vortex interstitials condense instead. Since vortices see superfluid
density as a magnetic field and assuming a constant dual background field b̄ = εi j∂i ā j = n0 in
the ground state, the band structure of the vortex vacancy quasiparticles must be determined
from the solution of the corresponding Hofstadter problem on a triangular lattice [88]. This is
extremely sensitive to the dual magnetic flux per plaquette. To illustrate the main idea, here we
will work at an even-integer-valued filling ν= n0/nv , where nv = B0/2π is the vortex density
in the vortex crystal ground state. This corresponds to the integer number of dual magnetic
flux quanta piercing a unit triangular plaquette11, which is unobservable by the hopping vortex
vacancy.12 The resulting energy band has a minimum at the zero-momentum Γ point, and we
will expand its dispersion relation to quadratic order in momentum around it. Assuming some
additional short-range repulsive interactions between the vacancy quasiparticles, we arrive at
the following Lagrangian encoding the physics of vacancies

Lv = iψ†
v Dtψv −

1
2mv
|Diψv|2 −µvψ

†
vψv −

gv

2
(ψ†

vψv)
2, Dµ = ∂µ − iqvaµ, (5.1)

where qv = −2π is the charge of the elementary vacancy with respect to the u(1) gauge field.
Importantly, the vortex vacancy couples minimally only to the fluctuation aµ of the gauge field,
but not to the background āµ.

We are interested here in the Higgs transition induced by the vortex vacancy condensation
as one changes the vacancy chemical potential µv from positive to negative values. Writing
ψv =

p

ρ̄veiϕv and following Appendix B, the Lagrangian of condensed vacancies reduces to
the quadratic form

Lv = qvat ρ̄v +
1

2gv
(∂tϕv − qvat)

2 −
ρ̄v

2mv
(∂iϕv − qvai)

2, (5.2)

where the phase field ϕv is regular.
Now we consider the symmetric tensor gauge theory (3.12) derived in Sec. 3 and replace

aµ jµv with the Lagrangian (5.2). Performing the regular gauge transformation ãµ = aµ−q−1
v ∂µϕv ,

and integrating out ãµ, keeping only zeroth order in derivatives terms of aµ, we obtain the La-
grangian

L= 1
2B0n0

εi j[B
i + q−1

v B0ε
ik∂kϕv]∂t[B

j + q−1
v B0ε

jl∂lϕv]+
mv

2n2
0ρ̄v

�

∂t(B
i + q−1

v B0ε
ik∂kϕv)

�2

+
1
2

Ĉ−1
i j;kl

�

E i j + q−1
v B0δ

i j∂tϕv

� �

Ekl + q−1
v B0δ

kl∂tϕv

�

+ Ai jJ
i j +ϕρ, (5.3)

where the renormalized elastic coefficients take the form

Ĉ−1
i j;kl =

1
8C ′1

P(0)i j;kl +
1

4C2
P(2)i j;kl , (5.4)

11In the triangular lattice the unit cell constitutes two elementary triangular plaquettes, so the flux per unit cell
that we consider is an even multiple of the flux quantum.

12If the filling fraction ν is near but not precisely even-integer-valued, the vortex vacancies effectively experience
a small residual background dual magnetic field. In the vortex vacancy condensed phase, we expect this residual
dual magnetic field to be repelled from the bulk of a finite system due to the dual Meissner effect resulting in a
non-uniform dual magnetic field (boson density) only near the boundary of the sample.
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with

C ′1 = C1 +
gvB2

0

4q2
v

. (5.5)

We observe that the bulk modulus is increased after vacancies are condensed, while the shear
modulus is not renormalized. One can explain this phenomenon by the following argument.
The short-range interaction between vacancies in (5.1) generates the mass term for the scalar
potential at in the Higgs phase. Due to the coupling of at and the compression part of the elas-
tic sector, the bulk modulus is enhanced after we integrate out the gauge field. In other words,
the condensate of vacancies resists the compression of the resulting crystal due to the vacancy-
elasticity interaction. An alternative derivation of the renormalization formula of the com-
pression modulus C1 can be found in Appendix C. Curiously, the renormalization found here
is opposite to what happens in the finite-temperature vortex supersolid in a three-dimensional
type-II superconductor, where is was predicted that a condensation of vacancies/interstitials
reduces the bulk modulus [80].

We now redefine the tensor gauge field Ãi j = Ai j − q−1
v B0δi jϕv , and then rewrite the La-

grangian (5.3) as

L= 1
2B0n0

εi j B̃
i∂t B̃

j +
mv

2n2
0ρ̄v

�

∂t B̃
i
�2
+

1
2

Ĉ−1
i j;kl Ẽ

i j Ẽkl + (Ãi j + q−1
v B0δi jϕv)J

i j +ϕρ , (5.6)

with B̃i and Ẽi j defined in Eqs. (3.10), (3.11) with Ai j being replaced by Ãi j . In the Lagrangian
(5.6), ϕv is the Lagrange multiplier that imposes the condition δi jJ

i j = 0.13 So in contrast to
the original vortex crystal, the vortex supersolid obeys the oridinary glide constraint (3.18).
To the lowest order in derivatives the constrained Lagrangian is just

L= 1
2B0n0

εi j B̃
i∂t B̃

j +
1
2

Ĉ−1
i j;kl Ẽ

i j Ẽkl + Ãi jJ
i j +ϕρ , (5.7)

which is the dual effective theory of a time-reversal breaking two-dimensional crystal. Elastic
dual gauge theory for such a crystal was previously derived in [68, 71] by applying a duality
transformation to the following elastic Lagrangian

L=
B0n0

2
εi jui∂tu j −

1
2

Ĉi j;klui jukl . (5.8)

In Appendix C we investigate the condensation of vortex defects directly in terms of the
effective theory (2.1). In addition, there we introduce an external U(1) gauge potential that
couples to the bosonic particle number current. We find that the constituents of the vortex
supersolid are neutral under the U(1) bosonic particle number symmetry, but instead carry the
magnetic and dipole moments. We also discover that the vortex supersolid does not exhibit
the Meissner effect.

Finally, we discuss how our analysis differs from Ref. [71], where condensation of vortices
was also investigated in two-dimensional quantum vortex crystals. The key difference that, in
contrast to our theory, vortex quasiparticles are assumed to couple to the full u(1) dual gauge
field in [71]. Since this field has a finite magnetic field background fixed by the superfluid
density, condensation of vortices results in the Abrikosov lattice of dual vortices which bind
localized elementary bosons to their cores. Based on that, the authors of [71] argued that
the resulting chiral crystal is the crystal of localized bosons, which also has the modified glide
constraint that follows from the global U(1) particle number symmetry. This would imply that

13This must be contrasted to a time-reversal invariant quantum supersolid, where the superfluid order completely
relaxes the glide constraint [68,70,71].
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this crystal cannot undergo quantum melting via the conventional proliferation of dislocations.
Our construction that relies on microscopic physics of vacancies and interstitials, however, in-
dicates that the glide constraint of the vortex supersolid crystal is the ordinary one, δi jJ

i j = 0,
and the conventional defect-assisted continuous quantum melting of such a crystal is possible.
Different possibilities of how this can happen will be discussed in detail in Sec. 7.

6 Vector gauge theories of vortex crystal and vortex supersolid

In the translation-broken phase, the symmetric tensor gauge theories of the vortex and vortex
supersolid crystals derived in Secs. 3 and 5, respectively, are adequate to explain the essential
physics. However, in order to understand the dislocation-assisted melting of the vortex super-
solid towards a bond-ordered fluid, the bond angle θ should be promoted to a dynamical field
by adding quadratic terms to the Lagrangian (2.1) [68,69,73]

L→ L+ 1
2
(∂tθ )

2 −
K
2
(∂iθ )

2 , (6.1)

with K > 0. In this section we derive the vector gauge theories of the vortex crystal and the
vortex supersolid and discuss their relation to the symmetric tensor gauge theories (3.12),
(5.6), respectively.

6.1 Vortex crystal

First, we rewrite the Lagrangian (6.1) using the Hubbard-Strantonovich transformation

L= Lg(aµ) +
1

2B0n0
εi jπ̃i∂tπ̃ j + π̃i∂tui +

1
2

C−1
i j;klσ̃i jσ̃kl − σ̃i j(∂iu j − θεi j) + B0eiui + aµ jµv

+ L∂tθ −τi∂iθ −
1
2

L2 +
1

2K
τ2

i . (6.2)

Separating the strain field ui into the singular us
i and smooth ue

i components, and integrating
out the smooth part yields the conservation law (3.4). We then perform the field redefinitions
(3.6) and introduce the elastic-electromagnetic fields (3.7) that satisfy the Bianchi identity

∂t B
i + ε jk∂

j Eki = 0. (6.3)

The Bianchi identity (6.3) is automatically satisfied provided one introduces the following
vector and tensor gauge fields

Bi = ε jk∂
jAki , (6.4)

Ei j = −∂tAi j + ∂iA0 j . (6.5)

Note that the tensor field Ai j is not symmetric. We now split the bond angle field θ = θ s + θ e

and integrate out the elastic part θ e. This gives us the dynamical Ehrenfest constraint

∂t L − ∂iτi = εi jσ̃i j = εi j Ei j . (6.6)

Using Eqs. (6.4), (6.5), we can solve the dynamical Ehrenfest constrain (6.6) by introducing
an additional u(1) gauge field bµ [69,73]

L =εi j∂i b j − εi jAi j , (6.7)

τi =εi j(∂t b j − ∂ j bt − A0 j) . (6.8)
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We then end up with the final dual Lagrangian

L= Lg(aµ)+
1

2B0n0
εi j(B

i+B0ε
ikak)∂t(B

j+B0ε
jl al)+

1
2

C̃−1
i j;kl

�

E i j + B0δ
i jat

� �

Ekl + B0δ
kl at

�

+
1

2K
(∂t bk − ∂k bt − A0k)

2 −
1
2

�

εi j∂i b j − εi jAi j

�2

+ Ai jJ
i j + A0iρi + bi j i

d + btρθ + aµ jµv , (6.9)

where we have introduced the dislocation current

J i j = εilε jk(∂l∂t − ∂t∂l)u
s
k, (6.10)

the (skew) dislocation density,

ρi = ε
i jεlk∂l∂kus

j = ε
i jχ j , (6.11)

the disclination current
j i
d = εi j

�

∂ j∂t − ∂t∂ j

�

θ s , (6.12)

the disclination density
ρθ = ε

i j∂i∂ jθ
s . (6.13)

One may notice the appearance of a new disclination current (6.12). The promotion of the
Ehrenfest constraint to the dynamical form (6.6) means that we allow the disclinations to
move, which will happen in the bond-ordered fluid phase.

The dual action (6.2) has the following gauge symmetries

Ai j → Ai j + ∂iλ j + B0δi jβ , A0 j → A0 j + ∂tλ j , (6.14)

bi → bi +λi + ∂iφ, bt → bt + ∂tφ, (6.15)

aµ→ aµ + ∂µβ . (6.16)

These gauge symmetries result in the modified glide constraint (3.17), the conservation of the
disclination number ∂tρd + ∂i j i

d = 0, and

∂µJµi − j i
d = 0. (6.17)

The last equation implies that the motion of disclinations (charges) must be accompanied by
the annihilation or creation of dislocations (dipoles).

In the translation-broken crystal phase, where the disclination current vanishes j i
d = 0, one

can perform a λi gauge transformation to eliminate the field bi from Eq.(6.9). As a result, the
anti-symmetric part of the tensor gauge field, εi jAi j , acquires a mass and hence is eliminated
at low energies. After integrating out A0k and renaming bt → ϕ, we recover the symmetric
tensor gauge theory of the vortex lattice (3.12) with the charge density given by

ρ = ρθ + ∂iρ
i , (6.18)

which is consistent with Eq. (3.14). In summary, in the vortex crystal phase at low energies,
free disclinations are static, and we can ignore the dynamics of the bond angle field θ . In this
phase the two dual theories (3.12) and (6.9) are equivalent at low energies.
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6.2 Vortex supersolid

Starting from the Langragian of the vector charge theory (6.9), we first replace aµ jµv by the
vortex’s Lagrangian (5.1). We then follow the calculations discussed in Sec. 5 and arrive at
the vector charge theory of the vortex supersolid crystal of the form

L= Lgauge +Lmat ter . (6.19)

The Lagrangian of the gauge sector is

Lgauge =
1

2B0n0
εi j B̃

i∂t B̃
j +

1
2

Ĉ−1
i j;kl Ẽ

i j Ẽkl +
1

2K
(∂t bk − ∂k bt − A0k)

2 −
1
2

�

εi j∂i b j − εi jÃi j

�2
,

(6.20)
where we defined the elastic-electromagnetic fields

B̃i = ε jk∂
jÃki , Ẽi j = −∂t Ãi j + ∂iA0 j (6.21)

in terms of the gauge-transformed field Ãi j = Ai j − B0δi jϕv . The Lagrangian of the crystalline
topological defect sector is given by

Lmat ter = Ãi jJ
i j + A0iρi + bi j i

d + btρd . (6.22)

The residual gauge symmetries of (6.19) are

Ãi j → Ãi j + ∂iλ j , A0 j → A0 j + ∂tλ j , (6.23)

bi → bi +λi + ∂iφ, bt → bt + ∂tφ, (6.24)

which imply the conservation of the disclination number and the non-conservation of the dis-
location number (6.17). In the vortex supersolid phase, the vector gauge theory (6.19) has
the ordinary glide constraint (3.18) which is derived exactly as in Sec. 5. In addition in that
phase, the vector charge theory (6.19) and scalar charge theory (5.7) are equivalent at low
energies.

7 Quantum melting of vortex crystal

In this section, we investigate the quantum melting of the vortex crystal using the vector gauge
theory (6.9). As argued above, a direct dislocation-assisted continuous conventional melting
transition is impossible. Instead, in this paper, we consider a scenario, where the melting
of the vortex crystal happens in two steps. First, as already discussed in Sec. (5), the vortex
vacancies or interstitials condense giving rise to the vortex supersolid crystal. Second, the latter
undergoes a continuous quantum melting transition due to the proliferation of dislocations.
In this section, we investigate two types of dislocation-assisted continuous quantum melting
of the vortex supersolid towards the nematic and smectic phases.

7.1 Quantum melting towards nematic phase

Here we analyze the dislocation-assisted melting mechanism of the vortex supersolid towards
the nematic fluid. Although it is natural to expect that the vortex supersolid crystal forms a
triangular lattice, here for simplicity, we will discuss the case of the square lattice. We checked
that our main predictions do not change qualitatively for the triangular crystal.

First, we introduce bosonic fields that represent dislocations. In particular, ψd annihilates
a dislocation with the dipole moment d that correspond to the Burgers vector χi = εi jd

j . In
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the following, we will condense the pair a = 1, 2 of elementary dislocation dipoles da which
are the primitive vectors of the lattice14. Following closely [71], we introduce the covariant
derivative of ψd as15

Dtψda
=
�

∂t − id j
a(A0 j − ∂t b j)

�

ψda
, (7.1)

Diψda
=
�

∂i − id j
a(Ãi j − ∂i b j)

�

ψda
, (7.2)

with d j
a being the jth component of the vector da. Notice that as expected the dislocation field

couples to the gauge field bi in the same manner as an electric dipole moment couples to the
electromagnetic field. The dislocation field ψda

transforms under the gauge transformations
(6.23) and (6.24) as

ψda
→ e−id j

a∂ jφψda
. (7.3)

In order to analyze the Higgs mechanism of the quantum melting, we replace the matter
Lagrangian in (6.19) with the dynamical Lagrangian for dislocations [71]

Ldis =
∑

a=1,2

�

iψ†
da

Dtψda
−

1
2md
|Π jk

da
Dkψda

|2
�

− Vdis(ψda
) , (7.4)

where Π jk
da
= δ jk − d j

adk
a

|da|2
is the projection to direction perpendicular to the dipole vector da.

Due to the projection, the ordinary glide constraint δi jJ
i j = 0 is satisfied automatically. The

potential term Vdis must be invariant under the gauge transformation (7.3) and point group
symmetry transformations of the lattice. For simplicity, in this subsection it is chosen to be16

Vdis =
∑

a=1,2

�

µψ†
da
ψda
+

g

2
|ψda
|4
�

. (7.5)

The short-range part of interaction between dislocations is assumed to be repulsive, g > 0. If
one now tunes the chemical potential µ to negative values, the dislocations acquire a finite
expectation value ρ̄d1

= ρ̄d2
= ρ̄ = |µ|

g . As a consequence, both ψd1
and ψd2

condense and
the vortex supersolid crystal melts into the quantum nematic fluid.

Now we rewrite the dislocation fields as ψda
=
p

ρ̄ +σae−iϕa with the gauge transforma-
tion (7.3) acting on the phase ϕa as

ϕa→ ϕa + d j
a∂ jφ. (7.6)

After integrating out the heavy fields σi , using Appendix B, we arrive at the quadratic La-
grangian

Ldis→ Lϕa
=ρ̄d (A01 + A02) +

d2

2g

�

(∂tϕ̃1 + (A01 − ∂t b1))
2 + (∂tϕ̃2 + (A02 − ∂t b2))

2�

−
ρ̄d2

2md

�

(∂2ϕ̃1 + (Ã21 − ∂2 b1))
2 + (∂1ϕ̃2 + (Ã12 − ∂1 b2))

2
�

, (7.7)

14For a square lattice the simplest choice is to point the cartesian coordinates along the primitive vectors and
hence d1 = d x̂ and d2 = d ŷ , where d is the lattice spacing.

15In Ref. [71], Kumar and Potter introduced the coupling of the dislocation field to the symmetric tensor gauge
fields in the scalar charge theory. Here instead, we couple dislocations to gauge fields in the vector charge theory
(6.20). One can check that in the lattice phase, where bi → 0, one recovers the covariant derivative of [71].

16One can consider a more general form of the potential, however, as long as it is minimized by ρ̄d1
= ρ̄d2

6= 0,
the Higgs mechanism analysis will be qualitatively the same as discussed in this subsection.
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where we introduced ϕ̃i = ϕi/d. We observe that, A0i , Ã12 and Ã21 are gapped out due to
the Higgs mechanism. Using λi , we fix now the gauge to Ã11 = Ã22 = 0 and integrate out the
massive fields to obtain the effective Lagrangian of the quantum nematic phase 17

L= α1 ẽ2
i −α2 b̃2, (7.8)

with ẽi = ∂i bt − ∂tϕ̃i and b̃ = εi j∂iϕ̃ j . The coefficient α1 and α2 in Eq. (7.8) are found to be

α1 =
(g/d2 + K)

2(g/d2 − K)2
, α2 =

ρ̄

2(ρ̄ + 2md/d2)
. (7.9)

We observe that the fields ϕ̃i and bt are gauge potentials of a new emergent u(1) gauge theory
with the gauge redundancy

bt → bt + ∂tφ, ϕ̃i → ϕ̃i + ∂iφ, (7.10)

that one can obtain from Eqs. (6.24) and (7.6).
We ended up with the Lagrangian (7.8) which encodes the dual gauge description of an

ordinary time-reversal invariant two-dimensional quantum nematic phase that breaks sponta-
neously SO(2) rotation symmetry. Note that although we have started from the chiral theory
of the vortex supersolid, the resulting nematic model appears from Eq. (7.8) to be non-chiral.
Although time-reversal and parity breaking terms are generated, they are higher-order in the
derivative expansion and thus were not included in the leading order Lagrangian (7.8). Thus
at small wave vectors and frequencies, the vortex chiral nematic phase cannot be distinguished
from the ordinary nematic phase.

7.2 Quantum melting towards smectic phase

In this subsection, we will show how to obtain the effective theory of the vortex chiral smectic
phase by proliferating only one component of the dislocation field. Our computation is similar
in spirit to the one done in the previous subsection.

In this case, we start from the dislocation Lagrangian

Ldis =
∑

a=1,2

�

iψ†
da

Dtψda
−

1
2md
|Π jk

da
Dkψda

|2
�

− V ′dis(ψdi
), (7.11)

with the dislocation potential [68]18

V ′dis =
∑

a=1,2

�

µψ†
da
ψda
+

g

2
|ψda
|4
�

+ g′|ψd1
|2|ψd2

|2 , (7.12)

with g′ > g> 0. We again will set d1 = d x̂ ,d2 = d ŷ . When the chemical potential µ becomes
negative, the dislocations condense. However, for g′ > g the potential V ′dis is minimized only
when one component of the dislocation field acquires a finite expectation value. After spon-
taneously choosing 〈ψd1

〉 6= 0, we rewrite the dislocation field as ψd1
=
p

ρ̄ +σ1e−iϕ1 with

ρ̄ = |µ|g . After integrating out σ1 one obtains the Lagrangian

Ldis = Lϕ1
+L′ψd2

, (7.13)

17We ignored the higher derivative of A0i , Ã12 and Ã21 in Eq. (6.19).
18The potential (7.5) is the g′→ 0 limit of the potential (7.12). As commented in the Ref. [68], the nematic and

smectic phase appears when g > g′ ≥ 0 and g′ > g > 0, respectively. In the previous subsection we chose g′ = 0
to simplify the calculations. One can repeat the calculation for the nematic phase with a general value g > g′ ≥ 0
and obtain the same final result.
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where the Lagrangian of the Goldstone mode ϕ1 is

Lϕ1
= ρ̄dA01 +

d2

2g
(∂tϕ̃1 + (A01 − ∂t b1))

2 −
ρ̄d2

2md
(∂2ϕ̃1 + (Ã21 − ∂2 b1))

2, (7.14)

with ϕ̃1 = ϕ1/d. On the other hand, the dislocation field ψd2
acquires a positive effective

chemical potential µ′ = µ(1− g′

g ) and thus

L′ψd2
= iψ†

d2
Dtψd2

−
1

2md
|Π jk

d2
Dkψd2

|2 −µ′|ψd2
|2. (7.15)

As a result, the dislocation field ψd2
is gapped and the above Lagrangian can be ignored at

low energies.
We observe that both A01 and Ã21 acquire a mass due to the Higgs mechanism. We then

use the gauge transformation λ1 to eliminate Ã11, integrate out the massive fields A01, Ã21
and keep the lowest gradient terms to obtain the effective action of the vortex chiral smectic
phase19

L= 1
8C2

�

∂t ~A− ~∇A0

�2
+

1
16C ′1

(∂tA2 − ∂2A0)
2 +

1
2K

�

(∂tϕ̃1 − ∂1 bt)
2 + (∂t b2 − ∂2 bt − A0)

2
�

−
1
2
(∂1 b2 − ∂2ϕ̃1 − A1)

2 , (7.16)

where to simplify notation we renamed

Ãi2→ Ai , A02→ A0. (7.17)

The residual gauge symmetries are

Aµ→ Aµ + ∂µλ2, (7.18)

ϕ̃1→ ϕ̃1 + ∂1φ, b2→ b2 +λ2 + ∂2φ, bt → bt + ∂tφ. (7.19)

8 Discussion and outlook

With the help of the fracton-elasticity duality, a comprehensive understanding of different time-
reversal invariant quantum phases (and allowed quantum phase transitions between these
phases) of two-dimensional bosonic matter has been achieved recently [68, 70, 71]. Inspired
by these ideas, in this paper we made a step towards a better understanding of quantum
vortex crystals and some related time-reversal breaking quantum phases of zero-temperature
two-dimensional bosons in an external magnetic field.

The physical properties of the two-dimensional quantum vortex supersolid phase, where
translation symmetry is broken spontaneously and vortex vacancy/interstitial defects are con-
densed, are currently not well understood. In particular, it is unclear to which extent it is
different from a magneto-crystal, i.e., a crystal of bosonic atoms in an external magnetic field.
In future work, it would be interesting to compute the particle number, momentum and en-
ergy transport properties of this phase and compare them with the linear response of the
magneto-crystal. These results will be also worth comparing with predictions of transport of

19To simplify the coefficients of different terms of the Lagrangian (7.16) here we assumed K � g

d2 and ρ̄d2

m~d
� 1.

This limit can be achieved by taking g→ 0. Gaussian integration now simply corresponds to A01 → ∂t b1 − ∂tφ̃1,
Ã21→ ∂2 b1 − ∂2ϕ̃1.
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finite-temperature vortex supersolids in type-II superconductors in external magnetic fields
investigated in Refs. [79,80].

It would be important to find out if the vortex supersolid phase discussed in this paper
occurs for superfluid bosons with short-range or dipolar interactions in a constant artificial
magnetic field (induced by rotation or some other mechanism [15–17, 83]). This may be
realized and investigated in future cold atom experiments. A finite-difference of the bulk
moduli of the vortex crystal and vortex supersolid predicted in this paper can be in principle
utilized to distinguish these two crystalline phases of matter.

In a recent preprint [89], some evidence of hexatic and isotropic quantum vortex fluids was
reported in extremely weakly pinned a-MoGe superconductor films at very low temperatures,
see however [90]. We believe that it is worth searching experimentally for the quantum vortex
supersolid phase in that system.

Finally, one can apply the formalism developed in this paper to other crystals with long-
range interactions, where the elastic sector couples to Hubbard-Stratonovich fields that medi-
ate long-range forces20. As in this work, it is straightforward to extract low energy modes and
static interaction potentials between topological defects in the crystalline phase. We expect
that the analysis of the quantum melting transitions might be sensitive to microscopic details
of the studied crystal.

Note added.— Recently we became aware of a related work on a duality between fractons
and two-dimensional quantum smectics [91–93].
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A Stability analysis of vortex crystal

Here we perform a stability analysis of the ground state of a vortex crystal. Our starting point
is the quadratic effective theory of Watanabe and Murayama [31]

L=
n0

2mc2
s

�

ϕ̇2 − c2
s

�

∂iϕ + B0εi ju
j
�2�−

B0n0

2
εi jui u̇ j − Eel(u

i j) , (A.1)

whose degrees of freedom are the smooth part of the superfluid phaseϕ and the displacements
ui . This theory is completely equivalent to the effective theory (2.1), see [32], and is a more
convenient formulation for the purpose of the stability analysis.

The corresponding Hamiltonian density is

H = πϕϕ̇ +πui u̇i −Leff =
n0

2mc2
s
ϕ̇2 +

n0

2m

�

∂iϕ + B0εi ju
j
�2
+ Eel(u

i j). (A.2)

Since we are interested in the stability of the vortex crystal ground state, we restrict our atten-
tion to static configurations whose effective Hamiltonian is

H =

∫

d2 x
h n0

2m

�

∂iϕ + B0εi ju
j
�2
+ Eel(u

i j)
i

. (A.3)

20In our model of the superfluid vortex crystal, the boson-vortex duality ensures that the proper Hubbard-
Stratonovich fields are u(1) gauge fields aµ
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The ground state is stable if the matrix of second variational derivatives with respect to all
fields21 Φ= (B−1/2

0 ϕ, ux , uy) is positive definite. In momentum space

M kl(q) =
1
2

δ2H
δΦk(−q)Φl(q)

, (A.4)

with k, l = 1, 2,3. Low-momentum expansion of the eigenvalues of this matrix, which all must
be positive, gives rise to the condition C2 > 0, but does not put any constraints on the sign of
the compression modulus C1. We conclude that in contrast to a time-reversal invariant crystal,
the compression modulus does not have to be positive in a vortex crystal. This is in agreement
with previous studies [18–20,26,81].

B Higgs mechanism in non-relativistic field theory

We consider the Lagrangian of a non-relativistic field theory

L= iψ†Dtψ−
1

2m
|Diψ|2 −µψ†ψ−

g

2
(ψ†ψ)2, (B.1)

where we defined the covariant derivative as

Dt = ∂t − iat , Di = ∂i − iai . (B.2)

To have a stable ground state, we restrict our attention to g > 0 in the potential term of
(B.1). When the chemical potential µ changes its sign from positive to negative, the bosons
are condensed and develop a finite vacuum expectation value

〈ψ†ψ〉= ρ̄ =
|µ|
g

. (B.3)

We then express the boson field as

ψ=
p

ρ̄ +σeiϕ. (B.4)

Ignoring the total derivative terms as well as higher order derivative terms of σ, one can
rewrite the effective Lagrangian in terms of σ and ϕ

L= at ρ̄ −σ(∂tϕ − at)−
ρ̄ +σ

2m
(∂iϕ − ai)

2 −
g

2
σ2, (B.5)

we then integrate out σ and keep only the lowest order terms up to second order in ϕ to yield

L= at ρ̄ +
1
2g
(∂tϕ − at)

2 −
ρ̄

2m
(∂iϕ − ai)

2. (B.6)

The effective action of the Goldstone mode in the non-relativistic theory differs from the ef-
fective action in a relativistic superfluid. In the relativistic theory, the coefficients of the time
derivative and space derivative terms are the same due to Lorentz invariance. In this paper,
we will use this analysis to study the Higgs mechanisms due to condensation of vortex and
dislocation matter in the vortex lattice.

21The factor B−1/2
0 in the first component of Φ ensures that all components of Φ have the same physical dimension.

19

https://scipost.org
https://scipost.org/SciPostPhys.9.5.076


SciPost Phys. 9, 076 (2020)

C Vortex defect condensation in effective theory (2.1)

Here, similar to Sec. 2, we start from the effective theory of the vortex crystal developed
in [32,33], whose Lagrangian is

L= Lg(aµ) +Lel(ui) + B0eiu
i +Lv(ψv) + ε

µνρAµ∂νaρ, (C.1)

where aµ is the dual u(1) gauge field encoding fluctuations around a static background āµ
with the magnetic field b̄ = εi j∂i ā j fixed by the bosonic density n0. Lg(aµ) is some quadratic
Lagrangian of the gauge field, whose precise form will not be important in calculations done
in this Appendix. The chiral elasticity Lagrangian is

Lel = −
B0n0

2
εi ju

i∂tu
j −

1
2

Ci j;klui jukl . (C.2)

Following the arguments presented in Sec. 5, the quasiparticle vortex Lagrangian is assumed
to have the form

Lv = iψ†
v Dtψv −

1
2mv
|Diψv|2 −µvψ

†
vψv −

gv

2
(ψ†

vψv)
2, Dµ = ∂µ − iqvaµ, (C.3)

where qv = ±2π is the charge of the elementary quasiparticle vortex interstitial and vacancy,
respectively, with respect to the dual gauge field aµ. We emphasize that the vortex excitation
couples only to aµ and not to the background āµ. Finally, in this Appendix we couple the
effective theory to the external particle number U(1) background source Aµ which is set to
vanishes in the ground vortex crystal state [32, 33]. In terms of the full source Aµ and the
background source Āµ (which induces the constant magnetic field B0), Aµ = Aµ − Āµ.22

We are interested here in how the vortex defect condensation discussed in Sec. 5 can be
described directly within the effective theory (C.1). To induce vortex quasiparticle condensa-
tion, we change the vortex chemical potential µv from positive to negative values. Following
the arguments of Sec. 5, in the vortex condensed phase the vortex matter Lagrangian reduces
to the quadratic form

Lv = qvat ρ̄v +
1

2gv
(∂tϕv − qvat)

2 −
ρ̄v

2mv
(∂iϕv − qvai)

2, (C.4)

where ϕv is the phase of the vortex field ψv and we dropped all total derivative terms such as
the vortex Berry term ∼ ρ̄v∂tϕv .

Now we do a regular gauge transformation and introduce ãµ = aµ− q−1
v ∂µϕv . In terms of

ãµ the Lagrangian (C.1) becomes

L= Lg(ãµ) +Lel(ui) + B0ui
�

∂t ãi − ∂i ãt

�

+ qv ãt ρ̄v +
q2

v

2gv
ã2

t −
q2

v ρ̄v

2mv
ã2

i + ε
µνρAµ∂νãρ.

(C.5)

Since ãµ is smooth, we will now integrate it out. We will perform the Gaussian integration
over ãµ keeping only terms that are up to and including first order in derivatives.23 The result
is

L= −
B0n0

2
εi ju

i∂tu
j −

1
2

Ci j;klui jukl −
1
2

gv(B+ qvρ̄v + B0∂iu
i)2

q2
v

+
mv

2q2
v ρ̄v
(εi jE j + B0∂tui)

2.

(C.6)
22The source Aµ couples also to the background āµ via εµνρAµ∂ν āρ. This background term is not explicitly

included in (C.1) since its presence plays no role in the vortex condensation calculation.
23Every term that contributes to Lg(ãµ) contains at least two derivatives [32, 33] and thus we can completely

neglect the gauge sector Lagrangian Lg in this calculation.

20

https://scipost.org
https://scipost.org/SciPostPhys.9.5.076


SciPost Phys. 9, 076 (2020)

Notice that in contrast to the coupling Eiu
i expected in an ordinary U(1) charged crystal,

here we have the coupling terms ∼ B∂iu
i and εi j∂tuiE j . As a result, the constituents of the

crystal carry no U(1) charge. Instead, away from the crystalline ground state finite fluctuations
in the U(1) magnetic moment density ∼ ∂iu

i and the U(1) dipole moment density ∼ εi j u̇ j are
induced. The former tells us that the constituents carry circulating bosonic currents around
them.

In the following the last term will be dropped because it contains (∂tui)2 which is sublead-
ing24 compared to the first term in the Lagrangian (C.6), so we will study the effective theory
encoded in the Lagrangian

L= −
B0n0

2
εi ju

i∂tu
j −

1
2

Ci j;klui jukl −
1
2

gv(B+ qvρ̄v + B0∂iu
i)2

q2
v

. (C.7)

First, we notice that the last term contains (∂iu
i)2 and thus the compression modulus of the

vortex supersolid crystal is larger than C1 of the vortex crystal

C1→ C1 +
gv

4q2
v

B2
0 , (C.8)

which exactly reproduces the result derived in Sec. 5. Second, using now the tensor structure
of the elasticity tensor

Ci j;kl = 8C1P(0)i j;kl + 4C2P(2)i j;kl , (C.9)

with
P(0)i j;kl =

1
2
δi jδkl , P(2)i j;kl =

1
2

�

δikδ jl +δilδ jk −δi jδkl

�

, (C.10)

we integrate out the displacements ui and calculate the induced action S[Aµ] that is encoded
in the following Lagrangian written in Fourier space

Lind = −
gv

2q2
v
(B−q + qvρ̄v)(Bq + qvρ̄v)−

1
2

g2
v B2

0

q4
v

B−qqiG
i j
q q jBq, (C.11)

where q = (ω,q), B is the magnetic field constructed from Ai and the inverse of the elastic
propagator G i j

q can be extracted directly from the Lagrangian (C.7)

G−1
q =

�

4C1q2
x + 2C2q2 4C1qxqy + iB0n0ω

4C1qxqy − iB0n0ω 4C1q2
y + 2C2q2

�

. (C.12)

Here for the compression modulus C1 we must substitute the renormalized value (C.8). In-
verting the matrix (C.12) and substituting into Eq. (C.11), we find

Lind = −
gv

2q2
v
(B−q + qvρ̄v)(Bq + qvρ̄v) +

1
2

g2
v B2

0

q4
v

B−q
2C2q4

B2
0n2

0ω
2 − 4C2 (2C1 + C2)q4

Bq. (C.13)

From the denominator of that term we can extract the quadratic dispersion relation of the
collective magnetophonon mode supported by the vortex supersolid crystal.

Introducing the London response function as the term −B−qρL(ω,q)Bq/2 in the induced
Lagrangian, we find

ρL(ω,q) =
gv

q2
v
−

g2
v B2

0

q4
v

2C2q4

B2
0n2

0ω
2 − 4C2 (2C1 + C2)q4

. (C.14)

Contrary to a superfluid which in the static regime ω = 0 has ρL ∼ 1/q2 (that implies the
Meissner effect in a superconductor), here ρL → const as in a conventional U(1) insulator.
The electric term, which was dropped above will contribute to the conductivity tensor (not
computed here), but will not affect the London response.

24Due to the quadratic dispersion relation of the magnetophonon, we count ∂i ∼ O(ε), but ∂t ∼ O(ε2).
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