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Abstract

We study the quantum dynamics of Bose-Einstein condensates when the scattering
length is modulated periodically or quasi-periodically in time within the Bogoliubov
framework. For the periodically driven case, we consider two protocols where the mod-
ulation is a square-wave or a sine-wave. In both protocols for each fixed momentum,
there are heating and non-heating phases, and a phase boundary between them. The
two phases are distinguished by whether the number of excited particles grows expo-
nentially or not. For the quasi-periodically driven case, we again consider two proto-
cols: the square-wave quasi-periodicity, where the excitations are generated for almost
all parameters as an analog of the Fibonacci-type quasi-crystal; and the sine-wave quasi-
periodicity, where there is a finite measure parameter regime for the non-heating phase.
We also plot the analogs of the Hofstadter butterfly for both protocols.
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1 Introduction

The rapid development of experimental techniques in cold atom systems draws a lot of at-
tention to interesting quantum dynamics. An important scenario is to periodically drive the
system. When the lattice is modulated periodically in time, one could generate topologically
non-trivial band insulators [1–8] or introduce gauge fields with non-trivial dynamics [9–12].
However, quantum dynamics are usually hard to solve. Special cases where large simplification
occurs due to symmetry reason is especially valuable.

The driven dynamics of Bose-Einstein condensates (BECs), which has been realized in
[13–16], is one of such examples. As pointed out in [17] and later studied in [18,19], the dy-
namics of the Bose-Einstein condensates under the Bogoliubov Hamiltonian exhibit an SU(1, 1)
structure, which, more generally speaking, is a consequence of the bosonic Bogoliubov trans-
formations. The dynamical evolution of the system can then be described by the multiplication
of a sequence of SU(1,1) matrices,1 acting on two components pseudospin (a, a†) for bosonic
creation and annihilation operators. The observable and the phase diagram can then be ob-
tained by analyzing the corresponding SU(1, 1) matrices. The techniques applied in this work
is a close analogy of those in the driven conformal field theory (CFT) in 1+ 1-D [27–32]. In
the CFT case, the system has the Virasoro symmetry and for specific driving Hamiltonians,
one could focus on the SL(2,R)∼= SU(1,1) subgroup. Another analogy is the dynamics of the
scale-invariant gases in the harmonic trap [33,34], as would be discussed in more detail later.

In this work, we consider two types of protocols for both the periodic and the quasi-periodic
drivings. The two types correspond to modulating the scattering length2, which is equivalent
to the coupling strength in our BEC setting, by a square-wave or a sine-wave in time3. For
the square wave protocol, in each period the evolution is determined by multiplying a finite
number of matrices while for the sine-wave protocol we, in general, need to solve a Mathieu’s
equation, however simplifications can be made by Magnus expansion in the near-resonant
limit [17]. In both protocols, the long-time dynamical phase diagram is then determined by the
matrix element of the SU(1, 1) evolution matrix/Bogoliubov transformation in a single period
as in [30]. We then turn to the driving dynamics with quasi-periodicity. For the square-wave
quasi-periodic driving, the excitations grow exponentially for almost all parameters, while
special points with power-law heating also exist [30] and will be discussed. For the sine-wave
type quasi-periodicity, we consider the scattering length to be a superposition of two sinusoidal
functions with incommensurate frequencies, where the evolution equation is a quasi-periodic
Mathieu’s equation [36,37].4

The paper is organized as follows: In section 2, we explain the SU(1,1) group structure of
the Bogoliubov Hamiltonian for a driven Bose-Einstein condensate focusing on the Heisenberg
evolution of creation/annihilation operators. In section 3, we study the two protocols when
the scattering length as(t) is a periodic function in time and the quasi-periodic case is discussed
in section 4. Finally, we summarize our work and comment on the Bogoliubov approximation
in section 5.

1Similar strategy for the case with SU(2) spin dynamics has been discussed in Ref. [20–26].
2One can also consider a time-dependent Zeeman field as in e.g. Ref. [35].
3The modulation of the scattering length has also been used for realizing the correlated tunneling in [9].
4See e.g. [38] for a review from the perspective of applied mathematics.
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2 Dynamics of Bose-Einstein Condensates

We consider dilute single-component bosonic atom gases with the s-wave interactions. Taking
the time-dependence of the scattering length into account, the Hamiltonian reads:

H(t) =

∫

dr

�

ψ†(r)

�

−
∇2

2

�

ψ(r) +
g(t)

2
ψ†(r)ψ†(r)ψ(r)ψ(r)

�

. (1)

Here we have set the mass of atoms m = 1 for simplicity. At the bare level, the scattering
parameter g(t) can be related to the scattering length as as

g(t) = 4πas(t). (2)

When study dynamics around a specific state with large number of particles in the condensate,
we expand ψ(r) = pn0 + δψ(r), where n0 is the density of condensate particles. To the
quadratic order, this gives the Bogoliubov Hamiltonian:

H(t) =

∫

dr

�

δψ†(r)

�

−
∇2

2
+ g(t)n0

�

δψ(r) +
g(t)n0

2

�

δψ†(r)δψ†(r) + h.c.
�

�

+ const. ,

(3)
where the constant term is only a function of the total particle number N =

∫

dr(n0+δψ†δψ)
and therefore conserved. The validity of using a simple Bogoliubov Hamiltonian to study the
dynamics of condensates has been verified by comparing to a careful numerical study which
includes the evolution of condensate wave function [17,39,40]. The Hamiltonian can also be
written in the momentum space via Fourier expansion δψ(r) = 1p

V

∑

k6=0 eik·rak with V the
system size. Thus, we have

H(t) =
1
2

∑

k 6=0

�

a†
k a−k

�

�

k2

2 + g(t)n0 g(t)n0

g(t)n0
k2

2 + g(t)n0

�

�

ak

a†
−k

�

+ const. (4)

There are two ways to recognize the SU(1, 1) structure in this system (for each k):

1. Using the notation Az
k =

1
2(a

†
kak + a−ka†

−k) and Ax
k =

1
2(a

†
ka†
−k + a−kak), we can rewrite

the time-dependent Hamiltonian as a linear combination

H(t) =
∑

k 6=0

��

k2

2
+ g(t)n0

�

Az
k + g(t)n0Ax

k

�

+ const. (5)

Further introducing Ay
k =

1
2i (a

†
ka†
−k − a−kak), we have the closed commutation relation

for the su(1, 1) algebra [17,18]

[Ax
k, Ay

k] = −iAz
k, [Ay

k , Az
k] = iAx

k, [Az
k, Ax

k] = iAy
k . (6)

2. We can also directly study the evolution of excitation operators ak and a†
k. For a general

g(t) and the corresponding unitary U(t) = T exp(−i
∫ t

0 H(t ′)d t ′), the time-evolution

generates a Bogoliubov transformation between a†
k and a−k as follows

�

ak(t) a†
−k(t)

�

= U†(t)
�

ak a†
−k

�

U(t) =
�

ak a†
−k

�

�

αk(t) βk(t)
β∗k(t) α∗k(t)

�

︸ ︷︷ ︸

=: Uk

. (7)

In the first step, the unitary U(t) and U†(t) act on the operators ak and a†
−k, while in

the last step, the 2× 2 transform matrix Uk acts on the basis vector (ak a†
−k) (where we
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have used the inversion symmetry αk = α−k, βk = β−k to rewrite the second column
of Uk). Further note that the (bosonic) commutation relation

�

ak, a†
k

�

= 1 demands
|αk(t)|2−|βk(t)|2 = 1, therefore the Bogoliubov transformation matrix Uk is an SU(1, 1)
matrix.

Moreover, when the evolution consists of several steps U(t) = UnUn−1...U1, we have:
�

ak(t) a†
−k(t)

�

= U†
1 ...U†

n−1U†
n

�

ak a†
−k

�

UnUn−1...U1

= U†
1 ...U†

n−1

�

ak a†
−k

�

Un−1...U1Uk,n

=
�

ak a†
−k

�

Uk,1...Uk,n−1Uk,n.

(8)

That is to say, the full evolution Uk(t) = Uk,1...Uk,n−1Uk,n.

In this paper, we focus on the periodic and quasi-periodic driving of the Bose-Einstein
condensate |ψ(t)〉 = U(t)|ψ(0)〉, and measure the total number of excitations nk(t) in the
final state. For concreteness, let us choose the initial state |ψ(0)〉 to be the fully condensed
state with ak|ψ(0)〉= 0,5 then after the evolution, we have

nk(t) = 〈ψ(0)|U†(t)a†
kakU(t) |ψ(0)〉= |βk(t)|2, (9)

which is directly related to the matrix element of the SU(1, 1) matrix Uk(t). Besides |βk(t)|2,
one could also consider measuring other elements of Uk, by adding additional evolution right
before the final measurement.

With the driving, particles in the condensate can be pumped into excitations with finite
momentum. We call the system is in the heating phase at certain momentum k when the
occupation number grows exponentially as nk(t)∼ eλk t in the long-time limit, and we call the
correspond exponent λk > 0 the heating rate. From (9), this implies |βk(t)|2 ∼ eλk t , so does
|αk(t)|2 ∼ eλk t due to the constraint |αk(t)|2 − |βk(t)|2 = 1. Consequently, the kinetic energy
of atoms with the corresponding momentum, which is defined as k2nk/2, grows exponentially
in time, implying the system is being heated. In other cases, nk may oscillates or increases
polynomially, which we will refer to as the non-heating phase or the critical phase respectively.

As a side note, we would like to point out that the present discussion can be directly applied
to specific dynamics of scale-invariant atomic gases in a trap [33,34]. To see the connection, let
us consider a single harmonic oscillator6 with the trapping frequencyω= 1 and a = 1p

2
(x+ip).

Then we can define the following set of generators that satisfies the aforementioned su(1, 1)
algebra:

Az =
1
4

�

a†a+ aa†
�

, Ax =
1
4

�

(a†)2 + a2
�

, Ay =
1
4i

�

(a†)2 − a2
�

. (10)

Consequently, for Hamiltonians given by a linear superposition of these operators, the dynam-
ics can again be studied using the SU(1,1) group transformation. In the original basis, we
can regroup the above generators into p2, x2 and x p+ px . The generalization to many-body
scale-invariant atomic gases, e.g. the unitary Fermi gas, can then be accomplished by noticing
that these operators are a subgroup of the non-relativistic conformal group [41], where p2,
x2 and x p + px are generalized to time translation, special conformal transformation, and
dilation.

5Note that this choice of the initial state is not essential for the classification of heating/non-heating phases,
since the long-time exponential growth of the particle number only comes from the growth of |αk(t)|2 and |βk(t)|2.

6We thank Ruihua Fan for pointing out to us the SU(1, 1) dynamics of a single harmonic oscillator.
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3 Periodic driving

In this section, we consider periodic drivings where g(t) = g(t+T ). We will discuss the phase
diagram that is experimentally relevant. Another purpose for this section is to set up a base
for the discussion in the quasi-periodic case.

Let us assume the total evolution time t = nT with integer n, we have

U(nT ) = U(T )n, U(T ) = T exp

�

−i

∫ T

0

H(t ′)d t ′
�

= exp (−iHF T ) . (11)

Here HF is the standard Floquet Hamiltonian. From the perspective of the Heisenberg evolu-
tion of excitation operator (8), we have correspondingly Uk(nT ) = Uk(T )n. We are interested
in the large n asymptotics of Uk(nT ), which determines the dynamical phases of the conden-
sate, namely the heating phase, the non-heating phase and the phase boundary (critical phase)
between them.

The determination of the phase diagram has two steps.

1. We compute Uk(T ) for a given protocol specified by g(t):

The Heisenberg equation for ak and a†
−k is given as follows

d
�

ak(t) a†
−k(t)

�

d t
=
�

i[H(t), ak(t)] i[H(t), a†
−k(t)]

�

= −i
�

ak(t) a†
−k(t)

�

�

k2

2 + g(t)n0 −g(t)n0

g(t)n0 − k2

2 − g(t)n0

�

︸ ︷︷ ︸

=: Mk(t)

(12)

or equivalently,

dUk(t)/d t = −iUk(t)Mk(t), Uk(T ) = eT exp

�

−i

∫ T

0

Mk(t)d t

�

, (13)

with anti-time ordering operator eT . In addition to performing the exact evaluation of
Uk(T ), several standard approximations such as Magnus expansion [17] can also be
applied, as discussed later in this section.

2. Analyze the large n behavior of Uk(T )n based on a single Uk(T ).

Assuming we have worked out

Uk(T ) =

�

αk(T ) βk(T )
β∗k(T ) α∗k(T )

�

. (14)

Then the matrix element αk(nT ) and βk(nT ) of Uk(nT ) can be related to the αk(T ) and
βk(T ) via following formulas

�

αk(nT ), βk(nT )
�

=







�

η
− n

2
k γk,1−η

n
2
k γk,2

γk,1−γk,2
,
(η
− n

2
k −η

n
2
k )γk,1γk,2

γk,1−γk,2

�

if |Tr(Uk(T ))| 6= 2
�

1+ nγkβ
∗
k(T ), − nγ2

kβ
∗
k(T )

�

if |Tr(Uk(T ))|= 2
. (15)
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(a) Modulation of g(t) (b) Density plot of |Tr(Uk(T ))|

Figure 1: (a). The square-wave periodic modulation of the scattering length. Here
we choose the special case with T0 = T1 and g1 = 0. (b). A density plot of |Tr(Uk(T ))|
for T0 = T1 and g1 = 0. This determines λk for |Tr(Uk(T ))| > 2 (heating phase) or
ωk for |Tr(Uk(T ))| < 2 (non-heating phase). The dashed line denotes the phase
boundary, where |Tr(Uk(T ))|= 2.

Here we have defined

γk,1(2) =
1

2βk(T )

�

αk(T )−α∗k(T )∓
Æ

Tr(Uk(T ))2 − 4
�

,

ηk =
Tr(Uk(T )) +

p

Tr(Uk(T ))2 − 4

Tr(Uk(T ))−
p

Tr(Uk(T ))2 − 4
.

(16)

Note γk,1 = γk,2 = γk for |Tr(Uk(T ))|= 2.

From (15), we conclude that the βk(nT ) grows exponentially only when |Tr(Uk(T ))| > 2,
and the exponent reads

λk =
2
T

log

�

|Tr(Uk(T ))|+
p

Tr(Uk(T ))2 − 4
2

�

. (17)

When |Tr(Uk(T ))|< 2, the η becomes a pure phase and nk(nT ) oscillates periodically

nk(nT ) = nk(T )
sin2δkn

sin2δk
, δk = arg

�

|Tr(Uk(T ))|+ i
Æ

4− Tr(Uk(T ))2
�

, (18)

with frequency ωk = 2|δk|/T . When δk/π= p/q is a rational number, we have nk(nqT ) = 0.
At the phase boundary with |Tr(Uk(T ))|= 2, nk(nT ) grows quadratically if we have βk(T ) 6= 0.

In the following, we consider two concrete protocols, and determine the phase diagram in
terms of experimental parameters.

3.1 Protocol 1: square-wave

In this protocol, the scattering length is tuned to be a square wave as shown in Figure 1(a).
We then have U(T ) = U0(T0)U1(T1) = e−iH0T0 e−iH1T1 , where in H j=0,1 the interaction strength
is g j . To avoid instability, we assume both g j ¾ 0. Using (12), we have

Uk, j(T j) =

 

cos(Ek, j T j)−
iAk, j
Ek, j

sin(Ek, j T j)
iB j
Ek, j

sin(Ek, j T j)

− iB j
Ek, j

sin(Ek, j T j) cos(Ek, j T j) +
iAk, j
Ek, j

sin(Ek, j T j)

!

, (19)

6
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where Ak, j =
k2

2 + g jn0, B j = g jn0 and Ek, j =
Ç

A2
k, j − B2

j =
Æ

k2 g jn0 + k4/4 is the energy of
phonons with corresponding interaction strength.

We then compute Uk(T ) = Uk,1(T1)Uk,0(T0) and find

Tr(Uk(T )) = 2cos(Ek,1T1) cos(Ek,0T0) + 2sin(Ek,1T1) sin(Ek,0T0)
B1B0 − Ak,1Ak,0

Ek,1Ek,0
. (20)

When |k| is large, we expect the effect of g being small and no particles can be excited. This
is consistent with (20), where we have Tr(Uk(T ))≈ 2cos(k2(T0 + T1)/2)¶ 2 and βk(T )≈ 0.

For general |k|, we compute (20) numerically and plot |Tr(Uk(T ))| in Figure 1 (b) which
can be served as a phase diagram. To be concrete, we fix T0 = T1 and g1 = 0. At small g0, the
heating phase appears near the resonance k2T = 2nπ, where 2 particles can be excited by the
periodic modulation.

It is also interesting to draw an analogy between the square-wave driving protocol and a
one dimensional tight-binding model with Hamiltonian

H =
∑

j

�

| j〉 〈 j + 1|+ | j + 1〉 〈 j|+ Vj | j〉 〈 j|
�

. (21)

For a given energy E, the wave function satisfies Eψ j = ψ j−1 +ψ j+1 + Vjψ j , with ψ j being
the position-space wavefunction. Denoting Ψ j = (ψ j ,ψ j−1)T , we have Ψ j+1 = T jT j−1...T1Ψ1
with the transfer matrix

T j =

�

E − Vj −1
1 0

�

. (22)

Similar to the driving Uk, j(T j), the transfer matrix also has determinant 1, i.e. det(T j) = 1.
Now, given the initial wavefunction Ψ1, the large n asymptotics of wavefunction Ψn is deter-
mined by the eigenvalues of transfer matrices. Therefore, analyzing the long-distance behavior
of the wavefunction in tight-binding models is a direct analogy of analyzing the long time dy-
namics of the excitations in the driven BEC. More explicitly, when the energy E belongs to
a band, the wavefunction oscillates in space and it corresponds to the non-heating phase in
driven BEC where the number of excitations is oscillating in time. On the other hand, if E
lies in a band-gap, the wavefunction grows exponentially, indicating no valid bulk state, and
corresponds to the heating phase in driven BEC.

3.2 Protocol 2: sine-wave

In this protocol, we let g(t) be a single or a combination of sine functions. We first consider
the case where g(t) = 2g0 cos(ω0 t) and ω0 = 2π/T . Using (12), we further write out the set
of equations satisfied by αk(t) and βk(t):

dαk(t)
d t

= −i

�

k2

2
+ g(t)n0

�

αk(t)− i g(t)n0βk(t),

dβk(t)
d t

= i

�

k2

2
+ g(t)n0

�

βk(t) + i g(t)n0αk(t).
(23)

This leads to [18]

d2(αk(t)− βk(t))
d t2

+
k2

2

�

k2

2
+ 2g(t)n0

�

(αk(t)− βk(t)) = 0. (24)

Regarding t as the spatial dimension, this is the Schrödinger equation for a particle in 1D with
mass m = 1/2 and energy E = k4

4 , moving in a potential with V (t) = −2k2n0 g0 cos(ω0 t).
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(a) Modulation of g(t) (b) Density plot of |Tr(Uk(T ))|

Figure 2: (a). The sine-wave periodic modulation of the scattering length. Here we
set φ = π/3. (b). A density plot of |Tr(Uk(T ))| with g0n0T = 1. This determines λk
for |Tr(Uk(T ))|> 2 (heating phase) andωk for |Tr(Uk(T ))|< 2 (non-heating phase).
The dashed line denotes the phase boundary, where |Tr(Uk(T ))|= 2.

Similar to the discussion in the last section, the system would be in the non-heating phase if
the corresponding energy lies in some bands and otherwise, it will be in the heating phase. The
detailed phase diagram has been worked out in [18]. Here we instead focus on the case with
large ω0� g0n0 and near resonance ω0− k2�ω0, where we could perform a rotation-wave
approximation to (12) and find

Rk(t) = e−ik2σz/2, ÞMk = Rk(t)Mk(t)R
†
k(t) + iRk(t)∂tR

†
k(t) =

�

∆k −g0n0
g0n0 −∆k

�

. (25)

Here∆k = k2/2−ω0/2 and the average is performed over time, i.e. O(t) := 1
T

∫ T
0 O(t)d t. Sys-

tematic improvements can be made by taking into account the 1/ω0 correction. In the rotating
frame, Uk(T ) now has the same form as (19), with Ak =∆k, B = g0n0 and Ek =

q

∆2
k − g2

0 n2
0,

leading to:

Tr(Uk(T )) = 2cos
�

T
Ç

∆2
k − g2

0 n2
0

�

. (26)

When∆k < g0n0, the system is in the heating phase, with a heating rate λk =
q

∆2
k − g2

0 n2
0. On

the other hand, for∆k > g0n0, the system is in the non-heating phase, withωk =
q

g2
0 n2

0 −∆
2
k.

We then consider a combined protocol where we divide each period into two halves as
in the square wave case, as shown in Figure 2 (a). In the first half period, we modulate
the scattering length as g(t ∈ [0, T/2)) = 2g0 cos(ω0 t) and in the second period we add an
additional phase shift g(t ∈ [T/2, T )) = 2g0 cos(ω0 t + φ). We assume T = 4πn/ω0, with
n ∈ Z. Due to the additional phase, we now have

ÝMk,1 =

�

∆k −g0n0
g0n0 −∆k

�

, ÝMk,2 =

�

∆k −g0n0eiφ

g0n0e−iφ −∆k

�

. (27)

Therefore the trace of Uk(T ) = exp(−iÝMk,1T/2)exp(−iÝMk,2T/2) is expressed as follows,

Tr(Uk(T )) =
−2B2 sin2 φ

2 + cos (EkT ) (2∆2
k − 2B2 cos2 φ

2 )

E2
k

. (28)
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We plot the numerical result of |Tr(Uk(T ))| in Figure 2 (b). For ∆k = 0, the system transits
into the non-heating phase at φ = π for large ω0, as observed in the experiment [15]. Note
that at this point, the second half of the evolution cancels exactly with the first half, but this
exact cancellation is not the general picture for a generic phase boundary (Tr(Uk(T )) = 2).
When including 1/ω0 corrections, the phase boundary would shift, as studied in [17].

4 Quasi-periodic driving

Now we turn to the quasi-periodically driven condensate where g(t) is deterministic but has
no periodicity. We consider both square-wave and sine-wave protocols as in the periodic
driving case. The square-wave protocol is a time-domain analog of the Fibonacci model for
the one-dimensional quasi-crystal (but generalizing to an arbitrary irrational number follow-
ing [42,43]), while the sine-wave protocol corresponds to the quasi-periodic Mathieu’s equa-
tion, whose lattice version is also known as the Audry-André model [44].

4.1 Protocol 1: square-wave

4.1.1 The set-up and the trace map

For this square-wave quasi-periodicity protocol, we define a sequence of 0/1 bits with an irra-
tional number α ∈ (0,1)

Vj = b( j + 1)αc − b jαc. (29)

Here byc is the floor function which gives the greatest integer less than or equal to y .7 For
example, for the inverse golden ratio α=

p
5−1
2 , we have

V1,2,3... = 10110101... , (31)

which is also known as Fibonacci word.
Next, we evolve the system according to the sequence: if the bit is “1/0", we apply the

unitary U1/0 respectively, with U1 = T exp(−i
∫ T

0 d tH1(t)) and U0 = T exp(−i
∫ T

0 d tH0(t)).
Again, for the inverse golden ratio example, we have

U(T ) = U1, U(2T ) = U0U1, U(3T ) = U1U0U1, U(5T ) = U0U1U1U0U1, ... (32)

or in terms of Uk,1 and Uk,0:

Uk(T ) = Uk,1, Uk(2T ) = Uk,1Uk,0, Uk(3T ) = Uk,1Uk,0Uk,1,

Uk(5T ) = Uk,1Uk,0Uk,1Uk,1Uk,0, ...
(33)

Note the order is reversed according to the definition (8).
The evolution can be described more efficiently if we only probe the system at specific

time. This simplification relies on the continued fraction representation for α:

α= a0 +
1

a1 +
1

a2+... 1
an+...

, (34)

7 This definition is equivalent to the other definition that is commonly used in the quasi-crystal literature

V ( j) = χ[1−α,1)( jα) , (30)

where χ[1−α,1)(t) = χ[1−α,1)(t + 1) is a periodic characteristic function with period 1, namely χ[1−α,1)(t) = 1 if
1−α¶ t < 1, and χ[1−α,1)(t) = 0 if 0¶ t < 1−α. See e.g. [45,46] for the Fibonacci model when α is the inverse
golden ratio.
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where {an}n=1,2,3... are a sequence of positive integers, and a0 = bαc could be negative or 0,
for our case α ∈ (0,1), we have a0 = 0. Any real number has an unique continued fraction
representation, for rational numbers, the continued fractions terminate at finite n, while the
irrational numbers have infinite sequences [a0, a1, a2 . . .].

Continued fractions are useful in finding the best Diophantine approximations. Opera-
tionally, we can truncate the continued fraction at order n, which produces a rational number
(known as n-th principal convergent)

pn

qn
= a0 +

1

a1 +
1

a2+... 1
an

, (35)

where integers (pn, qn) satisfies the recursion relation qn = anqn−1+qn−2 and pn = anpn−1+pn−2.
For example, for the inverse golden ratio α=

p
5−1
2 , we have a0 = 0, an>0 = 1 and qn are given

by the Fibonacci numbers: q1 = 1, q2 = 2 and qn = qn−1 + qn−2.
These rational numbers pn/qn provide best rational approximations of the irrational α in

the sense that the product qnα is closer to an integer than any smaller q < qn (see e.g. [47]
for more explanations). Consequently, one can show that8

Vj+qn−1
= Vj , 1¶ j < qn − 1 , (36)

for Vj defined in (29). This relation says the first qn elements of the sequence can be determined
by copying the first qn−1 elements. Thus, we have the following recursion relation

Uk(qnT ) = Uk(qn−1T )anUk(qn−2T ). (37)

An important analytic tool that allows us to efficiently determine the heating rate is the trace
map [42,45], which is a recursion relation among the following traces

xn
k =

1
2

Tr (Uk(qnT )Uk(qn−1T )) , yn
k =

1
2

Tr (Uk(qnT )) , zn
k =

1
2

Tr (Uk(qn−1T )) . (38)

The trace map is given as follows,

xn
k = San(yn−1

k )xn−1
k − San−1(yn−1

k )zn−1
k ,

yn
k = San−1(yn−1

k )xn−1
k − San−2(yn−1

k )zn−1
k ,

zn
k = yn−1

k ,

(39)

where Sn(y) = sin[(n+1)arccos(y)]
sin[arccos(y)] is the Chebyshev polynomial of second kind (see appendix for

a derivation). Using the trace map (39), one can straightforwardly show that

I = (xn
k)

2 + (yn
k )

2 + (zn
k)

2 − 2xn
k yn

k zn
k − 1, (40)

is independent of n, hence an integral of motion (Fricke-Vogt invariant). When I > 0, for
almost all initial conditions, (xn

k , yn
k , zn

k) flows to infinity as n increases.
Now let us consider explicit examples: we choose H1(t) to be the non-interacting Hamil-

tonian with g(t) = 0 and H0(t) to be the Hamiltonian with constant interaction g0 > 0. Using
(19), we have

Uk,1 =

�

e−iεkT 0
0 eiεkT

�

, Uk,0 =

�

cos(EkT )− iAk
Ek

sin(EkT ) iB
Ek

sin(EkT )
− iB

Ek
sin(EkT ) cos(EkT ) + iAk

Ek
sin(EkT )

�

. (41)

8For details of the proof, see e.g. [43]
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(a) Fibonacci modulation of g(t) (b) Density plot of log(λkT )

(c) Heating rate
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(d) Zoom of black box in (c)

Figure 3: (a). The Fibonacci modulation of the scattering length. (b). A density plot
of log(λkT ) determined by taking a period of q50 ∼ 2 × 1010 steps. The system is
in the heating phase almost everywhere. (c-d). The the heating rate λkT with fixed
g0n0T = 2 determined by taking a period of q50 ∼ 2× 1010 steps. The results show
self-similar structures as in [30].

Recall that we have εk = k2/2, Ak = εk + g0n0, B = g0n0 and Ek =
q

A2
k − B2.

In this protocol, the heating rate λk can be approximated by taking the large n limit of
periodic driving with a period qnT : we could approximate α ≈ pn/qn and use (29) to define
the driving sequence within a period. Following (17), this gives

λk(qn) =
2

qnT
log

�

|yn
k |+

q

(yn
k )

2 − 1
�

, (42)

with sufficiently large n. Generally qn grows exponentially with n and we can obtain accurate
results for n being a few tenths.

4.1.2 Patterns in phase diagram

To proceed, we also need to choose the irrational number α, namely choose the modulation
pattern that is determined by Vj sequence. We will exam two specific examples in this subsec-

tion (1) α =
p

5−1
2 , which is the most popular choice in the study of 1D quasi-crystal and has

the name “Fibonacci model” [45,46]; (2) α= π− 3.
(1) Fibonacci Driving. Let us start with the inverse golden ratio α=

p
5−1
2 , which is called

the Fibonacci driving in [30]. In this case, since an>0 = 1, we have

Uk(qnT ) = Uk(qn−1T )Uk(qn−2T ), xn
k = yn+1

k . (43)
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(a) εkT = 1.5π, non-heating
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(b) εkT = 1.5π+ 0.01, heating

Figure 4: The Fibonacci modulation of the scattering length: (a). nk(t) as a function
of t/T for εkT = 1.5π and EkT = 2.5π without exponential heating. (b). nk(t) as
a function of t/T for εkT = 1.5π+ 0.01 and EkT = 2.5π with exponential heating.
The blue dots are the results at Fibonacci numbers t = qnT .

One can extend the recursion relation (39) to n= 2 by defining Uk(q0T )≡ Uk,0, which gives

xk(F0) = cos (EkT ) , xk(F1) = cos (εkT ) ,

xk(F2) = cos(EkT ) cos(εkT )− sin(EkT ) sin(εkT )
Ak

Ek
,

(44)

and consequently

I =
g2

0 n2
0

E2
k

sin2(EkT ) sin2(εkT ). (45)

The I = 0 case where either sin(EkT ) = 0 or sin(εkT ) = 0 corresponds to a single quench
(shown as black dashed line in Fig. 6) and we should focus on the I > 0 case. It is known
that when I > 0, the phase with zero heating rate λk forms a Cantor set of measure zero in
the phase diagram [43] and the system would generally be heated up exponentially in time.
This is consistent with the numerical results shown in Figure 3. As shown in (b), the heating
rate is non-zero almost everywhere, although the magnitude can be arbitrarily small with a
self-similar structure as shown in (c-d). Later we will comment, with a comparison to the
π-driving, the self-similarity in the Fibonacci driving is a manifestation of the self-similarity in
its continued fraction representation

p
5− 1
2

=
1

1+ 1
1+ 1

1+...

. (46)

Although the measure of phases with λk = 0 is zero, special points with λk = 0 are known
and interesting. When two of the initial conditions (xn

k , yn
k , zn

k) become zero, yn
k is then a

periodic function of n with a period of 6. As an example, for (x1
k , y1

k , z1
k) = (a, 0, 0) we have

y6n
k = y6n+1

k = y6n+3
k = y6n+4

k = 0, y6n+3
k = a, y6n+5

k = −a. (47)

It is straightforward to show that the number of excited particles oscillates periodically with
respect to n at time qnT and the period is 3. On the other hand, if one probes the system at
non-Fibonacci number times, there are still excitations and the number of excitations grows
polynomially. An explicit example is shown in Fig. 4 (a) (with εkT = 1.5π and EkT = 2.5π)
compared to the exponentially heating (b) if we slightly perturb away from the special points
(with εkT = 1.5π+ 0.01 and EkT = 2.5π).
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(a) Density plot of log(λkT ) (b) Heating rate at g0n0T = 2
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(d) Rational approximation 1/7

(e) Rational approximation 16/113
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(f) Zoom of black box in (e)

Figure 5: Results for the πmodulation of the scattering length. (a). A density plot of
log(λkT ) determined by taking a period of q25 ∼ 4× 1013 steps. (b-c). The 1D plot
for the heating rate λkT with fixed g0n0T = 2. (d). The heating rate for rational
approximation x = p1/q1 = 1/7. (e-f). The heating rate for rational approximation
x = p3/q3 = 16/113. By comparing (b-f), we find p1/q1 and p3/q3 governs the
heating rate at different magnitude scales.

(2) π Driving. Now we consider the choice α = π− 3 ∈ (0, 1), the point is that such an
irrational number has a rather irregular continued fraction representation, unlike the case for
the inverse gold ratio, whose continued fraction representation has self-similar pattern. We
will numerically show that the patterns in the phase diagram reassemble the patterns in the
continued fraction of π− 3:

a1 = 7, a2 = 15, a3 = 1, a4 = 292 . . . (48)

that is to say

π− 3=
1

7+ 1
15+ 1

1+ 1
292+...

, (49)
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Figure 6: The non-heating parameters for g0n0T = 2. We consider all rational
α= p/q with q ¶ 40. Black dashed lines correspond to I = 0.

which leads to

p1

q1
=

1
7

,
p2

q2
=

15
106

,
p3

q3
=

16
113

,
p4

q4
=

4687
33102

. . . (50)

In Fig 5 (a), we plot the density of log(λkT ) as a function of two parameters (g0n0T, k2T ).
In Fig 5 (b), we show a specific cut at g0n0T = 2 and demonstrate the expectation that the
regime with zero heating rate λk = 0 forms a Cantor set of zero measure.9 We further zoom
in a small regime in Fig 5 (c) and show that the self-similarity feature that was observed in
Fibonacci driving is absent in the π-driving. On the contrary, what we see here in the π-driving
is that the heating rate shows different patterns at different scales.

To further understand the formation of the structure at different scales, we show in Fig 5
(d) the heating rate distribution with p1/q1 = 1/7, namely the first principal convergent that
approximates the irrational α = π − 3. As excepted, the large-scale structure in Fig 5 (b)
is captured while details are lost. In Fig 5 (e) and its zoom (f), we use the third principal
convergent p3/q3 = 16/113, and find the patterns are well reproduced, even at the scale with
magnitude of λk ∼ 0.01.

A simple understanding of the above phenomenons can be achieved via analogy with the
band-theory of lattice Hamiltonian. Starting from some pn−1/qn−1, we have a band structure
where the in-gap states correspond to the heating phase. When we increase n, the band folds,
and new gap is opened. Intuitive, after we repeat this for infinite many times, the λk = 0
regime (corresponds to the bands) breaks into a Cantor set. Now, from the definition (34), we
know that when some an is very large, qn is much larger than qn−1. Consequently, pn−1/qn−1
becomes a particularly good approximation to α at a certain magnitude scale: the correction
when taking an into account comes from folding the Brillouin zone an times, which is expected
to be small when an� 1.

4.1.3 Hofstadter Butterfly

Knowing that the system is almost always in the heating phase for an irrational α, we now give
an overall picture for the phase diagram with varying α ∈ (0,1). In Fig 6, we fixed g0n0T = 2
and draw all the non-heating region with α = p/q and q ¶ 40. The result resembles the

9Generally, we expect if the integral of motion I > 0, under the trace map (39), almost all initial conditions
lead to exponential growth, i.e. heating phase. In this case, it is hard to compute I analytically. We numerically
test that we have I > 0 for almost all parameters.
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(a) Quasi-periodic sine-wave protocol
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(b) Density plot of λk

(c) Butterfly for sine-wave protocol

Figure 7: (a). The quai-periodic sine wave modulation of the scattering length. Here
we set g1/g0 = 0.2 andω1/ω0 =

p
5−1
2 . (b). A density plot of λk with g0n0/ω0 = 0.5

and ω1/ω0 =
p

5−1
2 . (c) The non-heating parameters for g0n0/ω0 = 0.5 and

g1n0/ω0 = 0.1. We consider all rational ω1/ω0 = p/q with q ¶ 40

Hofstadter butterfly [48]. Note that in our set-up, there is no reflection symmetry α→ 1−α,
due to the asymmetry between U0 and U1.

The existence of such a butterfly is as expected. Reminding the discussion in section 3.1,
the square-wave protocol is an analogy of tight-binding models. In the current quasi-periodic
setup, the corresponding tight-binding model takes the form of the Fibonacci model for the
one-dimensional quasi-crystal [42,43]. Since both the Fibonacci model and the Aubry-André
model [44] are quasi-crystals, and the Aubry-André model is directly related to the Harper
model, where the original Hofstadter butterfly was discovered, by dimensional reduction. We
expect there exists an analogy of the Hofstadter butterfly for the driven BEC case, as we ob-
served in Fig 6.

4.2 Protocol 2: sine-wave

Now we turn to the second type of quasi-periodic driving. We consider
g(t) = 2g0 cos(ω0 t) + 2g1 cos(ω1 t). The driving is quasi-periodic when ω1/ω0 is an irra-
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tional number. Again, the evolution is governed by (24), which we copy here:

d2(αk(t)− βk(t))
d t2

+
k2

2

�

k2

2
+ 2g(t)n0

�

(αk(t)− βk(t)) = 0 , (51)

with the initial condition

(αk − βk)(0) = 1,
d(αk − βk)

d t
(0) = −i

�

k2

2
+ 2g(t)n0

�

. (52)

The model now corresponds to a 1D quantum mechanics in quasi-periodic potential [36,37],
also known as quasi-periodic Mathieu’s equation in applied mathematics, e.g. see [38] for a
review. When g0 is much larger than g1, one could take the tight-binding limit for small k2,
which gives the Aubry-André model.

Now we fix an irrational ω1/ω0 =
p

5−1
2 and g0n0/ω0 = 0.5. We numerically solve (51)

and fit the long time behavior to get the heating rateλk. The result is shown in Figure 7 (b). For
g1 = 0 without quasi-random potential, we have non-heating phases around k2/ω0 = 0, 1.6,3,
which corresponds to bands in a sine potential. When g1 becomes finite, we expect a finite
k2 g1 is needed for states to heat up. This is consistent with the existence of extended blue
regions in Figure 7 (b) around k2 = 0 and g1 = 0.

Interestingly, we also see strip structures around the non-heating regions. To further ex-
plore structure, we focus on g1n0/ω0 = 0.1 and change different ω1/ω0. We consider differ-
ent rational numbersω1/ω0 = p/q, and plot all the non-heating regions on theω1−k2 plane.
The result is shown in 7(c) which resembles some feature of the Hofstadter butterfly [48] for
small but finite k2, as expected from a naive tight-binding limit.

5 Summary

In this paper, we study two protocols of the periodically and quasi-periodically driven dynam-
ics of Bose-Einstein condensates. We determine the phase diagram in terms of whether the
system is heated or not, whether the heating phase has an exponentially growing number of
excitations. For the quasi-periodically case with a square-wave modulation, phase with λk = 0
forms a Cantor set of measure zero in the parameter space. We also exam a special non-heating
point and find the number of excitations grows algebraically instead of exponentially. On the
contrary, for the sine-wave quasi-periodic driving case, there is a finite measure regime where
the system is in the non-heating phase. We also find analogs of the Hofstadter butterfly for
both protocols. We expect that these experiments can be carried out with minor modifications
using the experimental system in [15].

Finally, we would like to remark on the validation of the Bogoliubov approximation. By
keeping the condensate wave function as a constant, we are assuming the number of particles
in the initial condensate is much larger than the number of excitations. When the system is in
the heating phase, this would ultimately break down. However, since this only happens in the
late time, one expects the phase boundary receives little correction. This is similar to the CFT
case [30], where the validation is checked by comparing the result to a lattice simulation. To
estimate the time window for observing the exponential growth of the number of excitations,
we consider the example of square-wave modulation for the periodically driving case with
T0 = T1, g1 = 0, and g0n0T1 ∼ O(1). As we discussed in the section 3.1, for k2� g0n0, exci-
tations are hard to get excited. Consequently, we expect the total number of excitations pro-
portional to

p
g0n0

3 exp(λt), with some averaged heating rate λ. We recognize the prefactor
is the same as the quantum depletion in the thermal equilibrium. The time window to observe
the exponential heating for some momentum k is then given by 1/λk ® t ® log(n−1/2

0 g−3/2
0 )/λ,

which is possible when the interaction g0 is weak.
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A The derivation of the trace map

In this appendix, We give the derivation of the trace map (39) for reader’s convenience. The
formula was obtained in [45] for special value α =

p
5−1
2 , and in [42] for general irrational

numbers. The presentation here follows closely the one in [43], but with slightly different
conventions.

We start with a lemma reducing powers of a rank 2 matrix with determinant 1.

Lemma. For a 2× 2 matrix Uk with determinant 1, denoting x = Tr(Uk)/2, we have

(Uk)
n = Sn−1(x)Uk − Sn−2(x) , (53)

where

Sn−1(x) =
sin(n arccos x)
sin(arccos x)

(54)

is the Chebyshev polynomial (of second kind). It also has an equivalent definition via recursion

Sn(x) = 2tSn−1(x)− Sn−2(x) , S0(x) = 1 , S1(x) = 2x . (55)

Proof. First, we consider n= 2 (n= 1 is trivially satisfied). We have S1(x) = x and S0(x) = 1.
Using Cayley–Hamilton theorem, we have

U2
k = 2xUk − 1 , (56)

that is to say (53) is true for n= 2. Now we assume the lemma is true for all n¶ a, then

(Uk)
a+1 = Sa−1(x)(Uk)

2 − Sa−2(x)Uk

= Sa−1(x)(2xUk − 1)− Sa−2(x)Uk

= Sa(x)Uk − Sa−1(x).

(57)

Here we have used the recursion relation for the Chebyshev polynomial (55).

We now use the lemma to prove the recursion relation (39) (copied here)

xn
k = San(yn−1

k )xn−1
k − San−1(yn−1

k )zn−1
k ,

yn
k = San−1(yn−1

k )xn−1
k − San−2(yn−1

k )zn−1
k ,

zn
k = yn−1

k .

(58)

The third equation here is merely a definition, we just need to prove the first two equations.
We have

Uk(qnT ) = Uk(qn−1T )anUk(qn−2T )

=
�

San−1(yn−1
k )Uk(qn−1T )− San−2(yn−1

k )
�

Uk(qn−2T ).
(59)

Taking the trace leads to yn
k = San−1(yn−1

k )xn−1
k − San−2(yn−1

k )zn−1
k . Similarly, we consider

Uk(qn−1T )Uk(qnT ) = Uk(qn−1T )an+1Uk(qn−2T )

=
�

San(yn−1
k )Uk(qn−1T )− San−1(yn−1

k )
�

Uk(qn−2T ),
(60)

whose trace leads to xn
k = San(yn−1

k )xn−1
k − San−1(yn−1

k )zn−1
k .
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