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Abstract

We consider entanglement measures in 2-2 scattering in quantum field theories, fo-
cusing on relative entropy which distinguishes two different density matrices. Relative
entropy is investigated in several cases which include φ4 theory, chiral perturbation the-
ory (χPT) describing pion scattering and dilaton scattering in type II superstring theory.
We derive a high energy bound on the relative entropy using known bounds on the elastic
differential cross-sections in massive QFTs. In χPT , relative entropy close to threshold
has simple expressions in terms of ratios of scattering lengths. Definite sign properties
are found for the relative entropy which are over and above the usual positivity of rela-
tive entropy in certain cases. We then turn to the recent numerical investigations of the
S-matrix bootstrap in the context of pion scattering. By imposing these sign constraints
and the ρ resonance, we find restrictions on the allowed S-matrices. By performing hy-
pothesis testing using relative entropy, we isolate two sets of S-matrices living on the
boundary which give scattering lengths comparable to experiments but one of which is
far from the 1-loop χPT Adler zeros. We perform a preliminary analysis to constrain the
allowed space further, using ideas involving positivity inside the extended Mandelstam
region, and other quantum information theoretic measures based on entanglement in
isospin.
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1 Introduction and summary

It is often a worthwhile pursuit to tackle old problems using new tools. In this paper, we
will consider the very standard 2-2 scattering in quantum field theory using certain tools in
quantum information theory. In particular, it should be of considerable interest to figure out
how much entanglement is generated in various scattering processes, relevant not only for
particle physics but also for condensed matter physics. Since various quantum information
measures to address such questions exist [1, 2], it is then natural for us to examine if the
properties and behaviour of such measures can shed new light on this age-old problem in
physics.

Scattering theory is usually set up using momentum space in quantum field theory. In
the simplest scenario of spin-less scattering, the incoming and outgoing states are specified
in terms of the momenta of particles. When one computes entanglement entropy, this entails
tracing over momentum states [3–7]. This line of questioning in itself is not novel. However,
these earlier works also showed that entanglement entropy on its own is ill-defined as the
expression is divergent owing to the infinite space-time volume and requires (sometimes ad-
hoc) regularizations.

In this paper, we will consider a different measure, quantum relative entropy and more gen-
erally Rényi divergences, which will be not only free of regularizations but also have several
other uses that we will explore. As far as the question of divergence and therefore regulariza-
tion is concerned, one can consider variations in entanglement entropy, instead of entangle-
ment entropy itself, which would get rid of the divergences. However, we choose to investigate
relative entropy which is a bona fide quantum information quantity having applications in nu-
merous places [1, 2]. Fixing regularizations in an ad hoc manner runs the risk of having a
residual constant term, an eventuality we want to avoid dealing with. As explained in [1], rel-
ative entropy enables us to perform hypothesis testing. If we describe our observations using
theory T1, but the correct theory is, in fact, T2, then how sure can we be after N observations
that T1 is wrong? As explained in [1], the confidence that T1 is wrong is controlled by

2−N D(ρT2 ∣∣ρT1) ,

where D(ρ1∣∣ρ2) is the relative entropy between the two density matrices ρ1 and ρ2 explicitly
given by

D(ρ1∣∣ρ2) = Trρ1(lnρ1 − lnρ2) . (1.1)
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Thus the larger D(ρ1∣∣ρ2) is, the fewer observations will be needed to reach a certain confi-
dence limit. We will see how to make use of hypothesis testing in scattering.

We could consider relative entropy in a different way as well. In 2-2 scattering we can take
ρ1 and ρ2 to be the reduced density matrices corresponding to one of the outgoing particles
reaching detectors placed at certain angles (cosθ = x) in the centre of mass frame. In such a
scenario, where we consider Gaussian detectors of width σ and small angular separation ∆x ,
we will be able to show that

D (ρ(1)A ∣∣ρ
(2)
A ) ≈

(∆x)2
4σ

+ (∆x)2
2

∂ 2

∂ x2
(ln(

σ′el(x)
σ′el(x1)

)) ∣
x=x1

, (1.2)

where σ′el(x) = dσel/d x is the elastic differential cross-section. The first term in this formula
has no angular dependence and can be identified with a “hard-sphere” type scattering. The
second term is independent of the width of the detector, σ, and is in some sense the universal
piece. We have dropped sub-leading terms of O(σ, (∆x)3). This formula will prove very
useful since the known behaviour of the elastic differential cross-section can be used to derive
interesting properties for this relative entropy. In the future, one could also exploit this formula
to examine experimental data from colliders.

We will also be able to derive novel high energy bounds on relative entropy which arise
from general considerations such as analyticity, locality, unitarity similar in spirit to the famous
Froissart bound [8,9]. We will show using the results of [10] that eq.(1.2), for s →∞ leads to

D (ρ(1)A ∣∣ρ
(2)
A ) −

(∆x)2
4σ

≤ 2(∆x)2 (1 + 5x2
1)

(1 − x2
1)2

, (1.3)

for fixed angle and where there are no unknown constants on the RHS. As we will further show,
the tree level type II string theory answer for dilaton scattering in the low energy limit in fact
respects this bound as well. This is presumably because the distinction between massless and
massive scattering disappears in the high energy limit for relative entropy. Note that this is not
the situation for other existing high energy bounds like the Froissart bound, whereas of now a
rigorous bound, using axiomatic arguments, for massless scattering does not exist, neither can
a massless limit be taken. We will also comment on what happens in the Regge limit. Here we
will argue that since experiments disfavour a strictly linear Regge trajectory, the curvature of
the trajectory has to be positive.

It will also turn out that close to the threshold, our relative entropy expressions following
from eq.(1.2) will have simple expressions in terms of scattering lengths. In particular, we
will find expressions in terms of ratios of D and S-wave scattering lengths. For instance, for
π0π0 → π0π0 we will find

D (ρ(1)A ∣∣ρ
(2)
A ) −

(∆x)2
4σ

= 15(∆x)2
⎛
⎝

2a(0)2 + a(2)2

2a(0)0 + a(2)0

⎞
⎠
(s − 4m2)2 , (1.4)

where a(I)0 , a(I)2 denote the S and D-wave I ’th isospin scattering lengths respectively. Now the
numerator comprising of the combination of the D-wave scattering lengths can be shown to be
positive which arises from the Froissart-Gribov representation for ` ≥ 2 scattering lengths. If
one makes certain extra assumptions about the S-wave and P-wave scattering lengths (which
follow from a Lagrangian formulation), then one finds that the universal piece above is posi-
tive! Similar arguments show that for π+π− → π+π− the above quantity is also positive while
for π+π+ → π+π+ and π+π0 → π+π0, it is negative. Relative entropy near the threshold then
becomes a potential tool to constrain various putative physical theories for scattering.

We will study relative entropy (as well as Rényi divergences where possible) for a variety of
theories including λφ4 at 1-loop, chiral perturbation theory (χPT), dilaton scattering in tree-
level type II superstring theory as well as the S-matrix bootstrap constraining pion scattering.
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Relative entropy expressions in various interesting limits like threshold expansion, high energy
limit, are worked out. We then use relative entropy considerations to study S-matrix bootstrap
constraining pion scattering.

Before the advent of QCD in the 1970s, the S-matrix bootstrap was advocated as a tech-
nique to study hadron interactions. Some profound results, like the Froissart bound [8], were
obtained in this pursuit. A similar goal was also pursued a while for conformal field theo-
ries. Then with the advent of QCD and the renormalization group, the bootstrap approach
was essentially abandoned. In 2008, a fresh numerical approach to study the CFT bootstrap
was put forward in [11]. Using this, several new results were obtained for higher dimensional
CFTs (see [12] for a recent review); a typical feature in the numerical plots, showing allowed
physical theories, was that physically interesting theories like the 3d Ising model lived at a
“kink”. The numerical techniques make clever use of semi-definite programming algorithm
(called Semi-Definite Programming for Bootstrap or SDPB [13]). Recently starting with [14]
and [15], SDPB was put to good use to reboot the S-matrix bootstrap. This was further de-
veloped in [16]. In [17], this new approach to the S-matrix bootstrap was used to constrain
pion scattering. Using phenomenological inputs such as the ρ-resonance mass and S-wave
scattering lengths, two interesting constrained regions (see fig.(1)) on the plane of the Adler
zeros1 [18] (s0, s2) were found.

L

0 1 2 3 4
0

1

2

3

4

s0

s
2

P

Figure 1: The “River”. We get the river by imposing only theρ resonance and the inequalities
mentioned in the main text. The “Lake” and “Peninsula” in [17] are indicated. The green
regions are closest, in the sense of hypothesis testing, to the 1-loop χPT indicated by the red
cross and turn out to have comparable scattering lengths. The white region is excluded. The
1-loop point is close to the “kink” in the boundary.

The first region, dubbed as the “Lake” was found by imposing the ρ-resonance at the
phenomenological value. This region eliminated possible theories while leaving behind a huge
region of potentially allowed models. In fig.(1), the ruled out region using such considerations
is indicated by L. The lower boundary of this region was found to allow for S-wave and P-
wave scattering lengths compatible with experimental results while the upper boundary had
opposite signs. The second region, dubbed as the “Peninsula” was obtained by imposing in
addition, the experimentally observed S-wave scattering lengths within errors. This region

1Adler zeros in 2-2 scattering are s values where the amplitude vanishes when a soft mode is involved.
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was substantially smaller, and the standard model was observed to lie on the tip. In fig.(1) this
is indicated by P. While being substantially smaller, by construction, this still leaves behind a
huge set of potentially interesting S-matrices. This begs the question: Can we distinguish these
S-matrices, all of which lead to similar scattering lengths? At leading order in sophistication
for instance, which of these S-matrices is closest to 1-loop χPT–can we use hypothesis testing
to answer this? Furthermore, it also raises the question: Can we reduce the set of S-matrices
by not imposing the experimental scattering lengths?

In this paper, we will study relative entropy along the lake and use the definite signs in
various channels found using the threshold expansion arguments to constrain these allowed
regions. In particular, one of our goals will be to ask if a smaller region like the so-called
peninsula can be obtained without putting in the phenomenological values of the S- and P-
wave scattering lengths. Remarkably, the answer will turn out to be yes. The region we find is
indicated in fig.(1)–we call this the “River” since the figure is very suggestive of one with two
banks! We find this region by imposing the ρ-resonance2 and the inequalities suggested by
χPT and the D-wave dispersion relations—equivalently the definite sign conditions on relative
entropy referred to above. Intriguingly, the 1-loop χPT point is close to a kink-type feature
in the plot. Furthermore, in fig.(1) we have performed hypothesis testing in the low energy
physical region, by comparing the theories living on the new boundary with the 1-loop χPT
(indicated by a red cross in fig.(1)). The theories closest, in this sense, to the 1-loop χPT are
indicated in green and live on opposite banks. Somewhat surprisingly, there is a region on
the other bank which is far (in the sense of the (s0, s2) values) from the perturbative 1-loop
region, which gives rise to scattering lengths comparable to experiments. Put differently, this
second region admits a set of reduced density matrices which close to the threshold cannot be
distinguished from the other green region close to the 1-loop χPT point, and hence exhibits
comparable entanglement. We make some preliminary studies of this region in our paper
but will leave a detailed analysis for future work. A preliminary analysis of elastic unitarity,
for instance, seems to disfavour this second region, favouring the theories living on the upper
bank instead. We also present our initial findings of a somewhat more constrained “river” using
ideas pertaining to positivity [22]. Our findings suggest that combining quantum information
ideas with the bootstrap may be a worthwhile direction to pursue in the future.

The paper is organized as follows. In Section (2), we set up the formulation of density
matrices in 2-2 scattering. In Section (3), we consider measures of entanglement focusing
on relative entropy. In Section (4), we turn to consider specific theories such as type II su-
perstring theory, λφ4 theory, and chiral perturbation theory. In Section (5), we turn to gen-
eralities focusing on relative entropy. In particular, we derive high energy bounds as well as
give simple expressions for the threshold expansion for pion scattering. In Section (6), we try
to use relative entropy to distinguish between amplitudes coming from two different theories
(either differing in some underlying parameters or completely different theories) describing
the same scattering process. In Section (7), we turn to exploring the S-matrix bootstrap using
relative entropy considerations. In Section (8), we explore quantum information measures
such as quantum relative entropy and entanglement power in connection with entanglement
in isospin, which will be manifestly finite. We conclude with future directions in Section (9).
Furthermore, the algebraic details skipped in the main text are given in details in several ap-
pendices.
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AB

D

C

Figure 2: 2-2 scattering configuration in the centre of mass frame, with a Gaussian
detector being placed at a point along the ring.

2 Density matrices in 2→ 2 scattering

We will consider quantum entanglement that is generated in the 2-2 scattering of relativistic
particles A + B → C + D as shown in fig. 2. All of our analysis will be in the Center of Mass
(CoM) frame. The spatial momenta of the outgoing particles are given by

p⃗ ≡ (p,θC ,ϕC), q⃗ ≡ (q,θD,ϕD) , (2.1)

with p = ∣p⃗∣, q = ∣q⃗∣ and the angle θ ranges over [0,π] and ϕ ranges over [0, 2π). In the CoM
frame, we will necessarily have p⃗ + q⃗ = 0 and thus

p = q, θC + θD = π . (2.2)

This was considered previously in [3–7] but we will differ from this analysis in certain crucial
aspects. The main aspect is that unlike [3–7] we will focus on the B-particles at a fixed angle–
for instance consider a finite resolution detector at a fixed angle θD. Say, we have put such
a detector at an angle θD = α, whose explicit measure we will specify later. Now what we
mean is that, the angle of the particle will be measured within a range of∆α centred at α, i.e.,
the particle will be detected if its angle lies in the interval [α − ∆α2 ,α + ∆α2 ]; we will generally
assume∆α≪ 1. In the above figure, the green ring corresponds to this angular spread of∆α.

2.1 Density Matrix of the joint system AB

We will begin by considering the elastic case A + B → A + B and will compute the entangle-
ment between the outgoing particles. For our conventions regarding scattering matrix and
momentum states, we refer to Appendix (A).

First, we consider two unentangled non-identical particles, A and B, with masses mA and
mB respectively as the incoming state. Let k⃗ and −k⃗ be the respectively incident momenta in
the CoM frame. So the initial state is chosen to be

∣i⟩ ∶= ∣k⃗⟫ ∶= ∣k⃗A,−k⃗B⟩ . (2.3)

2To constrain theories in the conformal bootstrap, assumptions of this kind are also made. For instance to get
the famous epsilon expansion to work, one assumes the existence of a conserved stress tensor [19–21].
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This state is the 2−particle Fock state as defined in eq.(A.14). The initial state is a separable
one by construction. Clearly, the entanglement entropy of the initial state vanishes. Now, the
state after scattering is given by, S ∣k⃗⟫ , where S is the S-matrix. Next, we need to introduce a
projector Q which restricts the angle θ . The projector is given by

Q(F)AB ∶= ∫ dΠAp⃗dΠBq⃗ F(θB) ∣p⃗, q⃗⟩ ⟨p⃗, q⃗∣ , dΠik⃗ ∶=
d3 p⃗
2Ek⃗i

, (2.4)

where we have introduced a finite support function F to account for the particle detection as
described above. Here, ∣p⃗, q⃗⟩ is the short form of the 2−particle Fock state ∣p⃗A, q⃗B⟩ defined in
eq.(A.14). We will use this short-hand notation from now on.

If we are considering the particle detector to be at angle θB = α with a finite angular res-
olution ∆α with ∆α≪ 1 then, the corresponding F needs to be negligible, ideally vanishing,
outside the interval [α − ∆α2 ,α + ∆α2 ]. Then, we have the target final state as

∣ f ⟩ = Q(F)AB S ∣k⃗⟫ = ∫ dΠAp⃗dΠBq⃗ F(θB) ∣p⃗, q⃗⟩ ⟨p⃗, q⃗∣S ∣k⃗⟫ . (2.5)

Now, this state is not automatically normalized. The norm of the state is given by

⟨ f ∣ f ⟩ = ∫ dΠAp⃗dΠBq⃗dΠAP⃗ dΠBQ⃗ F(θBp⃗)F(θBP⃗) ⟨P⃗, Q⃗ ∣ p⃗, q⃗⟩ ⟨p⃗, q⃗∣S ∣k⃗⟫⟪k⃗∣S† ∣P⃗, Q⃗⟩

= ∫ dΠAp⃗dΠBq⃗ F(θBp⃗)2 ∣⟨p⃗, q⃗∣S ∣k⃗⟫∣2 .

Now, in the CoM frame, momentum conservation gives us:

⟨p⃗, q⃗∣S ∣k⃗⟫ = δ(3+1) (∑
i

pi) ⟨p⃗, q⃗∣s∣k⃗⟫ = δ(EAp⃗ + EBq⃗ − EA⃗k − EBk⃗) δ
(3)(p⃗ + q⃗) ⟨p⃗, q⃗∣s∣k⃗⟫ . (2.6)

Now, the simplest way to handle the square of a delta function is to introduce a δ(0) which
can be understood from the identity

∫ d3 x⃗ (δ(3)( x⃗ − y⃗))
2

f ( x⃗) = δ(3)(0) f ( y⃗) . (2.7)

Substituting this back into eq.(2.6) and performing one of the integrals leads to

N ≡ ⟨ f ∣ f ⟩ = δ(3+1)(0)
4k(EA⃗k + EBk⃗)

∫ d3 p⃗δ(p − k) F(π − θA)2 ∣ ⟪p⃗∣s∣k⃗⟫ ∣2 , (2.8)

where, we have expressed the delta function as:

δ(EAp⃗ + EBp⃗ − EA⃗k − EBk⃗) =
EAp⃗EBp⃗

k(EA⃗k + EBk⃗)
δ(p − k) .

Thus, the density matrix of the joint system in the state ∣ f ⟩ is given by,

ρ(F) ∶= 1
N ∣ f ⟩ ⟨ f ∣ (2.9)

= 1
N ∫ dΠAp⃗dΠBq⃗dΠAP⃗ dΠBQ⃗ F(θBq⃗)F(θBQ⃗) ⟨p⃗, q⃗∣S ∣k⃗⟫⟪k⃗∣S† ∣P⃗, Q⃗⟩ ∣p⃗, q⃗⟩ ⟨P⃗, Q⃗∣ ,

(2.10)

where the generalization to any other space-time dimensions is obvious in the powers of the
delta functions and the Lorentz invariant phase space integral.
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2.2 Reduced Density Matrices

Now, we will work out various reduced density matrices starting from the density matrix ρ(F)

in 3+1 dimensions. First, we construct the reduced density matrices by tracing out subsystems.
For most of our purpose, we will consider the reduced density matrix by tracing out B particles,
ρ
(F)
A = trB ρ

(F).

ρ
(F)
A = 1

δ(3)(0)
∫ dΠAp⃗ δ(p − k) F(π − θA)2 ∣ ⟪p⃗∣s∣k⃗⟫ ∣2 ∣p⃗⟩ ⟨p⃗∣
∫ d3 p⃗δ(p − k) F(π − θA)2 ∣ ⟪p⃗∣s∣k⃗⟫ ∣2

. (2.11)

Here in taking the partial trace, we have exploited tensor product structure of the 2−particle

Fock states as explained in Appendix (A.2). Next we will consider (ρ(F)A )
n

for n ∈ Z+. Trace
of this quantity will play the central role in our analysis of various measures of entanglement.
First we note that,

(ρ(F)A )
n
= [ 1
δ(3)(0)

]
n ∫ dΠAp⃗ [δ(p − k) F(π − θA)2 ∣ ⟪p⃗∣s∣k⃗⟫ ∣2]n ∣p⃗⟩ ⟨p⃗∣

[∫ d3 p⃗δ(p − k) F(π − θA)2 ∣ ⟪p⃗∣s∣k⃗⟫ ∣2]n
. (2.12)

From this it readily follows that,

trA (ρ(F)A )
n
≡ trA (ρ(g)A )

n
= [ δ(0)

2πk2δ(3)(0)
]

n−1

∫
1

−1
d x [P(g)(x)]

n
, (2.13)

with,

Pg(x) =
g(x) ∣ ⟪p⃗∣s∣k⃗⟫ ∣2

∫ 1
−1 d x g(x) ∣ ⟪p⃗∣s∣k⃗⟫ ∣2

, (2.14)

where, we have assumed that F(α) ≡ F(cosα), defined x ∶= cosθA and defined
g(x) ∶= F(−x)23. Note that, Pg satisfies

∫
1

−1
d x Pg(x) = 1 . (2.15)

2.3 Generalizations

So far we have considered the scattering event A + B → A + B with A and B non-identical
particles. This analysis has an obvious generalization to identical particles as well as more
general scattering event A + B → C + D where, now A, B and C , D can be identical particles.
Furthermore, one can consider scattering of particles with global symmetry indices like isospin
in the case of pions. The generalization is quite straightforward, and therefore we won’t repeat
the analysis in details. We will just spell out the main steps, reserving the full details for
Appendix (C). We will be focusing on 3 + 1 dimensions only, keeping in mind that it can be
generalized to other dimensions trivially.

Density Matrices

We will start with the generalization where the final state of two scalar particles can be identical
as well as different from incoming particles. Schematically, we can consider the generalized
scattering event

A+ B → C + D , (2.16)
3Note that, the functions F(x) and g(x) are not same mathematically. We want to clarify this in order to avoid

any potential confusion. However, one may consider them to be equivalent in reference to the physical effect they
are used to describe!
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where now it can be that A and B are identical particles and so can C and D4. To account for
this case, we will consider the generic two-particle state ∣p⃗, a; q⃗; b⟩ where, the labels/group-
indices a, b now encapsulates all the possibilities charted above such that each particle gets
a label/group index corresponding to it (A has label/group index a and so on). This is again
a 2−particle bosonic Fock state i.e., ∣p⃗, a; q⃗; b⟩ = a†

a(p⃗)a†
b(q⃗) ∣Ω⟩ , ∣Ω⟩ being the bosonic Fock

vacuum and ai being the annihilation operator of the particle corresponding to the i th label.
If we consider the scattering in eq.(2.16) in the CoM frame, the density matrix corresponding
to the final state configuration is given by

ρ
(F)
C D ≡

1
NC D

∣ fC D⟩ ⟨ fC D∣ , (2.17)

with

∣ fC D⟩ = ∫ dΠc
q⃗1

dΠd
q⃗2

F(θ1 q⃗1) ∣q⃗1, c; q⃗2, d⟩ ⟨q⃗1, c; q⃗2, d ∣S ∣ p⃗1, a; p⃗2, b⟩ , (2.18)

where, now we have considered the initial state to be ∣p⃗1, a; p⃗2, b⟩ and NC D ∶= ⟨ fC D ∣ fC D⟩.
Furthermore, we can trace out the D particle states to obtain the reduced density matrix,
ρC = trD (ρ(F)C D ) as

ρC =
∫ dΠp⃗ [δcd(F(θp)2 + 2F(θp)F(π − θp)) + F(π − θp)2] ∣p⃗, c⟩ ⟨p⃗, c∣ δ(p − k) ∣⟪p⃗; c, d ∣s∣k⃗; a, b⟫∣2

δ(3)(0) ∫ d3 p⃗ δ(p − k) [δcd(F(θ1p)2 + 2F(θ1p)F(π − θp)) + F(π − θp)2] ∣⟪p⃗; c, d ∣s∣k⃗; a, b⟫∣2
.

(2.19)
Here, we have introduced the notation ∣k⃗; a, b⟫ ∶= ∣k⃗, a;−k⃗, b⟩ . Now we consider separately
the cases:

1. Particles are identical (δcd = 1) and F(θ) = F(π − θ) . The reduced density matrix ρC

becomes in this case

ρC =
1

δ(3)(0)
∫ dΠp⃗ F(π − θp)2 ∣p⃗, c⟩ ⟨p⃗, c∣ δ(p − k) ∣⟪p⃗; d, d ∣s∣k⃗; a, b⟫∣2

∫ d3 p⃗ δ(p − k) F(π − θp)2 ∣⟪p⃗; c, c∣s∣k⃗; a, b⟫∣2
, (2.20)

which gives

trC ((ρC)n) = [
δ(0)

2πk2δ(3)(0)
]

n−1

∫
1

−1
d x[Pg(x)]n , (2.21)

with

Pg(x) ∶=
g(x) ∣ ⟪p⃗; c, c∣s∣k⃗; a, b⟫ ∣2

∫ 1
−1 d x g(x) ∣ ⟪p⃗; c, c∣s∣k⃗; a, b⟫ ∣2

, (2.22)

where, we have again defined F(−x)2 ∶= g(x).

2. Now we consider the situation where the outgoing particles are identical and F(ϕ1) is
not centered anyway about θ = π/2. In this case, from eq.(2.19) we will encounter
cross terms like F(θp)F(π − θp). However, since the supports of F(θp) and F(π − θp)
do not overlap significantly in this scenario (especially and quite accurately true for
2x = 2 cos(θp) ≫ Nσ where Er f (Nσ) gives the desired accuracy). Hence, we can
safely ignore these terms. Furthermore, using the same logic will also get rid of the
cross terms coming from the binomial expansion present in the numerator. Then, we

4To simplify life, we will consider all masses to be equal, but this can be easily relaxed. See eq.(C.26) for a
generalization to the case of all unequal masses.
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see that the numerator and the denominator are both comprised of two integrals each,
one with F(θp) and the other being exactly the same except with F(π−θp) respectively.
Upon using polar co-ordinates and carrying out the azimuthal and radial integral using
the delta function, we are only left with the x = cos(θp) integral. Then, if we make
the substitution x → −x , the integral of the first part of the integrand (in both the
numerator and the denominator) becomes the same as the second integral, since the
amplitude must be symmetric in t and u in the identical case. Therefore, finally we get

t rC ((ρC)n) =
⎡⎢⎢⎢⎢⎣

δ(0)
4πk2δ(3)(0)

⎤⎥⎥⎥⎥⎦

n−1

∫
1

−1
[Pg(x)]n , (2.23)

where,

Pg(x) ∶=
g(x) ∣ ⟪p⃗; c, d ∣s∣k⃗; a, b⟫ ∣2

∫ 1
−1 d x g(x) ∣ ⟪p⃗; c, d ∣s∣k⃗; a, b⟫ ∣2

. (2.24)

Note that the factor of 2 is different in this case than when x = 0 which will only be
important when we consider the relative entropy between these 2 cases. Otherwise it
makes no difference and will cancel as in previous calculations.

3. When the particles are non-identical δcd = 0. In this case, eq.(2.13) holds good with the
suitably generalized amplitude.

3 Measures of entanglement

In this section, we discuss various measures of entanglement such as entanglement entropy,
quantum relative entropy [23] and quantum Rényi divergence5 as given in [25] and quantum
information variance as discussed in [26].

3.1 Entanglement Entropy

For a bipartite system comprised of two subsystems A and B, the entanglement entropy is
defined by the von Neumann entropy of either of its reduced states. That is, for a pure state of
the joint system A∪ B given by the density matrix ρAB = ∣ψ⟩ ⟨ψ∣AB, it is given by:

SEE ∶= SvN(ρA) = −tr [ρA logρA] = −tr [ρB logρB] = SvN(ρB) , (3.1)

where, ρA(B) stands for the reduced density matrix obtained via partial tracing

ρA(B) = trB(A)ρAB . (3.2)

Here we will calculate entanglement entropy in some specific cases. For this we will consider
a particular form for g(x). For practical purposes, SEE can be calculated by the replica trick
which is given by in our cases by

S(g)EE = − lim
n→1
∂n trA (ρ(g)A )

n
. (3.3)

Then using eq.(2.13), we have

S(g)EE = − ln(2πT
k2V
) − ∫

1

−1
d xPg(x) lnPg(x) , (3.4)

5See [24] for a recent application in holography.

11

https://scipost.org
https://scipost.org/SciPostPhys.9.5.081


SciPost Phys. 9, 081 (2020)

where Pg(x) is given in eq.(2.14) and we have written 2πδ(0) = T and (2π)3δ(3)(0) = V .
We will consider a Gaussian profile for g(x),

g(x) ≡ δσ(x − y) = 1

2
√

2σ
e−
(x−y)2

4σ . (3.5)

Here we are considering σ > 0 but σ ≪ 1 and y ≠ ±1. In the sense of distributional limit,
σ → 0 corresponds to g(x) → δ(x − y). However, note that we are emphasizing here the
importance of taking Gaussian profile, not the Dirac delta function (note that, we have to
work with g(x)n). Now we exploit the fact that we have chosen y ∈ (−1, 1). Then, in this
situation we can use

⟪p⃗∣s∣k⃗⟫ ≡M(s, x) , (3.6)

where S = 1 + iM. Then, we have for Pg(x),

Pg(x) =
g(x) ∣M(s, x)∣2

∫ 1
−1 d x g(x) ∣M(s, x)∣2

. (3.7)

Now, doing the integral over Pg(x) in eq.(3.4), one obtains

−IE = ln(2
√
πσ) + 1

2
+ 1

∑∞i=0 σ
i

i!
∂ 2i

∂ x2i (∣M(s, x)∣2)∣
y

(
∞

∑
i=0

i
σi

i!
∂ 2i

∂ x2i (∣M(s, x)∣2)∣
y
) .

(3.8)

We provide the details of this calculation in Appendix (B.1). In the limit σ → 0, this evaluates
to

SEE = ln(
√
σk2V√
πT

) + 1
2

. (3.9)

This implies that, for perfectly precise detectors (σ = 0), the absolute angular entanglement is
basically a constant independent of the amplitude. The sub-leading terms in σ will of course
depend on the amplitude. Note that we didn’t put any restriction on φ, thus our detector
uniformly detects along φ (which also explains the ring structure of the Gaussian detector).
Now, the scattering amplitude itself doesn’t depend on φ and hence in our target final state
∣ f ⟩, we will have uniform contribution of 2-particle states along φ, for a fixed θ . Thus, our
2-particle states will be maximally entangled in φ. Hence, in the above expression, even if
we assumed an ideal detector, it is not a pure state as the expression contains the maximal
entropy contribution from φ.

3.2 Quantum Relative Entropy

If ρ1 and ρ2 be two density matrices then the entropy of ρ1 relative to ρ2 is given by

D(ρ1∣∣ρ2) = trρ1(lnρ1 − lnρ2) . (3.10)

Quantum relative entropy acts as a measure of distinguishability of two states. Now, we will
do a relative entropy calculation with the configuration given in fig.(3), where there are two
detectors placed at two different angles. Thus, we need to consider two support functions
centred on two different angles. One can take the angular spreads for the two functions to
be same or different. We will consider the simpler case of the two detectors having the same
Gaussian widthσ. We have two density matrices ρ(1)A and ρ(2)A corresponding to two detectors
at angles θB1 and θB2 respectively. Furthermore, we will assume that θB1 and θB2 differ only
slightly to the extent that their difference is more than the angular sensitivity of the detectors

12

https://scipost.org
https://scipost.org/SciPostPhys.9.5.081


SciPost Phys. 9, 081 (2020)
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Figure 3: Two different configurations of Gaussian Detectors for 2 to 2 scattering.

but small compared to the magnitude of the angles. Thus, we have the reduced density matrix
as

ρ
(i)
A =

(2π)3
V
∫ dΠAp⃗ δ(p − k) Fi(π − θA)2 ∣ ⟪p⃗∣s∣k⃗⟫ ∣2 ∣p⃗⟩ ⟨p⃗∣
∫ d3 p⃗δ(p − k) Fi(π − θA)2 ∣ ⟪p⃗∣s∣k⃗⟫ ∣2

, (3.11)

for i = 1, 2. Now, we employ the replica trick to calculate the relative entropy such that

D(ρ1∣∣ρ2) = lim
n→1

∂

∂ n
[tr ρn

1 − tr ρ1ρ
n−1
2 ] . (3.12)

This eventually gives

D (ρ(1)A ∣∣ρ
(2)
A ) = ∫

1

−1
d x Pg1(x) ln(Pg1(x)

Pg2(x)
) . (3.13)

Again if we consider that θB1 and θB2 both are way off from the forward direction, we can use
eq.(3.6).

Now relative entropy is known to be positive, whose usual proofs in quantum mechanics
follow using properties of probability distributions. Pg(x) above is not a probability distribution
since it is not less than unity; rather it is a density such that ∫ 1

−1 d x Pg(x) = 1. Nonetheless,
using some simple tricks as shown below we can still demonstrate positivity. Consider the
steps:

D (ρ(1)A ∣∣ρ
(2)
A ) = ∫

1

−1
d x Pg1(x) ln(Pg1(x)

Pg2(x)
) = −∫

1

−1
d x Pg1(x) ln(Pg2(x)

Pg1(x)
)

≥ ∫
1

−1
d x Pg1(x)(1 −

Pg2(x)
Pg1(x)

) = 0 ,

(3.14)

where we have used Pgi(x) ≥ 0, eq.(2.15) and in the second step, we have used the identity
ln(x) ≤ (x − 1)∀x > 0 Ô⇒ − ln(x) ≥ (1 − x)∀ x > 0 . Let us now move to the Gaussian
detector case. We have now that

gi(x) = δσ(x − x i) , (3.15)
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where δσ(x − y) is given in eq.(3.5). This leads to

D (ρ(1)A ∣∣ρ
(2)
A ) ≈ ln(Ig(s, x2)

Ig(s, x1)
) + (∆x) ∂

∂ x
(ln( Ig(s, x)

Ig(s, x1)
)) ∣

x1

+ (∆x)2
4σ

, (3.16)

where

Ig(s, x0) = ∫
1

−1
d x ( 1

2
√
πσ

e−
(x−x0)

2

4σ ) ∣M(s, x)∣2

=
∞

∑
i=0

∂ 2i

∂ x2i (∣M(s, x)∣2)∣
x0

σi

i!
= ∣M(s, x0)∣2 +O(σ) .

(3.17)

In the limit of small ∆x ∶= x1 − x2 and σ → 0, one obtains6

D (ρ(1)A ∣∣ρ
(2)
A ) ≈

(∆x)2
4σ

+ (∆x)2
2
( ∂

2

∂ x2
( ∣M(s, x)∣2
∣M(s, x1)∣2

) ∣
x1

− ( ∂
∂ x
( ∣M(s, x)∣2
∣M(s, x1)∣2

) ∣
x1

)
2

)

+O((∆x)2σ) .
(3.18)

Let us understand what the above approximation exactly is. In the expression above, the terms
which have been thrown away are at least of the order (∆x)2σ. However, physically it only
makes sense to accurately measure the entanglement between states which are separated more
than the resolution of the detector which is σ. Hence, physically we must have σ ≪ (∆x).
Therefore, we can safely say that
O((∆x)2σ) ≪ O((∆x)3) Ô⇒ O((∆x)2σ) ∼ O((∆x)3,σ) i.e., the terms are either higher
order than (∆x)2 or higher order than σ0.

Furthermore, the first term given by (∆x)2/(4σ) can be identified with just the hard
sphere scattering result where there is no angular dependence in the scattering. Henceforth,
we will separate out this piece and define

DQ (ρ(1)A ∣∣ρ
(2)
A ) =

(∆x)2
2
[ ∂

2

∂ x2
(lnM1(s, x))]

x=x1

, (3.19)

where, we have defined for later convenience,

M1(s, x) ∶= ∣M(s, x)∣2

∣M(s, x1)∣2
. (3.20)

Note that, DQ is theσ0 term in theσ → 0 expansion of the relative entropy D, eq.(3.18). Thus,
DQ is universal and does not depend upon the human chosen parameter σ.

Validity of the expansion

The above expansion is quite generally valid even in the neighbourhood of s-channel poles.
First note that we are in the s-channel physical region so that t < 0 and hence we do not
have to worry about t-channel poles. Furthermore, if we consider an s-channel pole of the
form ρ(t)/(s − s0) and plug this form into eq.(3.16), it can be easily verified that no infinity
is encountered. These observations are verified by the behaviour found in the string theory
example considered below.

6We present the details of the analysis in Appendix (B.2). Note that, the term linear in ∆x gets canceled after
expanding the log term in eq.(3.16)
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Regarding Positivity of DQ (ρ(1)A ∣∣ρ
(2)
A )

We would like to point out that DQ is NOT positive automatically even though relative entropy
is, which has been established in eq.(3.14). This is because of the fact that, DQ differs from
the relative entropy by (∆x)2/4σ and O(σ) terms. In the limit σ → 0, former is the dominant
term while O(σ) terms vanish. Thus, irrespective of sign of DQ, the relative entropy is bound
to be positive.

3.3 Rényi divergences

Both the relative entropy and the entanglement entropy are actually a specific limit of a general
concept known as the Réyni Divergence (see [24,25]). Réyni Divergence of order n of a density
matrix ρ1 from another density matrix ρ2 is defined by

Dn(ρ1∣∣ρ2) =
1

n − 1
ln [trρn

1ρ
1−n
2 ] , (3.21)

for normalized density matrices ρ1 and ρ2. The Réyni divergence is defined for 0 < n <∞ and
n ≠ 1. We can define the Rényi divergence for the special values n = 0, 1,∞ by taking a limit,
and in particular the limit n → 1 gives the quantum relative entropy of ρ1 relative to ρ2. We
can reach the relative entropy from the Rényi divergence using the quantity

Tn(ρ1∣∣ρ2) = trρn
1ρ

1−n
2 . (3.22)

Following steps similar to those used to reach the relative entropy from the Rényi divergence,
it is straightforward to see that,

D(ρ1∣∣ρ2) = lim
n→1

∂

∂ n
Tn(ρ1∣∣ρ2) . (3.23)

In fact, this can be easily generalized to higher derivatives with respect to n to get that

lim
n→1

∂ i

∂ ni (Tn(ρ1∣∣ρ2)) = trρ1(ln(ρ1) − ln(ρ2))i .

Though working both with Dn(ρ1∣∣ρ2) and Tn(ρ1∣∣ρ2) are equivalent, we would prefer work-
ing with Tn(ρ1∣∣ρ2) because taking its derivative is much easier than taking the limit of Dn(ρ1∣∣ρ2)
due to the pesky log present in the Réyni Divergence. Eq.(3.23) is precisely the replica trick
formula for calculating the quantum relative entropy of a density matrix ρ1 relative to ρ2.
Following a similar procedure as in before, it is also straightforward to show

Tn (ρ1∣∣ρ2) = ∫
1

−1
d x (Pg1(x))n(Pg2(x))1−n . (3.24)

Specializing for the Gaussian Detectors has Tn(ρ1∣∣ρ2) take the form

Tn (ρ(1)A ∣∣ρ
(2)
A ) = e−

(∆x)2

4σ n(1−n)(Ig(s, x2)
Ig(s, x1)

)
n−1

(Ig(s, x12
n )

Ig(s, x1)
) ,

σ→0ÐÐ→ e−
(∆x)2

4σ n(1−n) (∣M(s, x2)∣2
∣M(s, x1)∣2

)
n−1

(∣M(s, x12
n )∣2

∣M(s, x1)∣2
) ,

(3.25)

with x12
n = n x1 + (1 − n)x2. The derivation is similar to that of the entropy calculation and is

done in its full glory in Appendix (B.3). We also have the equivalent expression for the Réyni
Divergence as

Dn (ρ(1)A ∣∣ρ
(2)
A ) = n

(∆x)2
4σ

+ ln(Ig(s, x2)
Ig(s, x1)

) + 1
n − 1

ln(Ig(s, x12
n )

Ig(s, x1)
) ,

σ→0ÐÐ→ n
(∆x)2

4σ
+ ln(∣M(s, x2)∣2

∣M(s, x1)∣2
) + 1

n − 1
ln(∣M(s, x12

n )∣2
∣M(s, x1)∣2

) .

(3.26)
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Using this expression it is easy to see that this satisfies all the properties given in [24], at
least in the limit of σ → 0. Firstly, eq.(3.26) is continuous since composition of continuous
functions (here being x12

n ,Ig ,M and log) is still continuous. Secondly, ∂nDn(ρ1∣∣ρ2) > 0 since
it is dominated by (∆x)2/4σ > 0. By the same logic, positivity is also followed. Note that
∂ 2

n Dn would get rid of the hard-sphere term. Lastly, (1 − n)Dn(ρ1∣∣ρ2) is concave, which is
again trivially seen in leading order. However, the case n = 0 is a quantity considered in the
quantum information literature and is defined via a continuation in n. Taking the limit n → 0
of eq.(3.24) gives us that

T0(ρ1∣∣ρ2) = ∫
1

−1
d x Pg1(x) = 1 , (3.27)

leading us to

D0(ρ1∣∣ρ2) =
1

0 − 1
ln (T0(ρ1∣∣ρ2)) = 0 . (3.28)

This can also be seen from eq.(3.25) and eq.(3.26) when we remind ourselves that x12
n = x2

for n = 0.

3.4 Quantum Information Variance

We follow the definition of the variance in quantum information as given in [26],

V (ρ(1)A ∣∣ρ
(2)
A ) = tr(ρ(1)A (lnρ(1)A − lnρ(1)A )

2
) − (D (ρ(1)A ∣∣ρ

(2)
A ))

2

= lim
n→1
[ ∂

2

∂ n2
(Tn (ρ(1)A ∣∣ρ

(2)
A )) − (

∂

∂ n
(Tn (ρ(1)A ∣∣ρ

(2)
A )))

2

] .
(3.29)

We have derived the expression for it in Appendix (B.4) which we just quote here,

V (ρ(1)A ∣∣ρ
(2)
A ) =

(∆x)2
2σ

+ (∆x)2 ∂
2

∂ x2
(ln( Ig(s, x)

Ig(s, x1)
)) ∣

x1

σ→0ÐÐ→ (∆x)2
2σ

+ (∆x)2 ∂
2

∂ x2
(ln( ∣M(s, x)∣2

∣M(s, x1)∣2
)) ∣

x1

.

(3.30)

We observe a very interesting fact in eq.(3.30). In the approximation that (∆x) is small
(can also take σ → 0 or not), we have that

D (ρ(1)A ∣∣ρ
(2)
A )

leading order in (∆x)ÐÐÐÐÐÐÐÐÐÐÐ→ 1
2

V (ρ(1)A ∣∣ρ
(2)
A ) , (3.31)

where the LHS of the equation is in leading order w.r.t ∆x while the RHS is exact.

3.5 Generalized case

3.5.1 Entanglement Entropy

Now, we turn to calculating the entanglement entropy for scattering in the setup as in Section
(2.3). The replica trick generalizes quite trivially and we are left with the following expression
for the entanglement entropy in the general case,

SEE = − ln [ 4πT
Ak2V

] − ∫
1

−1
d x Pg(x) lnPg(x) , (3.32)

16

https://scipost.org
https://scipost.org/SciPostPhys.9.5.081


SciPost Phys. 9, 081 (2020)

where A = 2 for the non-identical and the zero mean identical case and A = 4 for non-zero mean
identical case with Pg(x) defined in eq.(2.22). Again, as before, we will consider Gaussian
detectors and therefore will be using eq.(3.5). Then, we repeat the steps and obtain

SEE = ln(A
√
σk2V

2
√
πT

) + 1
2
+ 1

(∑∞i=0 σ
i

i!
∂ 2i

∂ x2i (∣Mc,d
a,b(s, x)∣2)∣

y
)
(
∞

∑
i=0

i
σi

i!
∂ 2i

∂ x2i (∣M
c,d
a,b(s, x)∣2)∣

y
) .

(3.33)

The σ → 0 conclusion holds in this case as well, i.e., the entanglement entropy goes to
infinity. [3–7] considered certain regularizations to obtain the finite part. As we will see below,
the dependence on such regularizations does not arise when we consider relative entropy.

3.5.2 Relative Entropy

Next we proceed to define relative entropy in this setting. We define F1(θ) and F2(θ) to be
centered around θ B1 and θ B2. We shall construct the density matrix ρC using F1(θ) and ρ̃C

using F2(θ) such that ρC is as in eq.(2.19) and ρ̃C is the same with F1(−x) → F2(−x). We
shall again use the replica trick in order to evaluate the relative entropy. Now we will consider
the identical and non-identical cases separately.There will be total four cases as follows:

1. First we consider when the outgoing particles are identical and either x1 or x2 is 0. As
mentioned previously, there is a factor difference between the x = 0 and x ≠ 0 cases
when outgoing particles are identical. Going through the algebra, which can get messy,
we find that the x1 = 0 case is not salvageable at all since the divergence do not cancel.
However, the x2 = 0 case is somehow saved except for a constant shift of − ln(2), which
can be safely ignored when compared to the divergence (∆x)2/4σ in our previously
found expression.

2. When both particles are identical and x1 , x2 ≠ 0: Similarly as before, using the expres-
sions for the density matrices and carrying out the polar and azimuthal integrals, we
obtain that

t r (ρC(ρ̃C)n−1) =

1
2
[π T

k2V
]

n−1 ∫
1
−1 d x(F1(x)2 + F1(−x)2)(F2(x)2 + F2(−x)2)(n−1)∣ ⟪p⃗; c, d ∣s∣k⃗; a, b⟫ ∣2n

(∫
1
−1 d x F1(−x)2∣ ⟪p⃗; c, d ∣s∣k⃗; a, b⟫ ∣2)(∫

1
−1 d x F2(−x)2∣ ⟪p⃗; c, d ∣s∣k⃗; a, b⟫ ∣2)n−1

.

(3.34)
Then, carrying out the binomial expansion of the term
(F2(x)2 + F2(−x)2)(n−1), we can again do away with the cross terms. Hence, only the
terms, F1(−x)2F2(−x)2n−2 + F1(−x)2F2(x)2n−2 + F1(x)2F2(−x)2n−2 + F1(x)2F2(x)2n−2

will be left. Now we have two cases. When x1 and x2 have the same sign, the terms
F1(−x)2F2(−x)2n+ F1(x)2F2(x)2n−2 dominates, and when x1 and x2 have the opposite
sign, the other two terms dominate. This is because F1(x) and F2(x) approximate delta
functions of the form δ(x − x1) and δ(x − x2). Hence, when the signs of x1 and x2 are
the same, the Gaussians approximating the deltas, δ(x − x1) and δ(x − x2) are closer
and when the signs are different, the deltas, δ(x − x1) and δ(x + x2) are closer. Fur-
thermore, the individual integrals involving the two remaining terms in both cases can
be shown to be the same by substituting x → −x . Hence, we can express this behaviour
as

t r(ρC(ρ̃C)n−1) = [π T
k2V
]

n−1

∫
1

−1
d xPg1(x)(Pg2(sgn(x1 x2) x))(n−1) , (3.35)
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where sgn(z) = 1, z > 0 and sgn(z) = −1, z < 0. Using the expression of t r((ρC)n),
the partial derivative after taking the limit n→ 1 gives us the expression for the relative
entropy as

D(ρC ∣∣ρ̃C) = ∫
1

−1
d xPg1(x) ln( Pg1(x)

Pg2(sgn(x1 x2) x)) . (3.36)

3. The case of non-identical particle is the one already treated in details previously.

As mentioned previously, all the cases w.r.t signs of x1 and x2 for the identical particles
in the final state (eq.(3.36)), along with the case of x2 = 0 can be combined into the follow-
ing single expression (with slight modification to existing definitions and remembering that
sgn(0) = 1) and we get the equivalent of eq.(3.16) as

D(ρC(x1)∣∣ρC(x2)) ≈ ln(Ig(s, ∣x2∣)
Ig(s, ∣x1∣)

) + (∆x) ∂
∂ x
(ln( Ig(s, x)

Ig(s, ∣x1∣)
)) ∣

∣x1∣

+ (∆x)2
4σ

, (3.37)

with
∆x ∶= ∣x1∣ − ∣x2∣ . (3.38)

Keep in mind that Ig(s, x) is an even function of x when the amplitude has symmetry in t ↔ u
which it should in the identical outgoing particle case. This is so as Ig(s, x) consists of the
even derivatives of the amplitude and even derivatives of an even function are still even. The
derivative in the second term in eq.(3.37) is an odd function, however its sign is absorbed by
the modified ∆x as explained in Appendix (C.1).

Furthermore, it is obvious than in the approximation as in eq.(3.16), the only change would
be x1 → ∣x1∣ and ∆x → ∣x1∣ − ∣x2∣.

4 Known theories

In this section, we will consider the behaviour of relative entropy and entanglement entropy
in certain known theories which include φ4 theory, chiral perturbation theory (χPT) and type
II string theory.

4.1 φ4 theory

We begin by considering the λφ4 amplitude up-to 1-loop with the amplitude given by

M(s, t, u) = λ − λ2

32π2
(2 + G(s) + G(t) + G(u))

where, G(x) = −2 +
√
(1 − 4

x
) ln
⎛
⎜
⎝

√
(1 − 4

x ) + 1
√
(1 − 4

x ) − 1

⎞
⎟
⎠

,
(4.1)

where λ is the renormalized coupling and we have fixed the renormalized mass to be m2 = 1.
Here Dimensional Regularization and on-shell renormalization are used to calculate loop cor-
rections, as given in Section 10.2 in [27].
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4.1.1 Threshold Expansion

Near the threshold, which is now s = 4, we find using eq.(4.1) that

1
2

⎛
⎝
∂ 2

∂ x2
(M1(s, x))∣

x1

− ( ∂
∂ x
(M1(s, x))∣

x1

)
2⎞
⎠

s→4ÐÐÐÐÐÐÐÐÐ→
leading order in λ

(4.2)

λ

1920π2
(s − 4)2 (1 − 3

14
(s − 4) +⋯) , (4.3)

where, we Hence, we can conclude that the Relative Entropy is monotonically increasing near
the threshold for all x1 ∈ (−1, 1), only for λ > 0 (up to order λ, which is till where we can
trust the expression at 1-loop). However, λ ≥ 0 is the physical regime of the φ4-perturbation
coefficient, λ. Consequently, we have that

DQ (ρ(1)A ∣∣ρ
(2)
A ) =(∆x)2 [ λ

1920π2
(s − 4)2 (1 − 3

14
(s − 4)) +O((s − 4)4)] (4.4)

+O((s − 4)
5
2 , (∆x)3,λ2) . (4.5)

Analytic

s = 510.2

s = 0.1

s = 0.7

s = 3.9

-1.0 -0.5 0.5 1.0
x1

0.0005

0.0010
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0.0020

0.0025

0.0030

DQ

(Δx)2

(a)

Figure 4: Behaviour of DQ corresponding to theφ4 amplitude in eq.(4.1) and its comparison
to the high energy bounds found in eq.(4.7), given by the black dashed line.

4.1.2 High Energy Expansion

Now we switch to the high energy limit of the φ4-amplitude in eq.(4.1). In this regime, the
amplitude can be expanded as

M(s, x)
M(s, x1)

=
1 + λ (4 − iπ + ln ( 4

s3(1−x2)
))

1 + λ(4 − iπ + ln( 4
s3(1−x2

1)
))
+O (1

s
) = 1+ λ

32π2
ln(1 − x2

1

1 − x2
)+O (λ2,

1
s
) . (4.6)

Using this we find that

DQ (ρ(1)A ∣∣ρ
(2)
A ) ≈ (∆x)2 ( λ

16π2
)( (1 + x2

1)
(1 − x2

1)2
) +O (λ2,

1
s2

, (∆x)3) . (4.7)
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Hence, again we have the same condition that the Relative Entropy is monotonically increasing
w.r.t ∆x at large s, for all x1 ∈ (−1, 1) in leading order if and only if λ > 0.

In fig.(4) we have plotted DQ for the φ4 theory for λ = 0.1. As fig.(4) shows, DQ first
decreases to zero at s = 4m2 before monotonically rising. In Section (5.2), we will compare
the s ≫ 1 formula in eq.(4.7) to a more general high energy bound.

4.2 Chiral perturbation theory

We now turn to χPT which is a famous effective field theory to understand the low energy
phenomenology of QCD. χPT7 was invented as an effective field theory [33, 34] to explain
the low energy dynamics of QCD while being approximately consistent with the underlying
symmetry (which exactly match in the chiral limit i.e., quark mass going to 0). Chiral pertur-
bation theory gives good agreement to phenomenology for energies up to approximately 500
MeV. In order to incorporate 1-loop effects, one writes down a four-derivative counter-term
Lagrangian [32,35] in which there are several low energy constants (LEC’s) to fix. These are
fixed by comparing with experiments. Roughly speaking, scattering and resonance data en-
ables one to fix these LEC’s. This procedure can be iterated to higher orders as well with the
LEC’s proliferating. The state of the art is two-loops [36], although in this section we will focus
on the older 1-loop results8.

In this section, we will first start by considering the scattering amplitude as given in [32,37]
only till 1-loop (where everything is in units of the pion mass, mπ),

Mab→cd(s, t(x), u(x)) = A(s, t, u)δabδ
cd + A(t, u, s)δc

aδ
d
b + A(u, s, t)δd

aδ
c
b , (4.8)

where,

A(s, t, u) = 1
f 2
(s − 1) + 1

f 4
(b1 + b2s + b3s2 + b4(t − u)2)

+ 1
f 4
(F(1)(s) + G(1)(s, t) + G(1)(s, u)) , (4.9)

F(1)(s) =1
2
(s2 − 1)J(s) , and G(1)(s, t) = 1

6
(14 − 4s − 10t + st + 2t2) . (4.10)

Here f is the pion decay width, f ≈ 95 MeV and

J(z) = 1
16π2

⎛
⎝
−2

√
(1 − 4

z
) ln(1

2
(
√

z − 4 +
√

z)) + iπ

√
(1 − 4

z
) + 2

⎞
⎠

, (4.11)

where J(z) is analytically continued to z < 4 in such a way that J(0) = 0. Furthermore, all the
bi , i = {1, 2, 3, 4} are re-normalized, scale dependent constants.

First we will look at the high energy limit of the relative entropy. We first expand the
amplitude as

M(s, x)
M(s, x1)

= (3 + x2

3 + x2
1
) +O ( 1

ln(s)) , (4.12)

which gives us that:

DQ (ρ(1)A ∣∣ρ
(2)
A ) ≈ 2

(3 − x2
1)

(3 + x2
1)2
+O ( 1

ln(s) , (∆x)3) . (4.13)

7For some important reviews and uses of χPT , please refer to [28], [29], [30], [31] and [32].
8We are thankful to B. Ananthanarayan for educating us on χPT !
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Analytic
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Figure 5: Behaviour of DQ for the χPT (similar to fig.(4) for the φ4 amplitude) amplitude
as a function of x1 for different values of s (with Data-fitted values of the parameters taken
from [37] and [38]). The analytic bound is the one found in eq.(4.13) which is different
than the one found in Section (5.2).

Note that this form is going to be different from the general high energy limits to be con-
sidered in later sections–this is because χPT is an effective field theory which will not satisfy
the polynomial boundedness conditions assumed non-perturbatively.

Next, we will again be focusing on checking the behaviour of the Relative entropy w.r.t∆x
near the threshold, s = 4 and to leading order in perturbation theory i.e., in order of 1

f 2 . In
doing so, we will find constraints on the bi-coefficients (effectively only on b3 and b4) which
we will compare with the best fit values found in [38] (Note that all the bi values are compared
at the scale of the pion mass). We will be finding these constraints separately for the following
three reactions, which we have chosen to be the three independent reactions to which the rest
are related by crossing symmetry. These are:

π0π0 Ð→ π0π0 ,

π+π− Ð→ π0π0 ,

π+(−)π+(−) Ð→ π+(−)π+(−) .

(4.14)

4.2.1 π0π0 Ð→ π0π0

The amplitude for this reaction is as found in table (6). So using eq.(4.10) for the amplitude
and expanding around s = 4 to leading order in perturbation, we get (keeping in mind that in
leading order the amplitude is real and hence can simply be whole squared when substituted
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into eq.(3.18))

DQ (ρ(1)π0 ∣∣ρ(2)π0 )
s→4ÐÐÐÐÐÐÐÐÐ→

leading order in 1
f 2

(∆x)2
f 2

(b3 + 3 b4 −
37

1920π2
) (s − 4)2

+O ((s − 4)
5
2 ,

1
f 3

, (∆x)3) .

(4.15)

Therefore, whether the relative entropy is monotonically increasing or decreasing as a function
of (s − 4)2, depends upon the sign of DQ governed by the combination,

DQ (ρ(1)π0 ∣∣ρ(2)π0 )∝ (b3 + 3 b4 −
37

1920π2
) . (4.16)

4.2.2 π+π− Ð→ π0π0

The amplitude goes as mentioned in table (6), and from eq.(4.10), following similar steps as
in the previous reaction, we get that

DQ (ρ(1)π0 ∣∣ρ(2)π0 )
s→4ÐÐÐÐÐÐÐÐÐ→

leading order in 1
f 2

2
3
(∆x)2

f 2
(b4 −

31
5760π2

) (s − 4)2 +O ((s − 4)
5
2 ,

1
f 3

, (∆x)3) .

(4.17)

Hence the sign of DQ will depend on

DQ (ρ(1)π0 ∣∣ρ(2)π0 )∝ (b4 −
31

5760π2
) . (4.18)

4.2.3 π+(−)π+(−) Ð→ π+(−)π+(−)

Now, the amplitude can again be found in table (6), so we get that

DQ (ρ(1)π+(−) ∣∣ρ
(2)
π+(−)
) s→4ÐÐÐÐÐÐÐÐÐ→

leading order in 1
f 2

1
2
(∆x)2

f 2
(−b3 − b4 +

49
5760π2

) (s − 4)2

+O ((s − 4)
5
2 ,

1
f 3

, (∆x)3) .

(4.19)

Therefore, like before, we have that the sign depends on

DQ (ρ(1)π+(−) ∣∣ρ
(2)
π+(−)
)∝ −(b3 + b4 −

49
5760π2

) . (4.20)

We will now represent the combinations of bi ’s in terms of the scattering lengths. We use
the definition of the scattering lengths (eg. [22]),

a(I)
`
= 4``!
(2` + 1)

∂ `

∂ t`
(M(I)(s, t)) ∣

s=4,t=0
= 4``!
(2` + 1)∑J

⎛
⎝

C I J
st
∂ `

∂ s`
(M(J)(s, t)) ∣

s=0,t=4

⎞
⎠

,

(4.21)

where ` = 0, 1, 2, ... is the spin of the partial wave and I = 0, 1, 2 are the three channels
of the amplitude with O(3) symmetry, namely the singlet, anti-symmetric and the traceless
symmetric channels defined as

M(0)(s, t) = 3 A(s, t, 4 − s − t) + A(t, 4 − s − t, s) + A(4 − s − t, s, t) ,

M(1)(s, t) = A(t, 4 − s − t, s) − A(4 − s − t, s, t) ,

M(2)(s, t) = A(t, 4 − s − t, s) + A(4 − s − t, s, t) ,

(4.22)
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with A(s, t, u) as given in eq.(4.10). C I J
st is the involutory (i.e. is its own inverse) crossing

matrix relating the s and t channels such that

M(I)(s, t, u) =∑
J
(C I J

st M(J)(t, s, u)) , (4.23)

with

Cst =
1
6

⎛
⎜⎜⎜⎜
⎝

2 6 10

2 3 −5

2 −3 1

⎞
⎟⎟⎟⎟
⎠

. (4.24)

Please note that the expression in eq.(4.21) differs from the standard definition of the scatter-
ing lengths in eq.(5.2) by just some constant factors which can be explicitly worked out to be
of the form 32π (2`)!4` .

Now, since the derivative is w.r.t t, we can just expand M(I)(4, t) in powers of t for each
channel up-to some order to get the respective scattering lengths. Note that by its definition,
since the I = 0, 2 channels are symmetric in t ↔ u = −t (at s = 4), we must have that I = 0, 2
channels only have even powers of t in their expansion while the I = 1 channel only has odd
powers of t. Upon doing this exercise, we get the expressions for the S-wave scattering lengths
as

a(0)0 = 7
f 2
+ 1

f 4
(5 b1 + 12 b2 + 48 b3 + 32 b4 +

49
16π2

) ,

a(2)0 = − 2
f 2
+ 2

f 4
( b1 + 16 b4 +

1
8π2
) , (4.25)

and for the P-wave scattering length, we have

a(1)1 = 8
3 f 2

+ 8
3 f 4

( b2 + 8 b4 −
17

576π2
) , (4.26)

while the D-wave scattering lengths are

a(0)2 + 2 a(2)2 = 1152
5 f 4

(b3 + 3 b4 −
37

1920π2
) ,

a(0)2 − a(2)2 = 768
5 f 4

(b4 −
31

5760π2
) ,

a(2)2 = 128
5 f 4

(b3 + b4 −
49

5760π2
) ,

(4.27)

which are exactly the combinations obtained above for the three independent reactions. Now
as we will review in the next section, precisely the first two D-wave scattering length combina-
tions are positive! This condition follows from the Froissart-Gribov representation of the ` ≥ 2
scattering lengths and is quite general. Namely, we have that

a(0)2 + 2 a(2)2 ≥ 0 , a(0)2 − a(2)2 ≥ 0 , 2a(0)2 + a(2)2 ≥ 0 . (4.28)

Now for the a(2)2 scattering length, there appears to be a choice. By choosing this to be positive,
we will find that the phenomenological values lie within the admitted region in fig.(6). The
other sign is in fact strongly disfavoured as it would rule out the best fit and experimental
values. We do not know of a fundamental reason for this and will assume that a(2)2 ≥ 0
continues to hold for physically interesting theories. Furthermore, note that in χPT from
eq.(4.25) and eq.(4.26) we have a(0)0 , a(1)1 ≥ 0, a(2)0 ≤ 0 but more usefully

a(0)0 + 2a(2)0 ≥ 0 , 2a(0)0 + a(2)0 ≥ 0 , a(0)0 − a(2)0 ≥ 0 , a(2)0 ≤ 0 , (4.29)
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at leading order. In fact, these inequalities in eq.(4.28) and eq.(4.29) are also supported by
experimental data taken from [38]. Now, if we combine all the three constraints eq.(4.28)
and plot them along with the best fit values from experimental data of the partial waves found
in [38], we find the allowed region in fig.(6). As can be seen, the best fit value is quite close
to the boundary of the combined allowed region.

-0.010 -0.008 -0.006 -0.004 -0.002 0.000 0.002

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

b3

b
4

Allowed region of b3 and b4

π0π0→ π0π0 & π+π-→ π0π0

π+π+→ π+π+

Best Fit Values

BCEGS II

Weinberg lagrangian 2-loop values

Figure 6: Allowed region of b3 and b4 for monotonically changing Relative Entropy with
signs fixed as in eq.(4.29) and eq.(4.28) and a(2)2 ≥ 0, compared to the Data-fitted values
taken from [37] and [38].

4.3 Type II superstring theory

After considering φ4 and the effective field theory χPT we turn to the scattering amplitude
for four dilatons in tree level type II string Theory (in the units of the length of string squared,
α′, which has been set as α′ = 4) [39],

M(s, t, u) = Γ (−s)Γ (−t)Γ (−u)
Γ (1 + s)Γ (1 + t)Γ (1 + u) . (4.30)

Noting that the Gamma function, Γ (z) does not have any zeros and has poles at z ∈ Z−,
we highlight the following simple properties of this amplitude which will be relevant later on:

• Zeroes of the Amplitude : The zeroes of the amplitude will occur when the Gamma
functions in the denominator has a pole. This will happen when either (1 + s) , (1 + t) ,
(1+u) ∈ Z−. However, in the physical region we have that s ≥ 0 , t ≤ 0 , u ≤ 0. Therefore,
the only zeros will occur when

s ∈ {2
(1 + n)
1 + x

, 2
(1 + n)
1 − x

; n ∈ N} , for fixed x . (4.31)

• Poles of the Amplitude : The poles of the amplitude will occur when the Gamma
functions in the numerator encounters a pole. This will happen when either (−s) , (−t) ,

24

https://scipost.org
https://scipost.org/SciPostPhys.9.5.081


SciPost Phys. 9, 081 (2020)

(−u) ∈ Z−. However, again, since in the physical region we have that s ≥ 0 , t ≤ 0 , u ≤ 0,
hence, the poles will occur only when

s ∈ N . (4.32)

These effect of the aforementioned properties on the Entanglement and Relative Entropy will
be clear when we look at eq.(3.7) and also use expressions derived in Appendix (B.2). Noting
that

Pg(x) =
g(x) ∣M(s, x)∣2

∣M(s, y)∣2 +σ ∂ 2

∂ x2 (∣M(s, x)∣2) ∣
y
+O(σ2)

, (4.33)

we see that Pg(x) has a peak when (s, y) is a zero of the amplitude and conversely, is 0 when
(s, y) is a pole of the amplitude. Therefore, we expect the Entanglement and the Relative
Entropy to have such behaviour also. In the following section, we mark the zeros with red
dotted lines and the poles with green dotted lines.

4.3.1 Fixed x1 and ∣∆x ∣ with σ = 10−4
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-1

0

1

2

3

4

5

-3.00

-2.95

-2.90

-2.85

-2.80

-2.75

-2.70

-2.65

-2.60

-2.55

s

D
Q
(ρ
1
||ρ

2
)

S
E
E
(ρ
1
)-
S

∞

x1=0.2, |Δx|=0.05, σ=10
-4

Figure 7: Plot of Relative Entropy between states at (s, x1) and (s, x1 + ∣∆x ∣) (in Blue) and
the Entanglement Entropy for states at (s, x1) (in Red) vs s

The main observation is that the Relative Entropy and the Entanglement Entropy are pos-
itively correlated and this correlation is higher for smaller ∆x as can be seen in fig.(7).

4.3.2 Fixed s and ∣∆x ∣

Before we plot, we remind ourselves of the simple observation that the relative entropy is
expected to be the same for x1, x1 − ∣∆x ∣ ; x1 > 0 and x1, x1 + ∣∆x ∣ ; x1 < 0 and vice versa by
physical symmetry. So to make this symmetry explicit in our plots of SR(s, x1, x1 −∆x), we
should choose a convention where the sign of∆x is fixed to be opposite for x1 > 0 and x1 < 0.
In fig.(8), we have chosen it such that ∆x > 0 ; x1 > 0 and vice versa (Note that this does not
change the nature of the plots at all, just shifts it a bit).
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Figure 8: Zoomed in plots to show behaviour near x1 = 0.

4.3.3 Monotonicity in ∆x

Now we perform a simple analytic exercise to check monotonicity of the Relative Entropy w.r.t
∆x for small enough values of∆x similar to eq.(B.38). Furthermore, we check the sign of the
coefficient of (∆x)2 in eq.(B.38) close to the threshold s = 0. Using eq.(4.30) and expanding
around the threshold gives us

∣M(s, x)∣2
∣M(s, x1)∣2

= (M(s, x)
M(s, x1)

)
2

s→0ÐÐ→ (1 − x2
1)2

(1 − x2)2 +O(s3) , (4.34)

using which we find

1
2
∂ 2

∂ x2
(ln( ∣M(s, x)∣2

∣M(s, x1)∣2
)) ∣

x1

s→0ÐÐ→ 2
(1 + x2

1)
(1 − x2

1)2
+O(s3) . (4.35)

Therefore, in leading order, DQ in eq.(3.19), which is the relative entropy above the hard sphere
value of (∆x)2/4σ near the threshold will be monotonically increasing for all x1 ∈ (−1, 1) as

DQ (ρ(1)A ∣∣ρ
(2)
A ) = 2(∆x)2 ( (1 + x2

1)
(1 − x2

1)2
− ζ(3)s3 +O(s4)) +O((∆x)3) . (4.36)

Here we have explicitly shown the O(s3) term which is a constant in x1 in this case.

5 Relative entropy: general considerations

In this section, we will give a unifying framework to explain some of the observations above.
In particular, we will consider the behaviour of relative entropy close to the threshold s = 4m2

as well as in the high energy limit s →∞ to extract certain general conclusions.
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5.1 Relative entropy in terms of scattering lengths

If we are close to the threshold s = 4m2, we can derive a general formula in terms of the
scattering lengths for the relative entropy considered above. This is generally valid in absence
of massless exchange poles. We start with the partial wave expansion,

M(I)(s, t) =
∞

∑
`=0
(2` + 1) f (I)

`
(s)P`(x) . (5.1)

Then we write an expansion for f (I)
`
(s) valid near the threshold s = 4m2 as follows,

Re[ f (I)
`
(s)] = ( s − 4m2

4
)
`

(a(I)
`
(s) + b(I)

`
( s − 4m2

4
) +⋯) , (5.2)

where a(I)
`

are the scattering lengths for the I ’th isospin and the b(I)
`

’s are the effective ranges.

We can also show that f (I)
`

’s are real at leading order by using the expansion of 1/ f (I)
`

given
in Section 5 of [54]. Hence we would get scattering lengths at the leading order even when
we consider the expansion of f (I)

`
. This is equivalent to the observation that we had noted

previously in Section (4) where the amplitudes were real in leading order. With this in mind,
it is now straightforward to verify that when only even spins are exchanged, the quantum
relative entropy DQ is given by

DQ(ρ1∣∣ρ2) =
15
4
(∆x)2∑I cI a(I)2

∑I cI a(I)0

(s − 4m2)2 . (5.3)

Here∑I cI a(I)
`

is a linear combination of the scattering lengths depending on the process being
considered. We tabulate the coefficients cI below for the processes where only even spins are
exchanged:

π0π0 → π0π0 ∶ c0 = 1 , c2 = 2 , (5.4)

π+π+ → π+π+ ∶ c0 = 0 , c2 = 1 , (5.5)

π+π− → π0π0 ∶ c0 = 1 , c2 = −1 . (5.6)

Now writing down the Froissart-Gribov representation for the ` = 2 scattering lengths, one
can derive inequalities for the combination appearing in the numerator [22, 40]. The logic
is to observe that assuming the Froissart bound to hold and writing down a twice-subtracted
dispersion relation, the ` ≥ 2 scattering lengths admit a Froissart-Gribov representation whose
integrands can be shown to be positive, being related to the scattering cross sections. This is
reviewed in [22] and we refer the reader to that reference. We start with the Froissart-Gribov
representation for the derivative of the amplitude (as given in [22]),

∂ 2

∂ s2
(M(I)(s, t)) ∣

s=0,t=4
= 2
π
∑
J
(∫

∞

4m2

ds′

(s′)3
(δI J + C I J

su ) Im[M(J)(s′, 4)]) . (5.7)

Here, the first term is the contribution from the cut s′ ≥ 4 and the second term is from the cut
u′ ≥ 4↔ s′ ≤ 4 after a simple variable change. Here C I J

su is the equivalent of eq.(4.23) for the
crossing matrix relating the s and the u channels such that

Csu =
1
6

⎛
⎜⎜⎜⎜
⎝

2 −6 10

−2 3 5

2 3 1

⎞
⎟⎟⎟⎟
⎠

. (5.8)
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Then using the optical theorem we simply observe that for the physical processes of the form
A+B → A+B, the integrand in eq.(5.7) is positive. This is so as the Optical Theorem guarantees
the positivity of the absorptive part at s ≥ 4 , t = 0 which can trivially be extended to s ≥ 4 , t ≥ 0
since all the Legendre Polynomials are positive for x ≥ 1. This argument implies that the
first part of the integrand i.e., the s−cut contribution is positive. However, for the process
A + B → A + B, the crossing symmetric process in the u− channel is A + B̄ → A + B̄ which is
also a valid process for applying the Optical Theorem and consequently, positivity. Hence, for
such processes, or equivalently, such linear combinations of the LHS in eq.(5.7) is positive.
Thereafter, using eq.(4.21), we find certain linear combinations of the scattering length to be
positive so that

∑
I

cI a(I)2 ≥ 0 , cI =∑
J

dJ C J I
st , (5.9)

where dI are the coefficients corresponding to the reactions π0 π0 → π0 π0, π+ π+ → π+ π+,
and π0 π+ → π0 π+ (as given in table (6)) which lead to the the cI ’s displayed in eq.(4.28),
namely

a(0)2 + 2a(2)2 ≥ 0 , a(0)2 − a(2)2 ≥ 0 , 2a(0)2 + a(2)2 ≥ 0 . (5.10)

These also imply that a(0)2 ≥ 0. The last inequality in eq.(5.10) follows from the first two and
need not be considered independently. Now, as explained before, the χPT calculations also
imply a(2)2 ≥ 0. However, imposing this last inequality does not have any significant effect in
the S-matrix bootstrap numerics.

Now unfortunately, inequalities for the ` = 0 scattering lengths do not follow from similar
arguments since the an analogous integral representation does not exist. However, using the
χPT Lagrangian, it is easy to show that the following inequalities hold (see [38] and the
explicit formulas eq.(4.25), eq.(4.26) in the previous section):

a(0)0 + 2a(2)0 ≥ 0 , 2a(0)0 + a(2)0 ≥ 0 , a(0)0 − a(2)0 ≥ 0 , a(2)0 ≤ 0 . (5.11)

These are similar to the D-wave scattering inequalities. These S-wave inequalities have the
strongest effect on the S-matrix bootstrap numerics. If we insist that these continue to hold
for a physical theory, then we find the following signs for DQ for small ∆x and s ∼ 4m2:

π0π0 → π0π0 ∶ DQ ≥ 0 (5.12)

π+π+ → π+π+ ∶ DQ ≤ 0 (5.13)

π+π− → π0π0 ∶ DQ ≥ 0 . (5.14)

The bottom-line of the analysis in this section is that the sign of DQ is correlated with dispersion
relation bounds. The other two processes, namely π+π0 → π+π0 and π+π− → π+π− also
involve odd spin partial waves and lead to more complicated expressions like

π+π0 → π+π0 ∶ DQ = −3(∆x)2(s − 4m2)2
1
4(a

(1)
1 )2 − 5

4 a(2)0 a(2)2

(a(2)0 )2
, (5.15)

π+π− → π+π− ∶ DQ =
3
4
(∆x)2(s − 4m2)2

⎡⎢⎢⎢⎢⎣
5

a(0)2 + 2a(2)2

a(0)0 + 2a(2)0

− 9
4

(a(1)1 )2

(a(0)0 + 1
2 a(2)2 )2

⎤⎥⎥⎥⎥⎦
.(5.16)

Using eq.(5.11) and assuming a(2)2 ≥ 0 we in fact find DQ ≤ 0 for π+π0 → π+π0. The other
reaction does not appear to have a definite sign. Note that we did not need to assume anything
about a(1)1 .

The point of view that we will adopt in what follows is that imposing the above signs
for DQ will enable us to consider the positivity constraints on the D-wave scattering lengths
which when supplemented by the S-wave scattering length constraints, we will get consistency
conditions that will enable us to rule out various regions.
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Comment on Rényi divergence

In the limit when ∆x ≪ 1,σ ≪ 1, using eq.(B.45) one can easily verify that the only change
that happens in the Rényi divergence expression is that the relative entropy expressions get
multiplied by a factor of n. This is a pleasingly simple result. Beyond the limit ∆x ≪ 1, the
results will be dependent on n in a more interesting manner, but this is something that we will
not pursue in this paper.

5.2 High energy bounds

In this section we will consider the high energy behaviour of relative entropy. For definiteness,
we have in mind the π0π0 → π0π0 (or more generally AA→ AA in massive QFTs) scattering.
Our starting point will be eq.(3.19) which we reproduce below for convenience:

DQ (ρ(1)A ∣∣ρ
(2)
A ) =

1
2
(∆x)2( ∂

2

∂ x2
(M1(s, x))∣

x1

− ( ∂
∂ x
(M1(s, x))∣

x1

)
2

) +O((∆x)) . (5.17)

Using the fact that

∣M(s, x)∣2 = s
8π

dσel

d x
, (5.18)

where 1
2π

dσel
d x is the elastic differential cross-section, we can easily show that

DQ (ρ(1)A ∣∣ρ
(2)
A ) =

1
2
(∆x)2

⎛
⎝
σ′′′el

σ′el
− (
σ′′el

σ′el
)

2⎞
⎠
∣
x=x1

, (5.19)

where we have used the shorthand notation σ′el = dσel/d x and have dropped the O((∆x)σ)
terms. We expect that this form will be useful for phenomenological studies in the future. This
immediately leads to the inequality

DQ (ρ(1)A ∣∣ρ
(2)
A ) ≤

1
2
(∆x)2

σ′′′el

σ′el
∣
x=x1

. (5.20)

This is quite generally true irrespective of the regime of s. Now high energy bounds on dif-
ferential elastic cross sections have been worked out previously by Martin and collaborators
in [10] and by Singh and Roy in [41] building on the work by [42]. The actual bound is not
going to be relevant for us. It suffices to note that the bound on the differential cross section
for s ≫ 4m2 and −1 < x < 1 is of the form [10,41]

σ′el ≤
f (s)

(1 − x2)p . (5.21)

The power p = 1/2 in [41] while it is p = 2 in [10]–these papers use different convergence cri-
teria. The derivation of such “Froissart-like” bounds for massive QFTs uses analyticity, unitarity
and polynomial boundedness inside the so-called Lehmann-Martin ellipse [41] or a larger el-
lipse [10] and f (s) works out to be a known function having dependence on

√
s ln s as well

as some unfixed parameters9. In [41], a more complicated form of the bound is also given,
dropping the polynomial boundedness condition, making phenomenological studies where the
energy is never so high as to be sensitive to the ln s behaviour more plausible. In our case,
the f (s) dependence will eventually drop out and we will focus first on using the form in
eq.(5.21). In order to use the above inequality in a useful manner we write

σ′el =
f (s)

(1 − x2)p (1 +
g(x)

sα
) , (5.22)

9Thankfully in the relative entropy bound there are no unfixed parameters.
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where α > 0 and g(x) is a continuous positive function with bounded derivatives, i.e., there
exists some gmax such that g ′′(x) < gmax with gmax > 0 for −1 < x < 1. Using this it is easy to
show that

DQ (ρ(1)A ∣∣ρ
(2)
A ) ≤ p (∆x)2 (1 + (2p + 1)x2

1

(1 − x2
1)2

+ gmax

sα
) . (5.23)

Therefore, in the s →∞ regime we find

DQ (ρ(1)A ∣∣ρ
(2)
A ) ≤ p (∆x)2 1 + (2p + 1)x2

1

(1 − x2
1)2

. (5.24)

The R.H.S is positive everywhere in −1 < x1 < 1 and monotonically goes towards infinity
in 0 ≤ x1 < 1. We expect that this bound will hold in situations where the assumptions of
unitarity, analyticity and polynomial boundedness hold. For instance the form in eq.(4.7) for
the λφ4 theory is very similar to the above form. Using the high energy bound derived above
we land up with the constraint:

(∆x)2 ( λ

16π2
)( (1 + x2

1)
(1 − x2

1)2
) ≤ p (∆x)2 1 + (2p + 1)x2

1

(1 − x2
1)2

, (5.25)

which leads to a bound on the coupling λ ≤ 8π2 for p = 1/2 and λ ≤ 32π2 for p = 2. Of course
this should not be taken too seriously since we have used only the 1-loop perturbation theory
to reach this conclusion. Nevertheless, we do expect the general philosophy behind such an
argument to be true–namely high energy considerations should restrict the coupling. Numeri-
cal S-matrix bootstrap arguments10 also lead to bounds on the coupling but the considerations
there are quite different [16].

The string theory answer for s ≪ 4/α′, which is essentially the supergravity limit, is very
similar to this form except that we do not expect perturbative string theory to respect poly-
nomial boundedness [43]. So in situations where there are massless exchanges or where the
stringy modes become relevant, the form of the above bound is expected to change. It is easy
to check that in the string theory answer when s ≫ 1/α′, the behaviour of the relative entropy
develops vigorous oscillations. Presumably, this is an indication of the extended length of the
string coming into play and affecting distinguishability. In fact the low energy limit of the
string answer given in eq.(4.36) violates the p = 1/2 result of [41] but respects the p = 2 result
of [10]. This is still quite surprising, and perhaps the reason for this is that in the massive QFT
context when we take s →∞ we can essentially ignore the masses of the scattering particles.

Comment on the Rényi divergence bound

Using eq.(B.45) it is easy to repeat the above exercise using eq.(5.21) leading to

Dn(ρ1∣∣ρ2) ≤ n
(∆x)2

4σ
+ n p (∆x)2 (1 + (2p + 1)x2

1

(1 − x2
1)2

) . (5.26)

5.3 Regge behaviour of DQ

Let us turn to the s−channel Regge behaviour of DQ for AA → AA scattering. In this limit, we
will consider taking ∣s∣→∞ keeping t fixed. The amplitude behaves as [44]

∣M(s, t)∣ ≈ β(t) ( s
s0
)
`(t)

. (5.27)

10Translating the results of [16] using the 1-loop φ4 gives λ ≲ 267.4 which we quote for fun!
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The function `(t) is called the Regge trajectory and we are considering the leading trajectory.
The study of the functional form of `(t) has been actively pursued on both theoretical grounds
(in the 1960’s which eventually led to string theory) as well as on experimental grounds. In
fact, realistic Regge trajectories are drawn from experimental data. These are found to have
the generic form [45] for small t

`(t) = α0 + α1 t + α2

2
t2 +O(t3) , (5.28)

with α2 > 0 (supported by experiments; we do not know of any other existing reason!). This
non-linearity is crucial. From [44], one can also write β(t) ∼ β0+β1 t+ β2

2 t2+⋯ if there are no
massless resonances. A strictly linear Regge trajectory has been shown to violate the Cerulus-
Martin fixed angle bound as well as the Froissart bound–see [45]. To get some mileage out of
the relative entropy considerations, let us rewrite eq.(3.19) as

DQ (ρ(1)A ∣∣ρ
(2)
A ) =

(∆t)2
2

∂ 2
t [ln(

∣M(s, t)∣2
∣M(s, t1)∣2

)]
t=t1

, (5.29)

where, we have used x i = 1 + 2t i/(s − 4m2) . Now, using the Regge amplitude eq.(5.27), one
obtains

DQ (ρ(1)A ∣∣ρ
(2)
A ) ≈ (∆t)2 [β2 + α2 ln( s

s0
)] s>>s0ÐÐÐ→ (∆t)2 α2 ln( s

s0
) > 0 , (5.30)

where the last inequality arises if α2 > 0. Note that, this expression is valid near t1 = 0
i.e., near x1 = 1. In this sense, we have a stronger expression in the Regge limit than from
eq.(5.24). Consider the situation where we have Regge behaviour and the answer can be as
large as what is allowed from eq.(5.24) when x1 is away from 1. It is expected that as x1 → 1
we should get the behaviour in eq.(5.30). So we want the two behaviours to be “stitched”
continuously in the transition to the limit t → 0 ⇐⇒ x → 1. Now, suppose α2 = 0 then
DQ ∝ β2(∆t)2 ≈ β2s2(∆x)2 which would contradict the trend suggested by eq.(5.24) unless11

β2 > 0. Subsequently, if α2 ≠ 0, we have from eq.(5.30) that α2 > 0 to avoid a discontinuous
transition from the behaviour in eq.(5.24). This is so as if α2 < 0 then we can always choose
a large enough s such that DQ in eq.(5.30) will become negative (for s ≥ s0 exp [β2/(−α2)]).
Thus, our analysis of relative entropy further bolsters the experimental observation of non-
linear Regge trajectories by providing an explanation why α2 > 0 must be respected.

5.4 A new type of positivity

Here we will discuss a new type of positivity for AA → AA scattering in massive QFTs which
appears to be valid at least in the high energy limit. Up to O(σ0) we have

DQ (ρ(1)A (x1) ∣∣ ρ(2)A (x2)) =
∞

∑
n=2

(∣x1∣ − ∣x2∣)n
n!

∂ n
x ln ∣M(s, x)∣2∣

x=x1

, (5.31)

where we have used eq.(B.35) and expanded. If we write12

ln ∣M(s, x)∣2 =
∞

∑
`=0
(2` + 1)µ`(s)P`(x) , (5.32)

11In the narrow resonance approximation, following [44], it can be shown that β2 > 0 holds.
12To be rigorous, we should consider ln ∣M(s, x)∣2/∣M(s, xmin)∣2 where xmin is where ∣M(s, xmin)∣2 is minimized

(we assume this is non-zero) so that µ`(s) is implicitly dependent on xmin.
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with `’s running over even integers (as LHS is an even function for identical particles) and if
µ`(s) ≥ 0 for ` > 0, then using

∂ n
x P`(x)∣

x=x1

≤ ∂ n
x P`(x)∣

x=1
, (5.33)

with n ≥ 2 and where x1 ∈ (−1, 1), we have

∂ n
x ln ∣M(s, x)∣2∣

x=x1

≤ ∂ n
x ln ∣M(s, x)∣2∣

x=1
, (5.34)

which leads to an interesting bounding behaviour, namely

DQ (ρ(1)A ∣∣ρ
(2)
A ) ∣

x=x1

≤ DQ (ρ(1)A ∣∣ρ
(2)
A ) ∣

x=1
, (5.35)

a feature verified by many of our plots. However, µ`(s) > 0 does not appear to follow from
any known properties of the amplitude, does not appear to have a mention in the literature
and is distinct from Martin positivity [46] (see Section7.6).

In the high energy limit discussed above, we can use ∣M(s, x)∣2 ∼ f (s)/(1 − x2)p with
p ≥ 1/2. Using this it is easy to verify13 that µ`(s) > 0 for ` ≥ 2. This kind of positivity emerging
in the high energy limit14 is reminiscent of what happens in the conformal bootstrap [51,52]
where in the large conformal dimension limit, there is an underlying cyclic polytope picture
for the CFT. Furthermore, we numerically checked the sign of µ`(s) , ` ≥ 2 in the low energy
regime and it turns out to be positive as well. This should have been anticipated keeping in
mind our observations in fig.(4), where the maxima is clearly at x = 1 for fixed s in every
regime.

Lastly, we also checked the behaviour of µ`(s) for the string amplitude and observed that
positivity is guaranteed to be satisfied before we encounter any of the infinite poles that the
amplitude has at integer values of s. However, it was also interestingly noted that the higher
poles affected (changed the sign of) of µ`(s) after a certain spin i.e. only for ` ≥ `(sn = n)
only! In fig.(9), we have plotted the even spin µ`(s) for the partial wave expansion,

ln( ∣M(s, x)∣2
∣M(s, xmin(s))∣2

) =
∞

∑
`=0
(2` + 1)µ`(s, xmin(s))P`(x) . (5.36)

However, the denominator inside the log is a constant w.r.t x . Hence, when we split the
log as a difference (dimensionally taking care of each term inside the log by dividing with a
constant s0 = 1m2), it will only contribute to the 0th partial wave µ0(s, xmin(s)). All the higher
spin partial waves will therefore be independent of xmin(s). Furthermore, in our positivity
claim regarding µ`(s), we are only concerned with ` ≥ 2 because of the derivatives present in
eq.(5.31) and hence the claim is independent of xmin(s). Therefore, for ease of calculation,
we can effectively fix xmin(s) = x0 to be anything we want for convenience.

We also noted that for small s, the partial waves are just a constant,
µ`(s) ≈ 4/`(` + 1) , ` ≥ 2 and hence we will divide out this factor for ease of plotting all
the partial waves on the same scale.

6 Hypothesis testing using relative entropy

So far, we have been considering two density matrices at two different angles, corresponding
to the same theory with all other parameters the same. However, we can also consider two

13µ0 sign will not affect since it multiplies P0(x) = 1.
14χPT will not respect this positivity since it is an effective field theory and does not obey the high energy bound.
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Figure 9: Behaviour of normalized µ`(s) for even spins for the String amplitude with x0 = 0.
It can be seen that the ` = 2, 4 violates positivity after encountering the first pole at s = 1
while the higher spins violate at higher s.

different density matrices, ρ1 and ρ2 where ρ2 has been obtained from ρ1 by varying the
underlying parameters in the theory (which could be some couplings, mass parameters or even
s itself) by an infinitesimal amount, keeping the angle fixed. Let us examine what happens in
this case.

We have in this situation

D(ρ1∣∣ρ2) = ∫
1

−1
d x P(ci , x) ln

P(ci , x)
P(ci +∆ci , x) ,

= −∫
1

−1
d x P1 (∆ci

∂i P1

P1
+ (∆ci)2

2
(∂

2
i P1

P1
− (∂i P1

P1
)

2

) +⋯) , (6.1)

where ∂i ≡ ∂ci and P1 ≡ P(c1
i , x) for shorthand and ci ’s are parameters like coupling, mass etc

or s. It is easy to see that terms like ∫ 1
−1 d x∆ci1⋯∆cik∂i1⋯∂ik P1 will vanish since we can pull

out ∆ci1⋯∆cik∂i1⋯∂ik out and the integral is just unity from normalization. Hence to leading
order we have

D(ρ1∣∣ρ2) =
1
2 ∫

1

−1
d x
(∂i P1∆ci)2

P1
= 1

2 ∫
1

−1
d x P1 (∆ci∂i (ln(

P
P1
)) ∣

1

)
2

. (6.2)

Next, using eq.(3.7) and eq.(3.17) we expand P occurring inside the ln up-to order σ. Subse-
quently, we expand in powers of (x − x1). In leading order, i.e. the (x − x1)2 term integrates
to give 2σ (since (x − x1) integrated with the Gaussian in P will just vanish). Hence we get
something like

D(ρ1∣∣ρ2) ≈ σ(∆ci∂i∂x ln( ∣M(ci , x)∣2
∣M(c1

i , x1)∣2
))

2

∣
x1,c1

i

+O(σ2,∆c3
i ) . (6.3)

Thus the distinguishability of two density matrices with slightly different parameters is gov-
erned by the above quantity.

Example 1: φ4

In the φ4 theory, let us consider the parameter to be λ. It is straightforward to check that in
this case to leading order in the coupling, and near the threshold we have

D(ρ1∣∣ρ2) ≈
1

921600π4
σ(∆λ)2 x2

1(s − 4)4 , (6.4)

33

https://scipost.org
https://scipost.org/SciPostPhys.9.5.081


SciPost Phys. 9, 081 (2020)

which is always positive as σ > 0.

Example 2: String theory

For the string case, let us consider the parameter to be s and expand in small s. We find to
leading order

D(ρ1∣∣ρ2) ≈ 36 ζ(3)2σ(∆s)2 x2
1 s4 . (6.5)

Note that the leading answer is sensitive to the massive stringy modes. In the pure supergravity
regime, the answer at this order vanishes.

6.1 Hypothesis testing using different theories

Now, as mentioned in the introduction, ρ1 and ρ2 could also be density matrices for different
theories. For instance, imagine that the scattering was happening in massless λφ4 theory, but
we wanted to describe it using string theory. What is the relative entropy in this case? Here
we will content ourselves with some numerical exploration. As can be seen in fig.(10), the
relative entropy is comparatively low until the string amplitude encounters a zero since naively
speaking that is where the string and the φ4 amplitude differ drastically. However, it would
be wise to caution ourselves at this point since the relative entropy does not distinguish at the
level of the amplitude; instead, it does so at the level of the probability density, Pg(x). This
can be seen in the plot since even though the string amplitude differs from the φ4 amplitude
by orders of magnitude, the relative entropy is really small for most of the range of s values.
However, near a zero or pole of the amplitude, the behaviour is carried over into the density
function as well, and hence the relative entropy shows a sharp peak there.

0.5 1.0 1.5 2.0
s

0.2

0.4

0.6

D(ρs(x1)||ρϕ(x1))

Figure 10: Plot of Relative entropy between the masslessφ4 amplitude and the string theory
amplitude at the common angle x1 = 0.4 vs s. The red dotted line marks the zero of the string
amplitude.

We will use hypothesis testing in a significant way to isolate interesting S-matrices in the
context of the S-matrix bootstrap for pion scattering in the next section.

7 Constraining S-matrix bootstrap

In this section, we will consider pion scattering using the S-matrix bootstrap techniques dis-
cussed in [17]. We consider the 2 → 2 scattering of particles with O(3) symmetry using the
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ansatz

A(s∣t, u) =
∞

∑
n≤m

anm (ηm
t η

n
u + ηn

tη
m
u ) +

∞

∑
n,m

bnm (ηm
t + ηm

u ) ηn
s , (7.1)

where

ηs =
(
√

4 − 4
3 −
√

4 − s)

(
√

4 − 4
3 +
√

4 − s)
,

and the amplitude,M is defined similar to eq.(D.2). In this case, crossing symmetry becomes
A(s∣t, u) = A(s∣u, t), which the ansatz satisfies trivially. The partial wave unitarity condition,

∣S(I)
`
(s)∣

2
≤ 1 is imposed using SDPB [13] for a grid of s values similar to [16]. Here I denotes

the isospin channel such that partial waves and the amplitude15 are related by the expression

M(s, t, u) = 16 i π
√

s√
s − 4

∑
I=0,1,2
PI ∑
`=0
(2` + 1) (1 − S(I)

`
(s)) P`(x = u − t

u + t
) . (7.2)

Subsequently, SDPB extremizes a linear combination of parameters and gives us the corre-
sponding maximal S-matrix. Since this a numerical venture, we need a cutoff for the infinities
occurring in the summation in eq.(7.1). Hence we restrict our n and m in our ansatz to have
cutoff Nmax and only consider partial waves upto a finite spin, Lmax . To specialize further for
pions, constraints of resonance and Adler zeros were used. ρ−resonance was imposed as a
zero of the ` = 0 partial wave of the anti-symmetric channel as

S(1)1 (m
2
ρ) = 0 , (7.3)

where mρ = 5.5 + 0.5 i.
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s
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Figure 11: Disallowed region in the space of s0 and s2 where both s0 and s2 cannot be
imposed. The cross marked separately is the 1−loop position of the Adler zeroes from best
fit χPT amplitude.

Leading order chiral perturbation theory predicts the presence of Adler zeros. This can be
easily seen (at least at tree level) in eq.(4.10). Adler zeros are actually the zeros of the ampli-
tude when the 4-momenta of an external massless Goldstone-boson goes to 0 under a critical
assumption that there are no poles due to other parts of the diagram [53] at zero 4-momenta
of the Goldstone bosons. Pions are approximate Goldstones and not exactly massless. They

15See Appendix (D) for the details
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also do not interact through a stable particle, thus for 2-2 scattering in CoM frame, they do
not have poles below the threshold. Thus, pion amplitudes have Adler zeros. However, it
requires one of the external pions to go off-shell (4-momenta to be 0) despite being an ex-
ternal particle, hence making s + t + u = 4m2 no longer true (for details, see [18]). In that
case, the zero is found exactly at s = t = u = m2. However, it is non-trivial to locate the Adler
zeros non-perturbatively in the s-plane when s + t + u = 4m2 holds everywhere. Thus, boot-
strap methods become really handy to find the allowed regions of Adler zeros for the partial

waves. The T (I)
`
(s) =

√ s
s−4

S(I)
`
(s)−1
2i is defined such that the identical case unitarity condition

Im (T (I)
`
(s)) ≥ 2

√
s−4

s ∣T
(I)
`
(s)∣

2
is satisfied. Plotting T (0)0 (s) and T (2)0 (s) as a function of s in

the unphysical region 0 < s < 4 gives us the location of Adler zeros s0 and s2. At tree level they
are simply s(0)0 = 0.5, s(2)0 = 2 and at 1-loop they become s(0)0 = 0.437, s(2)0 = 2.003. In general,
they can be written down as

T (0)0 (s(0)0 ) = 0 and T (2)0 (s(2)0 ) = 0 . (7.4)

The next step is to find all pairs of (s0, s2) (for ease of notation we will just refer the the zeroes
as s0, s2 keeping in mind that they are zeroes of the 0th partial wave) that can be imposed
in the ansatz. This can be done by imposing the Adler zero s0 and extremizing the value of
T (2)0 (s) for values of s in (0, 4). If a particular T (2)0 (s) has positive maximum and negative
minimum then we can impose Adler zero s2 = s, else the pair (s0, s2) is not allowed. Upon
repeating the steps for values of s0, it is discovered that the allowed region is a closed area,
which is known as the lake as shown in fig.(11).

In order to determine which values of these extremal matrices are closer to the physical
region, scattering lengths are required which are found through

Re [T (I)
`
(k)] = k2`[a(I)

`
+ b(I)

`
k2 +O(k2)] , (7.5)

where k =
√ s

4 − 1. Here a(I)
`

is the I ’th isospin, spin-` scattering length. ` = 0, 1, 2 are the

S,P,D-wave scattering lengths respectively. b(I)
`

’s are called the effective ranges. Note that this
definition of the scattering length differs with the one given in eq.(4.21) by just an inverse
factor of 32π (2`)! and in this section, we will be referring to this definition only. The main
scattering lengths used to distinguish are a(0)0 , a(2)0 and a(1)1 which have the experimental
values 0.2196 ± 0.0034,−0.0444 ± 0.0012 and 0.038 ± 0.002 respectively. Upon plotting the
lake boundary in the a(0)0 , a(2)0 , a(1)1 space it is found that the lower boundary, more notably
the left side of the lower boundary is closer to the physical region. More details can be found
in [17].

We now look at eq.(3.19). For small ∆x , the sign of C(s, x1) = 1
2(M

′′∣x1 − (M′∣x1)2)
determines whether the Quantum relative entropy DQ is monotonically increasing or not. We
wish to check the sign of C as a function of x1 as we move around the lake. We will avoid the
point x1 = 0 for the π0+π0 → π0+π0 since this causes unnecessary complications in the form
of the DQ. All the remaining cases have been shown to be the same.

We consider the same three reactions as in eq.(4.14). We use theM defined in Appendix
(D) in order to plot C(s, x1) around the lake. Armed with the observations of Section (5), we
now know which reactions are monotonically increasing DQ and which are not. We will use16

Nmax = 10 and Lmax = 11 for the plots but we have checked that none of the features we find
change significantly when Nmax is increased to 14 and Lmax = 17.

16We apologise but computing resources available to us during the time of Covid-19 was not ideal.
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7.1 Lake plots

The monotonicity described in the Section (5) is near threshold. Hence we start our checks
with values very close to 4, say around s ≈ 4.0001 and then increase. We observed that until
s = 4.1 the nature of the plots remains unchanged, only the values shift. Hence without loss
of generality, we choose to see the behaviour of the lake at s = 4.01. As expected, differ-
ent reactions have different effects on the lake. The sample x1 behaviour for two points of
π0 + π0 → π0 + π0 reaction is given by fig.(12). For x1 > 0, some of the points are monoton-
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2
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(s0,s2) = (0.35,2.085)

Figure 12: For π0 +π0 → π0 +π0. S-matrices around the lake show a similar behaviour for
all reactions

ically increasing with x1 and some are monotonically decreasing, as seen in fig.(12). It will
be interesting to explore this behaviour. Now, compiling for all points around the lake, we get
the results of fig.(13). It is important to note that π+ + π+ → π+ + π+ has DQ ≤ 0 as given in
eq.(5.4).
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π+ + π- -> π0 + π0

Figure 13: For s=4.01. Green points respect χPT and red do not

Now combining the disallowed regions of the three reactions, we can rule out a significantly
large portion of the lake boundary as given in fig.(14). This suggests that the lake boundary
can be theoretically increased by constraining the ansatz to respect eq.(5.10) (with a(2)2 ≥ 0)
and eq.(5.11).
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Figure 14: s=4.01 green points respect χPT and red do not

7.2 New constraints: The River

As discussed in the previous section, we intend to increase the lake boundary to make the points
satisfy χPT constraints. To that effect, we are lucky, since the scattering length constraints of
Section(5) are linear in our ansatz parameters and hence can be easily imposed. We summarize
the additional constraints that we imposed along with unitarity to find the new allowed region:

a(0)2 + 2 a(2)2 ≥ 0 , a(0)2 − a(2)2 ≥ 0 , a(2)2 ≥ 0 ,

a(0)0 + 2 a(2)0 ≥ 0 , 2a(0)0 + a(2)0 ≥ 0 , a(2)0 ≤ 0 , a(0)0 − a(2)0 ≥ 0 .
(7.6)

We do not assume anything about the P-wave scattering length. The new allowed region is
given by the fig.(15). As mentioned in the introduction, we shall call this figure, “The River”.
The fact that we could rule out a large portion of previously allowed regions without any
phenomenological input (except resonance) is remarkable!

Of note is the fact that all the constraints were theoretically motivated. The sign of the
spin-2 scattering lengths being fixed by dispersion relations and the spin-0 ones from the χPT
Lagrangian perturbatively. Note that the spin-0 constraints are more powerful then spin-2
constraints. Imposing the D-wave constraints alone results in just a larger version of the lake
with the upper boundary shifted upwards in comparison to the lake. The Adler zeroes cor-
responding to 0−loop χPT (0.5, 2) lie outside the river while the 1−loop (0.437, 2.003) lies
approximately on the upper bank. The 2-loop point (0.4195, 2.008) lies inside the river.

7.3 Hypothesis testing in S-matrix bootstrap

We aim to find theories which are close to χPT along the river banks. By close, we mean that
at least the S- and P-wave scattering lengths must be comparable for such theories. Relative
entropy provides a measure of distance in theory space. Using the formalism of Section(6) we
calculate D(ρ1∣∣ρ2). Since bootstrap S-matrices are non-perturbative they shall be considered
as the physical theory and χPT S-matrix will be considered as an approximation. Hence ρ2

comes from χPT , while ρ1 is calculated using the boundary theories of the “River”. Note that
the distance will be calculated separately for each reaction.
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Figure 15: New allowed region (shaded in blue) after imposing the constraints. Note that
the 1-loop χPT lives close to the “kink” in the upper bank.

This gives us a set of values. Now we must set up a rule to consider some theories and
discard others. We want to allow as many theories as possible discarding only those who are
manifestly distant. The following set of rules seem reasonable to us:

1. We shall consider sequence of theories with violations of up to 5 orders more than the
minimum violation.

2. While sequentially looking at theories with increasing violations of up to order 5, if one
finds that there is no theory with a violation at an intermediate order, then all theories
with greater violations will be discarded.

Using these rules we get the allowed regions for various reactions in fig.(16). We use s = 4.01
and x1 = 1/3 for this analysis. However, this behaviour will remain unchanged for all
x1 ∈ (−1, 1) and s ∈ (4, 4.15]. By demand, we are close to s = 4 since we want to be most
sensitive to the S- and P-wave scattering lengths and not the effective ranges. The validity
of χPT does not depend on the initial and final states therefore only those points who are
“close” for all reactions can serve as candidates of a theory close to χPT . Hence, taking the
intersection of these allowed regions we get the green regions in fig.(1).

As shown in fig.(1), compared to [17], the green regions lie near the top and bottom por-
tions of the so-called peninsula. The distances of some sample points on the physical regions
are given in table (1). Except for π++π0 → π++π0 the lower physical region does remarkably
well for other reactions. This should mean that this region is close to χPT. Looking at fig.(1)
we can see that the peninsula boundary is very close to the lower bank physical region. Hence,
it can indeed be considered “close” to χPT in terms of scattering lengths a(0)0 , a(2)0 and also

a(2)2 . This implies that hypothesis testing indeed works and can be considered a reliable mea-
sure for comparing theories. This is remarkable because the theories being compared can have
very different amplitudes. In our case, one is perturbative from an effective action while the
other is in a crossing symmetric basis following analyticity! Nonetheless, when we compare
the two using relative entropy and minimise their “distance", we somehow end up with the
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Table 1: Distances of some boundary theories from χPT. Here ijkl means
πi + π j → πk + πl . The order of the values are broadly regulated by the choice
of σ (10−6), s − 4 (10−2) and X1(1/3)

Distance using relative entropy

(s0,s2) 0000 +-+- +0+0 ++++ +-00

( 0.46 , 1.987 ) (U) 7.02 × 10−16 1.753 × 10−12 8.98 × 10−12 7.62 × 10−20 1.37 × 10−16

( 0.57 , 1.893 ) (U) 5.82 × 10−16 1.58 × 10−12 1.27 × 10−12 5.16 × 10−20 8.87 × 10−17

( 0.67 , 1.893 ) (U) 4.68 × 10−16 1.23 × 10−12 1.85 × 10−13 1.87 × 10−19 6.02 × 10−17

( 0.70 , 1.787 ) (U) 4.57 × 10−16 1.06 × 10−12 2.87 × 10−11 3.36 × 10−18 4.52 × 10−17

( 0.73 , 1.763 ) (U) 4.67 × 10−16 8.68 × 10−13 8.70 × 10−16 4.97 × 10−20 4.31 × 10−17

( 2.70 , 0.293 ) (L) 7.27 × 10−18 1.58 × 10−10 9.72 × 10−12 2.50 × 10−20 5.62 × 10−17

( 2.80 , 0.222 ) (L) 3.12 × 10−19 8.65 × 10−11 1.56 × 10−11 1.64 × 10−19 2.20 × 10−17

( 2.85 , 0.184 ) (L) 1.90 × 10−18 5.45 × 10−11 1.95 × 10−11 2.78 × 10−19 2.35 × 10−17

( 2.90 , 0.145 ) (L) 2.08 × 10−17 2.21 × 10−11 2.60 × 10−11 5.25 × 10−19 3.27 × 10−18

( 2.95 , 0.104 ) (L) 1.33 × 10−17 1.464 × 10−12 3.07 × 10−11 9.75 × 10−19 6.66 × 10−19

similar values of physical observables like the scattering lengths. To emphasise, we were not
imposing the values of these scattering lengths, instead only the correct signs were imposed
which had theoretical motivations behind them.

0
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Figure 17: Bluish-purple points denote the upper bank and the yellowish-brown points
describe the lower boundary. The experimental value are given by the pink box. Points close
to the box are less distant from χPT in terms of hypothesis testing.

7.4 Comparison of scattering lengths and effective ranges

Here we will check the values of scattering lengths for some points of the physical regions and
compare them to their experimental value given in the table (2). Using table (3), we see that
apart from b(2)0 , the matrices take on a similar range of values in both the physical regions.
We chose a value of s ≈ 4 so that we were sensitive to the differences in the S- and P-wave
scattering lengths, which turn out to be in the same range in the upper and lower banks in
table (3). This is still intriguing since the Adler zeroes corresponding to χPT are far away

40

https://scipost.org
https://scipost.org/SciPostPhys.9.5.081


SciPost Phys. 9, 081 (2020)

0 1 2 3 4
0

1

2

3

4

s0

s
2

π 0 + π 0 -> π 0 + π 0

0 1 2 3 4
0

1

2

3

4

s0

s
2

π + + π - -> π + + π -

0 1 2 3 4
0

1

2

3

4

s0

s
2

π + + π + -> π + + π +

Figure 16: Allowed region for different reactions. Remaining reactions have the same
profile.

from the lower boundary. We can also conclude from fig.(17) that these are the only regions
with ` = 0 and ` = 1 scattering lengths close to the experimental values. This confirms our
hypothesis testing observations in the previous section. While the S- and P- wavelengths are
roughly comparable with experiments, the a(2)2 , a(0)2 values are around an order of magnitude
bigger. Furthermore, no single point agrees with all the experimental values–this is indicative
of the fact that the actual phenomenological point from [38] is inside the allowed region and
not on the boundary where the comparison is being made.

7.5 Elastic Unitarity–Preliminary findings

The unitarity was imposed by the condition ∣S(I)
`
(s)∣

2
≤ 1. What interests us in this section is

the elastic unitarity condition, ∣S(I)
`
(s)∣

2
= 1 which has to hold between 4 < s < 16 since there

is no particle production in this energy. Ideally, we would like to impose this as a constraint.
However, the framework of SDPB does not allow (as far as we have checked) imposition of
elastic unitarity since the constraints are quadratic in the free parameters of the ansatz. Hence,
we restrict ourselves to numerical checks of the available S-matrices for now. To check elastic
unitarity of a S-matrix, we find the deviation from unitarity 1 − ∣S(I)

`
(s)∣

2
for ` ∈ 0, 1 and

I ∈ 0, 1, 2. If the violations for all channels and the first two spins are below a set tolerance,
then the point shall be included or else, it shall be rejected. We shall choose a liberal tolerance
of 12% i.e., the absolute values needs to be greater than 0.88. Upon doing this for all points
along the two river banks, we find the fig.(18). This seems to discard a portion of the lower
boundary. However, Nmax = 16 considerations reduce the violation s.t the 12% criteria now
allows the lower bank physical region. Hence one perhaps needs to consider the rate of change
of maximal violations with Nmax before eliminating regions.

Elastic unitarity is still a work in progress and we shall report on it later–very recently
there appeared [54] which provides some promising ways to incorporate elastic unitarity in
the numerics. Our preliminary findings would disfavour the points on the lower bank in fig.(1)
and it will be gratifying to confirm this using the more rigorous proposals in [54].
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Table 2: Experimental values of scattering lengths and effective ranges taken from
[38].

Experimental values

Observable Value Error Units

a(0)0 0.220 0.005 1

a(2)0 -0.0444 0.0010 1

a(1)1 0.0379 0.0005 m−2
π

a(0)2 0.00175 0.00003 m−4
π

a(2)2 0.000170 0.000013 m−4
π

b(0)0 0.276 0.006 m−2
π

b(2)0 -0.0803 0.0012 m−2
π

Table 3: Values of scattering lengths and effective ranges on the upper(U) bank and
lower(L) bank for Nmax = 12 and Lmax = 21. The values for the S- and P-wave scat-
tering lengths differ from Nmax = 10 and Lmax = 11 at most in the second significant
figure.

Scattering lengths and Effective Ranges

(s0,s2) a(0)0 a(2)0 a(0)2 a(2)2 a(1)1 b(0)0 b(2)0

( 0.46 , 1.989 ) (U) 0.135 -0.031 0.047 ≈ 0 0.032 0.131 -0.055

( 0.57 , 1.895 ) (U) 0.155 -0.038 0.041 ≈ 0 0.035 0.155 -0.065

( 0.67 , 1.813 ) (U) 0.169 -0.044 0.041 ≈ 0 0.038 0.168 -0.071

( 0.80 , 1.710 ) (U) 0.219 -0.056 0.097 0.029 0.045 0.196 -0.087

( 2.70 , 0.290 ) (L) 0.070 -0.035 0.031 0.0014 0.040 0.185 -7.36

( 2.80 , 0.219 ) (L) 0.098 -0.049 0.025 0.0004 0.0457 0.371 -8.40

( 2.85 , 0.181 ) (L) 0.117 -0.058 0.025 0.0007 0.0480 0.482 -8.58

( 2.95 , 0.101 ) (L) 0.153 -0.076 0.024 0.0019 0.0491 0.746 -8.39

7.6 Positivity–Preliminary findings

Using positivity of the amplitude in the so-called Mandelstam triangle (reviewed below) to
constrain theories is an old idea–see, e.g. [55–57]. In this section, we will consider using
positivity17 in the extended Mandelstam region, following the discussion in [22]. Starting
with the generalization of eq.(5.7)

∂ 2n

∂ s2n (M
(I)(s, t)) = (2n)!

π
∑
J
(∫

∞

4m2
ds′ ( δI J

(s′ − s)2n+1
+ C I J

su

(s′ − u)2n+1
) Im[M(J)(s′ + iε, t)]) .

(7.7)
17It is difficult to conclude anything definitive about the positivity in the sense discussed in Section (5.2) since

for high values of s we will have more partial waves contributing. A preliminary study reveals that for very large
s, indeed µ` > 0 but we will not attribute any significance to this finding with the relatively low number of partial
wave spins we have incorporated in this present work.
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Figure 18: The brown regions are the theories satisfying the elastic unitarity constraint up
to the tolerance indicated in the main text.

Now in the region s < 4m2, s + t > 0 the denominators (s′ − s)2n+1, (s′ − u)2n+1 are positive. As
reviewed in [22], crossing implies that the amplitude is analytic inside s, t, u < 4m2, so that
inside s, t < 4m2, s + t > 0, the amplitude is real. Furthermore, the Legendre polynomials in
the partial wave expansion, P`(1 + 2t

s′−4m2 ) > 0 for s′ > 4m2 and t > 0. So together we define
the extended Mandelstam region [22]: s, t < 4m2, t > 0, s + t > 0 shown in the fig.(19) below.
Considering linear combinations in the LHS,∑I αIM(I) such that for the integrand in the RHS,
we have ∑I J αI C I J

su Im[M(J)(s′ + iε, t)] = ∑J βJ Im[M(J)(s′ + iε, t)] with βJ > 0, arguments
based on the optical theorem lead to the positivity conditions

∂ 2n

∂ s2n (M
π0π0→π0π0(s, t)) ≥ 0 , (7.8)

∂ 2n

∂ s2n (M
π+π0→π+π0(s, t)) ≥ 0 , (7.9)

∂ 2n

∂ s2n (M
π+π+→π+π+(s, t)) ≥ 0 , (7.10)

where n ≥ 1 and (s, t) are inside the blue and red regions shown in fig.(19).
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Figure 19: The extended Mandelstam region. The red region is the Mandelstam triangle
0 ≤ s, t, u ≤ 4m2. The blue region is the extended region satisfying s, t < 4m2, t > 0, s + t > 0.

These constraints can be used to further constrain the river. We choose to impose the
positivity constraints close to points (−4, 4) , (4, 0) , (0, 0) and (4, 4). No violations were ob-
served along the river boundary for the point (0, 4). Hence, we imposed constraints eq.(7.8),
eq.(7.10), eq.(7.9) for these 4 edges upto n = 4 and re-evaluated the river. The “new river”
is given by fig.(20). These constraints were found to be satisfied for n = 5 along the new
river banks, thus implying convergence with n. It is quite intriguing that the shape of the
river changes even though we have imposed unitarity. This happens since we are imposing
unitarity only for a grid of s-values and upto a maximum spin Lmax . Interestingly the maximal
violations result from the points in the extended region outside the mandelstam triangle. This
leads us to wonder which subset of all the conditions we have considered so far will lead to
the fastest numerics–we will leave this for future work.

0 1 2 3 4
0

1

2

3

4

s0

s
2

Figure 20: New river upon imposing positivity for Nmax = 10 , Lmax = 11. Dashed gray line
denotes the old river boundary and joined black line gives the new river boundary.
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8 More Entanglement Measures

We have mainly explored entanglement due to S-Matrix evolution in momentum space. How-
ever, since the state space for momentum degree of freedom is infinite, we had to deal with
various kinds of infinities. It would have been nice if we could explore the entanglement due
to S-Matrix evolution for finite Hilbert space. For pion scattering, we have such an oppor-
tunity indeed. We can consider entanglement in isospin caused by S-Matrix evolution. The
isospin state space for pion is three dimensional. Thus, the entanglement measures will not
be plagued with the infinities of the likes of those encountered in momentum space. We will
consider two such entanglement measures for analysing entanglement in isospin: the usual
quantum relative entropy and entanglement power of S-matrix.

8.1 Quantum Relative Entropy

To define an isospin analogue we shall fix the the momentum of final states and allow sum
over the O(N) indices. If we consider the initial state,

∣pẑ, a1;−pẑ, a2⟩ , (8.1)

then the analogue of 2.4 for the isospin case will be,

∣ f ⟩ = (2π)4δ(4)(0) ∑
b1,b2

∣qn̂, b1;−qn̂, b2⟩Mb1 b2
a1a2
(s, cosθ) , (8.2)

where n̂ is a fixed direction (sinθ , 0, cosθ). Using this one can calculate the final state density
matrix ρ f . Tracing over isopin states we get the reduced density matrix,

ρ1 =∑
b1

∑
c1

∑χ (Mb1χ
a1a2(s, cosθ)Ma1a2

c1χ (s, cosθ)∗)

∑x ,yMx y
a1a2(s, cosθ) [Ma1a2

x y (s, cosθ)]∗
∣qn̂, b1⟩ ⟨qn̂, c1∣ . (8.3)

If we redefine everything in terms of the following matrix in the isospin basis

Mi j(s, x; a1, a2) =Mi j
a1a2
(s, x) , (8.4)

then we see that the reduced density matrix takes on a simple form of (removing the depen-
dence on the initial a1, a2 for brevity)

ρ1 =
1

Tr(M .M†)M(s, x).M†(s, x) . (8.5)

Now, to calculate the trace of ρn
1 , needed for the replica trick, we need to diagonalize ρ1. To

do that, we see that we just need to diagonalize the matrix M(s, x). In the invariant decom-
position, we have

Mi j(s, x) = A(s, t(x), u(x))δa1,a2δi, j + A(t(x), u(x), s)δi,a1δ j,a2 + A(u(x), s, t(x))δi,a2δ j,a1 .
(8.6)

We see that for a1 = a2, M is already in the diagonal form with eigenvalues

λM(s, x) ∈ {A(s, t(x), u(x)), A(s, t(x), u(x)), A(s, t(x), u(x)) + A(t(x), u(x), s) + A(u(x), s, t(x))} ,
(8.7)

which gives M .M† automatically a diagonal form with eigenvalues ∣λM ∣2. Whereas, for a1 ≠ a2,
we have that

MikM†
k j = (A(t(x), u(x), s)δi,a1δk,a2 + A(u(x), s, t(x))δi,a2δk,a1).
(A∗(t(x), u(x), s)δ j,a1δk,a2 + A∗(u(x), s, t(x))δ j,a2δk,a1)
= ∣A(t(x), u(x), s)∣2δi,a1δ j,a1 + ∣A(u(x), s, u(x))∣2δi,a2δ j,a2 ,

(8.8)
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which is diagonalized! Hence, we have in general that (using obvious shorthand notation)

Tr((M .M†)n) =
⎧⎪⎪⎨⎪⎪⎩

2(∣A(s)∣2)n + (∣A(s) + A(t(x)) + A(u(x))∣2)n if a1 = a2 ,

(∣A(t(x))∣2)n + (∣A(u(x))∣2)n if a1 ≠ a2
(8.9)

and Tr(ρ1)n = 1
(Tr(M .M†))n

Tr((M .M†)n) can be directly found from eq.(8.9). Differentiating
this w.r.t n is straightforward in the replica trick to get the entanglement entropy in the isospin
space of the form

SEE,I(s, x) = −
3

∑
i=1

1

∑3
j=1 ∣λM , j ∣2

∣λM ,i ∣2 ln
⎛
⎝

1

∑3
j=1 ∣λM , j ∣2

∣λM ,i ∣2
⎞
⎠

. (8.10)

with the appropriate eigenvalues as found above.
For final states at angles θ ,θ ′ ≠ 0 we can define two reduced density matrices ρ1 and ρ2

and ultimately define the relative entropy DI(ρ1∣∣ρ2) using the replica trick.

Table 4: Isospin relative entropy of π0 + π0 → all for S-matrices on the
river (for Nmax = 10). Labels 1 and 2 refer to the choice of parameters
(x1, x2) = (0.999, 0.001) and (x1, x2) = (0.999, 0.99) respectively (where x i refers
to cos(θi)). Labels U and L refer to Upper and Lower boundary respectively.

SEE,I

(s0, s2) s = 4.01(1) s = 30(1) s = 4.01(2) s = 30(2)

(0.35,2.08) (U) 2.74 10−11 0.0162 8.82 10−15 4.41 10−6

(1.3,1.637) (U) 4.03 10−13 0.551 1.29 10−16 4.7 10−5

(0.9,0.775) (L) 4.69 10−11 0.485 1.50 10−14 2.1 10−4

(2.85,0.775) (L) 2.46 10−11 0.816 7.91 10−15 1.1 10−5

8.2 Entanglement Power

Next, we consider another quantity called Entanglement Power [47–50]. It deals directly with
the S-matrix of the system rather than depending on the initial states. The initial state is
defined as,

∣ψi⟩ ∶= R̂(Ω1)⊗ R̂(Ω2) ∣pẑ, a1;−pẑ, a2⟩ , (8.11)

where R̂(Ωi) is the rotation operator in the isospin space acting on the i th particle. Since we are
only operating on the isospin indices, we can consider writing, ∣kn̂, a1;−kn̂, a2⟩ ≡ ∣a1⟩ ⊗ ∣a2⟩.
Now, the target final state can be constructed by taking restriction of the S-matrix to 2-particle
isospin space in a specific way. The details are chalked out in appendix E.2. Following that,
we can obtain a target final state

∣ψ f ⟩ =
1

w(p)(2π)
4δ(4)(0) ∑

c1,c2
b1,b2

∣pn̂, c1;−pn̂, c2⟩S c1c2
b1 b2
(s, cosθ) ⟨b1 ∣ R̂(Ω1) ∣ a1⟩ ⟨b2 ∣ R̂(Ω2) ∣ a2⟩ ,

(8.12)
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using which we can define the final state density matrix ρψ f with matrix elements in the basis,
{∣qn̂, c1;−qn̂, c2⟩} are given by,

(ρψ f )
b1 b2

c1c2

(s, cosθ) = (8.13)

∑x1,x2∑y1,y2
Mb1 b2

x1 x2(s, cosθ) [My1 y2
c1c2 (s, cosθ)]∗ R̂(1)b1

a1 R̂(2)b2
a2 (R̂(1)

c1
a1 R̂(2)c2

a2)∗

∑z1z2∑x1,x2∑y1,y2
Mz1z2

x1 x2(s, cosθ) [My1 y2
z1z2 (s, cosθ)]∗ R̂(1)z1

a1 R̂(2)z2
a2 (R̂(1)

y1
a1 R̂(2)y2

a2)∗
,

(8.14)

where, R̂(1)ab = ⟨a ∣ R̂(Ω1) ∣ b⟩. Similar to the previous subsection, we can define the reduced
density matrix

ρ̄1 ∶= tr2ρψ f . (8.15)

Now, the entanglement power of the S-Matrix is given by,

E = 1 − ∫
dΩ1

4π
dΩ2

4π
tr1[ρ̄2

1] , dΩi ∶= sinθidθidφi . (8.16)

Table 5: Entanglement Power (E) for S-matrices on the river. Labels U and L refer
to Upper and Lower boundary respectively. These data points are obtained with
Nmax = 10.

E
(s0, s2) s = 4.01 s = 10 s = 30 s = 100

(0.25,2.60) (U) 0.60 0.30 0.37 0.295

(0.35,2.08) (U) 0.533 0.371 0.498 0.39

(0.42,2.02) (U) 0.527 0.369 0.463 0.46

(1.3,1.637) (U) 0.66 0.56 0.404 0.296

(0.9,0.775) (L) 0.52 0.33 0.37 0.27

(2.85,0.775) (L) 0.42 0.49 0.39 0.31

9 Future directions

In this paper, we have initiated investigations into the role of relative entropy in scattering.
We have studied several standard quantum field theories and have also motivated the role
that relative entropy can play in the recent revival of the S-matrix bootstrap. In the context of
S-matrix bootstrap, we asked how to distinguish theories living on the boundary of allowed re-
gions provided by numerics. We also made some preliminary studies of additional constraints
which could shrink the space of allowed S-matrices. We will now conclude with a short road
map for the future.

• In eq.(1.2) and related expressions, the quantity of interest that appears is lnσ′el(x)
and its second derivative. Curiously, when experimentalists model the diffraction peak
in scattering, they introduce a slope parameter which involves precisely this quantity and
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its first derivative [58]18–the second derivative is presumably related to the curvature
of the diffraction peak. As such this formula appears to be quite suited for experimental
investigations in the future.

• We did not consider monotonicity of relative entropy in the sense used in the quantum
information literature. There could a potential connection between this and renormal-
ization group flows, and it will be interesting to examine this in the context of scattering.
Other fundamental inequalities like strong subadditivity may also be useful to examine
in the context of scattering and put to experimental tests using collider data. Note that
monotonicity of relative entropy played a major role in deriving the averaged null energy
condition (ANEC) in recent times [59,60].

• It would have been desirable to find a situation where some measure like entanglement
entropy/relative entropy would extremize near interesting physical theories. This then
could become a powerful selection criterion for studying the space of allowed S-matrices.
Our findings in this direction are not very conclusive, but we do hope to return to this in
the future. In some vague sense, we would then have some “quantum thermodynamic”
selection rule in the space of S-matrices.

• Apropos our bootstrap findings, we would like to improve our numerics and extract the
spectrum of resonances in the two different regions we have identified in this paper. The
main question here is: What are the extra ingredients we need to put in, such that the
allowed S-matrices zooms into the standard model? More intriguingly, could there be
a different allowed theory which matches with experimental results so far which would
be disconnected from χPT?

• While we made some tentative observations about positivity (see Section (5.4)) as well
as finding that positivity in the sense used in Section (7.6) can constrain the space of
allowed S-matrices, we did not make any concrete statements connecting up our work
with the positivity of amplitudes or the positivity of the underlying geometry in [51,52,
61–66]. It will be interesting to investigate this in the future.

• We started a preliminary exploration of entanglement in isospin degrees of freedom. We
explored two quantum information theoretic measures in this regard, quantum relative
entropy and entanglement power. The isospin state space being finite-dimensional these
measures do not suffer from the divergences coming from momentum space integrals.
We presented results of numerical explorations with Nmax = 10 in this work. Our prelim-
inary studies with higher Nmaxs [67] indicated a sharp drop in the entanglement power
E near the kink. This may hint at a quantum information theoretic selection principle at
play, and it would be fascinating to understand this.

• It will be important to extend our analysis to external particles with spin. We have
given a formal setup for this purpose in Appendix (C.2). We leave the detailed study for
external spinning particles in the spirit of this work for future endeavour.

• In the context of AdS/CFT correspondence relative entropy led to the derivation of lin-
earised Einstein’s equations while positivity of relative entropy constrained non-linear
perturbations (e.g. [73,74]). It may also be worthwhile to use relative entropy to study
scattering in AdS space–via the connection in Mellin space, this will then constrain the
dual CFTs. The high energy bounds like the Froissart bound have been studied recently
in [75] and it may be interesting to study the analogous bounds for relative entropy in
AdS scattering.

18See eq.(5.1.5).
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A Scattering fundamentals

In this appendix, we provide with a brief review of scattering theory in relativistic quantum
field theory in D̃ + 1 dimensional Minkowski space-timeMD̃,1.

A.1 S-matrix basics

We consider scattering of two scalar massive particles A, B with masses mA, mB respectively. In
the most general case we have,

A+ B → A+ B + X , (A.1)

where A, B are single particles and X is some multi-particle product or may be some bound
state as well. We have the so called “elastic channel”: A+B → A+B and the “inelastic channel”:
A+ B → X .

In scattering, one focuses attention in asymptotic past and asymptotic future where one
assumes that the particles are free. Our initial and target final states will be such free states.
Suppose there is some initial state ∣i⟩ then the final state ∣ f ⟩ is given by the S-matrix, S,

∣ f ⟩ = S ∣i⟩ . (A.2)

The S-matrix has the following structure:

S = 1 + iT . (A.3)

Here 1 accounts for no interaction and T captures the interaction. This is also called the
transfer matrix The matrix element of the S−matrix between two momentum states ∣i⟩ and ∣ f ⟩
can be written as

⟨i ∣S ∣ f ⟩ = δ(D̃+1) (∑ pi −∑ p f ) ⟨i ∣ s ∣ f ⟩ , (A.4)

where ∑ pi denotes the total D̃ + 1−momentum in the state ∣i⟩ and similarly for ∑ p f
19 and

⟨i ∣ s ∣ f ⟩ is the amplitude. Note that, the conservation of the four momentum is enforced by
the presence of the delta function and in the amplitude itself this conservation constraint is
already applied.

In scattering theory, however, of more importance is the matrix element of T because, this
amplitude is precisely the one capturing the scattering procedure. In fact, the corresponding
matrix element can be written as

⟨i ∣T ∣ f ⟩ = δ(D̃+1) (∑ pi −∑ p f )M(i → f ) , (A.5)

19From now on, Minkowski momenta will be denoted without any arrow and spatial momenta will be denoted
along with arrows.
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where, M(i → f ) is the amplitude of the transition i → f . It is this amplitude which is
calculated using Feynman graphs in perturbative quantum field theory. Note that, if we insist
on taking ∣i⟩ ≠ ∣ f ⟩ i.e., we exclude the possibility of no scattering then, evidently, one has

⟨i ∣ s ∣ f ⟩ = iM(i → f ) . (A.6)

We will use this relation later in our analysis.

A.2 Hilbert space for incoming and outgoing states

Now, let us specialize to elastic channel i.e., we consider that the final state with the particles
A and B. For scattering problems, we usually scatter off particles with definite momenta in the
asymptotic past and also looks for outgoing particles with definite momenta in the asymptotic
future. In these two extreme limits, these particles are assumed to be non-interacting. In
these limits, we will consider the momentum states to be residing in a Fock space. We are
considering the scalar bosons. Let ∣Ω⟩ be the bosonic Fock vacuum which is normalized to
unity i.e.,

⟨Ω ∣Ω⟩ = 1 . (A.7)

Then the single particle state with definite momentum is defined by,

∣k⃗i⟩ ∶=
√

2Ek⃗i
a†(k⃗i) ∣Ω⟩ , (A.8)

where i stands for A, B in the present case. Here a†
i (k⃗) is the corresponding creation operator

and Ek⃗i
is the usual relativistic energy of a free particle

Ek⃗i
=
√

k2
i +m2

i , (A.9)

with ki = ∣k⃗i ∣. The bosonic Fock space creation-annihilation operators satisfy the usual algebra
with respect to commutators

[a(k⃗i), a†(l⃗ j)] = δi j δ
(D̃)(k⃗i − l⃗ j) , (A.10)

[a(k⃗i), a(l⃗ j)] = 0 , (A.11)

[a†(k⃗i), a†(l⃗ j)] = 0 . (A.12)

With this algebra, we have the following inner product between the single particle states in
eq.(A.8),

⟨k⃗i ∣ l⃗ j⟩ =
√

2Ek⃗i
2El⃗ j

δi j δ
(D̃)(k⃗i − l⃗ j) . (A.13)

Now, we move onto two-particle state. A generic two-particle state as a member of the above
Fock space is given by,

∣k⃗i , l⃗ j⟩ =
√

2Ek⃗i
2El⃗ j

a†(k⃗i)a†(l⃗ j) ∣Ω⟩ . (A.14)

Note that, when i = j then we have identical bosons. The state has the obvious symmetrization
property by virtue of the Fock algebra, eq.(A.10)-eq.(A.12). The inner product between two
such two-particle state is given by

⟨p⃗i , q⃗ j ∣ k⃗m, l⃗n⟩ = 4
√

Ek⃗m
El⃗n

Ep⃗i Eq⃗ j (A.15)

× [δimδ jnδ
(D̃)(p⃗i − k⃗m)δ(D̃)(q⃗ j − l⃗n) + δinδ jmδ

(D̃)(p⃗i − l⃗n)δ(D̃)(q⃗ j − k⃗m)] .
(A.16)
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Now, comes a very important point. There exists an inner-product preserving isomorphism
between the subspace of the two-particle states in the Fock space with the symmetrized tensor
product of two copies of the space of single particle Fock states. Let V(1) be the space of single
particle Fock states {∣k⃗i⟩}20 and V(2) be the space of two-particle Fock states {∣k⃗i , l⃗ j⟩}. Then,

V(2) ≅ (V(1)⊗V(1))
S

, (A.17)

where, the subscript S denotes symmetrization. In fact this is a natural isomorphism. Further-
more, this isomorphism can be made to preserve the inner product, eq.(A.15). Let F be the
corresponding isomorphism i.e., F ∶ V(2) → (V(1)⊗V(1))S . Then,

F(∣k⃗i , l⃗ j⟩) =
1√
2
[∣k⃗i⟩⊗ ∣⃗l j⟩ + ∣⃗l j⟩⊗ ∣k⃗i⟩] . (A.18)

It is easy to verify that the inner-product, eq.(A.15), is preserved under this isomorphism.
There exist also the dual isomorphisms which exists between the corresponding dual spaces.
Note that the symmetrization leads to a slightly different Hilbert Space structure than the one
mentioned in previous section.

The reason for explicitly pointing out this isomorphism is that we will make use of this when
we are interested in the explicit product space structure of the two-particle Hilbert space for
the outgoing particles. One such instance is while taking partial traces of the density matrix
of the joint system.

B Details of quantum entanglement measures

B.1 Entanglement entropy

In this appendix, we provide the detailed calculations leading to the expression for the en-
tanglement entropy, eq.(3.8). In particular, we give the detailed evaluation of the integral,

IE ∶= ∫
1

−1
d x Pg(x) lnPg(x) , (B.1)

with Pg given by eq.(3.7) and eq.(3.5). We can divide the above integral in two pieces,

IE = ∫
1

−1
d x δσ(x − y)My(s, x) ln [δσ(x − y)] + ∫

1

−1
d x δσ(x − y)My(s, x) ln [My(s, x)] ,

(B.2)

where we have defined,

My(s, x) ∶= ∣M(s, x)∣2

∫ 1
−1 d x g y(x) ∣M(s, x)∣2

≡ ∣M(s, x)∣2
Ig(s, y) . (B.3)

Now, we are forced to do the second integral under the approximation that
δσ(x − y) → δ(x − y) since otherwise the exact integral is of the form of a Gaussian times
the log of a function following which we are pretty much stuck. Now, since we have used the
limiting form of δσ(x − y) in the numerator, we should do the same with the denominator i.e.
with Ig(s, y)→ ∣M(s, y)∣2 as well leaving us with

∫
1

−1
d x δσ(x − y)My(s, x) ln [My(s, x)] ≈ ∣M(s, y)∣2

Ig(s, y) ln(∣M(s, y)∣2
Ig(s, y) ) ≈ 0 . (B.4)

20Here i includes both A and B in our case.
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Thus we have essentially,

IE ≈ ∫
1

−1
d x δσ(x − y)My(s, x) ln [δσ(x − y)] . (B.5)

This integral will be of central importance in many analyses that follow. Thus we will evaluate
this integral with gory details. Then,

IE =
1

2
√
πσ
∫

1

−1
d x e−

(x−y)2

4σ My(s, x) ln( 1
2
√
πσ

e−
(x−y)2

4σ )

≡ − [1
2
IE,1 + ln(2

√
πσ)IE,2] ,

(B.6)

where

IE,1 ∶= ∫
1

−1
d x ( 1

2
√
πσ

e−
(x−y)2

4σ )My(s, x) [ x − y√
2σ
]

2

, (B.7)

IE,2 ∶= ∫
1

−1
d x ( 1

2
√
πσ

e−
(x−y)2

4σ )My(s, x) . (B.8)

We see immediately that,

IE,2 =
1

Ig(s, y) ∫
1

−1
g(x)∣M(s, x)∣2 = 1 . (B.9)

Now, we focus upon IE,1. To do the integral, first introduce a change of variable as

u = x − y√
2σ
Ô⇒ x =

√
2σ u + y . (B.10)

Following this change of variable, we can write

IE,1 =
1

4
√
πσ3 ∫

1−u
√

2σ

− 1+u
√

2σ

√
2σ du e−

u2

2 My(s, x)2σu2 ≈ ∫
∞

−∞
du ( e−

u2

2
√

2π
)My(s, x)u2 , (B.11)

where, we have used the approximation that, since σ << 1 , the limits of the integration can
be effectively extended to −∞ and∞ because, anyway the integrand is extremely suppressed
there due to the Gaussian. It is to be noted that, this can ONLY be done when −1 < y < 1, i.e.,
y ≠ −1, 1. We will justify this in further details later on. Now, using the partial wave expansion
of the amplitude, we can write

∣M(s, x)∣2 =
∞

∑
L=0
ML(s)x L , (B.12)

where, we have expanded the Legendre polynomials and have rearranged the infinite sum 21.
Substituting this back into eq.(B.11), we get

IE,1 =
∞

∑
L=0

ML(s)
Ig(s, y) ∫

∞

−∞
Du ( e−

u2

2
√

2π
)(
√

2σu + y)Lu2

=
∞

∑
L=0

L

∑
i=0

ML(s)
Ig(s, y)(

L
i
)(
√

2σ)i y L−i(∫
∞

−∞
du ( e−

u2

2
√

2π
)u2+i) . (B.13)

21This is possible since this series is absolutely and in fact uniformly convergent inside the Lehmann Ellipse and
we are certainly inside the Lehmann Ellipse since we are considering physical s and x
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Define by < ui >0,1 the i th moment of the Gaussian(0,1) distribution. This has the following
simple form:

< ui >0,1=
⎧⎪⎪⎨⎪⎪⎩

0 if i odd

(i − 1)!! if i even
, (B.14)

where i!! = 1.3.5...(n − 2).n for odd i and i!! = 2.4.6...(n − 2).n for even i.
Now, assuming the series in eq.(B.13) converges, we can switch the order of the sum as

∞

∑
L=0

L

∑
i=0
(...) =

∞

∑
i=0

∞

∑
L=i
(...) .

Furthermore, we also make the observation that

∞

∑
L=i
(L

i
)ML(s)y L−i =

∞

∑
L=i

L!
i!(L − i)!ML(s)y L−i

= 1
i!
∂ i

∂ x i (
∞

∑
L=i
ML(s)x L)∣

x=y

= 1
i!
∂ i

∂ x i (∣M(s, x)∣2)∣
x=y

,

(B.15)

where, we have used ∂ i

∂ x i (∑i−1
L=0ML(s)x L) = 0 in the final step. Therefore, we can simplify

IE,1 to

IE,1 =
1

Ig(s, y)
∞

∑
i=0
< ui+2 >0,1 (

√
2σ)i(

∞

∑
L=i
(L

i
)ML(s)y L−i)

=
∞

∑
i=0,2,4...

< ui+2 >0,1
(
√

2σ)i
i!

∂ i

∂ x i (My(s, x))∣
y

.
(B.16)

Upon further using eq.(B.14), we get

IE,1 =
1

Ig(s, y)
∞

∑
i=0
(2i + 1) ∂

2i

∂ x2i (∣M(s, x)∣2)∣
y

σi

i!
. (B.17)

Similarly, we can show that, the integral in the denominator has a similar form,

Ig(s, y) =
∞

∑
i=0

∂ 2i

∂ x2i (∣M(s, x)∣2)∣
y

σi

i!
, (B.18)

which allows us to simplify eq.(B.17) as

IE,1 = 1 + 2σ
Ig(s, y)

∂ 2

∂ x2
(Ig(s, x))∣

y
, (B.19)

where, we have used

∞

∑
i=0

i
∂ 2i

∂ x2i (∣M(s, x)∣2)∣
y

σi

i!
= σ

∞

∑
i=0

∂ 2i+2

∂ x2i+2
(∣M(s, x)∣2)∣

y

σi

i!
= σ ∂

2

∂ x2
(Ig(s, x))∣

y
. (B.20)

Let us now try to justify our expansion a bit more by going back to the individual terms ap-
pearing in eq.(B.16) (which we can generalize to the later sections as well). The i th order
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term consists of the < ui+2 >0,1, i even. However, if we go back to eq.(B.11), we will see that
the actual term, if calculated exactly, would have been something like

Ii = ∫
(1−y)
√

2σ

−
1+y
√

2σ

du( 1√
2π

e−
u2

2 )ui+2 . (B.21)

Without loss of generality, let us choose 0 < y < 1. This would imply that

∫
(1−y)
√

2σ

−
1−y
√

2σ

du( 1√
2π

e−
u2

2 )ui+2 < Ii < ∫
(1+y)
√

2σ

−
1+y
√

2σ

du( 1√
2π

e−
u2

2 )ui+2 ≤ (< ui+2 >0,1) . (B.22)

Now, the definite integral of the Gaussian up-to a finite range is a very well documented func-
tion, the so called “Error Function”, Er f (z) defined s.t.

Er f ( z√
2
) = ∫

z

−z
du( 1√

2π
e−

u2

2 ) . (B.23)

A similar expression for the exact moment integrals is as follows:

∫
z

−z
du( 1√

2π
e−

u2

2 )u2i =< u2i >0,1
⎛
⎝

Er f ( z√
2
) − 2

π
e−

z2

2 z
i−1

∑
j=0

z2 j

(2 j + 1)!!
⎞
⎠

. (B.24)

This can be understood by the fact that the peak of the integrand gets shifted more and
more to the right with the increasing power of u (in fact, the peak corresponding to the 2i th

moment is at
√

2i). Hence, the integration has to be carried out in a larger range to get the
same accuracy (approximately, till the peak+Nσ where Nσ will give the desired accuracy in
the base integral of the Gaussian). Therefore, the higher the moment integral, the larger we
have to choose z = (1 − y)/

√
2σ Ô⇒ smaller σ for a fixed y ( A Similar logic is valid for

−1 < y < 0 as well).
However, our approximation of the sum in eq.(B.16) is saved because each higher moment

integral is further suppressed by a factor of σi/2 (assuming the derivatives of the amplitude
are well-behaved functions and do not vary greatly). Therefore, a reasonably small σ keeping
in mind the accuracy of the integral up-to a finite order of the moment integrals (In our case,
we can safely do that by just considering the leading term) is enough to guarantee a good
level of accuracy of our approximation of the total sum over all the integrals. One can reverse
the logic on its head in the sense that for a given σ small, we can find a range of y for which
our approximation is valid. This is done simply by finding the z0 such that the leading term in
the series has the desired accuracy (this has to be done numerically on a computer). Then we
have the following range of valid values of y for our approximation,

∣(1 − y)√
2σ
∣ > z0√

2
Ô⇒ −1 + z0

√
σ < y < 1 − z0

√
σ . (B.25)

Coming back to our simplified expressions, combining eq.(B.17) and eq.(B.18), we have
that

−IE = ln(2
√
πσ) + 1

2
+σ ∂

2

∂ x2
(Ig(s, x)
Ig(s, y)) ∣y

,

= ln(2
√
πσ) + 1

2
+ 1

∑∞i=0 σ
i

i!
∂ 2i

∂ x2i (∣M(s, x)∣2)∣
y

(
∞

∑
i=0

i
σi

i!
∂ 2i

∂ x2i (∣M(s, x)∣2)∣
y
)

σ→0ÐÐ→ , ln(2
√
πσ) + 1

2
.

(B.26)
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The first term ln(2
√
πσ) diverges in the limit σ → 0. However, it is a constant type of

infinity (just like the term ln (2Tπ
k2V ) term) and hence can be ignored by saying that we simply

shift the absolute entropy by that “infinite” amount.
Furthermore, the second term will simply give the O(σ0) term in both the numerator and

the denominator in the limit σ → 0 under the assumption that none of the even derivatives of
M(s, x) diverge. Collecting everything together we obtain the expression eq.(3.8).

B.2 Quantum relative entropy

In this appendix, we delineate the detailed steps leading to relative entropy expression eq.(3.18).
We start with eq.(3.13), using gi(x) = δσ(x − x i) to have

D (ρ(1)A ∣∣ρ
(2)
A ) =∫

1

−1
d x δσ(x − x1)

∣M(s, x)∣2
Ig(s, x1)

ln(δσ(x − x1)
δσ(x − x2)

Ig(s, x2)
Ig(s, x1)

)

=∫
1

−1
d x δσ(x − x1)M1(s, x) ln(δσ(x − x1)

δσ(x − x2)
)

+ ln(Ig(s, x2)
Ig(s, x1)

)(∫
1

−1
d x δσ(x − x1)M1(s, x)) ≈ IR + ln(Ig(s, x2)

Ig(s, x1)
) ,

(B.27)

where, like before, the second integral is simply 1 since it is just ∫ 1
−1 d xPg1(x) = 1 and

IR ∶=
1

Ig(s, x1) ∫
1

−1
d x δσ(x − x1)∣M(s, x)∣2 ln(δσ(x − x1)

δσ(x − x2)
) , (B.28)

where IE,2 is defined in eq.(B.8). The rest of our efforts will be directed towards calculating
and simplifying IR. Using eq.(3.5), we have

IR =
1

2
√
πσ
∫

1

−1
d x e−

(x−x1)
2

4σ M1(s, x) ln [Exp{− 1
4σ
[(x − x1)2 − (x − x2)2]}]

= ∆x

4
√
πσ3 ∫

1

−1
d x e−

(x−x1)
2

4σ M1(s, x) [x − (x1 + x2)
2

]
, (B.29)

with ∆x ∶= x1 − x2. Now, performing a similar partial wave expansion as in eq.(B.12) we get,

IR =
∞

∑
L=0

∆x

4
√
πσ3

ML(s)
Ig(s, x1) ∫

1

−1
d x e−

(x−x1)
2

4σ x L [x − (x1 + x2)
2

] . (B.30)

Now, we perform the same change of variables as in the last section:

y = x − x1√
2σ

Ô⇒ x =
√

2σ y + x1 .

Using this in eq.(B.30), we get (please note again that −1 ≤ x1 ≤ 1)

IR =
∞

∑
L=0

∆x

4
√
πσ3

ML(s)
Ig(s, x1) ∫

(1−x1)
√

2σ

−
(1+x1)
√

2σ

√
2σ d y e−

y2

2 (
√

2σ y + x1)L(
√

2σy + ∆x
2
)

≈
∞

∑
L=0

L

∑
i=0

ML(s)
Ig(s, x1)

(L
i
)x L−i

1 (
√

2σ)i[ ∆x√
2σ
< y i+1 >0,1 +

(∆x)2
4σ

< y i >0,1 ] .

(B.31)

Here we have approximated the limits like the previous section and < y i >0,1 is as in eq.(B.14).
Following a similar procedure as in the previous section i.e., changing the order of the infinite
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sum in eq.(B.31) and using eq.(B.15), we obtain

IR =
∆x

Ig(s, x1)
∞

∑
i=0

(
√

2σ)i−1

i!
∂ i

∂ x i (∣M(s, x)∣2)∣
x1

< y i+1 >0,1

+ (∆x)2
2Ig(s, x1)

∞

∑
i=0

(
√

2σ)i−2

i!
∂ i

∂ x i (M(s, x))∣
x1

< y i >0,1

≡ IR,1 + IR,2 .

(B.32)

Next we use eq.(B.14). Since only odd spins contribute, we substitute 2i + 1 → i and hence
get

IR,1 =
∆x

Ig(s, x1)
∞

∑
i=0
σi ∂

2i+1

∂ x2i+1
(∣M(s, x)∣2)∣

x1

(1.3.5...(2i + 1))2i

(1.2.3.4...(2i).(2i + 1)) ,

= ∆x
Ig(s, x1)

∞

∑
i=0

∂ 2i+1

∂ x2i+1
(∣M(s, x)∣2)∣

x1

σi

i!
.

(B.33)

Similarly,

IR,2 =
(∆x)2

4σ Ig(s, x1)
∞

∑
i=0

∂ 2i

∂ x2i (∣M(s, x)∣2)∣
x1

σi

i!
= (∆x)2

4σ
, (B.34)

where, we have used eq.(B.18) in the last step. Therefore, we return to our original goal and
finally get the relative entropy as the following:

D (ρ(1)A ∣∣ρ
(2)
A ) ≈ ln

⎛
⎝
∞

∑
i=0

∂ 2i

∂ x2i (∣M(s, x)∣2)∣
x2

σi

i!

⎞
⎠
− ln
⎛
⎝
∞

∑
i=0

∂ 2i

∂ x2i (∣M(s, x)∣2)∣
x1

σi

i!

⎞
⎠

+ ∆x

⎛
⎝∑
∞
i=0

∂ 2i

∂ x2i (∣M(s, x)∣2)∣
x1

σi

i!

⎞
⎠

(
∞

∑
i=0

∂ 2i+1

∂ x2i+1
(∣M(s, x)∣2)∣

x1

σi

i!
) + (∆x)2

4σ

σ→0ÐÐÐÐÐÐ→
leading order

(∆x)2
4σ

+ ln(∣M(s, x2)∣2
∣M(s, x1)∣2

) + ∆x
∣M(s, x1)∣2

( ∂
∂ x
(∣M(s, x)∣2)∣

x1

) ,

(B.35)

where, in the first line it is actually the log of ratio of two series. Therefore, the terms inside
the log are dimensionless as they should be. It’s just for ease of writing that we have separated

the two. We also note that the term (∆x)2

4σ is responsible for divergence in the limit σ → 0
and hence we cannot take Fi(x)2 to be the delta functions exactly. Furthermore, since this is
the relative entropy, we cannot just simply shift the infinity away as we would have done in
the absolute case. Also , we have that D(ρ∣∣ρ) = 0 as it should be since (∆x = 0 , x1 = x2 for
ρ
(1)
A = ρ(2)A ).

Now, for small ∆x , we can further simplify the relative entropy by expanding the log term
up-to second order in ∆x since the other two terms are of first and second order in (∆x)
respectively and hence will dominate the other sub-leading terms higher than second order.
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Therefore, We have (remember x2 = x1 −∆x),

ln(Ig(s, x1 −∆x)
Ig(s, x1)

) = ln
⎛
⎝

1 − ∆x
Ig(s, x1)

∂

∂ x
(Ig(s, x))∣

x1

+ (∆x)2
2 Ig(s, x1)

∂ 2

∂ x2
(Ig(s, x))∣

x1

+O((∆x)3)
⎞
⎠

= − ∆x
Ig(s, x1)

∂

∂ x
(Ig(s, x))∣

x1

+ (∆x)2
2

⎛
⎜
⎝

1
Ig(s, x1)

∂ 2

∂ x2
(Ig(s, x))∣

x1

−
⎛
⎝

1
Ig(s, x1)

∂

∂ x
(Ig(s, x))∣

x1

⎞
⎠

2⎞
⎟
⎠

+O((∆x)3) ,
(B.36)

which can be substituted back into eq.(B.35) in the exact form. It would give the expression
(for small ∆x) as

D (ρ(1)A ∣∣ρ
(2)
A ) ≈

(∆x)2
4σ

+ (∆x)2
2

∂ 2

∂ x2
(ln( Ig(s, x)

Ig(s, x1)
)) ∣

x1

+O((∆x)3) . (B.37)

However, if substituted while only keeping the terms leading in σ, we get a really simple
expression of the form (alternatively, taking the limit σ → 0 in eq.(B.37)),

D (ρ(1)A ∣∣ρ
(2)
A ) ≈

(∆x)2
4σ

+ (∆x)2
2
( ∂

2

∂ x2
( ∣M(s, x)∣2
∣M(s, x1)∣2

) ∣
x1

− ( ∂
∂ x
( ∣M(s, x)∣2
∣M(s, x1)∣2

) ∣
x1

)
2

)

+O((∆x)2σ) .
(B.38)

It is important to note that the order of the limits does not matter in this case, both the orders
give the same answer (taking the leading terms in (∆x) of the limiting form in eq.(B.35)
would have given the same result as eq.(B.38)).

Furthermore, the ∆x term in the limiting form of eq.(B.35) can never be leading because
in the physically sensible case of σ ≪ ∆x i.e., the angular separation of the states being

considered is much higher than the resolution of the detector, the (∆x)2

4σ term will always
dominate the former.
Lastly, we see that in the limit σ → 0, if we are able to justify physically the neglecting of the
diverging term (∆x)2/4σ, then the leading term in ∆x is the term quadratic in ∆x for any
order of σ.

B.3 Réyni divergence

In this appendix we try to find the form of Tn(ρ(1)A ∣∣ρ
(2)
A ). Starting with eq.(3.24), one obtains

Tn (ρ(1)A ∣∣ρ
(2)
A ) = ∫

1

−1
d x (Pg1(x))n(Pg2(x))1−n ,

= (Ig(s, x1))−n(Ig(s, x2))n−1∫
1

−1
d x g12

n (x) ∣M(s, x)∣2 ,
(B.39)

where,

g12
n (x) ∶= (

1
2
√
πσ

e−
(x−x1)

2

4σ )
n

( 1
2
√
πσ

e−
(x−x2)

2

4σ )
1−n

= e−
(∆x)2

4σ n(1−n)( 1
2
√
πσ

e−
(x−x12

n )
2

4σ ) ,

(B.40)
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with x12
n ∶= nx1 + (1 − n)x2. Therefore, we have

Tn (ρ(1)A ∣∣ρ
(2)
A ) = e−

(∆x)2

4σ n(1−n)(Ig(s, x2)
Ig(s, x1)

)
n−1

(Ig(s, x12
n )

Ig(s, x1)
) , (B.41)

which, in the limit σ → 0, gives

Tn (ρ(1)A ∣∣ρ
(2)
A )→ e−

(∆x)2

4σ n(1−n) (∣M(s, x2)∣2
∣M(s, x1)∣2

)
n−1

(∣M(s, x12
n )∣2

∣M(s, x1)∣2
) , (B.42)

with x12
n = nx1 + (1 − n)x2, ∆x = x1 − x2.

Let us verify our previously derived expressions in eq.(B.35) in both the exact forms and
the limiting version. Firstly, we note that,

∂

∂ n
(Ig(s, x12

n )) = (∆x)
∞

∑
i=0

∂ 2i+1

∂ x2i+1
(∣M(s, x)∣2)∣

x12
n

. (B.43)

Using this, along with the fact that x12
n → x1 as n→ 1 we find that,

lim
n→1

∂

∂ n
(Tn (ρ(1)A ∣∣ρ

(2)
A )) =

(∆x)2
4σ

+ ln(Ig(s, x2)
Ig(s, x1)

) + ∆x
Ig(s, x1)

∂

∂ x
(Ig(s, x))∣

x1

, (B.44)

which matches exactly with the expression from eq.(B.35). Furthermore, if we had repeated
this exercise with the limiting form given in eq.(B.42), we would have found the limiting
form as in eq.(B.35). Therefore, taking the limit σ → 0 commutes with taking the derivative
followed by the limit n→ 1.

Lastly, using eq.(B.42) and the definitions, we can easily see the form of the Réyni Diver-
gence coming out to be

Dn (ρ(1)A ∣∣ρ
(2)
A ) = n

(∆x)2
4σ

+ ln(Ig(s, x2)
Ig(s, x1)

) + 1
n − 1

ln(Ig(s, x12
n )

Ig(s, x1)
) ,

σ→0ÐÐ→ n
(∆x)2

4σ
+ ln(∣M(s, x2)∣2

∣M(s, x1)∣2
) + 1

n − 1
ln(∣M(s, x12

n )∣2
∣M(s, x1)∣2

) .

(B.45)

Taking the limit of this is straightforward as follows:

lim
n→1

Dn (ρ(1)A ∣∣ρ
(2)
A ) =

(∆x)2
4σ

+ ln(Ig(s, x2)
Ig(s, x1)

) + lim
n→1
( 1

n − 1
ln(Ig(s, x12

n )
Ig(s, x1)

)) . (B.46)

Now, we have that,

1
n − 1

ln(Ig(s, x12
n )

Ig(s, x1)
) = 1

n − 1
ln(Ig(s, x1 + (n − 1)(∆x))

Ig(s, x1)
) ,

= ∆x
Ig(s, x1)

∂

∂ x
(Ig(s, x))∣

x1

+O(n − 1) ,
(B.47)

where we have considered first, the expansion of Ig(s, x1+(n−1)(∆x)) in∆x , and then used
the expansion of the resulting logarithm. So all the higher order terms w.r.t (n − 1) will go to
0 in the limit n → 1. Therefore, what we are left with is exactly the expression in eq.(B.35).
The same exercise could have been repeated with the σ → 0 form of the Réyni divergence to
get the corresponding limiting form of the Relative Entropy!
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B.4 Quantum information variance

We start with eq.(3.29) where, Tn(ρ(1)A ∣∣ρ
(2)
A ) is as in eq.(B.42). To take the derivatives and

simplify we will use the notation

Tn (ρ(1)A ∣∣ρ
(2)
A ) = T1(n)T2(n)T3(n) , (B.48)

where

T1(n) ∶= e
(∆x)2

4σ n(n−1), T2(n) ∶= (
Ig(s, x2)
Ig(s, x1)

)
n−1

, T3(n) ∶= (
Ig(s, x12

n )
Ig(s, x1)

) , (B.49)

such that all of the above tend to 1 as n→ 1. Their respective derivatives are as follows:

∂

∂ n
(T1(n)) = e

(∆x)2

4σ n(n−1) (∆x)2
4σ

(2n − 1) , (B.50)

∂ 2

∂ n2
(T1(n)) = e

(∆x)2

4σ n(n−1) ((∆x)2
4σ

)
2

(2n − 1)2 + e
(∆x)2

4σ n(n−1)2
(∆x)2

4σ
. (B.51)

Similarly,

∂

∂ n
(T2(n)) = (

Ig(s, x2)
Ig(s, x1)

)
n−1

ln(Ig(s, x2)
Ig(s, x1)

) (B.52)

∂ 2

∂ n2
(T2(n)) = (

Ig(s, x2)
Ig(s, x1)

)
n−1

(ln(Ig(s, x2)
Ig(s, x1)

))
2

. (B.53)

Lastly,

∂

∂ n
(T3(n)) =

∆x
Ig(s, x1)

∂

∂ x
(Ig(s, x))∣

x12
n

, (B.54)

∂ 2

∂ n2
(T3(n)) =

(∆x)2
Ig(s, x1)

∂ 2

∂ x2
(Ig(s, x))∣

x12
n

. (B.55)

After some straightforward algebra making use of these various derivatives, we obtain

V (ρ(1)A ∣∣ρ
(2)
A ) =

(∆x)2
2σ

+ (∆x)2 ∂
2

∂ x2
(ln( Ig(s, x)

Ig(s, x1)
)) ∣

x1

, (B.56)

which, in leading order in σ → 0, gives

V (ρ(1)A ∣∣ρ
(2)
A ) ≈

(∆x)2
2σ

+ (∆x)2 ∂
2

∂ x2
(ln( ∣M(s, x)∣2

∣M(s, x1)∣2
)) ∣

x1

. (B.57)

C Generalized Scattering Configurations

In the main text, we delineated the entanglement analysis of the scattering A + B → A + B,
A and B being non-identical particles, in details. In this appendix, we spell out a detailed
analysis of the most general 2 → 2 scattering A + B → C + D. Here, C , D and A, B can be
identical. Also C , D can be different from A, B. We assume that, in terms of mass, either we
have mA = mC , mB = mD or mA = mD, , mB = mC . In this setup, some algebraic steps are least
cumbersome. It can be generalized quite straightforwardly to all unequal masses. We will
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comment on that in a while. Furthermore, we are assuming that we are scattering off bosonic
particles without spin. These particles may or may not have internal quantum numbers like
isospin. We will work with a generic two-particle state

∣p⃗,µ; q⃗,ν⟩ ∶= a†
µ(p⃗)a†

ν(q⃗) ∣Ω⟩ , (C.1)

where, ∣Ω⟩ is the bosonic Fock vacuum. These states are normalized according to eq.(A.15)
i.e.,

⟨p⃗,µ; q⃗,ν ∣ k⃗,α; l⃗,β⟩ = [2 Eµp⃗ 2 Eνq⃗ δ
(D̃)(p⃗ − k⃗) δ(D̃)(q⃗ − l⃗) δµ,α δν,β

+2 Eµp⃗ 2 Eνq⃗ δ
(D̃)(p⃗ − l⃗) δ(D̃)(q⃗ − k⃗) δµ,β δν,α] ,

(C.2)

with E i
p⃗ =
√

p⃗2 +m2
i and D̃ is the dimension.

Now, let us consider the initial state before scattering to be

∣k⃗, a;−k⃗, b⟩ , (C.3)

where, we are in the centre of mass frame. This state corresponds to the A particle to be in state
∣k⃗, a⟩ and the B particle to be in state ∣−k⃗, b⟩ where, these are single particle Fock states as in
eq.(A.8), ∣p⃗,α⟩ ∶=

√
2Eαp⃗ a†

α(p⃗) . We will introduce the short-hand notation ∣k⃗; a, b⟫ ∶= ∣k⃗, a;−k⃗, b⟩
for our convenience.

The state after scattering is given by,

S ∣k⃗; a, b⟫ . (C.4)

Next, we need to project this state onto the two-particle state ∣q⃗1, c ∶ q⃗2, d⟩ in the background
of detector geometry as explained in Section (2). To do so, we introduce the projector Q(F)C D
given by

Q(F)C D ∶= ∫ dΠc
q⃗1

dΠd
q⃗2

F(θ q⃗1d) ∣q⃗1, c, q⃗2, d⟩ ⟨q⃗1, c, q⃗2, d ∣ , dΠi
k⃗
∶= d D̃ p⃗i

2E i
k⃗

, (C.5)

where F is the same as in Section (2.1). Then, we have the target final state as

∣ fC D⟩ = ∫ dΠc
q⃗1

dΠd
q⃗2

F(θ1 q⃗1d) ∣q⃗1, c, q⃗2, d⟩ ⟨q⃗1, c, q⃗2, d ∣S ∣k⃗; a, b⟫ . (C.6)

Now, we consider a density matrix for the joint system in this state ∣ fC D⟩.

∣ fC D⟩ ⟨ fC D∣ = ∫ dΠc
q⃗1

dΠd
q⃗2

dΠc
r⃗1

dΠd
r⃗2

F(θ1 dq⃗1)F(θ1 d r⃗1) ∣q⃗1, c, q⃗2, d⟩

⟨r⃗1, c, r⃗2, d ∣ ⟨q⃗1, c, q⃗2, d ∣S ∣k⃗; a, b⟫
⟪k⃗; a, b∣S† ∣r⃗1, c, r⃗2, d⟩ .

(C.7)

However, this is not quite the density matrix because, ∣ fC D⟩ is not correctly normalized. Thus,
the correct density matrix is

ρ
(F)
C D ∶=

∣ fC D⟩ ⟨ fC D∣
⟨ fC D ∣ fC D⟩

. (C.8)

It is quite straightforward to find that

⟨ fC D ∣ fC D⟩ =
δ(D̃+1)(0)
4k(4Ek⃗)

(C.9)

∫ d D̃ p⃗δ(p − k) [F(θ1p)2δcd + 2δcd F(θ1p)F(π − θ1p) + F(π − θ1p)2] (C.10)

∣⟪p⃗; c, d ∣s∣k⃗; a, b⟫∣2 . (C.11)
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Based on this density matrix we can construct various reduced density matrices. Especially,
we can trace out the D particle states to obtain the reduced density matrix ρc:

ρC =
∫ dΠp⃗ [δcd(F(θ1p)2 + 2F(θ1p)F(π − θ1p)) + F(π − θ1p)2] ∣p⃗, d⟩ ⟨p⃗, d ∣ δ(p − k) ∣⟪p⃗; c, d ∣s∣k⃗; a, b⟫∣2

δ(D̃)(0) ∫ d D̃ p⃗ δ(p − k) [δcd(F(θ1p)2 + 2F(θ1p)F(π − θ1p)) + F(π − θ1p)2] ∣⟪p⃗; c, d ∣s∣k⃗; a, b⟫∣2
.

(C.12)
As in the main text, we will consider F(θ1) as a Gaussian approximation of the delta function.
We have three separate cases to consider.

1. Particles are identical (δcd = 1) and the mean of the Gaussian is 0. This implies that,

F(θ1) = F(π − θ1) . (C.13)

The ρC now becomes

ρC =
1

δ(D̃)(0)
∫ dΠp⃗ (F(π − θ1p)2) ∣p⃗, c⟩ ⟨p⃗, c∣ δ(p − k) ∣⟪p⃗; c, c∣s∣k⃗; a, b⟫∣2

∫ d D̃ p⃗ δ(p − k) (F(π − θ1p)2) ∣⟪p⃗; c, c∣s∣k⃗; a, b⟫∣2
, (C.14)

which, further gives

trC(ρC)n = [
δ(0)

2D̃−2πk2δ(D̃)(0)
]

n−1

∫
1

−1
d x[Pg(x)]n , (C.15)

with

Pg(x) ∶=
g(x) ∣ ⟪p⃗; c, c∣s∣k⃗; a, b⟫ ∣2

∫ 1
−1 d x g(x) ∣ ⟪p⃗; c, c∣s∣k⃗; a, b⟫ ∣2

, (C.16)

where, we have again defined F(−x)2 ∶= g(x).

2. Particles are identical and mean of the Gaussian distribution F is not 0. This causes the
cross terms to vanish since their contribution is negligible compared to the square terms
because of different support. We have

ρC =
1

δ(D̃)(0)
∫ dΠp⃗ (F(θ1p)2δcd + F(π − θ1p)2) ∣p⃗, c⟩ ⟨p⃗, c∣ δ(p − k) ∣⟪p⃗; c, c∣s∣k⃗; a, b⟫∣2

∫ d D̃ p⃗ δ(p − k) (F(θ1p)2 + F(π − θ1p)2) ∣⟪p⃗; c, c∣s∣k⃗; a, b⟫∣2
.

(C.17)
Using this, one gets

ρn
C = [

δ(0)
δ(D̃)(0)

]
n−1 ∫ d D̃ p⃗ δ(p − k) [(F(θ1p)2 + F(π − θ1p)2) ∣⟪p⃗; c, c∣s∣k⃗; a, b⟫∣2 ]n

[ ∫ d D̃ p⃗ δ(p − k) (F(θ1p)2 + F(π − θ1p)2) ∣⟪p⃗; c, c∣s∣k⃗; a, b⟫∣2 ]n
.

(C.18)
Now let us evaluate integral in the denominator first. Upon using polar co-ordinates
and carrying out integrals over (ϕ2, . . . ,ϕD̃−2) and the radial integral using the delta
function, we are only left with the x integral. Then, if we make the substitution x → −x ,
the integral of the first part of the integrand becomes the same as the second integral,
since the amplitude must be symmetric in t and u in the identical case. Hence we have:

Iden = 2D̃−1πk2∫
1

−1
(F(−x)2) ∣⟪p⃗; c, c∣s∣k⃗; a, b⟫∣2 . (C.19)

Now, when evaluating the numerator, we follow similar procedure. Then, we carry out a
binomial expansion of (F(θ1p)2+F(π−θ1p)2)2 which will have cross terms but their con-
tribution will be negligible since the approximate delta functions will not have the same
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support. Hence, we can approximate the integrand to have only (F(−x)2n+F(x)2n)(...).
Consequently, we can easily see again that changing variables x → −x in the first part of
the total integral makes it the same as the second part. Therefore, we have

Inum =2D̃−1πk2∫
1

−1
d x F(−x)2n [ ∣⟪p⃗; c, c∣s∣k⃗; a, b⟫∣2 ]n . (C.20)

Now combining both results we have the following expression:

t rC(ρn
C) = [

δ(0)
2D̃−1πk2δ(D̃)(0)

]
n−1

∫
1

−1
[PF(x)]n , (C.21)

where,

PF(x) ∶=
F(−x)2 ∣ ⟪p⃗; c, c∣s∣k⃗; a, b⟫ ∣2

∫ 1
−1 d x F(−x)2 ∣ ⟪p⃗; c, c∣s∣k⃗; a, b⟫ ∣2

. (C.22)

3. When the particles are non-identical δcd = 0. Here we simply have

ρC =
1

δ(D̃)(0)
∫ dΠp⃗ (F(π − θ1p)2) ∣p⃗, c⟩ ⟨p⃗, c∣ δ(p − k) ∣⟪p⃗; c, d ∣s∣k⃗; a, b⟫∣2

∫ d D̃p δ(p − k) (F(π − θ1p)2) ∣⟪p⃗; c, d ∣s∣k⃗; a, b⟫∣2
. (C.23)

This is essentially same as the A+ B → A+ B analysis and therefore, we have

t rC(ρC)n =
⎡⎢⎢⎢⎢⎣

δ(0)
2D̃−2πk2δ(D̃)(0)

⎤⎥⎥⎥⎥⎦

n−1

∫
1

−1
d x[PF(x)]n , (C.24)

with

PF(x) ∶=
F(−x)2 ∣ ⟪p⃗; c, d ∣s∣k⃗; a, b⟫ ∣2

∫ 1
−1 d x F(−x)2 ∣ ⟪p⃗; c, d ∣s∣k⃗; a, b⟫ ∣2

. (C.25)

So far, we have considered scattering configurations with a specific choice of masses. Now,
we are going to relax that and consider scattering event for A + B → C + D with all unequal
masses. One can throw in all kinds of other quantum numbers other than spin of course. This
case is a straightforward generalization of case 3 above. In fact, in this case we can obtain a
quite straightforward generalization of eq.(C.24) above

t rC(ρC)n =
⎡⎢⎢⎢⎢⎣

δ(0)
2D̃−2πh(k)δ(D̃)(0)

⎤⎥⎥⎥⎥⎦

n−1

∫
1

−1
d x[PF(x)]n , (C.26)

with PF(x) being same as in eq.(C.25) and

h(k) =h(k; mA, mB, mC , mD) ∶= k2
⎡⎢⎢⎢⎢⎣

2k2 − 2
√
(m2

A + k2)(m2
B + k2) +∆m2 +m2

A +m2
B

2k2 − 2
√
(m2

A + k2)(m2
B + k2) +∆m2 +m2

C +m2
D

⎤⎥⎥⎥⎥⎦

+ ∆m2 [∆m2

4
+
√
(m2

A + k2)(m2
B + k2)] + (m2

Am2
B −m2

C m2
D) ,

(C.27)

where, we have defined, ∆m2 ∶= m2
A+m2

B −m2
C −m2

D . Observe that, there is only change in the
overall multiplicative factor. Thereby, the expression for DQ remains same as eq.(3.19). Also,
in the two special cases mentioned previously, we can see the simplification as

h(k; mA, mB, mA, mB) = h(mA, mB, mB, mA) = k2 . (C.28)
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C.1 Generalized relative entropy

In this section, we repeat the steps of Appendix (B.2) for eq.(3.36). However, we shall only
do that for the identical case when both x1 and x2 are not equal to 0 or x2 = 0, while the
non-identical case just gives the previously obtained answer as in eq.(3.16). The remaining
case of x1 = 0 will result in meaningless complication and hence will be avoided. We still have
two cases depending upon whether x1 and x2 have the same or opposite signs:

1. x1 and x2 have the same signs:

D(ρC(x1)∣∣ρC(x2)) ≈ ln(Ig(s, x2)
Ig(s, x1)

) + (∆x) ∂
∂ x
(ln( Ig(s, x)

Ig(s, x1)
)) ∣

x1

+ (∆x)2
4σ

,

(C.29)

with ∆x = x1 − x2 .

2. x1 and x2 have the opposite signs:

D(ρC(x1)∣∣ρC(x2)) ≈ ln(Ig(s,−x2)
Ig(s, x1)

) + (∆x) ∂
∂ x
(ln( Ig(s, x)

Ig(s, x1)
)) ∣

x1

+ (∆x)2
4σ

,

(C.30)

with ∆x = x1 + x2 .

since when they are of opposite signs, the terms surviving in eq.(3.34) are different than when
they are of the same signs. All the cases can now be combined into the following with our
previous definitions modified ever so slightly

D(ρC(x1)∣∣ρC(x2)) ≈ ln(Ig(s, ∣x2∣)
Ig(s, ∣x1∣)

) + (∆x) ∂
∂ x
(ln( Ig(s, x)

Ig(s, ∣x1∣)
)) ∣

∣x1∣

+ (∆x)2
4σ

, (C.31)

with ∆x ∶= ∣x1∣ − ∣x2∣. This is so as

∆x ∶= ∣x1∣ − ∣x2∣ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x1 − x2 if x1 > 0 , x2 > 0

x1 + x2 if x1 > 0 , x2 < 0

−(x1 + x2) if x1 < 0 , x2 > 0

−(x1 − x2) if x1 < 0 , x2 < 0

. (C.32)

Now, the amplitude squared Mc,d
a,b(s, x) is an even function of x due to crossing symmetry.

Hence we have that Ig(s, x1) = Ig(s, ∣x1∣) since even derivatives of even functions are still even
while odd derivatives of even functions are odd. This is now enough to see why eq.(C.31) is
valid. We start with the case x1 > 0, x2 > 0 where it is obviously correct since taking the
absolute value doesn’t change anything. Next, if we consider x1 > 0, x2 < 0, in eq.(3.36)
will be exactly the same as eq.(B.35) with x2 → −x2 and hence in the original expression,
∆x = x1 − x2 → x1 + x2 which is exactly what the modified definition of ∆x gives. Further-
more, when we then consider x1 < 0, x2 < 0, we see that changing back to the first case via
x1 → −x1 > 0 and x2 → −x2 > 0 does two things. Firstly, the even derivatives (including
the amplitude itself) do not change because of the aforementioned logic. However, the odd
derivatives do change signs. Nonetheless, this sign is cancelled due to the change in sign of our
modified∆x as can be seen in eq.(C.32). Therefore, overall the expression does not change at
all. Similarly, the last case of x1 < 0, x2 > 0 can also be argued to be exactly the same as that in
eq.(C.31). Therefore, as long as we are avoiding x1 = 0, our calculations/expressions derived
in the non-identical particles final state are valid even in the identical particle scenario.
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C.2 Generalization to external spin

We can generalize the analysis above to external spinning particles–see eg [44]. We will con-
sider massive spinning particle for the present purpose. First, we need to specify the state of
the external particles. As before, such single particle states are momentum eigenstates. How-
ever, now we need further specifications of the states. We are interested to remain in 3 + 1
dimensions. These states transform irreducibly under the universal cover of the Little group
SO(3) i.e., in the ir repn of SU(2). Then any single-particle state will have at least three labels

∣p⃗, J ,λ⟩ . (C.33)

The label J is non-negative half-integer called spin (J = 0, 1/2, 1, 3/2, 2, . . . ). The spin
(2n + 1)/2, n ∈ Z≥ representations are the fermionic states. The label λ denotes the com-
ponents of the spin J ir repn. One can choose λ to be the helicity, i.e., the projection of spin
J on the direction of the momentum p⃗. λ can take 2J + 122 values from λ = −J to λ = +J in
steps of unity. The normalization of the states in eq.(C.33) is chosen as to be

⟨p⃗, J ,λ ∣ p⃗′, J ′,λ′⟩ = 2Ep⃗ δJJ ′ δλλ′ δ
(D̃)(p⃗ − p⃗′) . (C.34)

Multi-particle states can be constructed out of them following the general prescription of con-
structing Fock states as reviewed in Appendix A.2. Now, for specific analysis we consider the
elastic scattering event of two-particles A1, A2 with spins, respectively, J1, J2:

A1 + A2 → A1 + A2 . (C.35)

One example will be pp-scattering. However, we are considering here A1 and A2 to be non-
identical to set aside the algebraic complication that arises due to identity of particles23. Now,
we consider an event where we send in polarized particles i.e., the particles are of definite he-
licities. Furthermore, we also consider that we collect the outgoing particles to be in definite
polarized states. This may be a very restrictive situation but this generalizes the analysis for
scalar particles quite directly. A more interesting scenario will be presented later in this section.
Let λ1,λ2 be the initial helicities of the particles A1, A2 respectively and λ′1,λ′2 be the respective
final helicities. Thus we consider that, initial state of the joint system is ∣k⃗, J1,λ1 ; −k⃗, J2,λ2⟩24.
To shorten notation, from now on, we will drop the spin labels and keep only the momentum
labels and helicity labels. Thus we will denote the above state by ∣k⃗;λ1,λ2⟫ and so on. More-
over, we are keeping detector configuration of the scalar scattering as it is. Thus, the projector
defined in eq.(2.4) is trivially generalized in this case to

λ′1,λ′2Q
(F)
A1A2
∶= ∫ dΠA1 p⃗1 dΠA2 p⃗2 F(θA2) ∣p⃗1,λ′1; p⃗2,λ′2⟩ ⟨p⃗1,λ′1; p⃗2,λ′2∣ , dΠik⃗ ∶=

d3 p⃗
2Eik⃗

.

(C.36)
Then, we have the target final state

∣f⟩ =λ′1,λ′2 Q
(F)
A1A2
S ∣k⃗;λ1,λ2⟫ . (C.37)

Again, as before, this state is not automatically normalized. Defining N ∶= ⟨f ∣ f⟩, it is straight-
forward to obtain

N = δ(3+1)(0)
4p(EA1 p⃗ + EA2 p⃗) ∫

d3 p⃗1 δ(p1 − p) F(π − θp⃗1)2 ∣⟪p⃗1;λ′1λ
′
2∣s∣k⃗;λ1λ2⟫∣

2
. (C.38)

22Note that, we are considering massive particles. For massless particles, there are always two helicity states
irrespective of spin.

23Especially, the treatment of identical fermions will be different from identical bosons due to anticommuting
property of fermions. We leave the detailed exploration of entanglement in pp-scattering for future work.

24We are in CoM frame.
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Now, we can consider the density matrix for the joint system to be

ρ̃(F) ∶= 1
N
∣f⟩ ⟨f∣ . (C.39)

Starting from this density matrix, now, one can obtain reduced density matrices by tracing out
subsystems systems. Thus, we can trace out A2 to obtain the reduced density matrix

ρ̃
(F)
A1
= 1
δ(3)(0)

∫ dΠA1 p⃗1 δ(p1 − k) F(π − θA1) ∣⟪p⃗1;λ′1,λ′2∣s∣k⃗;λ1,λ2⟫∣
2 ∣p⃗1,λ′1⟩ ⟨p⃗1,λ′1∣

∫ d3 p⃗1 δ(p1 − k) F(π − θA1) ∣⟪p⃗1;λ′1,λ′2∣s∣k⃗;λ1,λ2⟫∣
2 .

(C.40)
Using these density matrix one can now easily follows in footsteps of the analysis done for the
scalar scattering case to reach various expressions for entanglement measures. Specifically, we
can reach the following generalization of the relative entropy eq.(3.19),

Dλ
′

1,λ′2;λ1,λ2
Q (ρ̃(1)A1

∣∣ρ̃(2)A1
) = (∆x)2

2
∂ 2

∂ x2

⎡⎢⎢⎢⎢⎢⎣
ln
⎛
⎜
⎝

∣Mλ′1,λ′2;λ1,λ2(s, x)∣2

∣Mλ′1,λ′2;λ1,λ2(s, x1)∣
2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦x=x1

+O((∆x)3σ) ,

(C.41)
with

Mλ′1,λ′2;λ1,λ2(s, x) ≡ ⟪p⃗1;λ′1,λ′2∣s∣k⃗;λ1,λ2⟫ , (C.42)

where, as before we avoid the forward direction by the detector configuration. While these
have been so far quite straightforward, we will now define a new quantity called unpolarized
relative entropy quite analogous to unpolarized scattering cross-section. By unpolarized relative
entropy we will mean the quantity

DQ(ρ̃(1)A1
∣∣ρ̃(2)A1

) ∶= ∑
λ′1,λ′2
λ1,λ2

1
(2J1 + 1)(2J2 + 1) Dλ

′

1,λ′2;λ1,λ2
Q (ρ̃(1)A1

∣∣ρ̃(2)A1
) . (C.43)

One can attempt to study various bootstrap analyses with this quantity for scattering involving
spinning particle like, say, pp-collision.

While, the above configuration is a perfectly valid one, it misses one very interesting pos-
sibility. The above setup misses out entanglement among helicity degrees of freedom for the
outgoing particles as a result of the scattering. Let us briefly sketch how one can investigate
this. The crux of this investigation is to modify the projector in eq.(C.36) to incorporate the
possibility of entanglement between helicity degrees of freedom of the outgoing particles. This
is done by defining the new projector

Q
(F)
A1A2
∶= ∑
λ′1,λ′2

∫ dΠA1 p⃗1 dΠA2 p⃗2 F(θA2) ∣p⃗1,λ′1; p⃗2,λ′2⟩ ⟨p⃗1,λ′1; p⃗2,λ′2∣ . (C.44)

Now, as before, we consider that the incoming particles are polarized i.e., they are in definite
helicity states. Thus, the modified target final state is now given by

∣f′⟩ = Q(F)A1A2
S ∣k⃗;λ1,λ2⟫ , (C.45)

where again we are in CoM frame. Now, one can consider the density matrix of the joint
system to be given by,

ρ′(F) ∶= 1
N′
∣f′⟩ ⟨f′∣ , (C.46)
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with N′ ∶= ⟨f′ ∣ f′⟩. Starting from this density matrix one can consider various reduced density
matrices by tracing out one of the particle states. Note that this time one can also trace out
helicity degree of freedom of one of the outgoing particle. Thus, in this setup we can explore
the entanglement between helicities that is generated as a result of scattering. It is worthwhile
to mention here that there is a contentious issue regarding Lorentz invariance of quantum
entanglement while dealing with spinning particles, see for example [68–72]. We wish to
address these issues and explore entanglement assisted bootstrap analysis of spinning particles
in future.

D Pion-pion scattering

We want to calculate both entanglement entropy and relative entropy for specific pion pion
interactions. Both of these necessitate the knowledge of the contribution of various in channels
in the amplitudeM(s, t, u). In the following calculations we will drop the momentum label
of the states and focus on indices. π0,π+,π− can be defined to be:-

∣π0⟩ = ∣0⟩ , ∣π+⟩ = 1√
2
(∣1⟩ + i ∣2⟩) , ∣π−⟩ = 1√

2
(∣1⟩ − i ∣2⟩) . (D.1)

We aim to carry out the above entropy computations for scattering that involve π0,π+,π−.
Since the basis is orthogonal, the formalism for normalisation and the procedure of finding
the entropy remains the same as before. In our calculations above we have taken the trace
over ∣p⃗, d⟩ and hence we will calculate entropy with respect to the C particle. So in a generic
reaction A1 + A2 → A3 + A4, we can construct two types of final states i.e ∣A3, c, A4, d⟩ and
∣A3, d, A4, c⟩. If we use the first final state entropy will be calculated with respect to A3 and
if we use the second final state the entropy will be calculated with respect to A4. This is
something we must keep in mind while evaluating the reactions. We first calculate projectors
in the (0,1,2) basis.

Indices

We first specialize for a, b, c, d taking values in (0, 1, 2). Applying crossing symmetry and O(N)
symmetry, the amplitudeMc,d

a,b(s, t, u) takes the form:

Mc,d
a,b(s, t, u) = A(s∣t, u) δab δ

cd + A(t ∣s, u) δc
a δ

d
b + A(u∣s, t) δd

a δ
c
b . (D.2)

The projectors of O(3) take the following form:-

P0 = 1
3
(δabδ

cd), P1 = 1
2
(δc

aδ
d
b − δd

aδ
c
b), P2 = 1

2
(δc

aδ
d
b + δd

aδ
c
b −

2
3
δabδ

cd) . (D.3)

Now writingM(s, t, u) in terms of singlet,symmetric and anti-symmetric Projectors, we have

Mc,d
a,b(s, t, u) = (3A(s∣t, u) + A(t ∣s, u) + A(u∣s, t)) P0 c,d

a,b + (A(t ∣s, u) − A(u∣s, t)) P1 c,d
a,b

+ (A(t ∣s, u) + A(u∣s, t)) P2 c,d
a,b .

(D.4)

Making the following redefinition:-

A0(s, t, u) = 3A(s∣t, u) + A(t ∣s, u) + A(u∣s, t)
A1(s, t, u) = A(t ∣s, u) − A(u∣s, t)
A2(s, t, u) = A(t ∣s, u) + A(u∣s, t) ,

(D.5)
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such thatMc,d
a,b(s, t, u) now reads:-

Mc,d
a,b(s, t, u) = A0(s, t, u) P0 c,d

a,b + A1(s, t, u) P1 c,d
a,b + A2(s, t, u) P2 c,d

a,b . (D.6)

All terms of the form ⟨a, b ∣T ∣ c, d⟩ with three indices unequal disappear. This can be easily
seen from eq.(D.3). Furthermore the terms ⟨a, b ∣T ∣ c, d⟩ with three indices equal and one
distinct also disappears. The non-vanishing cases are listed below and will be useful when we
calculate pion pion reactions.

1. For a = b = c = d,

P0 = 1
3

, P1 = 0, P2 = 1 − 1
3

. (D.7)

2. For a = c ≠ b = d,

P0 = 0, P1 = 1
2

, P2 = 1
2

. (D.8)

3. For a = b ≠ c = d
P0 = 1

3
, P1 = 0, P2 = −1

3
. (D.9)

4. For a = d ≠ c = b

P0 = 0, P1 = −1
2

, P2 = 1
2

. (D.10)

The cases calculated here exhausts the possibilities of the T −matrix elements that might occur
upon the basis change. Now, we will do the cases, where indices take values for π+,π− and
π0. We can then use these results directly into our expressions for density matrix and entropy
derived above.

Table 6: Amplitudes for various pion reactions

Amplitudes

Reaction Entropy for M(s, t, u)

π+(−) +π+(−) → π+(−) +π+(−) π+(−) A2(s, t, u)
π0 +π0 → π0 +π0 π0 1

3A0(s, t, u) + 2
3A2(s, t, u)

π+(−) +π0 → π+(−) +π0 π+(−) 1
2 (A

1(s, t, u) + A2(s, t, u))
π+(−) +π0 → π+(−) +π0 π0 1

2( − A1(s, t, u) + A2(s, t, u))
π+ +π− → π0 +π0 π0 1

3( A0(s, t, u) − A2(s, t, u) )
π+ +π− → π+ +π− π+ 1

3 A0(s, t, u) + 1
2 A1(s, t, u) + 1

6 A2(s, t, u)
π+ +π− → π+ +π− π− 1

3 A0(s, t, u) + 1
2 A1(s, t, u) + 1

6 A2(s, t, u)

E Isospin Entanglement in Pion Scattering

In this appendix, we provide with the technical details for the analysis presented in section
8. We want to quantify entanglement in isospin resulted by pion scattering. Recall that, pi-
ons π0, π+, π− are considered as three states of the same particle in the isospin space. The
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states are defined as in eq.(D.1). They transform in the spin-1 representation of O(3)25. We
will calculate quantum relative entropy and another quantity called entanglement power for
investigating entanglement in isospin.

E.1 Quantum Relative Entropy

For the analysis that follows we will always remain in the CoM frame. We assume that the
incoming particles are moving along ẑ so that the in state is given by

∣in⟩ ∶= ∣pẑ, a1;−pẑ, a2⟩ , (E.1)

where a1, a2 are isospin labels for the incoming particles. Each of a1, a2 can take 3 values.
The evolved state under S-Matrix evolution is given by S ∣in⟩. Now we will project this state
onto a two-particle state. However, since we are interested in isospin entanglement only, we
will be considering projection onto a definite momentum configuration. Let’s consider that the
outgoing momentum configuration is (in CoM frame)

∣qn̂, b1;−qn̂, b2⟩ , (E.2)

where, without any loss of generality, we can consider n̂ to be an unit vector lying in x−z plane
making an angle θ with the +ve ẑ direction. Thus, in the usual spherical polar coordinates we
have

n̂ ≡ (sinθ , 0, cosθ) . (E.3)

By 4−momentum conservation, one has p = q. Further, let us take θ ≠ 0 strictly. Then, the
desired target state is given by

∣ f ⟩ = ∑
b1,b2

∣qn̂, b1;−qn̂, b2⟩ ⟨qn̂, b1;−qn̂, b2 ∣S ∣ pẑ, a1;−pẑ, a2⟩

=(2π)4δ(4)(0) ∑
b1,b2

∣qn̂, b1;−qn̂, b2⟩ S b1 b2
a1a2
(s, cosθ) , (E.4)

where we have defined

S b1 b2
a1a2
(s, cosθ) ∶= ⟨qn̂, b1;−qn̂, b2 ∣S ∣ pẑ, a1;−pẑ, a2⟩ . (E.5)

Since we will be strictly considering non-forward scattering, we can use with impunity

S b1 b2
a1a2
(s, cosθ) ≡Mb1 b2

a1a2
(s, cosθ) , (E.6)

whereMb1,b2
a1,a2 is the standard scattering amplitude for a1a2 → b1 b2. Then, we can construct

the density matrix from the state ∣ f ⟩ given by

ρ f =N (2π)8 [δ(4)(0)]
2
∑

b1,b2

∑
c1,c2

(Mb1 b2
a1a2
(s, cosθ)Ma1a2

c1c2
(s, cosθ)∗)

∣qn̂, b1;−qn̂, b2⟩ ⟨qn̂, c1;−qn̂, c2∣ ,
(E.7)

where, the constantN is fixed by the normalization requirement tr1tr2ρ f = 1 where the traces
are taken only over the isospin states with respect to the basis {∣qn̂, x1;−qn̂, x2⟩}. Fixing the
normalization constant then, we are left with the final density matrix ρ f with matrix elements
given by

(ρ f )
b1 b2

c1c2

(s, cosθ) = Mb1 b2
a1a2 (s, cosθ) [Ma1a2

c1c2 (s, cosθ)]∗

∑x ,yMx y
a1a2(s, cosθ) [Ma1a2

x y (s, cosθ)]∗
. (E.8)

25For our purpose we can be content with the representation theory of SU(2)!
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The reduced density matrix ρ1 = tr2ρ f , then, has matrix elements

(ρ1)
b1

c1

(s, cosθ) = ∑zMb1z
a1a2(s, cosθ) [Ma1a2

c1z (s, cosθ)]∗

∑x ,yMx y
a1a2(s, cosθ) [Ma1a2

x y (s, cosθ)]∗
. (E.9)

To remind ourselves that we are essentially considering finite-dimensional state spaces, the
density matrix ρ f is a 9 × 9 matrix and ρ1 is a 3 × 3 matrix.

For relative entropy, we will consider another density matrix in obtaining which, one chooses
a different external momentum configuration to get the state ∣ f ⟩. Let’s consider one where
θ is different. Thus, we have now another reduced density matrix σ1 with matrix elements
given by

(σ1)
b1

c1

(s, cos θ̄) = ∑zMb1z
a1a2(s, cos θ̄) [Ma1a2

c1z (s, cos θ̄)]∗

∑x ,yMx y
a1a2(s, cos θ̄) [Ma1a2

x y (s, cos θ̄)]∗
, (E.10)

where, θ̄ ≠ θ ≠ 0. Now, we can consider the quantum relative entropy D(ρ1∣∣σ1).

E.2 Entanglement Power

The concept of entanglement power or entangling power of an unitary evolution operator was in-
troduced in [47,48] . Let us briefly recapitulate the basic concept behind this quantity. Unitary
transformations U i.e., quantum evolutions acting upon state-space of multi-particle systems
describe non-trivial interactions between the degrees of freedom among different subsystems.
One can ask how efficient is U as entangler according to some criterion. [47,48] addressed this
issue by considering how much entanglement is produced by U on the average acting on a
given distribution of separable i.e., unentangled quantum states. For a bi-partite system with
state space H = H1 ⊗H2, if E is an entanglement measure over the same then entanglement
power of U with respect to E is defined by

ep(U) ∶= E(U ∣β1⟩⊗ ∣β2⟩)
β1,β2

, βi ∈Hi , (E.11)

where, the bar denotes the average over all product states ∣β1⟩⊗∣β2⟩with respect to some prob-
ability distribution p(∣β1⟩ , ∣β2⟩). As an entanglement measure of a normalized state ∣ψ⟩ ∈ H
was used the linear entropy

E(∣ψ⟩) = 1 − tr1ρ
2, ρ ∶= tr2 ∣ψ⟩ ⟨ψ∣ . (E.12)

Physically, ep(U)measures how much entanglement U can impart upon an otherwise unentan-
gled state. The important point to note is that, for a given p(∣β1⟩ , ∣β2⟩), entanglement power
is essentially a property of U . Thus, one can try to make an entanglement assisted comparison
between different unitary evolutions in terms of ep(U).

Recently, [49,50] explored the entanglement power in the context of S-Matrix evolution. In
particular, they used a particular form of p(∣β1⟩ , ∣β2⟩). We will apply their construct to our
consideration of isospin entanglement.

First note that, for a fixed momentum configuration we can consider a generic state of the
form

∣kα̂, a1;−kα̂, a2⟩ , (E.13)

α̂ being a generic unit 3−vector, as tensor product state of two single particle isospin states
i.e., for the purpose of isospin considerations only we can consider

∣kn̂, a1;−kn̂, a2⟩ ≡ ∣a1⟩⊗ ∣a2⟩ . (E.14)
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Now, we define in state to be

∣ψi⟩ ∶= R̂(Ω1)⊗ R̂(Ω2) ∣pẑ, a1;−pẑ, a2⟩ , (E.15)

where, R̂(Ωi) is rotation in the isospin space of the i th particle. In particular, R̂(Ωi) acts on the
isospin state of i th particle. More specifically, R̂ is rotation operator in spin-1 representation of
SU(2) because isospin states transform in the same representation. In terms of usual spherical
polar coordinates (θi ,φi), the rotation operator R̂(Ωi) reads

R̂(Ωi) = e−i I3φi e−i I2θi , (E.16)

with

I3 =
⎛
⎜⎜⎜⎜
⎝

1 0 0

0 0 0

0 0 −1

⎞
⎟⎟⎟⎟
⎠

, I2 =
1
2

⎛
⎜⎜⎜⎜
⎝

0 −
√

2i 0
√

2i 0 −
√

2i

0
√

2i 0

⎞
⎟⎟⎟⎟
⎠

. (E.17)

It is worth mention that the above matrices are expressed in the basis
{∣I3 = +1⟩ , ∣I3 = 0⟩ , ∣I3 = −1⟩} consisting of eigenstates of the I3 operator with indicated eigen-
values. The rotation operator R̂(Ωi) then turns out to be, in this basis,

R̂(Ωi) =
⎛
⎜⎜⎜⎜
⎝

eiφi cos2 (θi
2 ) − eiφi sin(θi)√

2
eiφi sin2 (θi

2 )
sin(θi)√

2
cos (θi) − sin(θi)√

2

e−iφi sin2 (θi
2 )

e−iφi sin(θi)√
2

e−iφi cos2 (θi
2 )

⎞
⎟⎟⎟⎟
⎠

. (E.18)

Under S-Matrix evolution we have, then, the state ∣ψi⟩ goes to S ∣ψi⟩. Now, for isospin entan-
glement we need to consider restriction of S to isospin space. However, S-Matrix evolution
also causes change in momenta of the scattering particles. Thus we consider projecting the
S-Matrix to a definite scattering configuration with respect to momenta and then consider the
restriction of the same to the isospin space i.e., the S-Matrix elements of interests are

⟨pn̂, c1;−pn̂, c2 ∣S ∣ pẑ, b1;−pẑ, b2⟩ = (2π)4δ(4)(0)S c1c2
b1 b2
(s, cosθ) , (E.19)

n̂ being given by eq.(E.3). In writing this we have made use of the usual 4−momentum con-
servation in CoM frame. To emphasize, we are interested in the matrix Ŝ(s, cosθ) which acts
on the two-particle isospin space and has elements given by S c1c2

b1 b2
(s, cosθ). Thus, the target

state is given by:

∣ψ f ⟩ ∶=
1

w(p)2 ∑c1,c2
b1,b2

∣pn̂, c1;−pn̂, c2⟩ ⟨pn̂, c1;−pn̂, c2 ∣S ∣ pẑ, b1;−pẑ, b2⟩ ⟨pẑ, b1;−pẑ, b2 ∣ψi⟩

= 1
w(p)(2π)

4δ(4)(0) ∑
c1,c2
b1,b2

∣pn̂, c1;−pn̂, c2⟩S c1c2
b1 b2
(s, cosθ) ⟨b1 ∣ R̂(Ω1) ∣ a1⟩ ⟨b2 ∣ R̂(Ω2) ∣ a2⟩ ,

(E.20)

where we have used the inner product

⟨kn̂, b1;−kn̂, b2 ∣ψi⟩ = w(k) ⟨b1 ∣ R̂(Ω1) ∣ a1⟩ ⟨b2 ∣ R̂(Ω2) ∣ a2⟩ , (E.21)

w(k) being some momentum dependent normalization factor dependent on the magnitude of
the momentum, k. Next, we proceed through the same steps as before to construct the density
matrix

ρψ f = N̄ ∣ψ f ⟩ ⟨ψ f ∣ , (E.22)
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where, as before N̄ is fixed by the normalization requirement tr1 tr2ρψ f = 1. Finally, in the
basis {∣qn̂, c1;−qn̂, c2⟩} the matrix elements of ρψ f are given by

(ρψ f )
b1 b2

c1c2

(s, cosθ) = (E.23)

∑x1,x2∑y1,y2
Mb1 b2

x1 x2(s, cosθ) [My1 y2
c1c2 (s, cosθ)]∗ R̂(1)b1

a1 R̂(2)b2
a2 (R̂(1)

c1
a1 R̂(2)c2

a2)∗

∑z1z2∑x1,x2∑y1,y2
Mz1z2

x1 x2(s, cosθ) [My1 y2
z1z2 (s, cosθ)]∗ R̂(1)z1

a1 R̂(2)z2
a2 (R̂(1)

y1
a1 R̂(2)y2

a2)∗
,

(E.24)

where, R̂(1)ab = ⟨a ∣ R̂(Ω1) ∣ b⟩ and in writing this we are again considering scattering in strictly
non-forward direction. From this we can again construct the reduced density matrix by tracing
out particle 2 to get

ρ̄1 = tr2ρψ f , (E.25)

whose matrix elements are given by

(ρ̄1)
b1

c1

=∑
`

(ρψ f )
b1`

c1`
(s, cosθ) . (E.26)

Then, the entanglement power of the restricted S-Matrix Ŝ(s, cosθ) is given by [49,50]

E [Ŝ(s, cosθ)] = 1 − ∫
dΩ1

4π
dΩ2

4π
tr1 [ρ̄2

1] , (E.27)

where, dΩi = sinθi dθi dφi is the usual volume element on S2 in spherical polar coordinates.
Let us compare E above with ep defined in eq.(E.11). The product state of ∣β1⟩ ⊗ ∣β2⟩ of
eq.(E.11) is now labelled by the spherical polar coordinates (Ω1(θ1,φ1),Ω2(θ2,φ2)). Thus
we need to consider the probability distribution function p({θ1,φ1},{θ2,φ2}). It is clear from
eq.(E.27) that,

p({θ1,φ1},{θ2,φ2}) = (
1

4π
)

2

sinθ1 sinθ2 . (E.28)

It is straightforward to check that p({θ1,φ1},{θ2,φ2}) is properly normalized i.e.,

∫
π

0
dθ1∫

2π

0
dφ1∫

π

0
dθ2∫

2π

0
dφ2 p({θ1,φ1},{θ2,φ2}) = 1 . (E.29)

Here, it is worth mentioning that the entanglement power E is defined with respect to the
particular probability distribution of eq.(E.28) above. Clearly, this is not a unique choice. It
may be worthwhile to study entanglement power defined with respect to other probability
distributions. We leave these questions for future exploration.

F Numerics

We shall briefly describe the numerical techniques used to obtain the results in Section (7).
The ansatz eq.(7.1) is formally an infinite sum. We need to employ a cut off of Nmax , Lmax to
perform computations. Unitarity is imposed on a grid of points uniformly distributed on the

upper half plane of ηs defined below eq.(7). The unitarity condition ∣S(I)
`
(s)∣

2
≤ 1 can be cast

into a semi-definite condition as mentioned in [16]. Starting with the expansion,

S(I)
`
(s) = 1 + i y⃗ . f⃗ (I)

`
(s) , (F.1)
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where y⃗ is the parameter set and f⃗ is obtained after integrating over the Legendre polynomial.
Using this expansion we can write

0 ≤ (1 − y⃗ . I⃗(I)
`
)2 + ( y⃗ .R⃗(I)

`
)2 ≤ 1

Ô⇒ U` ≡ 2 y⃗ . I⃗(I)
`
− ( y⃗ . I⃗(I)

`
)2 − ( y⃗ .R⃗(I)

`
)2 ≥ 0 ,

and also U(I)
`
≤ 1 .

(F.2)

Here, R(I)
`
= Re( f (I)

`
) and I(I)

`
= Im( f (I)

`
). This can further be written as a matrix of the form,

M(I)
`
≡
⎛
⎜
⎝

1 + y⃗ .R⃗(I)
`

1 − y⃗ . I⃗(I)
`

1 − y⃗ . I⃗(I)
`

1 − y⃗ .R⃗(I)
`

⎞
⎟
⎠

, (F.3)

whose positive semi-definiteness will imply unitarity. Numerically, this condition is imposed
using S.D.P.B ( [13]). Our calculations have a precision of 200 decimal digits. Unitarity was
imposed on 200 points.

To find the lake and the river of fig.(11) and fig.(15) first we impose an Adler zero at
a position s0 in T (0)0 (s). Next step is to extremize T (2)0 (s) at various values of s. We can
impose an Adler zero if the maximum is positive and the minimum is negative. Repeating the
procedure for other s0 values we find the figures. This procedure is simple and the boundary
can be ideally found by brute force. However we did not have the computational power and
hence had to improvise.

We used a makeshift algorithm to obtain the boundary points of fig.(11) and fig.(15) by
using information from nearby points. We fix some s0 and carry out a quadratic fit of the
Max[T (2)0 (s2)] or Min[T (2)0 (s2)] close to the boundary. Zeroes of the fitting function should

ideally give us the point s∗2 where Max or Min[T (2)0 (s∗2)] = 0 if the variation is quadratic. This is
true in case of the Lake and the approximation works very well even if the approximating points
are sufficiently away (Max[T (2)0 (s)] ≈ 10−3) and can give results of order upto 10−8. However

the variation of Max or Min[T (2)0 (s)] for the river is more complicated. In some regions of both

the lower bank and the upper bank the Max or Min[T (2)0 (s2)] behaves linearly with s2 even
when we move closer to the bank. They become quadratic very close to the edge and hence we
are required to choose points much closer to the boundary. It is observed that better results are
obtained if we choose points from either side of the boundary. Since we knew the approximate
location of the lake boundary from [17], re-plotting the lake was easy. However to find the
river we had to first generate a grid of allowed region. We discovered that the upper boundary
arose because the maximum became negative and the lower boundary because the minimum
became positive. After this grid was refined enough, we started employing our algorithm to
generate boundary points. All boundary points obtained have an order of ≤ 10−6. Examples
of fitting function for both fig.(11) and fig.(15) are given in fig.(21).

Our computational resources included one 10-core and one 8-core workstations, one 20-
core cluster and a 16 core cluster. Given these limited numerical resources we could only
work extensively with a cut off of Nmax = 10 , Lmax = 11. However, recently, we have checked
that for Nmax = 14 and Lmax = 17 there is virtually no discernible change to our river plots.
We hope to work with an increased cut off in the near future and demonstrate convergence
explicitly. However we are certain about the validity of our result since fig.(11) matches very
well with the one presented in [17]
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Figure 21: The Blue points are the approximate values and the green point is the
quadratic zero prediction. The values at the green point for both are ≈ 10−8.
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