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Abstract

We introduce a framework for calculating dynamical correlations in the Lieb-Liniger
model in arbitrary energy eigenstates and for all space and time, that combines a Lehmann
representation with a 1/c expansion. The nth term of the expansion is of order 1/cn and
takes into account all bn2 c + 1 particle-hole excitations over the averaging eigenstate.
Importantly, in contrast to a "bare" 1/c expansion it is uniform in space and time. The
framework is based on a method for taking the thermodynamic limit of sums of form fac-
tors that exhibit non integrable singularities. We expect our framework to be applicable
to any local operator. We determine the first three terms of this expansion and obtain
an explicit expression for the density-density dynamical correlations and the dynamical
structure factor at order 1/c2. We apply these to finite-temperature equilibrium states
and non-equilibrium steady states after quantum quenches. We recover predictions of
(nonlinear) Luttinger liquid theory and generalized hydrodynamics in the appropriate
limits, and are able to compute sub-leading corrections to these.
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1 Introduction

The Lieb-Liniger model [1] is a key paradigm of integrable many-particle systems [3]. More-
over, it is directly relevant to a range of cold atom experiments both in and out of equilibrium,
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see e.g. [4–9]. While the excitation spectrum at zero temperature [10] and thermodynamic
properties [11] have been known for a long time, the exact solution does not provide easy ac-
cess to correlations functions as these encode more detailed information about the exact energy
eigenstates. An exception is the case of impenetrable bosons [12–25], which can be mapped
onto non-interacting fermions. In absence of full analytic solutions valuable insights on the
large space and time asymptotic behaviours of correlation functions at zero and low tempera-
tures were gained by combining exact results on spectral properties obtained from the Bethe
Ansatz with with conformal field theory (CFT) [26,27] and Luttinger liquid theory [28,29] and
its recent extensions [30–34,36]. The last two decades then witnessed remarkable progress in
the computation of zero temperature dynamical correlation functions by expressing them in
terms of spectral representations over the energy eigenstates of the model. On the one hand
it became possible to numerically evaluate the spectral sums to very high precision for large,
finite systems [37,38]. On the other hand remarkable analytic progress led to a fairly complete
understanding of the asymptotic behaviour at late times and large distances [39, 41, 42]. In
contrast to ground state case and non-interacting theories [43–57] progress on determining
finite temperature correlators in interacting integrable models has been much more limited.
The basic idea in interacting integrable models has been to again use spectral representations
and sum over “the most relevant” states, both for equal time [58–64] and dynamical correla-
tors [65–76]. These summations can again be approached either numerically or analytically.

The numerical approach focuses on finite systems of about a hundred particles in the case
of the Bose gas and works in momentum space, i.e. considers the dynamical structure factor as
a function of frequency and momentum [71]. It then sums the dominant contributions to the
dynamical structure factor in the sense that the f-sum rule is satisfied to a very high accuracy.

To make analytical progress it is essential to identify the classes of states that give the
dominant contributions in a given range of frequencies and momenta or space and time [39].
Known results suggest that in interacting theories this generally requires the summation over
an infinite number of states. Firstly, the large space and time asymptotics of zero temperature
dynamical correlators in interacting models has been shown to be determined by an arbitrary
number of (soft) particle-hole excitations over the ground state around the Fermi points and
the saddle points of the dispersions of elementary excitations [39, 77]. Secondly, it has been
shown that the asymptotic behaviours of dynamical correlations of semi-local operators in
thermal and other finite entropy states involves an arbitrary number of (soft) particle-hole
excitations [78] over the macro state of interest. Truncating this sum to a finite number of
particle-hole excitations leads to a result that diverges in time. In the zero temperature case it
has been shown that it is possible to take the thermodynamic limit of (partial) spectral sums
and obtain a representation in terms of (dressed) excitations in the thermodynamic limit [39,
77]. An analogous result for the finite temperature/entropy case would be highly desirable,
but is not known at present. In Refs [73,75,76] such an expansion in terms of thermodynamic
particle-hole excitations was conjectured. It is based an phenomenological assumptions on
how partial sums over states in the finite volume combine into thermodynamic form factors.
It also exhibits singularities, whose regularization is not presently known.

Given this state of affairs it is highly desirable to obtain explicit results through ab initio
calculations that do not require any assumptions, i.e. carrying out the spectral sum in a finite
volume and then taking the thermodynamic limit exactly. In order to make progress in this
direction we consider the spectral sum in the framework of an expansion in the inverse interac-
tion strength c−1 around the impenetrable limit. Strong coupling expansions have previously
been used at zero temperature and for static correlators at finite temperatures [79–82]. More
recently the 1/c contribution for the finite temperature dynamical density-density correlation
function was determined in [72]. This contribution has a particularly simple structure similar
to that of the impenetrable limit, that does not carry over to the next orders, and as a conse-

4

https://scipost.org
https://scipost.org/SciPostPhys.9.6.082


SciPost Phys. 9, 082 (2020)

quence until now it has been unclear how to determine higher orders in this expansion. In the
following we develop a method for calculating the higher orders of this expansion and apply
it to obtain the contribution to the dynamical density-density correlator at order c−2. The gen-
eral idea of the 1/c expansion, and more generally of strong coupling expansions in integrable
models, is as follows. A consequence of integrability is that N -particle energy eigenstates in a
finite volume can be labelled by N rapidity variables

|λ〉= |λ1, . . . ,λN 〉 . (1)

These rapidities are in a one-to-one correspondence with sets of (half-odd) integers {I j} through
the quantization conditions in the finite volume

{λ1, . . . ,λN}↔ {I1, . . . , IN} . (2)

The energy and momentum of these states are given by

E(λ) =
N
∑

j=1

ε(λ j) , P(λ) =
N
∑

j=1

p(λ j) , (3)

where ε(λ) and p(λ) parametrize the energy and momentum of a single-particle excitation
over the vacuum (reference) state. For the Bose gas we have ε(λ) = λ2 and p(λ) = λ. Two-
point correlation functions of a local operator O(x) in a given energy eigenstate |λ〉 thus have
spectral representations of the form

〈λ|O(x , t)O†(0, 0)|λ〉
〈λ|λ〉

=
∞
∑

M=0

∑

{µ1,...,µM }

|〈λ|O(0,0)|µ〉|2

〈λ|λ〉〈µ|µ〉
ei
�

E(λ)−E(µ)
�

t−i
�

P(λ)−P(µ)
�

x , (4)

where the first sum runs over the particle number and the second over all M -particle energy
eigenstates. The matrix elements

FO(λ,µ) =
〈λ|O(0, 0)|µ〉
p

〈λ|λ〉〈µ|µ〉
, (5)

are also known as form factors and, as we will see, admit a 1/c-expansion

FO(λ,µ) =
∞
∑

n=0

FO,n(I , J)

cn
, (6)

where I = {I1, . . . , IN} and J = {J1, . . . , JM} are the (half-odd) integers corresponding to the
rapidities λ1, . . . ,λN and µ1, . . . ,µM respectively. Similarly E(λ) and P(λ) can be expanded in
powers of c−1

E(λ) =
∞
∑

n=0

En(I)
cn

, P(λ) =
∞
∑

n=0

Pn(I)
cn

. (7)

Denoting the truncation of the sums to order O(c− j) by F ( j)O (I , J), E( j)(I) and P( j)(I) respec-
tively, the 1/c-expansion at order O(c− j) is defined as

∞
∑

M=0

∑

{µ1,...,µM }

|F ( j)O (I , J)|2ei
�

E( j)(I)−E( j)(J)
�

t−i
�

P( j)(I)−P( j)(J)
�

x . (8)

We stress that the expansion sums certain 1/c contributions to all orders by virtue of the fact
that although the (exactly known) energies and momenta are expanded inside the exponen-
tials, the exponentials are not expanded in 1/c. In this sense the expansion is non-perturbative,
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and in fact rather different from more standard (diagrammatic) approaches pursued in [83].
As discussed in detail below (8) is in fact both a 1/c expansion and an expansion in terms of
number of particle-hole excitations. At order n in the expansion (i) only excitations that involve
at most b n

2 c+1 particle-hole pairs contribute, and (ii) all terms up to O(c−n) contribute. Impor-
tantly, this “mixed" expansion has a well-defined thermodynamic limit and is uniform in space
and time. This is in contrast to both the bare 1/c expansion that is non-uniform, and the bare
expansion in the number of particle-hole excitations that is divergent in the thermodynamic
limit.

Expectation values of the form (4) are relevant in two contexts.

1. By working in a micro-canonical ensemble dynamical response functions at finite tem-
perature can be cast in this form. In the following we will use this to determine the finite
temperature dynamical structure factor in the Lieb-Liniger model.

2. At late times after quantum quenches local observables relax to non-thermal station-
ary values [93–96]. It follows from the quench action approach [91, 92] to quantum
quenches that expectation values in the stationary state in fact involve non-thermal en-
ergy eigenstates at finite energy densities. This has been used to study the stationary be-
haviour of certain one-point functions after (particular) quantum quenches [97–99,101].
A natural extension is then to consider linear response functions in such steady states
[102, 103]. These can be expressed in the form (4), where |λ〉 corresponds to the non-
equilibrium steady state relevant to the quench of interest.

In the following we will consider both these cases and evaluate (4) for the density operator
and general |λ〉.

A brief summary of some of our key technical results is as follows. We show that the 1/c-
expansion corresponds to an expansion in the number of particle-hole excitations. This leads
to a dramatic reduction in the complexity of the spectral sum that needs to be carried out.
Interestingly, the contributions of one particle-hole and two particle-hole excitations are indi-
vidually divergent in the infinite volume limit L→∞. Moreover they individually depend on
details of the “averaging state” |λ〉 beyond the root distribution function in the thermodynamic
limit. Crucially, their sum is not divergent and is independent of the choice of representative
state |λ〉, and is well-defined.

The manuscript is organized as follows. In Section 2 we introduce the Lieb-Liniger model
and recall the key elements of its Bethe Ansatz solution. In Section 3 we report some im-
portant intermediate results on the thermodynamic limit of expressions computed within the
Bethe Ansatz. In Section 4 we discuss the 1/c-expansion up to and including O(c−2) of the
Bethe Ansatz equations, energy eigenvalues, form factors and the spectral representation of
the density-density correlation function. These results are then used in Section 5 to obtain
a fully explicit expression for the dynamical density-density correlator (and the related dy-
namical structure factor) in the thermodynamic limit, cf. equations (171), (166), (178) and
(187). This constitutes the main result of our work. In Section 7 we obtain the asymptotic
behaviour of the correlator and structure factor in various regimes. In particular we perform
non-trivial consistency checks of our formulas, and recover known results from (nonlinear)
Luttinger liquid theory and generalized hydrodynamics (GHD) [85,86,90].
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2 Lieb-Liniger model

2.1 Definition

The Lieb-Liniger model [1,2] is a non-relativistic quantum field theory model with Hamiltonian

H =

∫ L

0

dx

�

ψ†(x)
�

−
ħh2

2m
d2

d x2

�

ψ(x) + cψ†(x)ψ†(x)ψ(x)ψ(x)

�

, (9)

where the canonical Bose field ψ(x) satisfies equal-time commutation relations

[ψ(x),ψ†(y)] = δ(x − y) . (10)

In the following we set ħh = 2m = 1 and impose periodic boundary conditions. In first
quantization (9) corresponds to a quantum mechanical system of N particles with positions
0≤ x1, ..., xN ≤ L and Hamiltonian

H =
N
∑

k=1

−
�

∂

∂ xk

�2

+ 2c
∑

j<k

δ(x j − xk) . (11)

For later convenience we define the density operator at position x

σ(x) =ψ†(x)ψ(x) , (12)

and its time-t evolved version σ(x , t) = eiH tσ(x)e−iH t .

2.2 The Bethe ansatz solution

2.2.1 The spectrum

The Lieb-Liniger model is solvable by the Bethe ansatz: the energy E and the momentum P of
an eigenstate |λλλ〉 with N bosons read

E(λλλ) =
N
∑

i=1

λ2
i , P(λλλ) =

N
∑

i=1

λi , (13)

where the rapidities λλλ= {λ1, ..,λN} satisfy the following set of “Bethe equations”

ei Lλk =
N
∏

j=1
j 6=k

λk −λ j + ic

λk −λ j − ic
, k = 1, . . . , N . (14)

It is convenient to express them in logarithmic form

λk

2π
=

Ik

L
−

1
L

N
∑

j=1

1
π

arctan
λk −λ j

c
, (15)

with Ik an integer if N is odd, a half-integer if N is even. For c > 0, which we will assume in
this paper, all the solutions to this equation are real [3].
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2.2.2 The density form factors

As set out in the introduction, our aim is to calculate the density-density correlation function
in an eigenstate |λλλ〉

〈σ (x , t)σ (0,0)〉=
〈λλλ |σ (x , t)σ (0,0)|λλλ〉

〈λλλ|λλλ〉
. (16)

Our strategy is to use a Lehman representation in terms of energy eigenstates |µµµ〉= |µ1, ...,µN ′〉,
where {µ1, . . . ,µN ′} are solutions to the Bethe equations (15)

〈σ (x , t)σ (0, 0)〉=
∑

µµµ

|〈λλλ|σ (0) |µµµ〉|2

〈λλλ |λλλ〉 〈µµµ|µµµ〉
ei t(E(λλλ)−E(µµµ))+i x(P(µµµ)−P(λλλ))

=
∞
∑

N ′=0

∑

µ1<...<µN ′

|〈λλλ|σ (0) |µµµ〉|2

〈λλλ |λλλ〉 〈µµµ|µµµ〉
ei t(E(λλλ)−E(µµµ))+i x(P(µµµ)−P(λλλ)) .

(17)

The (normalized) form factors of local operators between two Bethe states have been derived
in Refs [104–109]. In the case of the density operator σ, the (square of the normalized) form
factor between two eigenstates |λλλ〉, |µµµ〉 with respective numbers of Bethe roots N , N ′ reads

|〈λλλ|σ(0)|µµµ〉|2

〈λλλ|λλλ〉〈µµµ|µµµ〉
= δN ,N ′

�

∑N
i=1µi −λi

�2

L2NNλλλNµµµ

∏

i 6= j(λi −λ j)(µi −µ j)
∏

i, j(λi −µ j)2

∏

i 6= j

λi −λ j + ic

µi −µ j + ic

×

�

�

�

�

�

�

det
i, j 6=p



(V+i − V−i )δi j + i(µi −λi)
∏

k 6=i

µk −λi

λk −λi

�

2c
(λi −λ j)2 + c2

−
2c

(λp −λ j)2 + c2

�





�

�

�

�

�

�

2

.

(18)
Here p ∈ {1, ..., N} can be freely chosen,

V±i =
N
∏

k=1

µk −λi ± ic
λk −λi ± ic

, (19)

and Nλλλ is given by [110]

Nλλλ = det
i, j=1,...,N

�

δi j

�

1+
1
L

N
∑

k=1

2c
c2 + (λi −λk)2

�

−
1
L

2c
c2 + (λi −λ j)2

�

. (20)

3 Thermodynamic description of eigenstates

In a finite system of size L all eigenstates of the Hamiltonian are fully characterized by a set of
N Bethe numbers Ik, or equivalently a set of N Bethe roots λk. The purpose of this section is
to explain how to turn this description into one based on (continuous) distribution functions
of these roots in the thermodynamic limit L→∞when N scales like L. In particular, contrary
to a common misconception, we emphasize that the usual “root densities" defined below do
not fully characterize an eigenstate in the thermodynamic limit; this observation turns out to
be of crucial importance in our calculation.

3.1 Root density

In the thermodynamic limit, any sum of a non-singular (piece-wise continuous) function f
over the Bethe roots or Bethe numbers

SL[ f ] =
1
L

∑

k

f (λk) , S̃L[ f ] =
1
L

∑

k

f ( Ik
L ) , (21)
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is independent of the precise values taken individually by each Ik or λk, and depends only on
the number of Bethe roots or Bethe numbers in any given interval. This information is encoded
in the so-called root density ρ(λ) ≥ 0 and filling function 0 ≤ χ(ι) ≤ 1. They are defined by
the requirement that in the large L limit

Lρ(λ)dλ= number of Bethe roots in [λ,λ+ dλ] ,

Lχ(ι)dι = number of Bethe numbers Ik/L per length in [ι, ι + dι]. (22)

In the thermodynamic limit the sums (21) can be turned into integrals over these functions

S∞[ f ] =

∫ ∞

−∞
f (λ)ρ(λ)dλ , S̃∞[ f ] =

∫ ∞

−∞
f (ι)χ(ι)dι . (23)

The same holds for multidimensional sums of a multivariate non-singular function f , with

SL[ f ] =
1
Ln

∑

k1,...,kn

f (λk1
, . . . ,λkn

) , (24)

converging to

S∞[ f ] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
f (λ1, ...,λn)ρ(λ1) . . .ρ(λn)dλ1 . . . dλn . (25)

As far as expressions of the form (21) and (24) are concerned, an eigenstate in the thermo-
dynamic limit is entirely characterized by the root density ρ(λ), or equivalently the filling
function χ(ι). To relate these two equivalent quantities, we introduce the function ϑ(λ) as the
L→∞ limit of a function ϑ(λk)≡ χ(

Ik
L ) of the Bethe roots, where Ik is the integer associated

with λk. Using the Bethe equations (15) ϑ(λ) can be expressed in terms of χ and ρ as

ϑ(λ) = χ

�

λ

2π
+

1
π

∫ ∞

−∞
arctan

�

λ−µ
c

�

ρ(µ)dµ

�

. (26)

The filling function χ(ι) and the root density are then related through

ρ(λ)
ϑ(λ)

=
1

2π
+

1
2π

∫ ∞

−∞

2c
c2 + (λ−µ)2

ρ(µ)dµ . (27)

It is customary to introduce the so-called hole density ρh(λ) defined by

ρ(λ)
ϑ(λ)

= ρ(λ) +ρh(λ) , (28)

which again contains equivalent information to ρ(λ) or χ(ι). When expressed in terms of
the particle and hole densities (27) is known as the thermodynamic limit of the Bethe Ansatz
equations [111]. Finally, the particle density is given by

D ≡
∫ ∞

−∞
ρ(x)dx = lim

L→∞

N
L

. (29)

We introduce the Fermi momentum qF defined by

qF = πD . (30)

Although there is a simple relation between D and qF , we will in the following sometimes use
D and sometimes qF , depending on the physical context at hand. We also denote (in the units
where ħh= 2m= 1)

ωF = q2
F . (31)
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3.2 Pair distribution function

3.2.1 Definition

Root densities entirely characterize the value of sums of the type (21) and (24) in the thermo-
dynamic limit. However, some functions of the Bethe roots cannot be expressed solely in terms
of root densities in the thermodynamic limit, and as a consequence can take different values in
the thermodynamic limit for states that have the same root density. An example is provided by

ΣL[g] =
1
L3

∑

i 6= j

g(λi ,λ j)

(λi −λ j)2
, (32)

that we will encounter below 1. The sum in (32) by definition depends on the joint distribution
function of pairs of roots separated by O(L−1), and the latter clearly contains information
beyond that contained in the root density (which does not distinguish between roots separated
by O(L−1)).

We first note that if we impose the constraint |λi−λ j|> ε for a ε > 0 then ΣL[g] vanishes
in the thermodynamic limit. Hence, it only depends on g(λ,λ) and its derivatives at λ. Taylor
expanding g(λi ,λ j) for λi close to λ j reduces the order of the pole and makes the next terms
vanish in the thermodynamic limit, so it depends only on g(λ,λ). Being a linear functional of
g it can be written in the thermodynamic limit in the form

Σ∞[g] =

∫ ∞

−∞
g(λ,λ)γ−2(λ)dλ , (33)

where the function γ−2(λ) depends on the state. We call γ−2(λ) a pair distribution function
as it encodes information about the joint distribution of pairs of Bethe roots. The index −2
relates to the fact that we are summing over the inverse square of the difference between
two Bethe roots. The pair distribution function γ−2(λ) characterizes certain properties of the
thermodynamic limit of an eigenstate and is unrelated to the root density ρ(λ). Two states
can have the same ρ(λ) but different γ−2(λ).

The simplest example is that of (translationally invariant) free fermions, where the Bethe
roots reduce to the single-particle momenta. Here we may construct two sequences of eigen-
states labelled by an integer n, with momenta {λi = ni

L |i = 1, . . . , N} and
{µ2i =

2ni
L ,µ2i+1 =

2ni+1
L |i = 1, . . . , N/2} respectively. In the thermodynamic limit both states

are described by a root density ρ(λ) = 1/n, but the pair distribution functions are different:
γ−2(λ) =

π2

3n2 for the first state and γ−2(λ) = 1+ π2

12n2 +
∑

m 6=0
1

(2nm+1)2 for the second one.

3.2.2 (Generalized) micro-canonical ensemble and representative states

The (generalized) micro-canonical ensemble average of a local operator O(x) is a priori de-
fined as

1
CL

∑

ν

〈ν|O(x)|ν〉
〈ν|ν〉

, (34)

where the sum is over an appropriate “shell” of simultaneous eigenstates of the Hamiltonian
and the local conservation laws of the theory. CL is the number of terms in the sum. In a large
but finite volume this means that for thermal averages we fix the energy within a window that
contains an exponential (in system size) number of eigenstates. In the case of generalized

1The summand does not need to be singular for this to happen: Another example is L
∑

i g(λi)(λi+1 − λi)2 if
the Bethe roots are ordered λ1 < λ2 < ...< λN .
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micro-canonical ensembles we fix the eigenvalues of (some or all) of the local conservation
laws in an analogous fashion [91, 112]. It is believed that almost all states in the sum in
(34) have identical local properties, and hence the sum over states can be replaced by an
expectation value with respect to a single typical state |λ〉 in the thermodynamic limit

lim
L→∞

1
CL

∑

ν

〈ν|O(x)|ν〉
〈ν|ν〉

= lim
L→∞

〈λ|O(x)|λ〉
〈λ|λ〉

. (35)

The state |λ〉 is sometimes called a representative state and we follow this terminology here.
We note that in practice there is a great deal of freedom in choosing a representative state in
a large, finite volume.

3.2.3 Average over representative states

As we have seen above, the thermodynamic limit of the sum (32) cannot generally be expressed
as an integral over the root density, but depends on the choice of representative state in the
finite volume. The thermodynamic limit of these sums involves the separate function γ−2(λ)
defined in (33). As we will see in the following, in our calculations of the density-density
correlation function the dependence of certain intermediate quantities on γ−2(λ) eventually
compensate and the end result depends only on the root density. However, it is a priori possible
that in other calculations involving sums of form factors no such cancellations will occur and
the end result will indeed depend on the choice of representative state through γ−2(λ) or an
analogous quantity.

We now make the following observation. As we have discussed above, averages with re-
spect to a Bethe state |λλλ〉 often emerge upon simplifying averages over exponentially (in system
size) many representative states corresponding to a given root density ρ(λ). By construction
such averages will depend only on the density. This then poses the question what value (32)
takes after averaging over all representative states with same root density in the thermody-
namic limit. We now address this issue.

First, we need to define properly which states in a large finite volume L are acceptable
representative states for a given root density. We define a sequence of sets of states to be
complete for the root density ρ if the corresponding sequence of sets of solutions to the Bethe
equations (SL)L∈N all give rise to the density ρ in the thermodynamic limit, and if the number
of elements of the set SL satisfies

log |SL|= LSYY[ρ] + o(L) , (36)

where SYY[ρ] is the Yang-Yang entropy [11]

SYY[ρ] =

∫

�

�

ρ(λ)+ρh(λ)
�

log
�

ρ(λ)+ρh(λ)
�

−ρ(λ) logρ(λ)−ρh(λ) logρh(λ)
�

dλ . (37)

In order to build such a set in a large finite volume let us consider a root density ρ(λ) at a given
particle density D =

∫

ρ(λ)dλ. Given the root density we may introduce a particle counting
function by

z(λ) =

∫ λ

−∞
ρ(x)dx . (38)

Next we choose a “coarsening function" εL with the property that εL → 0 and LεL → ∞
when L→∞— for example one can take εL =

1p
L
. We now split the real axis into nL “bins"

[xL, j , xL, j+1] containing bLεLc Bethe roots by defining xL,1, ..., xL,nL+1 such that z(xL,i) = iεL
for 1≤ i ≤ nL + 1= bD/εLc.
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Finally we define SL as the set containing all the states in a finite volume L that con-
tain exactly bLεLc Bethe roots in each of the nL bins [xL,i , xL,i+1]. All states in SL have
NL = (bD/εLc − 1)bLεLc Bethe roots, which for L →∞ by construction are distributed with
density ρ(λ). The number of elements of SL will depend on the number of “vacancies” in each
of the bins, which in turn depend on the values of all the Bethe roots since they interact via the
Bethe equations. However, asymptotically in L, we have
KL,i = bL(xL,i+1 − xL,i)(ρ(xL,i) +ρh(xL,i))c vacancies in each of the bins, so that

|SL|=
nL
∏

i=1

�

KL,i +O(L0)
bLεLc

�

. (39)

Using Stirling’s formula in the large-L limit one has

log |SL|= LSYY[ρ] + o(L) , (40)

which shows that SL is indeed a complete set of representative states for a given root density
ρ(λ).

We can now state our result for the average of (32) over all representative states with root
density ρ(λ):

lim
L→∞

1
|SL|

∑

{λi}i∈SL

1
L3

∑

i 6= j

g(λi ,λ j)

(λi −λ j)2
=
π2

3

∫ ∞

−∞
g(λ,λ)(ρ(λ) +ρh(λ))ρ(λ)

2dλ . (41)

A proof of (41) is given in Appendix B.

We note that if we instead sum over rapidities distributed regularly according to the inverse
of the counting function z−1(λ) without imposing that the rapidities are solutions of the Bethe
equations, the sum takes a different value:

lim
L→∞

1
L3

∑

i 6= j

g(z−1(i/L), z−1( j/L))
(z−1(i/L)− z−1( j/L))2

=
π2

3

∫ ∞

−∞
g(λ,λ)ρ(λ)3dλ . (42)

If we sum over rapidities distributed regularly according to the inverse of the counting function
z−1(λ) and impose the Bethe equations, the sum (32) is not easily expressed in terms of ρ,
but takes a value different from either (42) or (41). Hence formula (41) is both non-trivial
and non-intuitive.

3.3 Principal values

3.3.1 Single principal value

The sums (24) can be expressed in terms of root densities in the thermodynamic limit, provided
f is non-singular. We have seen in the previous section that for functions f with a quadratic
singularity the thermodynamic limit value of the sum cannot be expressed in terms of the root
density. We now turn to functions that are singular but integrable in a principal value sense.
This is the case of the sum

Σ̃L[g] =
1
L2

∑

i, j
i 6= j

g(λi ,λ j)

λi −λ j
. (43)

We will assume that g and ρ are continuous. Symmetrizing the sum, we have

Σ̃L[g] =
1

2L2

∑

i, j
i 6= j

g(λi ,λ j)− g(λ j ,λi)

λi −λ j
. (44)
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The function F(x , y) = g(x ,y)−g(y,x)
x−y is regular, so that it has the form of (24) and its thermo-

dynamic limit can be expressed in terms of ρ according to

Σ̃∞[g] =
1
2

∫ ∞

−∞

∫ ∞

−∞

g(λ,µ)− g(µ,λ)
λ−µ

ρ(λ)ρ(µ)dλdµ . (45)

Since the integrand is finite, one can remove a small shell |λ− µ| < ε with an error of O(ε),
and then un-symmetrize the sum. This yields

Σ̃∞[g] = −
∫

g(λ,µ)
λ−µ

ρ(λ)ρ(µ)dλdµ , (46)

with the following usual definition of the principal value integral

−
∫

F(λ)
λ−µ

dλ= lim
ε→0

∫

|λ−µ|>ε

F(λ)
λ−µ

dλ . (47)

Hence, sums of type (43) can indeed be expressed in terms of root densities.
In contrast partial sums like

1
L

∑

i
i 6= j

g(λi ,λ j)

λi −λ j
, (48)

at fixed j cannot be expressed in terms of the root density in the thermodynamic limit.

3.3.2 Double principal values

Higher-dimensional sums of the form

Σ̃L[g] =
1
L3

∑

i, j,k
i 6= j
j 6=k

g(λi ,λ j ,λk)

(λi −λ j)(λ j −λk)
, (49)

can be treated likewise, but with subtleties hiding in the fact that i can be equal to k. Separating
out the term with i = k and symmetrizing the remaining sum gives

Σ̃L[g] =
1

6L3

∑

i 6= j
j 6=k
i 6=k

∑

σ∈S3

g(λσ(i),λσ( j),λσ(k))(λσ(k) −λσ(i)) sgn (σ)

(λi −λ j)(λ j −λk)(λk −λi)
−

1
L3

∑

i 6= j

g(λi ,λ j ,λi)

(λi −λ j)2
.

(50)
The first term is regular so that (25) can be used, while the second term is of the type (32)
and can be expressed in terms of γ−2(λ). In the first term we can remove the region where
|λ− µ| < ε or |λ− ν| < ε or |ν− µ| < ε with an error that is O(ε), and then un-symmetrize
the integral. One obtains

Σ̃∞[g] = =
∫

g(λ,µ,ν)ρ(λ)ρ(µ)ρ(ν)
(λ−µ)(µ− ν)

dλdµdν−
∫ ∞

−∞
g(λ,λ,λ)γ−2(λ)dλ , (51)

where the simultaneous principal value in the triple-integral is defined as

=
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν= lim
ε→0

∫

|λ−µ|>ε
|µ−ν|>ε
|λ−ν|>ε

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν . (52)
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As shown in Appendix A.1 this can be expressed in terms of the successive principal value
triple-integral according to a Poincaré-Bertrand-like formula

=
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν= −
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν+
π2

3

∫ ∞

−∞
F(λ,λ,λ)dλ , (53)

where we defined

−
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν=

∫

dµ−
∫

dν
1

µ− ν
−
∫

dλ
F(λ,µ,ν)
λ−µ

=

∫

dµ lim
ε→0

∫

|ν−µ|>ε
dν

1
µ− ν

lim
ε′→0

∫

|µ−λ|>ε′
dλ

F(λ,µ,ν)
λ−µ

.
(54)

It can also be expressed as

−
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν=

∫

dν−
∫

dµ
1

µ− ν
−
∫

dλ
F(λ,µ,ν)
λ−µ

=

∫

dλ−
∫

dµ
1

λ−µ
−
∫

dν
F(λ,µ,ν)
µ− ν

=

∫

dµ−
∫

dλ
1

λ−µ
−
∫

dν
F(λ,µ,ν)
µ− ν

,

(55)

and

−
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν= lim
ε,ε′→0

∫

|λ−µ|>ε
|µ−ν|>ε′

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν , (56)

as shown in Appendices A.2. Using these principal value integral identities we can rewrite
(51) in the form

Σ̃∞[g] = −
∫

g(λ,µ,ν)ρ(λ)ρ(µ)ρ(ν)
(λ−µ)(µ− ν)

dλdµdν+

∫ ∞

−∞
g(λ,λ,λ)

�

π2

3
ρ(λ)3 − γ−2(λ)

�

dλ .

(57)

3.4 Examples of root densities

The calculations presented in this paper hold for a generic piece-wise continuous root density
ρ(λ). Two applications we have in mind is to thermal states and non-equilibrium steady states
after quantum quenches, and we now discuss specific root densities that arise in these contexts.

3.4.1 Thermal states

Thermal states are characterized by root densities that maximise the Yang-Yang entropy at
inverse temperature β [11]. Defining the so-called dressed energy εdr(λ) by

ϑ(λ) =
1

1+ eβεdr(λ)
, (58)

the filling function ϑ(λ) of a thermal state is such that

εdr(λ) = λ
2 − h−

1
2πβ

∫ ∞

−∞

2c
c2 + (λ−µ)2

log(1+ e−βεdr(µ))dµ . (59)

Here h is a chemical potential that is used to fix the desired particle density D. In practice one
first solves the nonlinear integral equation (59) and then uses (58) to determine ρ(λ) from
the linear integral equation (27).

14

https://scipost.org
https://scipost.org/SciPostPhys.9.6.082


SciPost Phys. 9, 082 (2020)

A particular case of thermal states is the zero temperature ground state, obtained in the
limit β →∞. Its root density satisfies

ρ(λ) =
1

2π
+

c
π

∫ Q

−Q

ρ(µ)
c2 + (λ−µ)2

dµ , (60)

with Q defined such that
∫ Q

−Q
ρ(λ)dλ= D . (61)

3.4.2 Non-equilibrium steady states

Refs [97,99] considered a particular interaction quench in the Lieb-Liniger model, where the
system is initially in the ground state of (9) for c = 0, and is subsequently time-evolved with
the Lieb-Liniger Hamiltonian at a finite value of c. The root density characterizing the steady
state reached at late times was determined in [99] and remarkably allows for a closed form
solution

ρss(λ) =
τ

4π
�

1+ a(λ/c)
�

da(λ/c)
dτ

, (62)

where τ= 1
c

∫∞
−∞ρss(x)dx and

a(x) =
2πτ

x sinh(2πx)
I1−2i x(4

p
τ)I1+2i x(4

p
τ) , (63)

with I the modified Bessel function.

4 1/c expansion of the Lieb-Liniger model

In this section we perform an expansion around the limit c→∞ at order 1/c2 of the energy
levels and form factors in the Lieb-Liniger model, at fixed L and fixed Bethe numbers. We then
expose the consequences it has on the spectral sum (17) in Section 4.3.3.

4.1 The Bethe equations

The Bethe equations (15) admit a regular 1/c expansion at large c. In the following, in order
to expand the form factor at order 1/c2 we will need the value of the Bethe roots at order
1/c3. The Bethe equations (15) at order 1/c3 read

λi =
2πIi

L
−

2
cL

N
∑

k=1

(λi −λk) +
2

3c3 L

N
∑

k=1

(λi −λk)
3 +O(c−5) . (64)

This gives the following expression for the Bethe roots in terms of the Bethe numbers at order
1/c3

λi =
2π

1+ 2D
c

Ii

L
+

4π

c(1+ 2D
c )

1
L

N
∑

j=1

I j

L
+

1
3πc3

�

2π

1+ 2D
c

�4
1
L

N
∑

j=1

� Ii − I j

L

�3

+O(c−4) . (65)

The alert reader will have noticed that some of the terms contain higher powers of 1/c than
the order at which we are working, that is 1/c3. We find it useful throughout the manuscript
to retain certain “resummed" expressions of 1/c as they appear in calculations, both for clarity
and convenience since they often happen to compensate each other. In any case, keeping
these resummed expressions in 1/c does not affect the validity of the equations at the order
considered.
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4.2 The form factors

4.2.1 Leading order in 1/c of the form factor between two generic states

The behaviour of the 1/c expansion of a form factor (18) between states |λλλ〉 and |µµµ〉 depends
on the “relative positions" of the Bethe numbers of one state to the other. To see this, let us
determine the leading order in 1/c of the form factor (18) without making any assumptions
on the eigenstates |λλλ〉 and |µµµ〉. It is then straightforward to see that when c→∞

V+j − V−j =
2
ic

N
∑

k=1

(µk −λk) +O(c−2)

Nλλλ = 1+O(c−1) ,

(66)

while the non-diagonal term in the determinant appearing in the form factor is of orderO(c−3).
We conclude that

|〈λλλ|σ(0)|µµµ〉|2

〈λλλ|λλλ〉〈µµµ|µµµ〉
=

�∑

i µi −λi

�2N

L2N

�

2
c

�2N−2
∏

i 6= j(λi −λ j)(µi −µ j)
∏

i, j(λi −µ j)2
(1+O(c−1)) . (67)

We see that the order in 1/c of this expression entirely depends on the roots λk and µk. To be
specific, let us now denote by Ik and Jk the Bethe numbers of λλλ and µµµ respectively, and define

ν= N − |{Ik} ∩ {Jk}| , (68)

the number of Bethe numbers present in λλλ and absent from µµµ. If λi and µ j have different
Bethe numbers, then from (65) we have λi−µ j =O(c0), whereas if they have the same Bethe
number then at least λi −µ j =O(c−1). It follows that

|〈λλλ|σ(0)|µµµ〉|2

〈λλλ|λλλ〉〈µµµ|µµµ〉
=O(c−2(ν−1)) . (69)

Hence expanding in 1/c naturally orders the Lehman representation (17) into an expansion in
terms of number of particle-hole excitations of µµµ above λλλ, i.e. of the number of changes in the
Bethe numbers of µµµ compared to those of λλλ. This means that if one considers (17) at order
c−m, then only intermediate states µµµ with ν≤ m

2 + 1 contribute to the sum. We note however
that the converse is not true: restricting (17) to e.g. one-particle-hole excitations would still
involve arbitrarily high orders in 1/c.

Since our goal is to compute correlations at order 1/c2, we only need to investigate the
restriction of (67) to one- and two-particle-hole excitations.

4.2.2 Order 1/c2 of form factors involving a single particle-hole excitation

In this section we consider one-particle-hole excitations of the state |µµµ〉 above |λλλ〉. Up to
reordering the roots, we can assume that the Bethe numbers Ik of λλλ differ from those Jk of µµµ
only at a single position a:

∀i 6= a Ii = Ji , Ja − Ia ≡ n 6= 0 . (70)

Since the excited particle cannot coincide with an already existing particle, we also have the
constraint

∀i 6= a Ia + n 6= Ii . (71)

This has the following consequences at order 1/c3 on the value of the Bethe roots. Using (65)
we have

µa = λa +
2πn

L(1+ 2D/c)

�

1+
2
cL

�

+O(c−3) , (72)
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while for i 6= a, we obtain

µi = λi +
4πn

cL2(1+ 2D/c)

�

1−
(λi −λa)2

c2
+

2πn
c2 L
(λi −λa)−

1
3c2

�

2πn
L

�2
�

+O(c−4) . (73)

Using (72) and (73) we can determine the various terms entering the expression of the form
factor at order c−2

∏

i 6= j

λi −λ j + ic

µi −µ j + ic
= 1−

1
c2

�

2πn
L

�2∑

i 6=a

1+
4πn
Lc2

∑

i 6=a

λi −λa ,

V+i − V−i =
4πn
icL

�

1−
(λi −λa)2

c2

�

,

∏

i 6= j
i 6=a
j 6=a

(λi −λ j)(µi −µ j)

(λi −µ j)2
= 1+

�

4πn
cL2

�2∑

i 6= j
i 6=a
j 6=a

1
(λi −λ j)2

,

∏

i 6=a

(λi −λa)2

(µi −λa)2
= 1−

8πn
cL2(1+ 2D/c)

∑

i 6=a

1
λi −λa

+
�4πn

cL2

�2
�

2
�

∑

i 6=a

1
λi −λa

�2

+
∑

i 6=a

1
(λi −λa)2

�

, (74)

∏

i 6=a

(µi −µa)2

(λi −µa)2
= 1+

8πn

cL2(1+ 2D
c )

∑

i 6=a

1

λi −λa −
2πn

L(1+ 2D
c )

+
�4πn

cL2

�2
�

2
�∑

i 6=a

1

λi −λa −
2πn

L(1+ 2D
c )

�2
+
∑

i 6=a

1

(λi −λa −
2πn

L(1+ 2D
c )
)2

�

,

N
∏

i=1

1
(λi −µi)2

=
4(1+ 2D

c )
2N

(1+ 2
cL )2

c2N−2 L4N−2

n2N (4π)2N

×
�

1+
2
c2

∑

i 6=a

�

(λi −λa)
2 −

2πn
L
(λi −λa) +

1
3

�

2πn
L

�2��

,

Nλλλ =Nµµµ =
�

1+
2D
c

�N−1

, (75)

i(µl −λl)
∏

k 6=l

µk −λl

λk −λl

�

2c
(λl −λ j)2 + c2

−
2c

(λp −λ j)2 + c2

�

=O(c−4) . (76)

Putting everything together we have at order c−2

|〈λλλ|σ(0)|µµµ〉|2

〈λλλ|λλλ〉〈µµµ|µµµ〉
=
(1+ 2D

c )
2

(1+ 2
cL )2

1
L2

�

1+
4

cL(1+ 2D
c )

2πn
L

∑

i 6=a

� 1

λi −λa −
2πn

L(1+ 2D
c )

−
1

λi −λa

�

+
4

c2 L2

�2πn
L

�2
�

−
L2

12

∑

i 6=a

1+
∑

i 6= j
j 6=a

1
(λi −λ j)2

+ 2
�∑

i 6=a

1

λi −λa −
2πn

L(1+ 2D
c )

−
1

λi −λa

�2

+
∑

i 6=a

1

(λi −λa −
2πn

L(1+ 2D
c )
)2

��

+O(c−3) . (77)
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4.2.3 Order 1/c2 of form factors involving two particle-hole excitations

We now consider two particle-hole excitations. Up to re-ordering the roots ofµµµ, we can assume
its Bethe numbers differ from those of λλλ only at positions a and b 6= a, and thus assume

∀i 6= a, b Ii = Ji , Ja − Ia ≡ n 6= 0 , Jb − Ib ≡ m 6= 0 . (78)

Since the excited particles cannot coincide with an already existing particle, we also have the
constraints

∀i 6= a, b Ia + n 6= Ii , ∀i 6= a, b Ia +m 6= Ii . (79)

Moreover we must also exclude the case where one of the excited particles fill the hole left
by the other, since this reduces to a single particle-hole excitation and is therefore already
covered. The corresponding constraint is

Ia + n 6= Ib , Ib +m 6= Ia . (80)

Finally we have to exclude the case where the two excited particles coincide

Ia + n 6= Ib +m . (81)

From (65) we obtain

µi =























λi +
4π(n+m)

c
�

1+ 2D
c

�

L2
+O(c−3) if i 6= a, b

λa +
2πn

L
�

1+ 2D
c

� + 4π(n+m)

c
�

1+ 2D
c

�

L2
+O(c−3) if i = a

λb +
2πm

L
�

1+ 2D
c

� + 4π(n+m)

c
�

1+ 2D
c

�

L2
+O(c−3) if i = b .

(82)

We can now investigate the form taken by (67) for these values of roots. At leading order
in 1/c we have

∏

i 6= j(λi −λ j)(µi −µ j)
∏

i, j(λi −µ j)2
=
(λa −λb)2(µa −µb)2

(λa −µb)2(λb −µa)2
1

∏

i(λi −µi)2
(1+O(c−1)) , (83)

which, when substituted in (67) yields the following leading order expression of the form
factor for two-particle-hole excitations

|〈λλλ|σ(0)|µµµ〉|2

〈λλλ|λλλ〉〈µµµ|µµµ〉
=

4
c2 L4

(n+m)4

n2m2

(λa −λb)2(λa −λb +
2π(n−m)

L(1+2D/c))
2

(λa −λb +
2πn

L(1+2D/c))
2(λa −λb −

2πm
L(1+2D/c))

2
+O(c−3) . (84)

4.3 The Lehmann representation

We can now write the Lehmann representation (17) for the density-density correlation func-
tions at order 1/c2. As explained in the previous section, only one and two particle-hole exci-
tations contribute to (17) at order 1/c2, and the corresponding form factors were computed
at this order in the previous subsections. This leaves us with working out the phases in the
corresponding terms in (17) at order 1/c2.
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4.3.1 The phase for a single particle-hole excitation

For excitations with one particle and one hole, it follows from (72) and (73) that

x
�

P(µµµ)− P(λλλ)
�

+ t
�

E(λλλ)− E(µµµ)
�

= x
2πn

L
− t
�

8πn

cL2(1+ 2D
c )

∑

i

λi

+
� 2πn

L(1+ 2D
c )

�2
(1+ 4

cL +
4D
c2 L ) +

4πn

L(1+ 2D
c )
λa

�

+O(c−3) . (85)

It will be convenient to perform the following change of variable x ′ defined as

x ′ = x(1+ 2D
c )−

4δL

c
t , (86)

where

δL =
1
L

N
∑

i=1

λi . (87)

Then the phase becomes

x(P(µµµ)− P(λλλ)) + t(E(λλλ)− E(µµµ)) = −t
2πn

L(1+ 2D
c )

�

2πn

L(1+ 2D
c )
+ 2λa +O(L−1)

�

+ x ′
2πn

L(1+ 2D
c )
+O(c−3) . (88)

For later convenience we define

δ ≡ lim
L→∞

δL =

∫ ∞

−∞
xρ(x)dx . (89)

4.3.2 The phase for two particle-hole excitations

Using (82)

x(P(µµµ)− P(λλλ)) + t(E(λλλ)− E(µµµ)) = x
2π(n+m)

L
+ t

�

λ2
a −

�

λa +
2πn

L
�

1+ 2D
c

�

�2

+λ2
b −

�

λb +
2πm

L
�

1+ 2D
c

�

�2
−

8π(n+m)

cL2
�

1+ 2D
c

�

∑

j

λ j

−
16π2

L4(1+ 2D
c )2c2

(n+m)2
∑

i

1−
16π2

L3(1+ 2D
c )2c

(n+m)2
�

+O(c−3) .

We can express this in terms of x ′ as well

x(P(µµµ)− P(λλλ)) + t(E(λλλ)− E(µµµ)) = x ′
2π(n+m)

L
�

1+ 2D
c

� + t

�

λ2
a −

�

λa +
2πn

L
�

1+ 2D
c

�

�2

+λ2
b −

�

λb +
2πm

L
�

1+ 2D
c

�

�2
+O(L−1)

�

+O(c−3) . (90)
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4.3.3 The sum over intermediate states

So far we have expanded all the terms arising in (17) at order 1/c2, at a fixed L for arbitrary
eigenstates |λλλ〉 and |µµµ〉 with fixed Bethe numbers. We have shown that the sum truncates to
one- and two-particle-hole excitations, and that the resulting terms are well-defined functions
of the excitation parameters n and m.

However, as the Lieb Liniger model is a field theory and not a lattice model it features an
infinite number of particle-hole states even if L is finite, so that (17) is still an infinite sum even
if it involves only one- and two-particle-hole excitations. This creates two notable problems.
The first one is that we encounter infinite sums of the type

∑∞
k=−∞ kneik2 t+ikx for n = 0,1, 2

which are ill-defined as functions of x , t (except if n = 0 and t 6= 0). The explanation for this
behaviour is that 〈σ (x , t)σ (0,0)〉, similarly to the propagator of a quantum particle, should
be understood as a probability amplitude that is meant to be integrated against a smooth and
localized function of x and t, or, stated differently, that it must be understood as a distribution
in x , t. The second problem is that the 1/c expansion of a form factor 〈λλλ|σ(0)|µµµ〉 has been
performed for fixed Bethe numbers, whereas in the spectral sum at fixed c there are always
excited states with Bethe roots larger than c. This poses a potential problem of commuting
two limits.

In order to address these problems we are going to impose that all the rapidities involved
in the spectral sum (17) are smaller than a certain cut-off Λ, that can be taken as large as
desired. Firstly, this imposes a restriction of the state |λλλ〉, in which we are calculating our
expectation value. We require that for all roots |λ j| < Λ, i.e. that the density ρ(λ) vanishes
for |λ|> Λ; this is a mild restriction in the following sense. In practice we are interested in the
dynamical response in macro states characterized by root distributions ρ(λ) that decay faster
than |λ|−2 for λ →∞, which is a necessary condition for the energy density of the state to
be finite (for example in the thermal state the decay is Gaussian). We therefore can always
approximate ρ(λ) to any given accuracy by a root density ρΛ(λ), which vanishes outside the
interval [−Λ,Λ]. Moreover this truncation can be done in an infinitely differentiable way, so
it does not affect the regularity of the root density ρ(λ). Secondly, this cut-off also restrains
the sum (17) to excited states |µµµ〉 such that the |µi| < Λ, which removes the problem of
possible excited rapidities becoming larger than c. Hence we define aΛ-regularized correlation
function 〈σ (x , t)σ (0,0)〉Λ as

〈σ (x , t)σ (0,0)〉Λ =
∑

µµµ
∀i, |µi |<Λ

|〈λλλ|σ (0) |µµµ〉|2

〈λλλ |λλλ〉 〈µµµ|µµµ〉
ei t(E(λλλ)−E(µµµ))+i x(P(µµµ)−P(λλλ)) . (91)

The correlator 〈σ (x , t)σ (0, 0)〉Λ defined in this way and expanded in 1/c has a regular
thermodynamic limit L →∞, as we will see below. Now, in order to recover the true corre-
lation functions (17), one would like to then take the limit Λ→∞. It turns out that such a
limit of 〈σ (x , t)σ (0, 0)〉Λ seen as a function of x , t does not exist. To be more specific one
encounters problematic terms of the form

In(Λ|t, x) =

∫ Λ

−Λ
µne−i tµ2+i xµdµ , n= 0,1, 2, . . . (92)

for which the limit Λ→∞ does not exist (except for n= 0 if t 6= 0). However, the limit exists
in a distribution sense, i.e. the integral of In(Λ|t, x) over any smooth localized function of x , t
has a well-defined limit when Λ→∞. This is all we require, since the correlation function is
in any case meant to be integrated with a smooth localized function of x , t.

To take the limit we perform an integration by part and obtain

In(Λ|t, x) =
x In−1(Λ|t, x)

2t
+
(n− 1)In−2(Λ|t, x)

2i t
+

e−i xΛ(−1)n−1 − ei xΛ

2i t
e−i tΛ2

Λn−1 . (93)
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In particular we have

I1(Λ|t, x) =
x
2t

I0(Λ|t, x) +
e−i xΛ − ei xΛ

2i t
e−i tΛ2

I2(Λ|t, x) =
�
� x

2t

�2
+

1
2i t

�

I0(Λ|t, x)−
e−i xΛ + ei xΛ

2i t
e−i tΛ2

Λ+ x
e−i xΛ − ei xΛ

4i t2
e−i tΛ2

,

(94)

where

lim
Λ→∞

I0(Λ|t, x) =

∫ ∞

−∞
e−i tµ2+iµxdµ , if t 6= 0 ,

I0(Λ|t, x) =
ei xΛ − e−i xΛ

i x
, if t = 0. (95)

Terms like e−i tΛ2∓i xΛΛn and ei xΛ do not have limits when Λ→∞ as a function of x , t. In a
distribution sense however, they vanish when Λ→∞ in the sense that their integral with any
smooth localized function of x , t vanishes when Λ→∞. Hence we obtain that when Λ→∞
In(Λ|t, x) tends to In(t, x) with In(0, x) = 0 and

I1(t, x) =
x
2t

I0(t, x) ,

I2(t, x) =
�

� x
2t

�2
+

1
2i t

�

I0(t, x) ,

I0(t, x) =

∫ ∞

−∞
e−i tµ2+iµxdµ , t 6= 0.

(96)

One notices that these limits are exactly those obtained by introducing a small imaginary part
in time and taking Λ→∞

In(t, x) = lim
ε→0+

∫ ∞

−∞
µne−i(t−iε)µ2+i xµdµ . (97)

However, such a small imaginary part cannot be incorporated from the beginning in (91), since
E(λλλ)− E(µµµ) can take both signs when |λλλ〉 is not the ground state.

These limits will be useful in the following sections in order to take the limit Λ→∞ of
the Λ-regularized correlation functions.

At order 1/c2 we therefore have the following decomposition

〈σ (x , t)σ (0,0)〉Λ = D2 + CΛ1 (x , t) + CΛ2 (x , t) +O(c−3) , (98)

where CΛ1,2(x , t) are defined in the following. Introducing the convenient notations

λa,n ≡ λa +
2πn

L(1+ 2D
c )

, (99)

and

L′ = L(1+
2D
c
) , (100)
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we have the following contribution at order c−2 of the one-particle-hole excitations

CΛ1 (x , t) =
(1+ 2D

c )
2

L2

N
∑

a=1

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

�

1+
4
cL

2πn
L′

∑

i 6=a

�

1

λi −λa −
2πn
L′
−

1
λi −λa

�

+
4

c2 L2

�2πn
L′

�2
�

−
L2

12

∑

i 6=a

1+
∑

i 6= j
j 6=a

1
(λi −λ j)2

+ 2
�∑

i 6=a

1

λi −λa −
2πn
L′
−

1
λi −λa

�2

+
∑

i 6=a

1

(λi −λa −
2πn
L′ )2

�

�

exp
�

i x ′(λa,n −λa) + i t
�

λ2
a −λ

2
a,n

�

�

.

We already neglected a global factor (1+ 2
cL )

2 that is 1 in the thermodynamic limit, as well as
a O(L−1) contribution in the exponential. We also used 1

L2c2 =
1

L′2c2 +O(c−3) at order c−2.
In Figure 1 we show the distribution of Bethe numbers for the particle-hole excitations that

are summed over in (101). Compared to the representative state we have changed a single
integer.

. . . . . . . . . . . . .

Figure 1: Sketch of a one-particle-hole excitation: positions of the momenta of the
representative state (empty circles) and the intermediate state (filled circles) respec-
tively, and position of the holes (dots).

For the two particle-hole excitations the sum in (17) is over the set {a, b} and over n, m
with the constraint µa < µb. Since the form factor is symmetric upon swapping a, b and n, m
simultaneously, this constraint can be taken into account with a factor 1/2 and with imposing
µa 6= µb. The sum over {a, b} as a set can be transformed into a sum over a 6= b as a couple
with a factor 1/2 as well. Hence we have the leading contribution of the two particle-hole
excitations

CΛ2 (x , t) =
1

c2 L4

∑

a 6=b

∑

n
∀i,λa,n 6=λi
|λa,n|<Λ

∑

m
∀i,λb,m 6=λi
λb,m 6=λa,n
|λb,m|<Λ

(n+m)4

n2m2

(λa −λb)2(λa −λb +
2π
L′ (n−m))2

(λa −λb +
2π
L′ n)2(λa −λb −

2π
L′ m)2

× exp
�

i t
�

λ2
a −λ

2
a,n +λ

2
b −λ

2
b,m

�

+ i x ′[λa,n −λa +λb,m −λb]
�

. (101)

In Figure 2 we show the distribution of Bethe numbers for the two particle-hole excitations
that are summed over in (101). Compared to the representative state we have changed two
integers.
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. . . . . . . . . . . . .

Figure 2: Sketch of a two particle-hole excitation: position of the momenta of the
representative state (empty circles) and the intermediate state (filled circles) respec-
tively, and position of the holes (dots).

4.4 Examples of root densities

In this subsection we complete the 1/c expansion of the model by determining the expansions
of the root densities introduced in Section 3.4.

4.4.1 Hole density

We introduced earlier the hole density ρh(λ) in (28) with ϑ(λ) given in terms of ρ(λ) in (27).
The hole density is a function of the root density ρ(λ), and for a generic ρ(λ) it reads at order
c−2

ρh(λ) =
1+ 2D

c

2π
−ρ(λ) +O(c−3) , (102)

where we recall that D is defined in (29).

4.4.2 Thermal states

Thermal states at finite inverse temperature β < ∞ are defined in terms of the nonlinear
integral equation for the dressed energy (59) and the thermodynamic limit of the Bethe Ansatz
equations (27). These can be expanded in 1/c without difficulty, and we obtain the following
result for the particle density at order 1/c2

ρ(x) =
1

2π
A(c,β)

1+ eβ x2+B(c,β)
, (103)

where

A(c,β) = 1−
Li 1/2(−eβh)
p

πβ c
+

Li 2
1/2(−eβh) + Li−1/2(−eβh)Li 3/2(−eβh)

πβ c2
+O(c−3),

B(c,β) = −βh+
Li 3/2(−eβh)
p

πβ c
−

Li 1/2(−eβh)Li 3/2(−eβh)

πβ c2
+O(c−3) . (104)

We recall that h is the chemical potential used to fix the particle number D. In order to derive
(104) we used the following relations

∫ ∞

−∞

dx
1+ ex2+y

= −
p
πLi 1/2

�

−e−y
�

∫ ∞

−∞
log(1+ e−x2−y)dx = −

p
πLi 3/2

�

−e−y
�

.

(105)
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4.4.3 Zero temperature ground state

Equation (60) for the ground state root density can be expanded in 1/c to yield

ρ(λ) =
1+ 2D

c

2π
111|λ|<Q +O(c−3) ,

Q =
qF

1+ 2D
c

+O(c−3) . (106)

Here 111P is the indicator function, equal to 1 if the affirmation P is true and 0 if it is false. The
Luttinger parameter K = (2πρ(Q))2 [3] is

K = 1+
4D
c
+

4D2

c2
+O(c−3) . (107)

5 The thermodynamic limit of correlation functions

In this section we perform explicitly the sum over intermediate states in (98) at order 1/c2 in
the infinite volume limit L→∞.

5.1 One particle-hole excitations

Our starting point is CΛ1 (x , t) as defined in (101). In the following we consider the different
orders in the 1/c-expansion and derive integral representations of the corresponding contri-
butions to CΛ1 (x , t) in the thermodynamic limit. As we have noted before, we retain certain
resummed expressions in this expansion for convenience, an example being the factor (1+ 2D

c ).
When we refer to a given order of the 1/c-expansion this should be understood modulo such
factors.

5.1.1 Order c0

Let us focus first on the leading order O(c0), namely

A0 =
(1+ 2D

c )
2

L2

∑

a

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

ei x ′(λa,n−λa)+i t
�

λ2
a−λ

2
a,n

�

. (108)

We rewrite this as

A0 =
(1+ 2D

c )
2

L2

∑

a

∑

n
|λa,n|<Λ

ei x ′(λa,n−λa)+i t
�

λ2
a−λ

2
a,n

�

−
(1+ 2D

c )
2

L2

∑

a

∑

k
|λk|<Λ

ei x ′(λk−λa)+i t(λ2
a−λ

2
k) . (109)

Using (25) the sums over a and k can be turned into integrals over the root density ρ(λ), and

the sum over n into an integral with density
1+ 2D

c
2π . Altogether we find

A0 = (1+
2D
c )

2

∫ ∞

−∞
dλ ρ(λ)

∫ Λ

−Λ
dµ ρh(µ)e

i t(λ2−µ2)+i x ′(µ−λ) +O(L−1) , (110)

where we used the expression (102) for the hole density ρh at order c−2.
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5.1.2 Order c−1

We next turn to the c−1 term

A1 = 4
(1+ 2D

c )
2

cL3

∑

a

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

2πn
L′

∑

i 6=a

�

1

λi −λa −
2πn
L′
−

1
λi −λa

�

× ei x ′(λa,n−λa)+i t
�

λ2
a−λ

2
a,n

�

. (111)

We rewrite this as

A1 = 4
(1+ 2D

c )
2

cL3

∑

a

∑

i 6=a

∑

n
λa,n 6=λi
|λa,n|<Λ

2πn
L′

�

1

λi −λa −
2πn
L′
−

1
λi −λa

�

× ei x ′(λa,n−λa)+i t
�

λ2
a−λ

2
a,n

�

−4
(1+ 2D

c )
2

cL3

∑

a

∑

i 6=a

∑

k
k 6=i
|λk|<Λ

(λk −λa)
�

1
λi −λk

−
1

λi −λa

�

× ei x ′(λk−λa)+i t(λ2
a−λ

2
k) . (112)

This term involves either a sum over regularly spaced integers n that becomes an integral with
density 1+2D/c

2π in the thermodynamic limit, or sums of the type (43) that can be expressed as
principal part integrals over the root density. We obtain

A1 =
4(1+ 2D

c )
2

c

∫ ∞

−∞
dλ ρ(λ)

∫ Λ

−Λ
dµ(µ−λ)

�

−
∫

ρ(u)
u−µ

du−−
∫

ρ(u)
u−λ

du

�

× ei t(λ2−µ2)+i x ′(µ−λ)
�1+ 2D

c

2π
−ρ(µ)

�

+O(L−1) . (113)

Introducing the Hilbert transform ρ̃ of ρ by

ρ̃(λ) = −
∫

ρ(u)
λ− u

du , (114)

permits us to rewrite this contribution in the form

A1 = −
4(1+ 2D

c )
2

c

∫ ∞

−∞
dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(µ−λ)

�

ρ̃(µ)− ρ̃(λ)
�

ei t(λ2−µ2)+i x ′(µ−λ)

+O(L−1) . (115)

5.1.3 Order c−2: first contribution

We now consider contributions involving the factor
�

∑

i 6=a

1

λi −λa −
2πn
L′
−

1
λi −λa

�2

=
∑

i 6=a
j 6=a

1
(λi −λa)(λ j −λa)

+
∑

i 6=a
j 6=a

1

(λi −λa −
2πn
L′ )(λ j −λa −

2πn
L′ )
− 2

∑

i 6=a
j 6=a

1

(λi −λa −
2πn
L′ )(λ j −λa)

, (116)
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which are more delicate. The first term on the right hand side gives rise to a contribution

A2 = 8
(1+ 2D

c )
2

c2 L4

∑

a

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

�

2πn
L′

�2∑

i, j
i 6=a
j 6=a

1
(λi −λa)(λ j −λa)

× ei x ′(λa,n−λa)+i t
�

λ2
a−λ

2
a,n

�

. (117)

We rewrite this as

A2 =8
(1+ 2D

c )
2

c2 L4

∑

a

∑

n
|λa,n|<Λ

�

2πn
L′

�2∑

i, j
i 6=a
j 6=a

ei x ′(λa,n−λa)+i t
�

λ2
a−λ

2
a,n

�

(λi −λa)(λ j −λa)

− 8
(1+ 2D

c )
2

c2 L4

∑

a

∑

k
|λk|<Λ

(λk −λa)
2
∑

i, j
i 6=a
j 6=a

ei x ′(λk−λa)+i t(λ2
a−λ

2
k)

(λi −λa)(λ j −λa)
. (118)

The two terms are of the form (49) and we apply (57) to express them in terms of the root
density ρ(λ) and the pair distribution function γ−2(λ) defined in (33), with a triple integral
with successive principal values defined in (54). This yields

A2 =−
8
c2

∫ Λ

−Λ
dµρh(µ)e

−i tµ2+i x ′µ−
∫

(µ−λ)2ρ(λ)ρ(u)ρ(v)
(u−λ)(λ− v)

ei tλ2−i x ′λdλdudv

−
8
c2

∫ ∞

−∞
dλ

∫ Λ

−Λ
dµ(µ−λ)2ρh(µ)

�

π2

3 ρ(λ)
3 − γ−2(λ)

�

ei t(λ2−µ2)+i x ′(µ−λ)dλdµ

+O(c−3) +O(L−1) . (119)

The definition of the successive principal value integral allows us to rewrite it in terms of ρ̃,
to give

A2 =
8
c2

∫ ∞

−∞
dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(µ−λ)2ρ̃(λ)2ei t(λ2−µ2)+i x ′(µ−λ)

−
8
c2

∫ ∞

−∞
dλ

∫ Λ

−Λ
dµ(µ−λ)2ρh(µ)

�

π2

3 ρ(λ)
3 − γ−2(λ)

�

ei t(λ2−µ2)+i x ′(µ−λ)dλdµ

+O(c−3) +O(L−1) . (120)

5.1.4 Order c−2: second contribution

The second term on the right hand side of (116) is particularly cumbersome to deal with. We
first treat the case i = j separately, and for all terms with i 6= j we apply a partial fraction
decomposition with respect to n, so that we have only one n appearing in the denominator.
Finally we split the sum over n as the difference of sums over vacancies and particles. Specif-
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ically, we have for f (u) = u2ei x ′u+i t(λ2
a−(λa+u)2))

∑

i, j,n
∀k,λa,n 6=λk
|λa,n|<Λ

i, j 6=a

f (2πn
L′ )

(λi −λa −
2πn
L′ )(λ j −λa −

2πn
L′ )
=

∑

i,n
λa,n 6=λi
|λa,n|<Λ

i 6=a

f (2πn
L′ )

(λi −λa −
2πn
L′ )2

−
∑

i,k
i 6=k
|λk|<Λ

i 6=a

f (λk −λa)
(λi −λk)2

+
∑

i, j,n
λa,n 6=λi
|λa,n|<Λ

i, j 6=a, i 6= j

f (2πn
L′ )

(λ j −λi)(λi −λa −
2πn
L′ )
−

∑

i, j,n
λa,n 6=λ j
|λa,n|<Λ

i, j 6=a, i 6= j

f (2πn
L′ )

(λ j −λi)(λ j −λa −
2πn
L′ )

−
∑

i, j,k
i 6= j, i 6=k
|λk|<Λ
i, j 6=a

f (λk −λa)
(λ j −λi)(λi −λk)

+
∑

i, j,k
i 6= j, j 6=k
|λk|<Λ
i, j 6=a

f (λk −λa)
(λ j −λi)(λ j −λk)

. (121)

In all these terms, the conditions i, j 6= a only give rise to subleading contributions in L,
so that they can be discarded. The first term on the right hand side of (121) gives rise to a
contribution to CΛ1 (x , t) of the form

A3 = 8
(1+ 2D

c )
2

c2 L4

∑

a

∑

n
λa,n 6=λi
|λa,n|<Λ

�

2πn
L′

�2∑

i
i 6=a

ei x ′(λa,n−λa)+i t
�

λ2
a−λ

2
a,n

�

(λi −λa −
2πn
L′ )2

.
(122)

As this is proportional to L−4 and only involves three sums the dominant contribution arises
from the double pole. Using

∑

n 6=0
1
n2 =

π2

3 for the sum over n, we obtain

A3 =
8
c2

∫ ∞

−∞
(λ−µ)2ρ(λ)

π2

3
ρ(µ)
(2π)2

ei t(λ2−µ2)+i x ′(µ−λ)dλdµ+O(c−3) +O(L−1) . (123)

5.1.5 Order c−2: third contribution

The second term on the right hand side of (121) gives rise to a contribution

A4 = −8
(1+ 2D

c )
2

c2 L4

∑

a

∑

i,k
i,k 6=a
i 6=k

(λk −λa)
2

(λi −λk)2
ei x ′(λk−λa)+i t(λ2

a−λ
2
k) . (124)

The sum is of the form (32) and according to (33) in the thermodynamic limit gives rise to
integrals over the pair distribution function

A4 = −
8
c2

∫ ∞

−∞
(λ−µ)2ρ(λ)γ−2(µ)e

i t(λ2−µ2)+i x ′(µ−λ)dλdµ+O(c−3) +O(L−1) . (125)

5.1.6 Order c−2: fourth contribution

The third and fourth terms in (121) are “hybrid" terms mixing sums over λi ’s and sums over
regularly distributed n’s. They give rise to a contribution to CΛ1 (x , t) of the form

A5 = 16
(1+ 2D

c )
2

c2 L4

∑

a

∑

i, j
i, j 6=a
i 6= j

∑

n
λa,n 6=λi
|λa,n|<Λ

�

2πn
L′

�2 ei x ′(λa,n−λa)+i t
�

λ2
a−λ

2
a,n

�

(λi −λa −
2πn
L′ )(λ j −λi)

. (126)
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By symmetrizing over i, j, one obtains a sole pole in n, but since n is regularly distributed and
avoids only the pole one can convert the sum into a principal value integral. This leads to
integrals with two successive principal values

A5 =
16
c2

∫ ∞

−∞
dλρ(λ)

∫ Λ

−Λ
dµ

1
2π
(µ−λ)2ei t(λ2−µ2)+i x ′(µ−λ)−

∫

du
ρ(u)
u−µ

−
∫

dv
ρ(v)
v − u

+O(c−3) +O(L−1) . (127)

This can be simplified further by expressing the rightmost double integral in terms of ρ̃(λ). To
that end, let us consider the integral of this term as a function of µwith an arbitrary continuous
function ϕ(µ). Using (53) we have
∫

dµϕ(µ)−
∫

du
ρ(u)
µ− u

−
∫

dv
ρ(v)
u− v

==
∫

ϕ(µ)ρ(u)ρ(v)
(µ− u)(u− v)

dµdudv −
π2

3

∫

ϕ(µ)ρ(µ)2dµ . (128)

Under the simultaneous principal value triple integral it is legitimate to decompose
1

(µ−u)(u−v) =
1
µ−v (

1
µ−u +

1
u−v ) and split the integral into two since |µ− v|> ε:

=
∫

ϕ(µ)ρ(u)ρ(v)
(µ− u)(u− v)

dµdudv ==
∫

ϕ(µ)ρ(u)ρ(v)
(µ− v)(µ− u)

dµdudv +=
∫

ϕ(µ)ρ(u)ρ(v)
(µ− v)(u− v)

dµdudv . (129)

We then use (53) to express the two simultaneous principal value triple integrals in terms of
successive principal value integrals
∫

dµϕ(µ)−
∫

du
ρ(u)
µ− u

−
∫

dv
ρ(v)
u− v

=

∫

dµϕ(µ)−
∫

dv
ρ(v)
µ− v

−
∫

du
ρ(u)
µ− u

−π2

∫

ϕ(µ)ρ(µ)2dµ

+

∫

dµϕ(µ)−
∫

dv
ρ(v)
µ− v

−
∫

du
ρ(u)
u− v

. (130)

The first integral on the right hand side is
∫

ϕ(µ)ρ̃(µ)2dµwhile the third equals minus the
left hand side. Using that this identity holds for any continuous function ϕ(µ) we conclude
that

−
∫

dλ
ρ(λ)
µ−λ

−
∫

du
ρ(u)
λ− u

=
1
2
ρ̃(µ)2 −

π2

2
ρ(µ)2 . (131)

Putting everything together we obtain

A5 =
8
c2

∫ ∞

−∞
dλρ(λ)

∫ Λ

−Λ
dµ

1
2π
(µ−λ)2ρ̃(µ)2ei t(λ2−µ2)+i x ′(µ−λ)

−
8π2

c2

∫ ∞

−∞
dλρ(λ)

∫ Λ

−Λ
dµ

1
2π
(µ−λ)2ρ(µ)2ei t(λ2−µ2)+i x ′(µ−λ) +O(c−3) +O(L−1) .

(132)

5.1.7 Order c−2: fifth contribution

The fifth and fourth terms on the right hand side of (121) are of the form (49) and give rise
to a contribution

A6 = −16
(1+ 2D

c )
2

c2 L4

∑

a

∑

i, j,k
i, j,k 6=a

i 6= j, i 6=k

(λk −λa)2

(λ j −λi)(λi −λk)
ei x ′(λk−λa)+i t(λ2

a−λ
2
k) . (133)
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Applying (57) with successive principal values and then using (131) we find

A6 =−
8
c2

∫ ∞

−∞
dλρ(λ)

∫ Λ

−Λ
dµρ(µ)(µ−λ)2ρ̃(µ)2ei t(λ2−µ2)+i x ′(µ−λ)

+
8π2

c2

∫ ∞

−∞
dλρ(λ)

∫ Λ

−Λ
dµ(µ−λ)2ρ(µ)3ei t(λ2−µ2)+i x ′(µ−λ)

−
16
c2

∫ ∞

−∞

∫ ∞

−∞
(λ−µ)2ρ(λ)

�

π2

3 ρ(µ)
3 − γ−2(µ)

�

ei t(λ2−µ2)+i x ′(µ−λ)dλdµ

+O(c−3) +O(L−1) . (134)

5.1.8 Order c−2: sixth contribution

Finally, the last term in (116) gives rise to a contribution

A7 = −16
(1+ 2D

c )
2

c2 L4

∑

a

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

�

2πn
L′

�2∑

i, j
i 6=a
j 6=a

ei x ′(λa,n−λa)+i t
�

λ2
a−λ

2
a,n

�

(λi −λa −
2πn
L′ )(λ j −λa)

. (135)

By again decomposing the sum over n as a sum over vacancies minus a sum over particles we
find

A7 =−
16
c2

∫ ∞

−∞
dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(µ−λ)2ρ̃(λ)ρ̃(µ)ei t(λ2−µ2)+i x ′(µ−λ)

+O(c−3) +O(L−1) . (136)

5.1.9 Result for the contribution of one particle-hole excitations

We leave the remaining contributions to CΛ1 (x , t) untouched, i.e. in sum form, since they will
be cancelled by contributions from two particle-hole excitations to the correlator. Our final
result for CΛ1 (x , t) is thus given by

CΛ1 (x , t) = ΩΛ1 + (1+
2D
c )

2

∫ ∞

−∞
dλ ρ(λ)

∫ Λ

−Λ
dµ ρh(µ)

�

1−
4
c
(µ−λ)(ρ̃(µ)− ρ̃(λ))

+
8
c2
(µ−λ)2(ρ̃(µ)− ρ̃(λ))2 −

8π2

c2
(µ−λ)2[ρ(µ)]2

�

ei t(λ2−µ2)+i x ′(µ−λ)

−
8
c2

∫ ∞

−∞
dλ

∫ Λ

−Λ
dµ(λ−µ)2ρh(µ)

�

π2

3
[ρ(λ)]3 − γ−2(λ)

�

ei t(λ2−µ2)+i x ′(µ−λ)

+
8
c2

∫ ∞

−∞
dλ

∫ ∞

−∞
dµ(λ−µ)2ρ(λ)

�

ρ(µ)
12
−

2π2

3
[ρ(µ)]3 + γ−2(µ)

�

ei t(λ2−µ2)+i x ′(µ−λ)

+O(c−3) +O(L−1) , (137)

where we have defined

ΩΛ1 = −
1

c2 L2

∑

a

∑

∀k,λa,n 6=λk
|λa,n|<Λ

�

1
3

∑

i
i 6=a

1−
4
L2

∑

i, j
i 6= j
j 6=a

1
(λi −λ j)2

−
4
L2

∑

i
i 6=a

1

(λi −λa −
2πn
L′ )2

�

×
�2πn

L′

�2
ei t[λ2

a−λ
2
a,n]+i x ′[λa,n−λa] . (138)
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5.2 Two-particle-hole excitations

5.2.1 A partial fraction decomposition

The computation of CΛ2 (x , t) defined in (101) is slightly different. In order to proceed we
decompose the form factor into partial fractions with respect to n, and then m:

(n+m)4

n2m2

(λa −λb)2(λa −λb +
2π(n−m)
L(1+ 2D

c )
)2

(λa −λb +
2πn

L(1+ 2D
c )
)2(λa −λb −

2πm
L(1+ 2D

c )
)2
=

�

2πn
L′

�2
�

1

(2πm
L′ )2

+
2

(λa −λb)
2πm

L′
+

1

(λa −λb −
2πm

L′ )2
+

2

(λa −λb)(λa −λb −
2πm

L′ )

�

+
2πn
L′

�

2
2πm

L′
+

2(λa −λb)

(λa −λb −
2πm

L′ )2
+

2

λa −λb −
2πm

L′

�

+

�

2(λa −λb)
2πm

L′
+

(λa −λb)2

(λa −λb −
2πm

L′ )2
+

2(λa −λb)

λa −λb −
2πm

L′

�

+
�2πn

L′

�−1
�

−2(λa −λb) + 2
2πm

L′
−

2(2πm
L′ )

2

λa −λb
+

2(λa −λb)2

λa −λb −
2πm

L′

�

+
�2πn

L′

�−2�2πm
L′

�2

+
�

λa −λb +
2πn
L′

�−1
�

2(λa −λb)−
2(λa −λb)2

2πm
L′

− 2
2πm

L′
+

2(2πm
L′ )

2

λa −λb

�

+
�

λa −λb +
2πn
L′

�−2
�

(λa −λb)
2 − 2(λa −λb)

2πm
L′
+
�

2πm
L′

�2
�

. (139)

We now use that the sum is invariant under the simultaneous reparametrisations
n′ = m − L′(λa−λb)

2π and m′ = n + L′(λa−λb)
2π (which corresponds to swapping the position of

the two excited particles) to bring all the poles into poles in n or m, the only exceptions being
[2πn

L′ (λa − λb −
2πm

L′ )]
−1 and [2πm

L′ (λa − λb +
2πn
L′ )]

−1 which cannot be transformed further.
Next we use the invariance under swapping n, m and a, b simultaneously (which corresponds
to renaming dummy variables) to bring all the poles into poles in m only, with the exception
of [2πm

L′ (λa −λb +
2πn
L′ )]

−1. We obtain

CΛ2 (x , t) =
4

c2 L4

∑

a 6=b

∑

n
∀i,λa,n 6=λi
|λa,n|<Λ

∑

m
∀ j,λb,m 6=λ j
λb,m 6=λa,n
|λb,m|<Λ

ei x ′[λa,n−λa+λb,m−λb]+i t
�

λ2
a−λ

2
a,n+λ

2
b−λ

2
b,m

�

×
�

n2

m2
+ 2

(2πn
L′ )

2

(λa −λb)
2πm

L′
+ 2

n
m
+ 2
λa −λb

2πm
L′

−
(λa −λb)2

2πm
L′ (λa −λb +

2πn
L′ )

�

. (140)

We now carry out the sums over m and b in order to bring this to a form similar to the
contribution from one particle hole excitations. We will denote the resulting five terms by Σi
for i = 1, . . . , 5 and treat them one at a time.
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5.2.2 First term Σ1

In this subsection we take the thermodynamic limit of

Σ1 =
4

c2 L4

∑

a 6=b

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

∑

m
∀i,λb,m 6=λi
λb,m 6=λa,n
|λb,m|<Λ

n2

m2
ei t
�

λ2
a−λ

2
a,n+λ

2
b−λ

2
b,m

�

+i x ′[λa,n−λa+λb,m−λb] . (141)

We begin by splitting the exponential factor

ei t
�

λ2
b−λ

2
b,m

�

+i x ′[λb,m−λb] =
�

ei t
�

λ2
b−λ

2
b,m

�

+i x ′[λb,m−λb] − 1
�

+ 1 . (142)

Performing the sum over m for the second term in (142) gives

Σ1 = Σ̃1 +
1

c2 L2

∑

a

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

�2πn
L′

�2
ei t[λ2

a−λ
2
a,n]+i x ′[λa,n−λa]

×
�

1
3

∑

i
i 6=a

1−
4
L2

¦ ∑

i, j
i 6= j, j 6=a
|λ j |<Λ

1
(λi −λ j)2

+
∑

j
j 6=a

1

(λa −λ j +
2πn
L′ )2

©

�

, (143)

where

Σ̃1 =
4

c2 L4

∑

a 6=b

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

∑

m
∀i,λb,m 6=λi
λb,m 6=λa,n
|λb,m|<Λ

n2

m2
ei t
�

λ2
a−λ

2
a,n

�

+i x ′[λa,n−λa]
�

ei t
�

λ2
b−λ

2
b,m

�

+i x ′[λb,m−λb] − 1
�

.

(144)
The advantage of this representation is that the pole in m is now only of order 1. Writing the
sum over m as a sum over m 6= 0 minus sums over particles one obtains

Σ̃1 =
4

c2 L4

∑

a 6=b

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

∑

m 6=0
|λb,m|<Λ

n2

m2

�

ei t
�

λ2
b−λ

2
b,m

�

+i x ′[λb,m−λb] − 1
�

ei t
�

λ2
a−λ

2
a,n

�

+i x ′[λa,n−λa]

−
4

c2 L4

∑

a 6=b

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

∑

i
i 6=b
|λi |<Λ

�

2πn
L′

�2

(λb −λi)2
�

ei t[λ2
b−λ

2
i ]+i x ′[λi−λb] − 1

�

ei t
�

λ2
a−λ

2
a,n

�

+i x ′[λa,n−λa]

−
4

c2 L4

∑

a 6=b

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

�

2πn
L′

�2

(λb −λa −
2πn
L′ )2

�

ei t
�

λ2
b−λ

2
a,n

�

+i x ′[λa,n−λb] − 1
�

× ei t
�

λ2
a−λ

2
a,n

�

+i x ′[λa,n−λa] . (145)

The first term is a sum over regularly spaced integers m with only a simple pole. In the
thermodynamic limit it can therefore be expressed in terms of a principal value integral with

a constant density
1+ 2D

c
2π . The second term is of type (43) and gives rise to an integral over the

root density ρ(λ) in the thermodynamic limit. The last term is negligible in L. We find
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Σ1 =Ω
Λ
2 +

4Ax ′,t

c2

∫ ∞

−∞
dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(µ−λ)2ei t(λ2−µ2)+i x ′(µ−λ)

+O(Λ−1 L0) +O(L−1) , (146)

where we defined

Ax ,t =

∫ ∞

−∞
du−
∫ ∞

−∞
dv
ρ(u)ρh(v)
(u− v)2

(ei t(u2−v2)+i x(v−u) − 1) , (147)

and

ΩΛ2 =
1

c2 L2

∑

a

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

�

2πn
L

�2

ei t[λ2
a−λ

2
a,n]+i x ′[λa,n−λa]

×
�

1
3

∑

i
i 6=a

1−
4

L′2

¦ ∑

i, j
i 6= j, j 6=a
|λ j |<Λ

1
(λi −λ j)2

+
∑

j
j 6=a

1

(λa −λ j +
2πn
L′ )2

©

�

. (148)

5.2.3 Second term Σ2

The next contribution is

Σ2 =
4

c2 L4

∑

a 6=b

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

∑

m
∀i,λb,m 6=λi
λb,m 6=λa,n
|λb,m|<Λ

2(2πn
L′ )

2

(λa −λb)
2πm

L′
ei t
�

λ2
a−λ

2
a,n+λ

2
b−λ

2
b,m

�

+i x ′[λa,n−λa+λb,m−λb] .

(149)

Writing the sum over m again as sums over vacancies minus particles we have

Σ2 =
8

c2 L4

∑

a 6=b

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

∑

m 6=0
|λb,m|<Λ

(2πn
L′ )

2

(λa −λb)
2πm

L′
ei t
�

λ2
a−λ

2
a,n+λ

2
b−λ

2
b,m

�

+i x ′[λa,n−λa+λb,m−λb]

−
8

c2 L4

∑

a 6=b

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

∑

i
i 6=b
|λi |<Λ

(2πn
L′ )

2

(λa −λb)(λi −λb)
ei t
�

λ2
a−λ

2
a,n+λ

2
b−λ

2
i

�

+i x ′[λa,n−λa+λi−λb]

−
8

c2 L4

∑

a 6=b

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

(2πn
L′ )

2

(λa −λb)(
2πn
L′ +λa −λb)

ei t
�

λ2
a−2λ2

a,n+λ
2
b

�

+i x ′[2λa,n−λa−λb] . (150)

In the first two lines of (150) the sums over n are regular. The first line involves only sums
of the form (43), while the second line is of the form (49) and the thermodynamic limit can be
worked out using (57). The third term, after splitting the sum over n as sums over vacancies
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minus particles is seen to be negligible in L. Hence we obtain

Σ2 =
8
c2

∫ ∞

−∞
dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(µ−λ)2Bx ′,t(λ)e

i t(λ2−µ2)+i x ′(µ−λ)

+
8
c2

∫ ∞

−∞
dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(µ−λ)2

�

π2

3
ρ(λ)3 − γ−2(λ)

�

ei t(λ2−µ2)+i x ′(µ−λ)

+O(Λ−1 L0) +O(L−1) , (151)

where Bx ,t(λ) is defined in terms of principal value integrals by

Bx ,t(λ) = −
∫ ∞

−∞
du−
∫ ∞

−∞
dv

ρ(u)ρh(v)
(v − u)(λ− u)

ei t(u2−v2)+i x(v−u) . (152)

5.2.4 Third term Σ3

In this subsection we take the thermodynamic limit of

Σ3 =
4

c2 L4

∑

a 6=b

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

∑

m
∀i,λb,m 6=λi
λb,m 6=λa,n
|λb,m|<Λ

2
n
m

ei t
�

λ2
a−λ

2
a,n+λ

2
b−λ

2
b,m

�

+i x ′[λa,n−λa+λb,m−λb] . (153)

Expressing the sum over m as the difference of sums over vacancies and particles Σ3 reduces
to terms of the form (43) that can be readily expressed as integrals over root densities. We
obtain

Σ3 =
8Cx ′,t

c2

∫ ∞

−∞
dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(µ−λ)ei t(λ2−µ2)+i x ′(µ−λ) +O(Λ−1 L0) +O(L−1) ,

(154)

where we have defined

Cx ,t =

∫ ∞

−∞
du−
∫ ∞

−∞
dv
ρ(u)ρh(v)

v − u
ei t(u2−v2)+i x(v−u) . (155)

5.2.5 Fourth term Σ4

The next contribution is given by

Σ4 =
4

c2 L4

∑

a 6=b

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

∑

m
∀i,λb,m 6=λi
λb,m 6=λa,n
|λb,m|<Λ

2
λa −λb

2πm
L′

ei t
�

λ2
a−λ

2
a,n+λ

2
b−λ

2
b,m

�

+i x ′[λa,n−λa+λb,m−λb] , (156)

and can be treated in complete analogy with Σ3. We obtain

Σ4 =
8
c2

∫ ∞

−∞
dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(λCx ′,t − Dx ′,t)e

i t(λ2−µ2)+i x ′(µ−λ) +O(Λ−1 L0) +O(L−1) ,

(157)
where we have defined

Dx ,t =

∫ ∞

−∞
du−
∫ ∞

−∞
dv u

ρ(u)ρh(v)
v − u

ei t(u2−v2)+i x(v−u) . (158)
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5.2.6 Fifth term Σ5

The final contribution to CΛ2 (x , t) is

Σ5 = −
4

c2 L4

∑

a 6=b

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

∑

m
∀i,λb,m 6=λi
λb,m 6=λa,n
|λb,m|<Λ

(λa −λb)2
2πm

L′ (λa −λb +
2πn
L′ )

× ei t
�

λ2
a−λ

2
a,n+λ

2
b−λ

2
b,m

�

+i x ′[λa,n−λa+λb,m−λb] . (159)

In order to take the thermodynamic limit we rewrite this as

Σ5 = −
4

c2 L4

∑

a 6=b

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

∑

m 6=0
|λb,m|<Λ

(λa −λb)2 ei t
�

λ2
a−λ

2
a,n+λ

2
b−λ

2
b,m

�

+i x ′[λa,n−λa+λb,m−λb]

2πm
L′ (λa −λb +

2πn
L′ )

+
4

c2 L4

∑

a 6=b

∑

n
λa,n 6=λb
|λa,n|<Λ

∑

i
i 6=b
|λi |<Λ

(λa −λb)2 ei t
�

λ2
a−λ

2
a,n+λ

2
b−λ

2
i

�

+i x ′[λa,n−λa+λi−λb]

(λi −λb)(λa −λb +
2πn
L′ )

−
4

c2 L4

∑

a 6=b

∑

k
k 6=b
|λk|<Λ

∑

i
i 6=b
|λi |<Λ

(λa −λb)2 ei t[λ2
a−λ

2
k+λ

2
b−λ

2
i ]+i x ′[λi+λk−λa−λb]

(λi −λb)(λk −λb)

+
4

c2 L4

∑

a 6=b

∑

n
λa,n 6=λb
|λa,n|<Λ

(λa −λb)2

(λa −λb +
2πn
L′ )2

ei t
�

λ2
a−2λ2

a,n+λ
2
b

�

+2i x ′[2λa,n−λa−λb]

−
4

c2 L4

∑

a 6=b

∑

k
k 6=b
|λk|<Λ

(λa −λb)2

(λk −λb)2
ei t[λ2

a−2λ2
k+λ

2
b]+i x ′[2λk−λa−λb] . (160)

The first two lines are of type (43) while the third and fifth lines are of types (49) and (32)
respectively. Finally, in the fourth line we use that

∑

n6=0
1
n2 =

π2

3 to arrive at

Σ5 =
4
c2

∫ ∞

−∞
dλρ(λ)

∫ Λ

−Λ
dµρh(µ)

�

(µ− 2λ)Cx ′,t + Dx ′,t − (λ−µ)2Bx ′,t(µ)
�

× ei t(λ2−µ2)+i x ′(µ−λ)

+
4
c2

∫ ∞

−∞
dλρ(λ)

∫ ∞

−∞
dµ(λ−µ)2

�

π2

3
ρ(µ)3 +

π2

3
ρ(µ)
(2π)2

− 2γ−2(µ)

�

ei t(λ2−µ2)+i x ′(µ−λ)

+O(Λ−1 L0) +O(L−1) . (161)
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5.2.7 Result for the contribution from two particle-hole excitations

Combining the results of sections 5.2.2-5.2.6 we arrive at the following expression for the two
particle-hole contribution to the density-density correlation function

CΛ2 (x , t) = ΩΛ2 +
4
c2

∫ ∞

−∞
dλρ(λ)

∫ Λ

−Λ
dµρh(µ)

�

(µ−λ)2[Ax ′,t + 2Bx ′,t(λ)− Bx ′,t(µ)]

+ (3µ− 2λ)Cx ′,t − Dx ′,t

�

ei t(λ2−µ2)+i x ′(µ−λ)

+
8
c2

∫ ∞

−∞
dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(λ−µ)2

�

π2

3
ρ(λ)3 − γ−2(λ)

�

ei t(λ2−µ2)+i x ′(µ−λ)

+
4
c2

∫ ∞

−∞
dλρ(λ)

∫ ∞

−∞
dµ(λ−µ)2

�

π2

3
ρ(µ)3 +

ρ(µ)
12
− 2γ−2(µ)

�

ei t(λ2−µ2)+i x ′(µ−λ)

+O(Λ−1 L0) +O(L−1) , (162)

where ΩΛ2 has been defined in (148).

5.3 Density-density correlations in arbitrary macro states for all x and t at order
O(c−2)

5.3.1 Compensation of divergent parts

As explained above, the O(c−2) contributions due to one- and two particle-hole excitations
are individually divergent in the thermodynamic limit. The divergent parts are given in (138)
and (148) respectively. Their difference is

ΩΛ1 −Ω
Λ
2 =

4
c2 L4

∑

a

∑

n
∀k,λa,n 6=λk
|λa,n|<Λ

∑

i, j
i 6= j, j 6=a
|λ j |>Λ

1
(λi −λ j)2

ei t[λ2
a−λ

2
a,n]+i x ′[λa,n−λa] . (163)

Crucially this vanishes for the class of root densities we use in ourΛ-regularization discussed in
Section 4.3.3, i.e. ρ(λ) = 0 for |λ|> Λ. Indeed, the second sum is zero whenever all the roots
satisfy |λ j| < Λ. We conclude that within our regularization scheme all divergences cancel at
order O(c−2), but they do so in a non-trivial fashion: divergent contributions from interme-
diate states with one particle-hole excitation precisely cancel those arising from intermediate
states with two particle-hole excitations.

5.3.2 Compensation of contributions that depend on the choice of representative state

As we have seen above, the contributions from both one- and two-particle-hole excitations in
the thermodynamic limit individually depend on the choice of the representative state through
the pair distribution function γ−2(λ). Importantly, these contributions exactly cancel one an-
other and the full correlation function does not depend on the representative state.

5.3.3 Λ-regularized correlation function

Combining the results for the one and two particle-hole excitations we obtain the following
result for the dynamical density-density correlator in the Λ-regularization

〈σ(x , t)σ(0,0)〉Λ =D2 +

∫ ∞

−∞
dλ

∫ Λ

−Λ
dµ fx ′,t(λ,µ)ei t(λ2−µ2)+i x ′(µ−λ)

+O(Λ−1 L0) +O(L−1) , (164)
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where the integrand is given by

fx ,t(λ,µ) = χ(1)x ,t (λ,µ) +
χ
(2)
x ,t (λ,µ)

c2
+O(c−3) . (165)

Here the contributions due to one and two particle-hole excitations are respectively

χ
(1)
x ,t (λ,µ) =(1+ 2D

c )
2ρ(λ)ρh(µ)

�

1−
4
c
(µ−λ)(ρ̃(µ)− ρ̃(λ)) +

8
c2
(µ−λ)2(ρ̃(µ)− ρ̃(λ))2

+
4π2

c2
(µ−λ)2ρ(µ)ρh(µ)

�

,

χ
(2)
x ,t (λ,µ) =4ρ(λ)ρh(µ)

�

(µ−λ)2[Ax ,t + 2Bx ,t(λ)− Bx ,t(µ)] + (3µ− 2λ)Cx ,t − Dx ,t

�

. (166)

The function ρ̃(λ) is defined in (114) and the four functions Ax ,t , Bx ,t(λ), Cx ,t and Dx ,t are
given in (147), (152), (155) and (158) respectively.

Some comments on the term 4π2

c2 (µ − λ)2ρ(λ)ρ(µ)ρh(µ)2 are in order. This term arises
from the sum of the contributions involving the pair distribution function γ−2(λ) in both
CΛ1 (x , t) and CΛ2 (x , t). Strictly speaking it therefore involves two particle-hole excitations as
well one particle-hole excitations. Since it does not involve double integrals, as is the case for
the other contributions from CΛ2 (x , t), we have chosen to include it entirely in χ(1)x ,t (λ,µ). It
can be interpreted as a “dressing" of contributions arising from one particle-hole excitations
by two particle-hole excitations.

5.3.4 Dynamical correlations

The result (164) gives the thermodynamic limit of the Λ-regularized correlation function. We
now remove the cutoff dependence by taking the limit Λ → ∞. The resulting ill-defined
integrals (92) are to be understood as distributions following (96). To express the limitΛ→∞
in terms of well-defined integrals we consider the expansion of fx ,t(λ,µ) around µ→∞

fx ,t(λ,µ) = µ2ϕ
(2)
x ,t(λ) +µϕ

(1)
x ,t(λ) +ϕ

(0)
x ,t(λ) + o(µ0) . (167)

Defining

f̃x ,t(λ,µ) =
�

� x
2t

�2
+ 1

2i t −µ
2
�

ϕ
(2)
x ,t(λ) +

� x
2t −µ

�

ϕ
(1)
x ,t(λ) + fx ,t(λ,µ) , (168)

it follows from (96) that we can express the limit Λ → ∞ of (164) as a function of x and
t 6= 0

〈σ (x , t)σ (0,0)〉= D2 +

∫ ∞

−∞

∫ ∞

−∞
f̃x ′,t(λ,µ)ei t(λ2−µ2)+i x ′(µ−λ)dλdµ+O(L−1) . (169)

For the energy of a macro state to be well-defined we need ρ(µ) = o(µ−2) for µ→∞. From
this we have

ϕ
(2)
x ,t(λ) = 4

(1+ 2D
c )

3

2πc2
ρ(λ)

�

2ρ̃(λ)2 + Ax ′,t + 2Bx ′,t(λ)
�

,

ϕ
(1)
x ,t(λ) = 4

(1+ 2D
c )

3

2πc
ρ(λ)

�

ρ̃(λ)−
4λρ̃(λ)2 + 4Dρ̃(λ) + 2λAx ′,t + 4λBx ′,t(λ)− 2Cx ′,t

c

�

,

ϕ
(0)
x ,t(λ) = 4

(1+ 2D
c )

3

2πc
ρ(λ)

�

− D−λρ̃(λ) +
1
c

�

2D2 + 8Dλρ̃(λ) + 2λ2ρ̃(λ)2

+λ2Ax ′,t + 2λ2Bx ′,t(λ)− 2Dx ′,t − 4λCx ′,t

�

�

. (170)
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Alternatively, one can also write, using (97)

〈σ(x , t)σ(0, 0)〉=D2 + lim
ε→0+

∫ ∞

−∞

∫ ∞

−∞
fx ′,t(λ,µ)ei tλ2−i(t−iε)µ2+i x ′(µ−λ)dλdµ+O(L−1) .

(171)

5.3.5 Static correlations

The result (169) is singular for t → 0 since it behaves as 1p
t
e−x2/t . However, in a distribution

sense we have 1p
t
e−x2/t → 0 when t → 0. Defining

f̃x ,0(λ,µ) = lim
t→0

�

−µ2ϕ
(2)
x ,t(λ)−µϕ

(1)
x ,t(λ)−ϕ

(0)
x ,t(λ) + fx ,t(λ,µ)

�

, (172)

we have the following representation of the static correlator as a function of x

〈σ (x , 0)σ (0,0)〉= D2 +

∫ ∞

−∞

∫ ∞

−∞
f̃x ′,0(λ,µ)ei x ′(µ−λ)dλdµ+O(L−1) . (173)

Alternatively, one can also write

〈σ(x , 0)σ(0,0)〉=D2 + lim
ε→0+

∫ ∞

−∞

∫ ∞

−∞
fx ′,0(λ,µ)e−εµ

2+i x ′(µ−λ)dλdµ+O(L−1) . (174)

5.4 Dynamical structure factor in arbitrary macro states for allω, q at order c−2

Given the correlation function (169) for all x and t we can determine the dynamical structure
factor (DSF) S(q,ω) by taking the Fourier transform

S(q,ω) =

∫ ∞

−∞

∫ ∞

−∞

h

lim
L→∞

〈σ(x , t)σ(0, 0)〉
i

eiωt−iqxdxdt . (175)

It is convenient to decompose S(q,ω) in terms of the contributions of one and two particle-hole
excitations, which we denote by S(1)(q,ω) and S(2)(q,ω) respectively:

S(q,ω) = D2δ(q)δ(ω) + S(1)(q,ω) + S(2)(q,ω) +O(c−3) . (176)

In practice we determine the dynamical structure factor by first computing the Fourier trans-
form (175) of the Λ-regularized correlator (164) and then taking the limit Λ → ∞, which
turns out to be straightforward.

5.4.1 One particle-hole contributions to the dynamical structure factor

The contribution of the one particle-hole excitations to the DSF S(1)(q,ω) is obtained from the
relation

∫ ∞

−∞
dteiωt

∫ ∞

−∞
dxe−iqx

∫ ∞

−∞
dλei tλ2−i xλ

∫ Λ

−Λ
dµe−i tµ2+i xµ f (λ,µ) =

2π2

|q|
f (ω−q2

2q , ω+q2

2q )111|ω+q2

2q |<Λ
. (177)

The Λ→∞ limit of (177) is straightforward and yields at order O(c−2)
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S(1)(q,ω) =2π2
�

1+
2D
c

�

ρ(ω
′−q′2

2q′ )ρh(
ω′+q′2

2q′ )
�

1
|q′|
−

4sgn (q′)
c

(ρ̃(ω
′+q′2

2q′ )− ρ̃(
ω′−q′2

2q′ ))

+
8|q′|
c2
(ρ̃(ω

′+q′2

2q′ )− ρ̃(
ω′−q′2

2q′ ))
2 +

4π2|q′|
c2

ρ(ω
′+q′2

2q′ )ρh(
ω′+q′2

2q′ )
�

, (178)

where we have defined

q′ =
q

1+ 2D
c

, ω′ =ω−
4δ

c(1+ 2D
c )

q . (179)

5.4.2 Two particle-hole contributions to the dynamical structure factor

The two particle-hole contributions involve the functions Ax ,t , Bx ,t(λ), Cx ,t and Dx ,t given in
(147), (152), (155) and (158) respectively. Their simple dependence on x and t allows for a
straightforward computation of their contribution to the DSF. For example, by first integrating
over x , then over v, then over t and finally over u we find

∫ ∞

−∞
dt

∫ ∞

−∞
dxeiωt−iqx

∫ ∞

−∞
dλ

∫ Λ

−Λ
dµρ(λ)ρh(µ)(3µ− 2λ)Cx ′,t e

i t(λ2−µ2)+i x ′(µ−λ)

= 2π2

∫ ∞

−∞
dλ

∫ Λ

−Λ
dµ ρ(λ)ρh(µ)ρ(λ̄)ρh(µ̄)

3µ− 2λ
(q′ +λ−µ)|q′ +λ−µ|

. (180)

Here we have set

λ̄=
ω′ +λ2 −µ2 − (q′ +λ−µ)2

2(q′ +λ−µ)
, µ̄=

ω′ +λ2 −µ2 + (q′ +λ−µ)2

2(q′ +λ−µ)
. (181)

The limit Λ→∞ of this expression is again routine. It is however not immediately obvious
that the double integral over λ and µ in (180) is well-defined, since one of the factors in the
integrand exhibits a non-integrable singularity. A closer inspection reveals that this singularity
is cancelled by the product of root densities. We will show below by means of a change of
variable that the double integral is indeed well-defined.

All other terms involving the functions Bx ,t(λ), Bx ,t(µ) and Dx ,t can be computed analo-
gously. The term involving Ax ,t however requires a slightly modified approach, since following
through the same steps as before would split the 1/v2 term into a sum of two quantities that
are individually divergent. In order to circumvent this problem we replace the 1/v2 by 1

v2+ε2

and send ε→ 0 in the final result. We obtain
∫ ∞

−∞
dt

∫ ∞

−∞
dxeiωt−iqx

∫ ∞

−∞
dλ

∫ Λ

−Λ
dµρ(λ)ρh(µ)(λ−µ)2Ax ′,t e

i t(λ2−µ2)+i x ′(µ−λ) (182)

= 2π2

∫ ∞

−∞
dλ

∫ Λ

−Λ
dµ

1
|q′ +λ−µ|3

�

ρ(λ)ρh(µ)ρ(λ̄)ρh(µ̄)(λ−µ)2

− |q′(λ−µ)|ρ(λ̄)ρh(µ̄)ρ(
ω′−q′2

2q′ )ρh(
ω+q′2

2q′ )
�

. (183)

Putting everything together we obtain the following result for the contribution of two particle-
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hole excitations to the DSF

S(2)(q,ω) =
8π2

c2

∫ ∞

−∞

∫ ∞

−∞
ρ(λ)ρh(µ)ρ(λ̄)ρh(µ̄)

2(λ−µ)2

λ−λ̄ − (λ−µ)
2

µ−λ̄ + 3µ− 2λ− λ̄

(q′ +λ−µ)|q′ +λ−µ|
dλdµ

+
8π2

c2

∫ ∞

−∞

∫ ∞

−∞

1
|q′ +λ−µ|3

�

ρ(λ)ρh(µ)ρ(λ̄)ρh(µ̄)(λ−µ)2

− |q′(λ−µ)|ρ(λ̄)ρh(µ̄)ρ(
ω′−q′2

2q′ )ρh(
ω′+q′2

2q′ )
�

dλdµ

+O(c−3) . (184)

In order to make the convergence of this integral explicit we perform a change of variables
from λ,µ to

z = 1+ λ−µ
q , p = ω′−q′(λ+µ)

2q′z , (185)

and define

q1 =
ω′−2q′zp−q′2(1−z)

2q′ , q2 =
ω′−2q′zp+q′2(1−z)

2q′ ,

q3 =
ω′+2q′p(1−z)−q′2z

2q′ , q4 =
ω′+2q′p(1−z)+q′2z

2q′ . (186)

In terms of the new variables we have

S(2)(q,ω) =
8π2

c2

∫ ∞

−∞

∫ ∞

−∞
h(q,ω, z, p)dzdp+O(c−3) ,

h(q,ω, z, p) =
2

q′z
ρ(q1)ρh(q2)ρ(q3)ρh(q4)

�

5q′

4
− q′z −

p
2
+

2q′2(1− z)2

(2z − 1)q′ − 2p
−
(1− z)2q′2

q′ − 2p

�

+
ρ(q3)ρh(q4)

z2

�

(1− z)2ρ(q1)ρh(q2)− |1− z|ρ
�ω′−q′2

2q′
�

ρh

�ω′+q′2

2q′
�

�

. (187)

The integral over p only has singularities that are integrable in a principal value sense, and
after the integral over p has been carried out the integral over z only has a singularity that
is integrable in a principal value sense. We conclude that (187) is well defined and can be
straightforwardly evaluated numerically.

6 Numerical evaluation of the dynamical structure factor

In this section we numerically evaluate the integral representations (178), (187) in order to
determine S(q,ω) for the two examples of root densities introduced in Section 3.4, namely
thermal states and the non-equilibrium steady state after a quantum quench from the ground
state at c = 0.

6.1 Zero temperature

We first consider the zero temperature case for density D = 0.404 and c = 3 in (106). The
value D/c ≈ 0.13 is well within the expected range of validity of the 1/c-expansion. The same
holds true for all other cases considered below. In Figure 3 we present numerical results for
the DSF at order c−2 as well as for the one particle-hole contribution S(1)(q,ω). It is well
known that at zero temperature the one particle-hole contribution to the DSF is non-zero only
in a certain region of the q,ω plane for kinematic reasons, and exhibits (not necessarily di-
vergent) singularities at the edges of its support [30, 32, 39, 77]. We note that although the
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DSF is expected to diverge near the upper threshold, the divergence near the lower thresholds
is a consequence of the 1/c expansion, that produces logarithms instead of a finite behaviour
with a fractional c-dependent exponent. Comparing the full result (left panel) to S(1)(q,ω)
(right panel) we observe that the contributions due to two particle-hole excitations signifi-
cantly modify the numerical values of the DSF within this region. S(2)(q,ω) is also non-zero
outside the region, but this effect is barely visible in the plot.

Figure 3: S(q,ω) (left panel) and S(1)(q,ω) (right panel) as functions of q and ω at
zero temperature and D = 0.404, c = 3 in (106). The color scale is the same for both
plots.

6.2 Finite temperature

We next turn to the DSF at finite temperatures. Figure 4 presents numerical results for the full

Figure 4: S(q,ω) (left panel) and S(1)(q,ω) (right panel) as functions of q andω for
a thermal state with β = 5, D = 0.396 and c = 4. The color scale is the same for
both plots.

DSF S(q,ω) at order c−2 for thermal states with β = 5, c = 4 and D = 0.396. For comparison
we also plot the one particle-hole contribution S(1)(q,ω). Like in zero temperature case, for
these parameter values the one particle-hole contribution already gives a fairly good account of
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the full DSF. The two-particle-hole contribution modifies some details that become increasingly
significant for q > 2qF . The main difference to the zero temperature case is the emergence of
spectral weight at negative frequencies and the “washing out” of the threshold singularities.

In Figure 5 we consider the DSF for a different thermal state characterized by a higher
temperature β = 1 and D = 0.38, c = 4. The differences between the S(q,ω) and S(1)(q,ω)
are difficult to discern in these plots. In order to get a more precise notion of the relative

Figure 5: Left panel: DSF S(q,ω) as a function of q and ω for a thermal state at
inverse temperature β = 1, D = 0.38 and c = 4. Right panel: Same for the one
particle-hole contribution S(1)(q,ω). The color scale is the same for both plots.

contributions of S(1)(q,ω) and S(2)(q,ω) to the DSF for these values of D, c and β , we show
a number of “constant momentum cuts", i.e. plots of S(q,ω) as a function of ω for fixed q, in
Figs 6 and 7. Fig 6 gives representative results at “small” momenta, defined as q ® qF . We see
that the contribution from two particle-hole excitations is negligibly small. This is in perfect
agreement with observations made in Ref. [72] based on comparisons with numerical compu-
tations for a finite number of particles. Our results makes this observation fully quantitative
in the thermodynamic limit in the framework of a 1/c-expansion.
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Figure 6: S(q,ω) (red) and S(1)(q,ω) (blue, dotted) as functions ofω for q = 0.42qF
(left panel) and q = 0.84qF (right panel). The parameters are the same as in Figure 5.

Figure 7 shows how the relative magnitude of S(2)(q,ω) evolves at larger values of momen-
tum. We see that it grows with q and for the values shown is no longer negligible. We further
note that while the DSF is expressed as a spectral sum with only positive terms, the contribu-
tion S(2)(q,ω) can be negative. The explanation of this behaviour is that the contributions of
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Figure 7: Same as Figure 6 but for q = 1.68qF (left panel) and q = 3.35qF (right
panel).

one and two particle-hole excitations include terms that arise from cross-cancellations of di-
vergences occurring in their ’bare’ spectral sum. Stated differently, each of them incorporates
contributions due to one and two particle-hole excitations so as to have well-defined thermo-
dynamic limits. If we consider the spectral sum in a large finite volume, the bare (without
cross-cancelling divergences) one and two particle-hole contributions are indeed separately
positive in the following sense: The leading c0 term of the bare contribution of one particle-
hole excitations is positive, and we see from (148) that the same holds true for the divergent
part of the leading c−2 term of the two particle-hole excitations. The interpretation of the
resulting contributions as one or two-particle-hole excitations is imposed by whether they are
expressed as a double integral (one for the particle and one for the hole) or a quadruple inte-
gral (two particles and two holes). Finally, we note that the fact that S(2)(q,ω) can be negative
is an inherent feature of the 1/c expansion as can be seen by considering the zero tempera-
ture limit. Here the successive terms of the 1/c expansion of the DSF exhibit a singularity
with negative spectral weight, see Section 7.2.2, although at finite c all the higher order terms
exponentiate into a positive spectral weight.

6.3 DSF in a non-equilibrium steady state

In Figure 8 we show numerical results for S(q,ω) and S(1)(q,ω) for the root density given
in Section 3.4.2. The latter describes the stationary state reached for the interaction quench
of Refs [97, 99, 100], where the system is initialized in the ground state at c = 0 and density
D = 1/π and time-evolved with the Lieb-Liniger Hamiltonian at c = 4. We observe that the
two particle-hole contributions lead to a slight narrowing of the DSF for q > qF .

7 Analysis of the result in limiting cases

In this section we report a detailed analysis of our results for the density-density correlation
function (171), (166) and the dynamical structure factor (178), (187). The details of the
derivations of the results in this section are reported in Appendix C.
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Figure 8: S(q,ω) (left panel) and one particle-hole contribution S(1)(q,ω) (right
panel) as functions of q,ω for the steady state root density (62) with c = 4 and
D = 1/π. The color scale is the same for both plots.

7.1 Density-density correlation function

7.1.1 Asymptotics of equal-time correlations at zero temperature

At zero temperature with the root density (106), we obtain the following asymptotic behaviour
at large x and at order c−2

〈σ(x , 0)σ(0, 0)〉=D2 −
1+ 4D

c +
4D2

c2

2π2 x2

+ A
cos(2qF x)

x2

�

1−
�

8D
c +

8D2

c2

�

log[2qF eγE x] + 32D2

c2 log2[2qF eγE x]
�

(188)

+ o(x−2) , (189)

where

A=
1+ 4D

c

2π2
+O(c−2) , (190)

and γE is Euler’s constant. This expression is the large x behaviour of the 1/c expansion of the
correlation functions, hence one has c large first and then x large.

Combining CFT/Luttinger liquid theory with exact results provides the following prediction
for the correlations at large x at fixed c [26–29,39]

〈σ(x , 0)σ(0, 0)〉= D2 −
K

2π2 x2
+ A1

cos(2qF x)
x2K

+ · · · , (191)

with K given in (107), and with A1 a known constant [34, 35, 40]. If one wishes to compare
this expression with (189), one is a priori faced with two problems:

(i) If one expands (191) in powers of c−1 one has to take first x large and then c large,
which is the reverse of (189). Hence comparing (189) and (191) entails to commute
two limits. This commutation is possible if our expansion in c−1 (189) is uniform in
space.

(ii) There could be corrections to (191) that are subleading in x at fixed c, but become of the
same order as the dominant term once expanded in c−1 (i.e. give rise to log(x) terms).
An example would be a term ∝ x−4K+2. These corrections would be visible in (189),
but not in (191).
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In the case of density correlations in the Lieb-Liniger model it follows from the exact large x
expansion at fixed c [39] that there are no subleading corrections with the property described
in (ii). We thus expand (191) in powers of c−1. Since K → 1 when c →∞ the power-law
x−2K becomes x−2 corrected by logarithms and we find

〈σ(x , 0)σ(0, 0)〉= D2 −
1+ 4D

c +
4D2

c2

2π2 x2

+ A1
cos(2qF x)

x2

�

1−
�

8D
c +

8D2

c2

�

log x + 32D2

c2 log2 x
�

+O(c−3) . (192)

The coefficient A1 depends on c but as its representation is rather complicated [34,35] (with
approximations in [115, 116]) we left calculating its c−1 expansion for future work. We see
that it agrees with (189) if we identify

A1 = A(2qF eγE)2−2K +O(c−2) . (193)

In particular the critical exponents are reproduced at order c−2. This both provides a check of
our formula, and shows that our 1/c expansion is uniform in space.

7.1.2 Dynamical correlations asymptotics at zero temperature

At zero temperature (with the root density (106)) we can evaluate the asymptotic behaviour
of the dynamical correlation function at large x , t at fixed

α=
x
2t

. (194)

It is convenient to define

α′ =
x ′

2t
=
�

1+
2D
c

�

α , (195)

and set

s =

¨

1 if |α|> qF

−1 if |α|< qF
. (196)

We obtain

〈σ(x , t)σ(0,0)〉= D2 +
∑

σ=±
Bσ

eist(Q+σα′)2

|t|3/2

�

1− νσ log(i$σ t) +
ν2
σ

2
log2(i$σ t)

�

(197)

+ o(t−3/2), (198)

with

Bσ =
sgn (t)e−s iπ

4 sgn (t)(1+ 2D
c )

4

8iπ
3
2 (Q+σα′)

+O(c−2),

νσ =
�

1+
2Q
πc

�

2(Q+σα′)
πc

+
2(Q+σα′)2

π2c2
+O(c−3) ,

$σ =sσ4Q
(Q+σα′)2

|Q−σα′|
eγE . (199)

Ref. [39] derived the full asymptotic expansion at large x , t for any value of c at zero
temperature. The c−1 expansion of this result at order c−2 (without expanding the prefactors)
is in agreement with (197). In particular the critical exponents ν± are reproduced at order
c−2. This both provides a check of our calculation and shows that our 1/c expansion is uniform
in time as well, since the large x , t and large c limits commute.
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7.1.3 Asymptotics of dynamical correlations for a generic root density and Generalized
Hydrodynamics

For a generic continuous root density ρ in the large x , t regime at fixed α (194) we obtain the
following asymptotic behaviour

〈σ(x , t)σ(0, 0)〉=D2 +
π(1+ 2D

c )
2ρ(α′)ρh(α′)

|t|
+

iπ(1+ 2D
c )

2
�

ρ′′(α′)ρh(α′)−ρ(α′)ρ′′h (α
′)
�

4t|t|

+
π2

t2c2

�

12(ρρh)
2(α′) + 8(ρρh)

′(α′)

∫ ∞

−∞
sgn (α′ − ζ)ρ(ζ)ρh(ζ)dζ

+ 2(ρρh)
′′(α′)

∫ ∞

−∞
|α′ − ζ|ρ(ζ)ρh(ζ)dζ

�

+ o(t−2) , (200)

where we recall the definition of α′ in (195). The first line arises from one particle-hole
contributions, while the second and third lines are two particle-hole contributions. If the root
density is not continuous the leading term in 1/t is still correct, but the higher order corrections
may change.

GHD [85, 86] makes predictions for the coefficient of the 1/t term in the density-density
correlator for any value of c [89, 90]. For the sake of completeness we summarize the 1/c-
expansion of the GHD results in Appendix C.1.4. The leading term proportional to 1/|t| of
(200) is in perfect agreement with the order c−2 expansion of the GHD results. To the best
of our knowledge this constitutes the most non-trivial check to date of GHD predictions in an
interacting integrable model.

Importantly, we can assess the accuracy of the GHD approximation outside the asymptotic
large space and time regime by comparing it to the full correlations at order c−2. In Figure 9
we show our results for the real part and the modulus of 〈σ(x , t)σ(0, 0)〉 for two thermal states
at c = 4 together with the GHD approximation. We see that at high temperature β = 1 the
GHD approximation is surprisingly good even at short times. At lower temperatures β = 3 the
correlation is still very well approximated by GHD, but is seen to display damped oscillations
in the absolute value that arise from the imaginary part of the correlations that decay as t−2

and is not accounted for by GHD.
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Figure 9: Correlation function C(x , t) ≡ 〈σ(x , t)σ(0, 0)〉 in a thermal state for
x = 2αt as a function of t at c = 4, for β = 1 and D = 0.38 (left) and β = 3
and D = 0.386 (right). The three curves depict the real part (red), the modulus
(green) and the GHD approximation (dashed blue).

In Figure 10 we present the analogous comparison for a non-equilibrium steady state with
root density (62). This root density is “less regular" than thermal densities in the sense that it
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has a narrower peak at zero. As a consequence, we expect higher Fourier-like corrections to
the oscillatory integral, whereas GHD describes saddle-point-like corrections only. We indeed
observe a more pronounced discrepancy for short or intermediate times, but the agreement at
later times is still excellent, and globally remains very good.
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Figure 10: Correlation function C(x , t) ≡ 〈σ(x , t)σ(0,0)〉 in the non-equilibrium
steady state (62) for x = 2αt as a function of t at c = 4, for D = 1/π (left) and
D = 1/(2π) (right). The three curves depict the real part (red), the modulus (green)
and the GHD approximation (dashed blue).

7.2 Dynamical structure factor

7.2.1 A simplified expression at zero temperature

Equations (178), (187) for the DSF can be simplified at zero temperature. The one particle-
hole contribution can be written as

S(1)(q,ω) =

�

1+ 2D
c

�4

2|q|

�

1−
2q
πc

log

�

�

�

�

�

ω2 −ω2
+

ω2 −ω2
−

�

�

�

�

�

+
2q2

π2c2
log2

�

�

�

�

�

ω2 −ω2
+

ω2 −ω2
−

�

�

�

�

�

�

111ω−<ω<ω+

+O(c−3) , (201)

where we have defined
ω±(q) =

�

�

�q′2 ± 2|q′|Q
�

�

� . (202)

The contribution from two particle-hole excitations can be simplified by carrying out the inte-
gral over p in (187)

S(2)(q,ω) =
1

4π2q′c2

∫ ∞

−∞

�

1
z

�

(5− 4z)q′(Z+ − Z−) + Z2
− − Z2

+ + 2q′(1− z)2
Z+ − Z−

z

+ 2q′2(1− z)2 log

�

�

�

�

q′ − 2Z+
q′ − 2Z−

�

�

�

�

− 4q′2(1− z)2 log

�

�

�

�

(2z − 1)q′ − 2Z+
(2z − 1)q′ − 2Z−

�

�

�

�

�

111Z−<Z+

−
2q′min(|q′z|, 2Q)

z2
111ω−(q)<ω<ω+(q)

�

dz . (203)

Here we have defined

Z+(z) =











min
�

ω+2q′Q+q′2(z−1)
2q′z , ω−|2q′Q−q′2z|

2q′(z−1)

�

if z ≥ 1

min
�

ω−|2q′Q−q′2(1−z)|
2q′z , −ω+2q′Q+q′2z

2q′(1−z)

�

if 0≤ z ≤ 1

min
�

ω−2q′Q−q′2(1−z)
2q′z , −ω−|2q′Q+q′2z|

2q′(1−z)

�

if z ≤ 0 ,

(204)
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and

Z−(z) =











max
�

ω+|2q′Q−q′2(z−1)|
2q′z , ω−2q′Q−q′2z

2q′(z−1)

�

if z ≥ 1

max
�

ω−2q′Q−q′2(1−z)
2q′z , −ω+|−2q′Q+q′2z|

2q′(1−z)

�

if 0≤ z ≤ 1

max
�

ω−|2q′Q−q′2(1−z)|
2q′z , −ω−2q′Q+q′2z

2q′(1−z)

�

if z ≤ 0 .

(205)

7.2.2 Behaviour near the thresholds at zero temperature

At zero temperature, the DSF exhibits divergences at certain threshold energiesωth(q). In our
case, at order O(c−2), the two thresholds occur atω±(q) defined in (202). For q < 2Q we find
the following singular behaviour of the one particle-hole DSF near them

S(1)(q,ω+ +δω) =

�

1+ 2D
c

�2

2|q|

�

1−
2q
πc

log
�

�

�δω
2ω+
ω2
+−ω

2
−

�

�

�+
2q2

π2c2
log2

�

�

�δω
2ω+
ω2
+−ω

2
−

�

�

�

�

111δω<0

S(1)(q,ω− +δω) =

�

1+ 2D
c

�2

2|q|

�

1+
2q
πc

log
�

�

�δω
2ω−
ω2
+−ω

2
−

�

�

�+
2q2

π2c2
log2

�

�

�δω
2ω−
ω2
+−ω

2
−

�

�

�

�

111δω>0 .

(206)

The analogous results for the two particle-hole contribution are

S(2)(q,ω+ +δω) =
� q

2π2c2
log |δω|

�

111δω<0 −
� q

2π2c2
log |δω|

�

111δω>0 ,

S(2)(q,ω− +δω) =
� q
π2c2

log |δω|
�

111δω>0 . (207)

These limiting behaviours are obtained at large c first, and then ω close to ω±.
At fixed c non-linear Luttinger liquid theory predicts the exponent of the power-law diver-

gence near these thresholds [30–34,39]

S(q,ω+ +δω) = C0|δω|µ+ 111δω>0 + C1|δω|µ+ 111δω<0 + C2 + . . .

S(q,ω− +δω) = C3(δω)
µ− 111δω>0 + C4 111δω>0 + . . . . (208)

Here C0,1,2,3,4 are c-dependent constants and the exponents µ± have simple expressions that
depend on c. Results for the non-universal prefactors C0,1,2,3,4 at finite c are available in the
literature [34]. The dots encompass less singular pieces |δω|µ with a c-dependent exponent
µ > µ±, and regular pieces C5δω+O((δω)2). In the framework of the 1/c expansion these
power-laws give rise to logarithms

|δω|µ+ = 1−
2q
πc

log |δω|+
2q2

π2c2
log2 |δω|+

2q2

π2c2
log |δω|+O(c−3)

|δω|µ− = 1+
2q
πc

log |δω|+
2q2

π2c2
log2 |δω|+

2q2

π2c2
log |δω|+O(c−3) . (209)

These expansions are valid if we take ω close to ω± first and then consider the large-c limit,
and in order to compare with our result we have to commute these two limits. Importantly, the
less singular pieces that are subleading in δω can also produce logarithms if their exponent
goes to 0 when c →∞. However, it follows from our asymptotic analysis in real space that
there are no such terms. Comparing (208) with (206) and (207) we find that our result is in
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agreement with the non-linear Luttinger liquid predictions if we identify

C0 =
1

4πc
+O(c−2)

C1 =
(1+ 2D

c )
2

2|q|

�

2ω+
ω2
+ −ω

2
−

�µ+

+
1

4πc
+O(c−2)

C2 = −
1

4πc
+O(c−2)

C3 =
(1+ 2D

c )
2

2|q|

�

2ω−
ω2
+ −ω

2
−

�µ−

+O(c−2)

C4 = 0+O(c−2) . (210)

In particular we obtain the correct exponents at order c−2. This provides a check of our result
for the DSF and shows that it is uniform in q and ω.

7.2.3 Sum rule at zero temperature

The f-sum rule for the dynamical structure factor in equilibrium states reads [113]
∫ ∞

−∞
S(q,ω)ωdω= 2πDq2 . (211)

In our calculation, this sum rule has to be perfectly satisfied at order c−2. It is a stringent test
of validity of our formula since it has to be satisfied for all q and encompasses every single
piece of the DSF. At zero temperature we obtain from Equation (201) that

∫ ∞

−∞
S(1)(q,ω)ωdω= 2πDq2 +

4
3c2

q4Q+O(c−3) . (212)

This means that the two-particle-hole DSF (203) S̄(2)(q,ω)≡ c2S(2)(q,ω) evaluated at c =∞,
must satisfy

∫ ∞

−∞
S̄(2)(q,ω)ωdω= −

4
3

q4Q . (213)

We computed this integral numerically from (203) for several values of q. We find that (213)
is indeed satisfied within the numerical accuracy of our calculation. The relative deviations of
our results from (213) are around 10−4, which is quite satisfactory.

7.2.4 Detailed balance for thermal states

The dynamical structure factor of a thermal state at inverse temperature β should satisfy the
detailed balance relation for all values of q,ω

S(q,−ω) = e−βωS(q,ω) . (214)

In our calculation the detailed balance relation for S(q,ω) should be perfectly satisfied at
order c−2. We note it is a very stringent test of validity of our formulas for S(q,ω), given
that a thermal state at finite temperature corresponds to a generic root density with a compli-
cated c dependence, while for an arbitrary root density there is no particular relation between
S(q,−ω) and S(q,ω).

In order to check that our formulas for the DSF satisfy detailed balance at order c−2, we
need to evaluate (214) with ρ(λ) given at order c−2 in (103). We found convenient to define

S̃(1)(q,ω) = S(1)(q,ω)−
8π4|q′|

c2
ρ(ω

′−q′2

2q′ )ρ(
ω′+q′2

2q′ )ρh(
ω′+q′2

2q′ )
2 , (215)
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i.e. the one-particle-hole DSF without the dressed piece coming from two particle-hole excita-
tions. We recall thatω′ and q′ were previously defined in (179). It is straightforward to check
numerically that S̃(1)(q,ω) satisfies detailed balance at order c−2

S̃(1)(q,−ω) = e−βωS̃(1)(q,ω) +O(c−3) . (216)

Hence the following quantity

S̃(2)(q,ω) = c2S(2)(q,ω) + 8π4|q′|ρ(ω
′−q′2

2q′ )ρ(
ω′+q′2

2q′ )ρh(
ω′+q′2

2q′ )
2 , (217)

evaluated at c =∞ should also independently satisfy detailed balance

S̃(2)(q,−ω) = e−βωS̃(2)(q,ω) . (218)

We find that this indeed holds within the accuracy of our numerical computation, i.e. within
a relative error of 10−5. This is quite satisfactory.

7.2.5 Behaviour at small q,ω

At small q,ω with fixed

γ=
ω

2q
, (219)

we find the following behaviour of the DSF

S(q,ω) =
2π2

�

1+ 2D
c

�

|q′|
ρ
�

γ′ − q′

2

�

ρh

�

γ′ + q′

2

�

+
8π2

c2

∫ ∞

−∞

∫ ∞

−∞

ρ(u)ρh(u)
(γ′ −λ)2

�

sgn (u−λ)(2γ′ + u− 3λ)ρ(λ)ρh(λ) (220)

− |γ′ − u|ρ(γ′)ρh(γ
′)
�

dλdu

+ o(q0) . (221)

We have set

γ′ =
ω′

2q′
. (222)

Here the term proportional to 1/|q| arises only from the one particle-hole contribution, while
the constant term is due to two particle-hole excitations. This result can again be compared
to GHD predictions, which at order c−2 give [85,86,90]

SGHD(q,ω) =
2π2

�

1+ 2D
c

�2

|q|
ρ
�

γ(1+
2D
c
)
�

ρh

�

γ(1+
2D
c
)
�

. (223)

This is indeed in agreement with the leading term in (221) at small q. It would be interesting
to see whether the subleading terms in (221) can be obtained by considering corrections to
GHD following Ref. [114].

7.2.6 High frequency tail

Finally we consider the large-ω behaviour of the DSF S(q,ω) (at fixed q) in an arbitrary eigen-
state |λλλ〉 with a root density ρ(λ) that decays faster than any power law |λ|−n at infinity. For
such states we find

S(q,ω) =
32
p

2q′4

c2ω′7/2
(εD−δ2) +O(ω′−9/2) , (224)
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where ε =
∫

u2ρ(u)du is the energy of the state and δ its momentum defined in (89). The
result (224) arises entirely from the two particle-hole contribution since the one particle-hole
contribution decays faster than any power in ω for ω→∞. The corrections to this leading
behaviour can all be computed and expressed as a series inω′−1/2. For example the next term
is

4
p

2q′4

c2ω′9/2

∫ ∞

−∞

∫ ∞

−∞
(u− v)2[(u− v)2 + 14q′(u− v) + 15q′2 + 28q′v]ρ(u)ρ(v)dudv

+O(ω′−11/2) . (225)

For eigenstates |λλλ〉 corresponding to root densities that instead decay like a power law at
infinity it is straightforward to see that the one particle-hole contribution to the DSF decays
at large ω with the same power-law. For such root densities the large-ω expansion of the two
particle-hole contribution breaks down at some order because the coefficients would diverge.

It has been shown some time ago that the largeω behaviour of the DSF S(q,ω) in equilib-
rium states is universal, with a decay∝ q4ω−7/2 for quantum fluids with short-range interac-
tions [117–119]. This behaviour was also observed to be in good agreement with scattering
experiments [118]. Our result (224) is in perfect agreement with these findings, which again
confirms that our 1/c expansion is indeed uniform in q,ω.

8 Conclusions

In this work we have introduced and developed an ab initio expansion of dynamical density-
density correlation functions in the Lieb-Liniger model that can be performed within any en-
ergy eigenstate. It is a combined expansion in 1/c and in the number of particle-hole excita-
tions taken into account in the spectral representation of the dynamical correlation function.
The expansion has a well-defined thermodynamic limit and is uniform in all x and t, or equiv-
alently all ω and q. We have obtained fully explicit and readily usable expressions for both
the correlator and the dynamical structure factor at order O(c−2) which take into account all
one- and two particle-hole excitations, Equations (171), (166), (178) and (187).

The main obstacle we faced in deriving these results occurs at order O(c−2). Indeed, the
leading O(c0) term of the expansion is simply the result for impenetrable bosons, which can
be straightforwardly obtained using the mapping to free fermions [3, 120]. In terms of the
form factor expansion the only non-zero form factors are those involving a single particle-hole
excitation, and they are all equal. The O(c−1) term is almost as simple since its form factor
expansion is identical to the impenetrable limit case albeit with a root density dependent
numerical modification of the form factors. In contrast the O(c−2) contribution comes with a
number of complications.

As is well-known the form factor expansion generally exhibits non-integrable singularities
whenever two rapidities coincide. In the framework of the 1/c expansion these first arise at
order O(c−2) for contributions involving both one- and two particle-hole excitations. The pres-
ence of such singularities precludes directly taking the thermodynamic limit and expressing
the spectral sum as integrals over root densities in a simple way. Indeed, we find that the
contributions from both one- and two particle-hole excitations are individually divergent in
the thermodynamic limit, but their sum is not. Even after compensating the divergent parts
they individually depend on the particular choice of representative state and cannot be ex-
pressed in terms of the root densities. But remarkably, and reassuringly, their sum – and thus
the correlation function – is representative-state-independent, i.e. depends only on the root
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density. These cancellations eventually leave a piece that can be interpreted as a dressing of
the contribution due to one particle-hole excitations by two particle-hole excitations. Although
this vanishes for the zero-temperature ground state as well as for any zero-entropy states it is
non-zero in general and is crucial for detailed balance to be satisfied in thermal states. Such a
fine-tuned “regularisation" of the divergences could only be achieved with a careful treatment
of the thermodynamic limit of the exact spectral sum in a finite volume. Anticipating that
for other quantities the representative-state-dependent parts may not always compensate one
another we derived a formula for their average over all representative states for a given root
density.

We have verified that our results are in full accord with known results including CFT
and (non-linear) Luttinger liquid theory predictions for zero-temperature critical exponents,
thresholds singularities, sum rules, detailed balance relations and high frequency behaviour.
We have also recovered the order O(c−2) GHD predictions for Euler scale density correlations
in finite entropy states. This constitutes the most non-trivial verification of GHD in an inter-
acting integrable model. We have also determined corrections to GHD and compared the GHD
result to the full correlator at order O(c−2) outside the asymptotic regime. We found that GHD
provides a rather good description of the correlator even at short times and distances.

The framework developed in this work is not restricted to density correlations in the Lieb-
Liniger model but is expected to apply to any local operator in any integrable model that has a
well-behaved expansion around a strong coupling limit. One example is the large anisotropy
regime of the spin-1/2 Heisenberg XXZ chain [121,122]. A significant complication that occurs
in that case is the presence of string solutions to the Bethe Ansatz equations. The restriction
to local operators is crucial as the spectral representation of two-point functions of semi-local
operators such as the field ψ(x) are dominated by a completely different set of excited states
[78] and does not allow for an expansion in the number of particle-hole-excitations.

Our work opens up several interesting lines of further enquiry. First, our analysis should
be extended to higher orders in the expansion. The O(c−3) term still involves at most two
particle-hole excitations, but the expansions of the Bethe equations and the determinant in
the expression for the form factors become more involved. Second, the repulsive Lieb-Liniger
model is particularly simple in that the Bethe equations have only real roots. It would be very
interesting to extend our analysis to a model with complex roots, e.g. the spin-1/2 Heisen-
berg XXZ chain. Third, our framework is readily generalized to quench dynamics [123] by
combining it with the quench action approach [91, 92]. Here the novel feature is that the
spectral sum involves “overlaps" that multiply the form factors. Finally, it would be interesting
to recover results obtained from the 1/c-expansion considering corrections to GHD as well as
the thermodynamic bootstrap program [124].

Acknowledgements

We are grateful to Jean-Sébastien Caux, Jacopo de Nardis and Karol Kozlowski for very helpful
discussions and comments. This work was supported by the EPSRC under grant EP/S020527/1.

51

https://scipost.org
https://scipost.org/SciPostPhys.9.6.082


SciPost Phys. 9, 082 (2020)

A Double principal values

A.1 Proof of Equation (53)

We start by recalling that a single principal value can be expressed as a regular integral

−
∫

F(λ,µ)
λ−µ

dλ=
1
2

∫

F(λ,µ)− F(−λ+ 2µ,µ)
λ−µ

dλ . (226)

Hence successive principal value triple integrals can be written as

−
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν=

1
4

∫∫∫

�

F(λ,µ,ν)− F(2µ−λ,µ,ν)
(λ−µ)(µ− ν)

−
F(λ,µ, 2µ− ν)− F(2µ−λ,µ, 2µ− ν)

(λ−µ)(µ− ν)

�

dλdµdν .

(227)

If G(λ,µ,ν) is a function without singularities, then we have
∫∫∫

G(λ,µ,ν)dλdµdν= lim
L→∞

1
L3

∑

i, j,k

G(x i , x j , xk) , (228)

where

x i =
i
L

, (229)

and i, j, k range e.g. between −L2 and L2. In (228) one has the freedom to exclude some
values, e.g. consider i 6= j, since this only amounts to subleading corrections in L that vanish
when taking the limit. The integrand of (227) is of this type. Hence one can write

−
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν=
1
4

lim
L→∞

1
L3

∑

i, j,k
i 6= j
j 6=k

� F(x i , x j , xk)− F(−x i + 2x j , x j , xk)

(x i − x j)(x j − xk)

−
F(x i , x j , 2x j − xk)− F(2x j − x i , x j , 2x j − xk)

(x i − x j)(x j − xk)

�

. (230)

Separating the four sums and changing variables so that the argument of f is always x i , x j , xk
leads to

−
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν= lim
L→∞

1
L3

∑

i, j,k
i 6= j
j 6=k

F(x i , x j , xk)

(x i − x j)(x j − xk)
. (231)

Finally we turn this into a simultaneous principal value integral by adding the condition i 6= k

−
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν==
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν− lim
L→∞

1
L3

∑

i, j
i 6= j

F(x i , x j , x i)

(x i − x j)2
. (232)

Using
∑

i 6=0
1
i2 =

π2

3 , we have

lim
L→∞

1
L3

∑

i, j
i 6= j

F(x i , x j , x i)

(x i − x j)2
=
π2

3

∫

F(x , x , x)dx , (233)

and obtain Equation (53).
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A.2 Proof of Equation (56)

We note that formulae (55) are direct consequences of Equation (56), as can be seen by inter-
changing the dummy variables.

We start with representation (227). As the integrand is regular one can impose that
|λ − µ| > ε and |µ − ν| > ε′ with an error O(ε) + O(ε′). This allows one to separate the
integral into four pieces and make appropriate changes of variables so that the argument of
F is always λ′,µ′,ν′. One sees that in the four cases one has |λ′ − µ′| > ε and |µ′ − ν′| > ε′.
Hence

−
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν=

∫

|λ′−µ′|>ε
|ν′−µ′|>ε′

F(λ′,µ′,ν′)
(λ′ −µ′)(µ′ − ν′)

dλ′dµ′dν′ +O(ε) +O(ε′) , (234)

which is precisely (56).

B Proof of Equation (41)

B.1 Reduction to a combinatorial problem

For a given solution to the Bethe equations {λi}i ∈ SL we define the set of pairs of rapidities
that belong to the same bin

B =
¦

(λi ,λ j)
�

�

� i 6= j , ∃k ∈ {1, ..., nL}, λi ,λ j ∈ [xL,k, xL,k+1]
©

. (235)

We have

1
L3

∑

i 6= j

f (λi ,λ j)

(λi −λ j)2
=

1
L3

∑

(λi ,λ j)∈B

f (λi ,λ j)

(λi −λ j)2
+

1
L3

∑

(λi ,λ j)/∈B

f (λi ,λ j)

(λi −λ j)2
. (236)

Let us show that when the pairs of rapidities are not in B, the sum is negligible. We observe
that

1
L3

∑

λi∈[xL,k ,xL,k+1]
λ j∈[xL,p ,xL,p+1]

| f (λi ,λ j)|
(λi −λ j)2

≤
(LεL)2

(|k− p| − 1)2 L3

maxλ,λ′ | f (λ,λ′)|
C2

0ε
2
L

, (237)

provided that |k − p| > 1, i.e. if the bins to which λi and λ j belong are not adjacent. Here
C0 = miny[ρ(y)]−1 is a constant independent of the representative state and of the bins.
Indeed, in this case we have |λi −λ j| > (|k− p| − 1)C0εL and there are (LεL)2 pairs of roots.
Since there are D/εL bins, by summing over p and k these contributions are O( 1

LεL
), and since

LεL →∞, they are negligible in the thermodynamic limit.
If the bins are adjacent we have

1
L3

∑

λi∈[xL,k ,xL,k+1]
λ j∈[xL,k+1,xL,k+2]

| f (λi ,λ j)|
(λi −λ j)2

≤
C1

L3

∑

0≤n,m≤LεL
n+m 6=0

1
(n+m)2/L2

=O( log(LεL)
L ) ,

(238)

with C1 another constant independent of the representative state and of the bins. Since there
are D/εL bins and LεL →∞, these contributions are also negligible in the thermodynamic
limit. Hence we have

1
L3

∑

i 6= j

f (λi ,λ j)

(λi −λ j)2
=

1
L3

∑

(λi ,λ j)∈B

f (λi ,λ j)

(λi −λ j)2
+ o(L0) , (239)

53

https://scipost.org
https://scipost.org/SciPostPhys.9.6.082


SciPost Phys. 9, 082 (2020)

with the o(L0) being independent of the representative state. Hence we also have

lim
L→∞

1
|SL|

∑

{λi}i∈SL

1
L3

∑

i 6= j

f (λi ,λ j)

(λi −λ j)2
= lim

L→∞

1
|SL|

∑

{λi}i∈SL

1
L3

∑

(λi ,λ j)∈B

f (λi ,λ j)

(λi −λ j)2
. (240)

Writing
∑

(λi ,λ j)∈B

f (λi ,λ j)

(λi −λ j)2
=

nL
∑

k=1

∑

i 6= j
λi ,λ j∈[xL,k ,xL,k+1]

f (λi ,λ j)

(λi −λ j)2
, (241)

we have

1
|SL|

∑

{λi}i∈SL

1
L3

∑

(λi ,λ j)∈B

f (λi ,λ j)

(λi −λ j)2
=

nL
∑

k=1

1
|SL|

∑

{λi}i∈SL

1
L3

∑

i 6= j
λi ,λ j∈[xL,k ,xL,k+1]

f (λi ,λ j)

(λi −λ j)2
. (242)

To go further and decouple the average over the representative states one needs to ensure that
the modification of rapidities in one bin does not notably affect the distance between rapidities
in another bin. From the Bethe equations, a modification of order εL of DL rapidities modifies
the distance between two rapidities i, j in the same bin by an order 1

L DLεL(λi − λ j), which
is indeed subleading compared to λi − λ j . Hence one can assume at leading order in L that
the rapidities decouple, and given a bin k, sum over the rapidities of the other bins without
modifying the values of the rapidities inside bin k. Thus one can write

1
|SL|

∑

{λi}i∈SL

1
L3

∑

i 6= j
λi ,λ j∈[xL,k ,xL,k+1]

f (λi ,λ j)

(λi −λ j)2

=
1

� KL,k

bLεLc

�

∑

{λi}i∈Sk
L

1
L3

∑

i 6= j
λi ,λ j∈[xL,k ,xL,k+1]

f (λi ,λ j)

(λi −λ j)2
+ o(L0) , (243)

with Sk
L ⊂SL the subset of SL containing states whose rapidities outside the bin [xL,k, xL,k+1]

are fixed to those of an arbitrary representative state, and

KL,i = bL(xL,i+1 − xL,i)(ρ(xL,i) +ρh(xL,i))c (244)

is the number of vacancies in [xL,i , xL,i+1]. Since around λ two consecutive vacancies are
separated by 1

L(ρ(λ)+ρh(λ))
at leading order in L, we can write λi − λ j as an integer times

1
L(ρ(xL,k)+ρh(xL,k))

, for λi and λ j in the same bin [xL,k, xL,k+1]. This yields

1
|SL|

∑

{λi}i∈SL

1
L3

∑

(λi ,λ j)∈B

f (λi ,λ j)

(λi −λ j)2
=

1
L

nL
∑

k=1

f (xL,k, xL,k)
� KL,k

bLεLc

�
(ρ(xL,k) +ρh(xL,k))

2
∑

I⊂{1,...,KL,k}
|I |=bLεLc

∑

i, j∈I
i 6= j

1
(i − j)2

+ o(L0) . (245)

This reduces the problem to evaluating the large K , M limit at fixed K/M of the following
combinatorial quantity

CM ,K =
∑

I⊂{1,...,K}
|I |=M

∑

i, j∈I
i 6= j

1
(i − j)2

. (246)

54

https://scipost.org
https://scipost.org/SciPostPhys.9.6.082


SciPost Phys. 9, 082 (2020)

B.2 The generating functions

To simplify the expression of CM ,K , we would like to recast the sum over pairs of integers into
a sum over (next-nearest-)neighbouring integers. We exactly rewrite CM ,K in the form

CM ,K = 2
M
∑

m=1

m
∑

j=1

∑

a1<...<aM
∈{1,...,K}

∑

i≥0
j+(i+1)m≤M

1
(a j+im − a j+(i+1)m)2

. (247)

Introducing

C [m]M ,K =
∑

a1<...<aM
∈{1,...,K}

∑

i≥0
(i+1)m≤M

1
(aim − a(i+1)m)2

(248)

with a0 = 0, we have

CM ,K = 2
M
∑

m=1

m
∑

j=1

K
∑

a= j

�

a− 1
j − 1

�

C [m]M− j,K−a . (249)

Let us now determine the asymptotic behaviour of C [m]M ,K for large K , M at fixed K/M . Summing
separately over a1, ..., am, one obtains the following recurrence relation

C [m]M ,K =
K−M+m
∑

am=m

�

am − 1
m− 1

�

��K−am
M−m

�

a2
m
+ C [m]M−m,K−am

�

, (250)

where we use conventions such that C [m]M ,K = 0 if K < M or M < m. Indeed, the factor
�am−1

m−1

�

counts the number of possibilities for the first m − 1 particles between 1 and am − 1, while
the factor

�K−am
M−m

�

counts the number of times this 1/a2
m term will appear in all the subsequent

configurations for am+1, ..., aM . Introducing the generating functions

C [m](x , y) =
∑

M ,K≥0

C [m]M ,K x M yK , S[m](x , y) =
∑

M ,K≥0

K−M+m
∑

a=m

�

a− 1
m− 1

�

� K−a
M−m

�

a2
x M yK , (251)

this recurrence relation implies that

C [m](x , y) = S[m](x , y) +
xm ym

(1− y)m
C [m](x , y) . (252)

Expressing S[m](x , y) as

S[m](x , y) =
xm

1− y(1+ x)

∑

a≥1

� a−1
m−1

�

a2
ya , (253)

we obtain the following generating function

C [m](x , y) =
xm(1− y)m

(1− y(1+ x))2
∑m−1

k=0 (x y)k(1− y)m−1−k

∑

a≥1

� a−1
m−1

�

a2
ya . (254)

B.3 Asymptotics of the coefficients

We now use Ref. [84] which shows how to determine the asymptotic behaviour of combinato-
rial coefficients from the analytic behaviour of their generating function2. One obtains

C [m]M ,K = M
�

K
M

��

M/K
1−M/K

�m 1
m

∑

a≥1

(1−M/K)a

a2

�

a− 1
m− 1

�

+O(
�

K
M

�

) . (257)

2Specifically, in order to have only a simple pole in the generating function as in [84], we define

C̄ [m](x , y) =

∫ x

0

C [m](u, y)du . (255)
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This implies that

C [m]M− j,K−a = (
M
K )

j(1− M
K )

a− jC [m]M ,K +O(
�

K
M

�

) , (258)

and substituting this into (249) we obtain at leading order

CM ,K =

�

2
∞
∑

m=1

mC [m]M ,K

�

(1+O(M−1)) . (259)

Using the asymptotics (257) one then finds in the limit M , K →∞ at fixed K/M

CM ,K =
π2

3
M

M
K

�

K
M

�

+O(
�

K
M

�

) . (260)

B.4 Conclusion

Coming back to (245), we have when L→∞

M ∼ LεL , K ∼ LεL
ρ(xL,k) +ρh(xL,k)

ρ(xL,k)
, (261)

which yields

1
|SL|

∑

{λi}i∈SL

1
L3

∑

(λi ,λ j)∈B

f (λi ,λ j)

(λi −λ j)2

= εL
π2

3

nL
∑

k=1

f (xL,k, xL,k)(ρ(xL,k) +ρh(xL,k))ρ(xk,L) + o(L0) .

(262)

In the limit L→∞ we then arrive at the result (41)

lim
L→∞

1
|SL|

∑

{λi}i∈SL

1
L3

∑

i 6= j

f (λi ,λ j)

(λi −λ j)2
=
π2

3

∫ ∞

−∞
f (λ,λ)(ρ(λ) +ρh(λ))ρ(λ)

2dλ . (263)

C Derivations of the results presented in Section 7

C.1 Correlation functions

C.1.1 Asymptotics of static correlators at zero-temperature

The study of the asymptotic behaviour of (173) at large x at zero temperature reduces to the
asymptotics of the Fourier transform

f̂ (x) =

∫ ∞

−∞
f (u)e−i xudu , (264)

We then integrate by parts

C̄ [m](x , y) =
xm(1− y)m

(1− y(1+ x))
∑m−1

k=0 (x y)k(1− y)m−1−k

∑

a≥1

� a−1
m−1

�

a2
ya−1

−
∫ x

0

du
1

1− y(1+ u)
d
du

um(1− y)m
∑m−1

k=0 (uy)k(1− y)m−1−k

∑

a≥1

� a−1
m−1

�

a2
ya−1

(256)

and use Theorem 1.3 and Corrolary 3.21 of [84] on the first term, where in their notations x = M/K
1−M/K and

y = 1 − M/K . The second term gives negligible contributions because the x integral will give rise to a multi-
plicative factor M−1.
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of a given function f (u). These asymptotics depend on the regularity of the integrand, hence
at leading order on points of non-analyticity of f on the real axis. We have the following
behaviours.

• If f (u) has a discontinuity ∆ = f (u+0 )− f (u−0 ) at u0 and is otherwise regular, then for
x →∞

f̂ (x) =∆
e−i xu0

i x
+O(x−2) . (265)

This is straightforwardly obtained with an integration by part.

• If f (u)∼∆ logn |u− u0| for u> u0 and is regular and bounded for u< u0, then

f̂ (x) =

¨

−∆ e−i xu0

i x (log |x |+ p1) + o( 1
x ) if n= 1

∆ e−i xu0

i x

�

log2 |x |+ 2p1 log |x |+ p2

�

+ o( 1
x ) if n= 2 .

(266)

Here the constants p1,2 are given by

p1 = γE +
iπ
2

sgn (x)

p2 = γ
2
E + iπγE sgn (x)−

π2

12
,

(267)

where γE is Euler’s gamma constant. If f (u) ∼ ∆ logn |u− u0| for u < u0 and is regular
and bounded for u > u0, then the result is multiplied by −1 and p1, p2 are changed to
their complex conjugates p∗1, p∗2.

These relations are obtained from the relation
∫ ∞

0

e−i xuuαdu= Γ (1+α)[i(x − i0)]−1−α , (268)

expanded around α= 0.

• If f (u)∼∆ logn |u− u0| for both u< u0 and u> u0, then we have

f̂ (x) =

¨

−π∆ e−i xu0

x + o( 1
x ) if n= 1

2π∆ e−i xu0

x (log |x |+ γE) + o( 1
x ) if n= 2 .

(269)

These equations directly follow from the previous results.

In order to determine the large x behaviour of the correlation functions, we also need
zero-temperature result for ρ̃(x) defined in (114)

ρ̃(λ) =
1+ 2D/c

2π
log

�

�

�

�

λ+Q
λ−Q

�

�

�

�

, (270)

and the large x behaviour of the functions Ax ,0, Cx ,0 and Dx ,0 defined in (147), (155) and
(158) respectively

Ax ,0 = −
log |x |
2π2

+O(x0)

Cx ,0 = o(x−1)

Dx ,0 = o(x−1) .

(271)

57

https://scipost.org
https://scipost.org/SciPostPhys.9.6.082


SciPost Phys. 9, 082 (2020)

The asymptotics of Cx ,0 and Dx ,0 follow from (300) and (301) for a generic root density. As
for Ax ,0, integrating (147) by parts we obtain for a generic root density

Ax ,0 = −
∫

ρ(u)ρ′h(v)

v − u
(ei x(v−u) − 1)dudv + i xCx ,0 . (272)

Specializing to zero temperature at leading order in c−1, it yields

Ax ,0 =
1

4π2

∫ Q

−Q

ei x(Q−u) − 1
Q− u

du−
1

4π2

∫ Q

−Q

ei x(−Q−u) − 1
−Q− u

du+ i xCx ,0 , (273)

that is

Ax ,0 =
1

4π2

∫ 2Qx

0

eiu + e−iu − 2
u

du+ i xCx ,0

= −
log |x |
2π2

+O(x0) .

(274)

As for the Bx ,0(λ) and Bx ,0(µ) terms, they require a special treatment since they cannot be
decoupled from the λ,µ integrals. The Bx ,0(λ) term involves the following functions

fn(x) =

∫ ∞

−∞
ρ(λ)λnBx ,0(λ)e

−iλxdλ , (275)

for n= 0, 1,2, whose we wish to determine the asymptotic behaviour at large x , by computing
its Fourier transform f̂n(q) =

∫∞
−∞ e−iqx f (x)dx . We have (at leading order in c−1)

f̂n(q) = 2π

∫ ∞

−∞

∫ ∞

−∞
ρ(λ)ρ(u)λn

1
2π −ρ(u+λ+ q)

(λ+ q)(λ− u)
dudλ . (276)

Specializing this relation to the ground state root density we obtain

f̂n(q) =
1

4π2

∫ Q

−Q

λn

|λ+ q|
log

�

�

�

�

λ+min(Q,−Q+ |λ+ q|) sgn (λ+ q)
λ−Q sgn (λ+ q)

�

�

�

�

dλ . (277)

We note that the non-integrable divergence near λ= q is compensated by the argument of the
log going to 1 in this limit. In the vicinity of q =Q we have for η > 0

f̂n(Q+η) =
1

4π2

∫ Q

−Q

λn

λ+Q
log

�

�

�

�

2λ
λ−Q

�

�

�

�

dλ+ o(η0)

f̂n(Q−η) =
1

4π2

∫ Q

−Q

λn

λ+Q
log

�

�

�

�

2λ
λ−Q

�

�

�

�

dλ+
(−Q)n

4π2

∫ 1

0

1
v − 1

log
�

�

�

v
2v − 1

�

�

�dv + o(η0) ,

(278)

where the last integral is
∫ 1

0
1

v−1 log
�

�

v
2v−1

�

�dv = −π
2

12 , so that f̂n has a discontinuity at Q of

lim
η→0

�

f̂n(Q+η)− f̂n(Q−η)
�

=
(−Q)n

48
. (279)

Similarly we find

lim
η→0

�

f̂n(−Q+η)− f̂n(−Q−η)
�

= −
Qn

48
, (280)
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and f̂n(q) does not have discontinuities elsewhere. This implies that

f0(x) = −
1

48π
sin(Qx)

x
+ o(x−1)

f1(x) = −
iQ

48π
cos(Qx)

x
+ o(x−1)

f2(x) = −
Q2

48π
sin(Qx)

x
+ o(x−1) .

(281)

Then one builds the full Bx ,0(λ) term from the functions (275), in particular by taking into
account the remaining oscillatory µ integral. One obtains that the Bx ,0(λ) term gives contri-
butions that decay as cos(2qF x)/x2 and of order c−2, which are encapsulated in the result in
the O(c−2) term of the A in (190). A similar analysis shows that the Bx ,0(µ) term also gives
contributions that decay as cos(2qF x)/x2.

From these various relations, it is straightforward albeit tedious to determine the asymp-
totics of the static correlation functions. Putting everything together we find that χ(1,2)

x ,0 (λ,µ)
given in (166) contributes to the large-x behaviour of the density-density correlator as follows:

• O(c0) contribution of χ(1)x ,0(λ,µ)

−
1+ 4D

c +
4D2

c2

2π2 x2
(1− cos(2qF x)) , (282)

• O(c−1) contribution of χ(1)x ,0(λ,µ)

−
4D(1+ 4D

c )

cπ2

cos(2qF x)
x2

log |2qF eγE x |+ o(x−2) , (283)

• O(c−2) contribution of χ(1)x ,0(λ,µ)

16D2

π2c2

cos(2qF x)
x2

log2 |2qF eγE x |+O( cos 2qF x
x2 ) , (284)

• Contribution of χ(2)x ,0(λ,µ)

−
4D2

π2c2

cos(2qF x)
x2

log |2qF eγE x |+O( cos2qF x
x2 ) . (285)

This establishes (189).

C.1.2 Asymptotics of dynamical correlations zero temperature

The study of the asymptotic behaviour of (164) at large x , t at fixed α= x
2t at zero temperature

reduces to the study of an oscillatory integral of the type

I(x , t) =

∫ ∞

−∞
f (u)ei tu2−i x ′udu . (286)

In this regime, the integral is dominated by the point where the phase has an extremum as a
function of u, which is α′ defined in (195). If f is regular and α′ in the support of f , then we
have

I(x , t) =
p
πei sgn (t)π/4e−iα′2 t

p

|t|

�

f (α′) +
i

4t
f ′′(α′)−

1
32t2

f ′′′′(α′)
�

+O(|t|−7/2) . (287)
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If f has singular points one has to combine (287) with the results of Section C.1.1.
The correlation function (164) is expressed as a double integral, one over λ with a factor

ρ(λ) and one over µ with a factor ρh(µ). Because of the very particular structure of ρ(λ) at
zero temperature (106), the saddle point α necessarily lies within the support of either ρ(λ)
or ρh(µ), but not both. Hence if |α|> qF , the λ integral is dominated by boundary effects as in
the static case, while the µ integral is dominated by the saddle point. If |α|< qF , the converse
holds true.

Let us detail the case |α| > qF (the case |α| < qF is very similar). We perform a change of
variables λ→ λ+ α′ and µ→ µ+ α′ in (164) in order to move the saddle point to 0, which
results in shifting the arguments of the root densities by α′. The µ integral is then simply
evaluated at µ= 0, while the λ integral is dominated by the vicinities of the points Q−α′ and
−Q−α′. Using the results for (264) with x = −2t(Q−α′) we obtain the leading contribution
from Q−α′ to the integral over χ(1)x ,t (λ,µ), with ±= sgn (t)

e−i sgn (t)π4
�

1+ 2D
c

�4

4π
3
2 |t|

1
2

ei t(Q−α′)2

2i t(Q−α′)

�

1−
4
c

1+ 2D
c

2π
(Q−α′)

�

log
�

�4Qt
(Q−α′)2

Q+α′
�

�+ γE ∓ i
π

2

�

+
8
c2

�

1+ 2D
c

2π

�2

(Q−α′)2
�

log
�

�4Qt
(Q−α′)2

Q+α′
�

�+ γE ∓ i
π

2

�2
+O(t0c−2)

�

. (288)

The leading contribution from −Q − α′ to the integral over χ(1)x ,t (λ,µ) is obtained analo-
gously

e−i sgn (t)π4
�

1+ 2D
c

�4

4π
3
2 |t|

1
2

ei t(Q+α′)2

2i t(Q+α′)

�

1−
4
c

1+ 2D
c

2π
(Q+α′)

�

log
�

�4Qt
(Q+α′)2

Q−α′
�

�+ γE ± i
π

2

�

+
8
c2

�

1+ 2D
c

2π

�2

(Q+α′)2
�

log
�

�4Qt
(Q+α′)2

Q−α′
�

�+ γE ± i
π

2

�2
+O(t0c−2)

�

. (289)

In order to determine the asymptotic behaviour of the two particle-hole contribution
χ
(2)
x ,t (λ,µ) we require the asymptotic behaviours of the functions A2α′ t,t , C2α′ t,t and D2α′ t,t

defined in (147), (155) and (158) respectively. We find

A2α′ t,t = −
log |t|
2π2

+O(t0) ,

C2α′ t,t = o(t−1) ,

D2α′ t,t = o(t−1) . (290)

The results for C2α′ t,t and D2α′ t,t again follow from (300) and (301) for a generic root density.
As for A2α′ t,t , we integrate by parts to express it in the form

A2α′ t,t = −
∫

ρ(u+α′)ρ′h(v +α
′)

v − u
(ei t(u2−v2) − 1)dudv

− 2i t

∫∫

ρ(u+α′)ρh(v +α
′)ei t(u2−v2)dudv − 2i tD2α′ t,t . (291)

A saddle point approximation on the second double integral shows that the second line is
O(t0). Specializing to zero temperature we then have at leading order in c−1

A2α′ t,t =
1

4π2

∫ 2Q

0

du
u
[ei t(u2−2u(Q−α)) − 1]

+
1

4π2

∫ 2Q

0

du
u
[ei t(u2−2u(Q+α)) − 1] +O(t0) , (292)
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which can be further simplified

A2α′ t,t =
1

4π2

∫ 2Qt

0

du
u
[ei(u2/t−2u(Q−α)) − 1] +

1
4π2

∫ 2Qt

0

du
u
[ei(u2/t−2u(Q+α)) − 1] +O(t0)

= −
log |t|
2π2

+O(t0) . (293)

Finally there are the contributions of the Bx ,t(λ) and Bx ,t(µ) terms. One can perform an
analysis similar to the static case and obtain that they are both O(t−3/2). Their contributions
are encapsulated in the result in the O(c−2) term of the B± in (197). Putting everything
together we obtain the leading contribution from the vicinity of Q−α′ to the double integral
over χ(2)x ,t (λ,µ)

4
c2

e− sgn (t)iπ/4
�

1+ 2D
c

�4

4π3/2|t|1/2
ei t(Q−α′)2

2i t(Q−α′)
(Q−α)2

�

−
log |t|
2π2

+O(t0)
�

. (294)

The analogous result for the contribution from the vicinity of −Q−α′ is

4
c2

e− sgn (t)iπ/4
�

1+ 2D
c

�4

4π3/2|t|1/2
ei t(Q+α′)2

2i t(Q+α′)
(Q+α)2

�

−
log |t|
2π2

+O(t0)
�

. (295)

C.1.3 Euler scale asymptotic behaviour

In this section we will assume ρ to be continuous. If it is not continuous the leading 1/t
behaviour is unchanged, but the 1/t2 corrections might differ.

For a generic continuous root density at large x , t and fixed α = x
2t , the two integrals

over λ and µ in the correlation function (164) are both dominated by the saddle point at α′.
Applying (287) to the one particle-hole contribution gives

π
�

1+ 2D
c

�2
ρ(α′)ρh(α′)

|t|
+

iπ
�

1+ 2D
c

�2 �
ρ′′(α′)ρh(α′)−ρ(α′)ρ′′h (α

′)
�

4t|t|
+O(t−3) . (296)

The contribution due to two particle-hole excitations is more subtle and requires deter-
mining the asymptotic behaviour of oscillatory integrals with principal values, whose saddle
point falls on the singularity. The general strategy is to write each singularity as

1
λ−µ

=
t

2i

∫ ∞

−∞
sgn (ξ)ei tξ(λ−µ)dξ , (297)

and then to carry out a regular asymptotic analysis of the multiple oscillatory integrals suc-
cessively. The sgn (ξ) factors introduce discontinuities which result in contributions on top of
those from the saddle points.

Let us treat the case of Cx ,t in detail. We write

C2α′ t,t =
t

2i

∫∫∫

ρ(α′ + u)ρh(α
′ + v) sgn (ξ)ei t[(u−ξ/2)2−(v−ξ/2)2]dudvdξ , (298)

and then apply a saddle point approximation to the u and v integrals using (287) to obtain

C2α′ t,t =
t

2i

∫ ∞

−∞
dξ sgn (ξ)

�

π

|t|
ρ
�

α′ + ξ
2

�

ρh

�

α′ + ξ
2

�

+
πi

4t|t|

�

ρ′′
�

α′ + ξ
2

�

ρh

�

α′ + ξ
2

�

−ρ
�

α′ + ξ
2

�

ρ′′h
�

α′ + ξ
2

�

�

�

+O(t−2) . (299)
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This can be simplified by performing an integration by parts on the ξ integral of the subleading
term

C2α′ t,t = iπ sgn (t)

∫ ∞

−∞
ρ(ξ)ρh(ξ) sgn (α′ − ξ)dξ

+
π

2|t|
�

ρ(α′)ρ′h(α
′)−ρ′(α′)ρh(α

′)
�

+O(t−2) . (300)

Similarly one finds for the Dx ,t term

D2α′ t,t = iπ sgn (t)

∫ ∞

−∞
ρ(ξ)ρh(ξ)ξ sgn (α′ − ξ)dξ

+
π

2|t|

�

α′(ρ(α′)ρ′h(α
′)−ρ′(α′)ρh(α

′))−ρ(α′)ρh(α
′)
�

+O(t−2) . (301)

To deal with the Ax ,t term we use that in a distributional sense

1
(λ−µ)2

= −
t2

2

∫ ∞

−∞
|ξ|ei tξ(λ−µ)dξ , (302)

and then carry out a similar analysis to obtain

A2α′ t,t = −2π|t|
∫ ∞

−∞
ρ(ξ)ρh(ξ)|α′ − ξ|dξ+ o(t) . (303)

This leaves us with the Bx ,t(λ) term. It is not possible to determine the asymptotics of Bx ,t(λ)
at fixed λ and then carry out a saddle point approximation of the resulting integral as the
asymptotic expression for Bx ,t(λ) becomes singular at the saddle point λ = α′. The full con-
tribution involving Bx ,t(λ) to the correlation function is 3

X x ,t ≡
∫

dµ−
∫

dλdudv
ei t(λ2−µ2+u2−v2)+i x(µ−λ+v−u)

(λ− u)(v − u)
(λ−µ)2ρ(λ)ρh(µ)ρ(u)ρh(v) . (304)

We rewrite this as a six-fold integral

X2α′ t,t = −
t2

4

∫

· · ·
∫

ρ(α′ +λ)ρh(α
′ +µ)ρ(α′ + u)ρh(α

′ + v) sgn (ξ) sgn (ζ)

× (λ−µ)2ei t(λ2−µ2+u2−v2)eiξt(v−u)+iζt(λ−u)dudvdλdµdξdζ , (305)

and then perform saddle point approximations on the u, v,λ,µ integrals. This gives

X2α′ t,t = −
π2

4

∫∫

ρ
�

α′ − ζ
2

�

ρh(α
′)ρ
�

α′ + ζ+ξ
2

�

ρh

�

α′ + ξ
2

�ζ2

4
sgn (ξ) sgn (ζ)

× e−i t ζ
2

2 −i tζ ξ2 dξdζ[1+ o(t0)] . (306)

We now carry out the integral over ξ, which does not have saddle point and is dominated by
the discontinuity of the integrand at ξ= 0 using

∫

f (ξ)eisξdξ= −
f (0+)− f (0−)

is
−

f ′(0+)− f ′(0−)
s2

+O(s−3) , (307)

3Here and in what follows we assume that ρh(µ) is a continuous function of µ that decays to zero at infinity so
that the integral exists. The case where ρh(µ) is the actual hole density is then obtained as a limit of the resulting
expression.
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where f is a function with discontinuities only at zero. This gives

X2α′ t,t = −
π2ρh(α′)2

4i t

∫ ∞

−∞
|ζ|ρ

�

α′ − ζ
2

�

ρ
�

α′ + ζ
2

�

e−i t ζ
2

2 dζ[1+ o(t0)] . (308)

This last integral also has a saddle point at zero, but with a coefficient that is not differentiable,
so that one cannot apply (287). Approximating ζ= 0 in the ρ’s at leading order in t, one can
integrate the remaining terms to obtain

X2α′ t,t =
π2

2t2
ρ(α′)2ρh(α

′)2 + o(t−2) . (309)

The contribution involving Bx ,t(µ) is given by

Yx ,t ≡
∫

dλ−
∫

dµdudv
ei t(λ2−µ2+u2−v2)+i x(µ−λ+v−u)

(µ− u)(v − u)
(λ−µ)2ρ(λ)ρh(µ)ρ(u)ρh(v) , (310)

and can be analyzed in a similar way. We start by rewriting it as a six-fold integral

Y2α′ t,t = −
t2

4

∫

· · ·
∫

ρ(α′ +λ)ρh(α
′ +µ)ρ(α′ + u)ρh(α

′ + v) sgn (ξ) sgn (ζ)

× (λ−µ)2ei t(λ2−µ2+u2−v2)eiξt(v−u)+iζt(µ−u)dudvdλdµdξdζ , (311)

and then perform saddle-point approximations on the λ,µ, u, v integrals

Y2α′ t,t ≈ −
π2

16

∫∫

sgn (ξ)ζ|ζ|ρ(α′)ρh

�

α′ + ζ
2

�

ρ
�

α′ + ζ+ξ
2

�

ρh

�

α′ + ξ
2

�

e−i tξ ζ2 dξdζ

−
π2i
64t

∫∫

sgn (ξ)|ζ|
�

ζρ′′(α′)ρh

�

α′ + ζ
2

�

ρ
�

α′ + ζ+ξ
2

�

ρh

�

α′ + ξ
2

�

− 8ρ′(α′)ρh

�

α′ + ζ
2

�

ρ
�

α′ + ζ+ξ
2

�

ρh

�

α′ + ξ
2

�

− ζρ(α′)ρ′′h
�

α′ + ζ
2

�

ρ
�

α′ + ζ+ξ
2

�

ρh

�

α′ + ξ
2

�

− 8ρ(α′)ρ′h
�

α′ + ζ
2

�

ρ
�

α′ + ζ+ξ
2

�

ρh

�

α′ + ξ
2

�

+ ζρ(α′)ρh

�

α′ + ζ
2

�

ρ′′
�

α′ + ζ+ξ
2

�

ρh

�

α′ + ξ
2

�

− ζρ(α′)ρh

�

α′ + ζ
2

�

ρ
�

α′ + ζ+ξ
2

�

ρ′′h
�

α′ + ξ
2

�

�

e−i tξ ζ2 dξdζ . (312)

We next perform the integral over ξ in the large t limit using (307). After some rearrangements
we obtain

Y2α′ t,t =
iπ2

t
ρ(α′)ρh(α

′)

∫ ∞

−∞
|α′ − ζ|ρ(ζ)ρh(ζ)dζ

−
π2

4t2

∫ ∞

−∞
|α′ − ζ|

�

ρ′′(α′)ρh(α
′)ρ(ζ)ρh(ζ)−ρ(α′)ρ′′h (α

′)ρ(ζ)ρh(ζ)

+ρ(α′)ρh(α
′)ρ′′(ζ)ρh(ζ)−ρ(α′)ρh(α

′)ρ(ζ)ρ′′h (ζ)
�

dζ

−
π2

2t2
[ρ(α′)ρ′h(α

′) + 2ρ′(α′)ρh(α
′)]

∫ ∞

−∞
sgn (α′ − ζ)ρ(ζ)ρh(ζ)dζ

−
π2

2t2
ρ(α′)ρh(α

′)

∫ ∞

−∞
sgn (α′ − ζ)[ρ′(ζ)ρh(ζ) + 2ρ(ζ)ρ′h(ζ)]dζ+ o(t−2) . (313)

Putting everything together we arrive at (200).
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C.1.4 GHD predictions

The GHD result for the asymptotics of the density-density correlator is [89,90]

〈σ(x , t)σ(0,0)〉=
∫ ∞

−∞
δ
�

x − v(λ)t
�

ρ(λ)
�

1− ϑ(λ)
� �

qdr(λ)
�2

dλ , (314)

with ρ,ϑ defined in (27) and (28), and where the other functions are defined as follows:

F(λ,ν) =
1
π

arctan
�

λ− ν
c

�

+

∫ ∞

−∞

2c
c2 + (λ−λ′)2

ϑ(λ′) F(λ′,ν)
dλ′

2π
,

qdr(λ) = 1−
∫ ∞

−∞
q(λ′) ϑ(λ′) ∂λF(λ′,λ)dλ′ ,

v(λ) =
e′(λ)

2π
�

ρ(λ) +ρh(λ)
� ,

e′(λ) = 2λ−
∫ ∞

−∞
2ν ϑ(ν)∂λF(ν,λ)dν . (315)

These equations can be straightforwardly solved in a 1/c-expansion up to order O(c−2)

ρ(λ) +ρh(λ) =
1+ 2D

c

2π
, ϑ(λ) =

2πρ(λ)
1+ 2D/c

, F(λ,α) =
λ−α
πc

+
2
πc2
(δ− Dα) ,

v(λ) =
2λ− 4δ/c
1+ 2D/c

, qdr(λ) = 1+
2D
c

, (316)

where D and δ are defined in (29) and (89). Substituting (316) back into (314) precisely
recovers the leading contribution in (200).

C.2 Dynamical structure factor

C.2.1 Behaviour near the thresholds at zero temperature

We start from the simplified expression of the DSF (203) at zero temperature and will assume
q > 0 for simplicity. We note that when z → ±∞ we necessarily have Z+ < Z−, so that the
only possible region that can lead to a divergence of the integral is the region z close to 0. In
this region we first set

ω= q′2 + 2q′Q−η , (317)

with η > 0 small, and investigate the values taken by Z±. We find for z close to zero

Z+(z) =

(

−q′2+q′2z+η
2q′(1−z) if z > 0 ,

−q′2−4q′Q−q′2z+η
2q′(1−z) if z < 0 ,

Z−(z) =















−η+q′2z
2q′z if z > η

2q′2
,

−q′2−q′2z+η
2q′(1−z) if 0< z < η

2q′2
,

−q′2−4q′Q+q′2z+η
2q′(1−z) if z < 0 .

(318)

We observe that for small z we have Z− < Z+ if and only if z < η

2q′2
, in which case Z+−Z− =

q′|z|
1−z .

Substituting this expression back into (203), we find that among the contribution proportional
to 111Z−<Z+ only the term Z+−Z−

z is non-integrable when z → 0. However, its divergent part is
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exactly cancelled by the term in the third line of (203) proportional to 111ω−<ω<ω+ . All other
terms in the first two lines of (203) give a finite O(η0) contribution because they are integrable
for z → 0. This leaves the contribution proportional to 111ω−<ω<ω+ for z > η

2q′2
, which leads

to a logarithmic singularity in η. Setting an arbitrary upper limit in the integral since its
modification amounts to a O(η0) correction we have

S(2)(q,ω) =
1

4π2q′c2

∫ 1

η

2q′2

�

−
2q′min(|q′z|, 2Q)

z2

�

dz +O(η0)

=
q′

2π2c2
log |η|+O(η0) . (319)

We now turn to singularities above the upper threshold. Taking η > 0 to be small and setting

ω= q′2 + 2q′Q+η , (320)

we find for z ≈ 0

Z+(z) =















−q′2+q′2z−η
2q′(1−z) if z > 0 ,

η+q′2z
2q′z if − η

2q′(q′+2Q) < z < 0 ,
−q′2−4q′Q−q′2z−η

2q′(1−z) if z < − η
2q′(q′+2Q) ,

Z−(z) =

(

η+q′2z
2q′z if z > 0 ,
−q′2−4q′Q+q′2z−η

2q′(1−z) if z < 0 .
(321)

We observe that for z close to zero we have Z− < Z+ if and only if z < − η
2q′(q′+2Q) , in which

case Z+−Z− =
q′|z|
1−z . Above the threshold we have 111ω−<ω<ω+ = 0 so that the last term in (203)

vanishes. Of the remaining terms only the one proportional to Z+−Z−
z2 diverges near z = 0, so

that

S(2)(q,ω) =
1

4π2q′c2

∫ −
η

2q′(q′+2Q)

−1

2q′(1− z)2
Z+ − Z−

z2
dz +O(η0)

= −
q′

2π2c2
log |η|+O(η0) . (322)

The behaviour near the lower threshold is obtained through a similar analysis.

C.2.2 Behaviour at small q,ω

We start by writing the two particle-hole contribution as

S(2)(q,ω) =
8π2

c2

∫ ∞

−∞

∫ ∞

−∞

ρ(q3)ρh(q4)
z2

|1− z|
�

ρ(q1)ρh(q2)−ρ
�ω′−q′2

2q′
�

ρh

�ω′+q′2

2q′
�

�

dzdp

+
8π2

c2

∫ ∞

−∞

∫ ∞

−∞

2(λ−µ)2

λ−λ̄ − (λ−µ)
2

µ−λ̄ + 3µ− 2λ− λ̄+ (λ−µ)
2−|q′(λ−µ)|

q′+λ−µ

(q′ +λ−µ)|q′ +λ−µ|

× ρ(λ)ρh(µ)ρ(λ̄)ρh(µ̄) dλdµ ≡
8π2

c2
(Ψ1 +Ψ2) , (323)

where Ψ1,2 denote the first and second terms respectively.
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The integral for Ψ1 with q,ω→ 0 at fixed γ = ω′

2q′ is well-defined and finite. In this limit
we have q3 = q4 = γ+ p(1− z) and q1 = q2 = γ− pz. Changing variables to v = γ− pz and
u= γ+ p(1− z) we have

Ψ1 =

�∫ ∞

−∞
ρ(u)ρh(u)|u− γ|du

��

−
∫ ∞

−∞

ρ(v)ρh(v)−ρ(γ)ρh(γ)
(v − γ)2

dv

�

+ o(q′0) . (324)

As for Ψ2 , we first perform a change of variables from µ to v = q+λ−µ

Ψ2 =

∫ ∞

−∞

∫ ∞

−∞
ρ(λ)ρh(q+λ− v)ρ(q′ +λ− v + q′ 2γ−2λ−q′

2v )ρh(q
′ +λ+ q′ 2γ−2λ−q′

2v )

×
1

v|v|

�

2(v − q′)2

v − q′ − q′ 2γ−2λ−q′

2v

+
(v − q′)2

q′ 2γ−2λ−q′

2v

+ 2q′ − 2v

− q′ 2γ−2λ−q′

2v +
(v − q′)2 − |q′(v − q′)|

v

�

dλdv . (325)

We now observe that the four ρ factors are invariant under the change of variable

v′ = −q′ 2γ−2λ−q′

2v . (326)

We apply this change of variable to all the terms except

(v − q′)2

q′ 2γ−2λ−q′

2v

, (327)

and express the term
2v2

v − q′ − q′ 2γ−2λ−q′

2v

, (328)

as one half of itself plus one half of itself after the change of variables. We obtain for q′ > 0

Ψ2 = −2

∫ ∞

−∞

∫ ∞

−∞
ρ(λ)ρh(q

′ +λ− v)ρ
�

q′ +λ− v + q′ 2γ−2λ−q′

2v

�

ρh

�

q′ +λ+ q′ 2γ−2λ−q′

2v

�

×
sgn (v)

2γ− 2λ− q′

�

1−
q′

v
+

2v2

2v2 − 2q′(v + γ−λ) + q′2
(329)

−
2v

2γ− 2λ− q′

�

1−
�

�

�

�

1+
2γ− 2λ− q′

2v

�

�

�

�

��

dλdv . (330)

Since there are no non-integrable divergences in the integrand at small v, in this representation
one can set q′ = 0 in the ρ terms as well as in the integrand, at small q′. It yields

Ψ2 = −
∫ ∞

−∞

∫ ∞

−∞
ρ(λ)ρh(λ)ρ(u)ρh(u)

sgn (λ− u)
γ−λ

�

2−
λ− u
γ−λ

�

1−
�

�

�

γ− u
λ− u

�

�

�

�

�

dλdu+ o(q0) .

(331)
We obtain then the claimed result.

C.2.3 High frequency tail

We start with the representation (184) for the two particle-hole contribution to the DSF ex-
pressed as a single double integral. We first decompose the double integral into the two regions
|q′ +λ−µ|> ε and |q′ +λ−µ|< ε and focus on the latter part. Since we have assumed that
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ρ decays faster than any power law at infinity λ has to remain smaller than any power law of
ω for the integral not to vanish at any order O(ω−n). Since |q′ + λ− µ| < ε the same holds
true for µ. But this implies that λ necessarily grows as ω1/2, which makes this contribution
vanish at any order O(ω−n). Hence at any given order O(ω−n) we can impose |q′+λ−µ|> ε.
This removes all poles in the integrand of (184) and one can consider all contributions sepa-
rately. Moreover, since ρ decays faster than a power law at infinity the term proportional to

ρ(ω
′−q′2

2q′ )ρh(
ω′+q′2

2q′ ) is negligible at order O(ω−n).
We then split the µ integral into the sum of positive and negative µ parts and perform the

change of variables

z =

¨

2µ− q′ −λ−
p

2ω′ if µ > 0 ,

2µ− q′ −λ+
p

2ω′ if µ < 0 .
(332)

This way the DSF can be brought to the form

S(2)(q,ω) =

∫ ∞

−∞
dλ

∫ ∞

−q′−λ−
p

2ω′
dz
�

ρ(λ)ρ
�

z + f+(z,λ,ω′)
�

g+(z,λ,ω′)

×ρh

� z+q′+λ+
p

2ω′
2

�

ρh

�

z + f+(z,λ,ω′) + q′+λ−z−
p

2ω′
2

�

�

+

∫ ∞

−∞
dλ

∫ −q′−λ+
p

2ω′

−∞
dz
�

ρ(λ)ρ
�

z + f−(z,λ,ω′))g−(z,λ,ω′
�

×ρh

� z+q′+λ−
p

2ω′
2

�

ρh

�

z + f−(z,λ,ω′) + q′+λ−z+
p

2ω′
2

�

�

+ . . . , (333)

where the dots indicate subleading corrections that decay faster than any inverse power in ω
and

f±(z,λ,ω) = ±
1
2

q′2 + 2q′z + 2q′λ− (λ− z)2
p

2ω± (z − q′ −λ)
,

g±(z,λ,ω) =
16π2

c2(λ+ q′ − z ∓
p

2ω)|λ+ q′ − z ∓
p

2ω|

�

− 4λ+
(λ− q′ − z ∓

p
2ω)2

λ+ q′ − z ∓
p

2ω

+ 2
(λ+ q′ − z ∓

p
2ω)(λ− q′ − z ∓

p
2ω)2

4ω− 8q′λ− 4q′2
+ 3(λ+ q′ + z +

p
2ω)

+
−λ2 + 2λq′ + q′2 + z2 ± 2

p
2ωz

λ+ q′ − z −
p

2ω

+ 2
(λ+ q′ − z ∓

p
2ω)(λ− q′ − z ∓

p
2ω)2

λ2 + q′2 ± 2
p

2ωz + z2 + 4λq′ − 2λz ∓ 2λ
p

2ω

�

. (334)

We now observe that any part of the integral where the argument of one of the two ρ’s grows
as a power-law in ω will give contributions that decay faster than any power-law, since ρ is
assumed to decay faster than any power-law at infinity. From the expression of f± one sees
that z cannot grow faster than ω1/4. Consequently, with an error that goes to zero faster than
any power law in ω one can replace the limits of the integrals and the arguments of the ρh’s
by ±∞. This gives

S(2)(q,ω) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
ρ(λ)ρ

�

z + f+(z,λ,ω′)
�

g+(z,λ,ω′)dzdλ

+
1

4π2

∫ ∞

−∞

∫ ∞

−∞
ρ(λ)ρ

�

z + f−(z,λ,ω′)
�

g−(z,λ,ω′)dzdλ+ . . . (335)
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We now expand f±(z,λ,ω′) and g±(z,λ,ω′) in Laurent series in λ, λ−z andω′−1/2, and Taylor
expand ρ(z+ f±(z,λ,ω′)). This produces terms of the type ρ(λ)ρ(a)(z)λb(λ−z)dω′−e/2 with
a, b, e ≥ 0 integers and d a positive or negative integer. We integrate this by parts a times over
z so that the integrand involves only ρ(z), and then write the full result S(2)(q,ω) as one half
of itself plus one half of itself after swapping the dummy variables λ and z. We observe that
there remain only positive powers d ≥ 0, and one obtains the first two terms of the expansion
ω′
−7/2,ω′−9/2 stated in the text.
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