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Abstract

We classify orbifold geometries which can be interpreted as moduli spaces of four-
dimensional N ≥ 3 superconformal field theories up to rank 2 (complex dimension 6).
The large majority of the geometries we find correspond to moduli spaces of known the-
ories or discretely gauged version of them. Remarkably, we find 6 geometries which are
not realized by any known theory, of which 3 have an N = 2 Coulomb branch slice with
a non-freely generated coordinate ring, suggesting the existence of new, exotic N = 3
theories.
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1 Introduction

Theoretical physicists’ wild dream of mapping the space of quantum field theories, even when
restricted to unitary, local, and Poincaré-invariant ones, is probably unattainable. But add in
enough supersymmetry and the dream becomes much tamer, discrete structures emerge, and
enumerating them seems within reach. Here we take a step in this direction in the case of
N ≥ 3 supersymmetric field theories in 4 dimensions. In particular, we carry out a classifica-
tion of the possible moduli space geometries of such theories with rank less than or equal to
2.

In many waysN = 3 theories are an ideal fit for the classification task: they are constrained
enough that it seems possible to carry out a complete classification, but unconstrained enough
that the answer obtained is non-trivial. Indeed, we find here unexpected results. We carry out
the analysis by analyzing the moduli space of vacua, M,1 of such theories. We consider the
existence of a space M which can be consistently interpreted as the moduli space of vacua
of an N = 3 theory as strong evidence for the existence of such a theory. A similar approach
turned out to be very successful in the classification of N = 2 rank-1 geometries [1–4]. Even
if not all of these geometries turn out to be associated to a field theory, they nevertheless
constrain the possible set of such field theories. Conversely, we do not assume that there is
necessarily a unique field theory corresponding to a given moduli space geometry. The moduli
space geometry encodes only a small part of the conceivable properties of a field theory, so it
is a priori unreasonable to assume that it is enough to completely determine the field theory.
Indeed, even in the N = 2 rank-1 case mentioned above, where the geometries classified
contained much more information (since they represented whole families of deformations by
relevant parameters), there were found to be cases [5] where more than one known field
theory corresponds to the same geometry.

Even so, as with any classification claim, there is some fine print, which we can organize
as three assumptions:

1. M has rank ≤ 2.

2. M’s associated Dirac pairing is principal.

3. M is an orbifold.
1A clarification on notation, throughout the paper we will indicate as M the 3r complex dimensional moduli

space of vacua of the theory, by C its N = 2 r complex dimensional Coulomb branch slice and by H its 2r complex
dimensional Higgs branch slice, where r is the rank of the theory.
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Table 1: We list the orbifold geometries passing all our constraints. The Group col-
umn labels the discrete group orbifolding C2. The action on C2 is specified in Tables
2 and 3 using a Du Val label. The definition of the groups is given in the caption
of those tables. If the geometry is freely generated, the column ∆ CB gives the de-
grees (dimensions) of the generators; when it is a complete intersection, it gives the
degrees of the three generators subject to one relation (gray shade). Some of the
geometries are associated with known theories, which can be simple N = 4 (white),
product theories (yellow; the rank 1 theories are labeled by their Kodaira class, see
Table 5.) or N = 3 theories obtained from S-folds or discrete gaugings (blue; the dis-
crete gauging of theory T by Zk is denoted [T ]Zk

). Geometries which have no known
realization are shaded in green. The fifth column indicates whether N = 3 enhances
to N = 4; for product theories, we treat the two factors separately. Finally the last
column gives the central charges. For geometries associated to multiple theories (see
section 5), we report the highest value of the corresponding central charges.

N ≥ 3 Rank-2 Orbifold geometries C2/µτ(Γ )

|Γ | Group ∆ CB CFT realization N = 4 4c = 4a
1 1 1, 1 I0 × I0 Ø×Ø 2

2 Z2
1, 2 I0 × I∗0 Ø×Ø 4

2, 2,2 [U(1)×U(1) N=4]Z2
Ø 2

3 Z3 1, 3 I0×IV ∗ Ø× 7 6

4
Z2×Z2 2, 2 I∗0 × I∗0 Ø×Ø 6

Z4
1, 4 I0×I I I∗ Ø× 7 8

2, 4,4 [U(1)×U(1) N=4]Z4
Ø 2

6
Z2×Z3 2, 3 I∗0×IV ∗ Ø× 7 8

Weyl(su(3)) 2, 3 A2 N=4 Ø 8
Z6 1, 6 I0×I I∗ Ø× 7 2

8
Z2×Z4 2, 4 I∗0×IV ∗ Ø× 7 10

Weyl(so(5)) 2, 4 so(5) N=4 Ø 10
9 Z3×Z3 3, 3 IV ∗×IV ∗ 7× 7 10

12
Z2×Z6 2, 6 I∗0×I I∗ Ø× 7 14
Z3×Z4 3, 4 IV ∗×I I I∗ 7× 7 12

Weyl(G2) 2, 6 G2 N=4 Ø 14

16

Z4×Z4 4, 4 I I I∗×I I I∗ 7× 7 14
SD16 4, 6,8 7 ?
M4(2) 4, 8,8

No known TM exists
7 ?

Weyl(so(5))oZ2 4, 4 [so(5) N=4]Z2
7 10

18
Z3×Z6 3, 6 IV ∗×I I∗ 7 16

Weyl(su(3))oZ3 3, 6 [A2 N=4]Z3
/N = 3 S-fold 7 16

24
Z4×Z6 4, 6 I I I∗×I I∗ 7× 7 18

G(6,3, 2) 4, 6 No known TM ex ists 7 18
Weyl(so(5))oZ3 6, 6,12 [so(5) N=4]Z3

7 10
32 G(4,1, 2) 4, 8 N = 3 S-fold 7 22

36
Z6×Z6 6, 6 I I∗×I I∗ 7× 7 22

Weyl(su(3))oZ6 6, 6 [A2 N=4]Z6
7 8

Dic3×Z3 6,12, 12 7 ?
48 ST12 6, 8 7 26
72 G(6,1, 2) 6, 12

No known TM exists
7 34

Caption
Product of rank-1 theories Known discrete gauging or S-folds

Discrete gauging of U(1)2 N = 4 Theories with no known realization

The first two assumptions are for technical convenience: we are confident that the approach
to the classification problem described here is equally applicable to higher ranks and non-
principal Dirac pairings (though it may not be technically easy to implement). The third as-
sumption is central to our approach. In order to discuss its significance, we first describe the
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main features of N = 3 moduli space geometry.
The generic low-energy physics on the moduli space M of a rank-r theory, is that of r free

supersymmetric massless photons, thus its geometry is a generalized and more constrained
version of the special Kähler geometry2 enjoyed by N = 2 Coulomb branches (CBs). This
N = 3 CB geometric structure is called a triple special Kähler (TSK) structure, and has been
introduced and analyzed in [7]. More specifically a TSK geometry corresponding to a rank-r
N = 3 field theory is a 3r complex dimensional complex variety which is metrically flat almost
everywhere. Away from its complex co-dimension 3 metric singularities, M is covered by a
family of special coordinates which are flat complex coordinates whose monodromies are in
the group of electromagnetic (EM) duality transformations, SpD(2r,Z), which is the group of
transformations preserving the rank-2r EM charge lattice, Λ, and the antisymmetric pairing,
D : Λ × Λ → Z, appearing in the Dirac quantization condition.3 Also, since all N = 3 field
theories with an N = 3 field theory UV fixed point are superconformal field theories [8], M
also has a complex scaling symmetry from the action of the spontaneously broken dilatation
and U(1)R symmetries, as well as an SU(3)R isometry.

As almost everywhere flat spaces whose flat coordinates are linearly related by finite group
transformations, M is “almost” an orbifold. As explained via examples in [7], such an M
can fail to be an orbifold because, even locally, identification by a group element can fail to
correspond to dividing by a group action. But, the resulting non-orbifold TSK spaces have a
field content when interpreted as N = 3 SCFTs which is unusual, and may be unphysical [8,9];
see [7] for a critical discussion. One characteristic of these flat non-orbifold moduli spaces is
that the scaling dimensions of their chiral ring operators are not integers. Such flat non-
orbifold geometries do occur (and, indeed, are common) in N = 2 CBs.

Accepting the orbifold assumption, it follows [7] that the moduli space of vacua of a rank-
r N = 3 field theory is a 3r complex dimensional variety, M, which can be globally written
as M ≡ MΓ

∼= C3r/Γ , with Γ finite.4 N = 3 supersymmetry further constrains Γ and its
action in various ways [7]. First, MΓ has a CP2 of inequivalent complex structures and the
orbifold action, ρ(Γ ), of Γ on C3r depends on the specific choice of the complex structure
on MΓ . Second, the SU(3)R isometry on MΓ implies that the ρ(Γ ) action descends to an
r-dimensional “slice”, CΓ = Cr/Γ , corresponding to an N = 2 CB subvariety of MΓ , and
the analysis of CΓ suffices to reconstruct the geometric structure of MΓ . Thus we will often
state the results of a given geometry MΓ in terms of its r dimensional CB CΓ . Third, the
admissible finite groups Γ are crystallographic point groups preserving an integral symplectic
form D [7,10], so Γ ⊂ SpD(2r,Z) (more details below). Fourth, the technical assumption (2)
that D is principal just means that by a lattice change of basis it can be put in the standard
symplectic form D =

�

0 1r
−1r 0

�

, and so Γ ⊂ Sp(2r,Z). The list of physically consistent MΓ can
be further constrained by studying their refined Hilbert series HMΓ

. The first few terms of
HMΓ

give useful information about the operator content of the putative theory TM realizing
a particular MΓ . In some cases, which are shaded in red in Table 2-4, we can argue that

2See, e.g., [6] for a review.
3At first it might appear inconsistent for a complex co-dimension 3 singular locus to give rise to monodromies.

But these monodromies don’t arise from path linking the singular locus but rather from the TSK patching condition
[7].

4A word on notations is in order. The letter Γ denotes the finite group we use to characterize orbifold geometries.
When there is no risk of confusion, we write simply Γ for the various representations of this (abstract) group.
However, we sometimes use more precise notations, namely:

• M(Γ ) for the finite subgroup of Sp(2r,Z);

• µτ(Γ ) for the subgroup of U(r) involved in the Coulomb branch slice orbifold, Cr/Γ ≡ Cr/µτ(Γ );

• ρτ(Γ ) for the subgroup of U(3r) involved in the full orbifold, C3r/Γ ≡ C3r/ρτ(Γ ).

All these group morphisms are defined in section 2.
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such operator content is unphysical. We then discard the corresponding MΓ despite it being
a consistent TSK.

For rank r = 1 the result of classifying such orbifolds is fairly easy as the only finite sub-
groups of SL(2,Z) ∼= Sp(2,Z) are Z2, Z3, Z4 and Z6. The corresponding orbifold geometries
correspond to the known rank-1 N ≥ 3 geometries [11,12], with the C3/Z2 corresponding to
the moduli space geometry of the SU(2) N = 4 theory. Here we extend the analysis to rank
2. The results are summarized in Table 1 as well as more systematically listed in Tables 2, 3
and 4, where for each orbifold we report both the 2× 2 matrix of low energy EM couplings,
τi j , characteristic of the TSK metric geometry, as well as detailed data about the complex ge-
ometry of CΓ ⊂MΓ . For r = 2, the picture that arises is far richer than the r = 1 case: many
geometries that we find do not correspond to known physical theories and some of these new
geometries exhibit interesting and novel properties.

One of the main results of our analysis is that the coordinate ring of many of the admissible
geometries is not a freely generated ring even when restricted to the r-complex dimensional
slice CΓ . It follows in these cases that as a complex space CΓ is an algebraic variety not iso-
morphic to Cr . This fact has a straightforward physical interpretation in a field theory corre-
sponding to MΓ . The coordinate ring of CΓ is the CB chiral ring of the N = 3 theory relative
to a choice of an N = 2 subalgebra of the N = 3 algebra. It is by now well known that CB
chiral rings can be non-freely generated [13–16], though the only known examples thus far
arise after gauging a discrete symmetry group. We conjecture that some of the geometries
which we find correspond to theories with a non-freely generated CB chiral ring that does not
arise from discrete gauging. It, of course, remains to be proven that such geometries do in fact
correspond to physical theories. A variety of possible extra checks which can be performed are
listed at the end of the paper.

It is worth remarking that we don’t perform our classification by directly studying the finite
subgroups of Sp(4,Z) which would give rise to consistent rank-2 TSK geometries, but instead
by using a related property of MΓ that follows from N = 3 supersymmetry. This property is
that, for any rank r, the matrix τi j of EM couplings on MΓ , which by standard arguments is an
element of the fundamental domain of the Siegel upper half space, Hr , is fixed by the action
of Γ ⊂ Sp(2r,Z). So another way of proceeding is to first classify all possible fixed points of
elements of Sp(2r,Z) in Hr and the subgroups which fix them. As stated, this may not seem
to simplify the classification problem. But to our surprise E. Gottschling [17, 18] classified
all fixed points in H2. With a bit of extra work, both because the papers are in German and
because Gottschling only classifies the maximal Γ ⊂ Sp(2r,Z) fixing a given τi j , we are able
to use the results in [17,18] to fully characterize all rank-2 N = 3 orbifold geometries.

The paper is organized as follows. In the next section we quickly review the definition
and the main properties of TSK geometries. We will make the conscious choice of sacrificing
pedagogy for conciseness, and generously refer to [7] for the details. We do, however, carry
out the explicit construction of the TSK geometry of the moduli space of vacua of SU(3)N = 4
theory as an illustrative example. Section 3 describes in some detail how the classification is
performed and systematically discusses the list of geometries which we find. In section 4 we
analyze in detail the refined Hilbert series of the geometries we constructed. After a review
of N = 3 superconformal representation theory, we identify how to put the two together
to set more stringent physical constraints on the geometries we find. A discussion of the
physics of the allowed geometries, along with a specification of which geometries are new
and which correspond to known theories is given in section 5. This section also contains a
discussion about the allowed possibilities of discrete gauging in the case of product theories.
This discussion is, to our knowledge, new and perhaps of interest to the reader. We conclude
and present a number of interesting possible follow up directions. A series of appendices
collect some technical material about Du Val groups and Hilbert series.
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2 Orbifold geometries and N = 3 preserving conditions

As mentioned above, a systematic analysis of the moduli space geometry of N = 3 SCFTs is
given in [7], including a discussion of possible non-orbifold geometries which we are not going
to consider here. In this section we will just summarize the most important points to remind
the reader how to construct an orbifold TSK structure on MΓ and justify our classification
strategy.

First, a note on terminology. Γ will refer to the orbifold group as an abstract finite group,
and we will use homomorphismsρτ : Γ → GL(3r,C), µτ : Γ → GL(r,C), and M : Γ → Sp(2r,Z)
to denote its action on various spaces defined below.

Our classification strategy rests on the following assertions. If a moduli space of an N = 3
SCFT with a principal Dirac pairing is an orbifold then

1. MΓ = C3r/ρτ(Γ )where theC3r are the special coordinates aI
i , i = 1, . . . , r and I = 1, 2,3,

and ρτ : Γ → GL(3r,C) is a homomorphism of a finite group Γ into GL(3r,C);

2. Γ acts on C3r = C3 ⊗Cr as ρτ(Γ ) ⊂ 13 ⊗ GL(r,C), so that ρτ = µτ ⊕ µτ ⊕ µτ for some
homomorphism µτ : Γ → GL(r,C);

3. there is a homomorphism M : Γ → Sp(2r,Z) since the monodromies also act by mul-
tiplication by Sp(2r,Z) matrices on the 2r-component vector (aI i

D , aI
i ) (for all I) where

aI i
D := τi jaI

j and τi j is a point in the Siegel upper half-space Hr .

We will briefly review the justification of these assertions in the next subsection.
Write M ∈ Sp(2r,Z) in r × r blocks as M =

�A B
C D

�

. Then the Γ action in assertion (3) gives
in an obvious matrix notation

M(Γ ) 3 M :

�

aD
a

�

7→
�

a′D
a′

�

=

�

AaD + Ba
CaD + Da

�

. (1)

But since aD = τa and a′D = τa′ this means

�

τ

1

�

a′ =

�

Aτ+ B
Cτ+ D

�

a, (2)

which is only consistent if

τ= (Aτ+ B)(Cτ+ D)−1, (3)

i.e., if τ is fixed by the usual fractional linear action of M(Γ ) ⊂ Sp(2r,Z) on Hr . Furthermore,
(1) induces the GL(r,C) action

µτ(Γ ) 3 µτ(M) : a 7→ (Cτ+ D)a, (4)

which, via assertion (2), gives the GL(3r,C) orbifold action of assertion (1). Notice that (4)
is only a group homomorphism if τ ∈ Fix(Γ ), that is if (3) is satisfied for all elements in M(Γ ).

Thus we see that an orbifold is an N = 3 moduli space for a principally polarized SCFT
if and only if Γ is isomorphic to a finite subgroup M(Γ ) ⊂ Sp(2r,Z) which fixes a τ ∈ Hr .
Furthermore, the orbifold then has the form

MΓ = C3r/ρτ(Γ ) = C3r/(13 ⊗µτ(Γ )) , (5)

with µτ completely determined by M(Γ ) and the fixed τ. In the complex structure of C3r in
which the aI

j are holomorphic coordinates, the ρτ(Γ ) action in (5) acts holomorphically as
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does the U(3)R isometry. We will see, however, that this complex structure is not the complex
structure of MΓ which is determined by the supersymmetry. A given M(Γ ) ⊂ Sp(2r,Z) may
have more than one fixed point τ, and the choice of τ is part of the moduli space geometry.
This is the reason for the τ subscript on the homomorphism µτ.

We can thus classify all possible N = 3 orbifold moduli spaces by classifying finite sub-
groups of Sp(2r,Z) (up to conjugation) with fixed points in Hr . Note that all finite subgroups
of Sp(2r,Z) fix at least one point in Hr ; see e.g., section 3.2 of [10]. Thus one way of pro-
ceeding is to find all finite subgroups of Sp(2r,Z) and then compute their fixed points. But we
will instead do things in the reverse order by finding all possible fixed points of the Sp(2r,Z)
action on Hr and then characterize the finite subgroups which fix them. We will show how to
do this when r ≤ 2 in section 3, and now turn to justifying assertions (1)–(3).

2.1 Metric geometry of MΓ

At a generic point on the moduli space of vacua MΓ of an N = 3 SCFT, the theory is described
by r free massless vector multiplets in the IR. These N = 3 vector multiplets have U(1)r gauge
fields — making MΓ a Coulomb branch — as well as 3r complex scalar fields aI

i , I = 1,2, 3
and i = 1, .., r, which transform in the r-fold direct sum of 31 representations of the U(3)R
symmetry group. From the point of view of an N = 2 subalgebra, this N = 3 vector mul-
tiplet is a free N = 2 vector multiplet plus a free massless neutral hypermultiplet. N = 2
supersymmetry implies that these massless bosonic fields have an IR effective Lagrangian

Lbosonic = Im
�

τi j(a)
�

∂ aI
i · ∂ aI j +Fi ·F j

��

, (6)

where Fi are the self-dual U(1) gauge field strengths and τi j takes values in the Siegel upper-
half space Hr — i.e., τi j = τ ji and Imτi j > 0. Furthermore, an N = 2 selection rule [19]
forbids the vector multiplet metric and the hypermultiplet metric from depending on the same
fields, so

τi j = constant. (7)

The scalar kinetic term in (6) induces the metric

g = ( Imτi j) daI
i daI j (8)

on MΓ . Since τi j is constant, the metric is flat, and the aI
i are flat coordinates. The vevs

of the aI
i are called special coordinates on MΓ . On overlaps of special coordinate patches on

MΓ , since they are flat the special coordinates are related by linear transition functions plus
possible constant shifts. Note that this description holds at generic points on MΓ , but there
may be curvature singularities along a subspace V ⊂MΓ ; we will see below that this subspace
is of at least complex co-dimension 3.

Non-zero vevs of the aI
i spontaneously break the conformal invariance and the U(3)R sym-

metry, so MΓ will have a scaling symmetry and a U(3)R isometry. The scale invariance and
overall U(1)R factor combine to make MΓ a complex cone. The tip of the cone is the origin of
any and all special coordinate patches, and corresponds to the unique conformal vacuum.

If MΓ is an orbifold then assertions (1) and (2) now follow. Since the special coordinate
patches all have their origins in common, transition functions must be linear transformations
of the 3r complex special coordinates. This gives assertion (1) with ρτ(Γ ) ⊂ GL(3r,C). The
existence of a U(3)R isometry then implies that the orbifold identifications must commute with
the U(3)R action on the special coordinates, giving assertion (2).

The (massive) states at a generic point on MΓ are labeled by their vector p ∈ Z2r of
magnetic and electric charges under the low energy U(1)r gauge group. These vectors span
a rank-2r charge lattice. The Dirac quantization condition defines a non-degenerate, integral,
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and skew bilinear pairing 〈p,q〉 := pT Dq ∈ Z. By a change of charge lattice basis, the integral
skew-symmetric matrix D can be brought to the unique canonical form D = ε⊗∆where ε is the
2×2 unit antisymmetric tensor and∆ := diag{δ1, . . . ,δr} is characterized by r positive integers
δi satisfying δi|δi+1. The electric-magnetic (EM) duality group, SpD(2r,Z) ⊂ GL(2r,Z), is the
subgroup of the group of charge lattice basis changes which preserves the Dirac pairing. If
all the δi = 1 we call the Dirac pairing principal and SpD(2r,Z) = Sp(2r,Z). Theories with
non-principal Dirac pairings are allowed, a priori, but it may be that they are only relative
field theories [20]. From now on we will assume a principal polarization simply because it is
technically easier to work with Sp(2r,Z) than with SpD(2r,Z). It is an interesting question to
extend our classification to non-principal polarizations.

Just as in N = 2 theories [21], EM duality transformations act linearly on 2r-component
complex vectors σ = (aD, a)T made up of the special coordinates, aI

i , and the dual special
coordinates

aI i
D := τi jaI

j . (9)

We call σ the special Kähler section on an N = 2 CB [22]. In the case of N = 3 theories there
are now three such 2r-component special Kähler sections,

σ I :=

�

aI i
D

aI
i

�

, I = 1, 2,3, (10)

giving MΓ a triple special Kähler (TSK) structure.
In particular, EM duality transformations, M ∈ Sp(2r,Z), act on the TSK sections by ma-

trix multiplication, σ I 7→ Mσ I , and upon traversing a closed path, γ, in MΓ , the sections
may transform by an EM duality transformation, Mγ ∈ Sp(2r,Z). The set of all such EM mon-
odromies generates a finite subgroup M(Γ ) ⊂ Sp(2r,Z) [7]. Since the orbifold identifications
give rise to monodromies of the special coordinates, this gives us assertion (3).

The locus of metric singularities V ⊂MΓ occur where charged states become massless.
This can only happen when the BPS lower bound on their mass vanishes. In an N = 3 theory
the BPS bound on the mass of a state with EM charges p is m ≥ Z I(p)Z I(p) where Z I is the
SU(3)R triplet of complex central charges of the N = 3 algebra. In the low energy theory
on MΓ we have Z I(p) := pTσ I . Metric singularities V can thus only occur where the central
charges vanish for some p: Z I(p) = 0 for i = 1,2, 3. Thus V is of complex co-dimension 3 in
MΓ . In the orbifold geometries studied here this follows automatically: metric singularities in
the orbifold occur at fixed points of the GL(3r,C) orbifold group action onC3r , but by assertion
(2) this action lies only in a GL(r,C) ⊂ GL(3r,C) so its fixed point locus is of co-dimension 3.

2.2 Complex geometry of MΓ

So far we have described the metric geometry of MΓ , but not specified its complex structure.
The complex structure is important for identifying the chiral ring of the underlying SCFT, and
for understanding how N = 2 Coulomb and Higgs branches are embedded in the N = 3
moduli space.

The complex structure of MΓ is determined by picking one left-handed supercharge in the
N = 3 algebra and calling the complex scalars which are taken to left-handed Weyl spinors by
the action of that supercharge the holomorphic coordinates onMΓ . TheN = 3 supersymmetry
variations of the vector multiplet fields then imply [7] that the special coordinates are not
holomorphic coordinates on MΓ . Rather, out of each SU(3)R triplet, two can be taken to be
holomorphic and the third anti-holomorphic. Thus, for example,

(z1
i , z2

i , z3i) := (a1
i , a2

i , a3i), i = 1, . . . , r, (11)
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can be taken as holomorphic coordinates on MΓ .
5 Note that (11) implies that the U(1)R

isometry acts holomorphically on MΓ , but that the SU(3)R isometry does not.
Choosing an N = 2 subalgebra of the N = 3 algebra corresponds to choosing a minimally

embedded SU(2)R ⊂ SU(3)R. Then the subspace, CΓ ⊂MΓ , fixed by this SU(2)R isometry is
the N = 2 Coulomb branch. For example, an N = 2 subalgebra compatible with the complex
structure (11) on MΓ is one in which (a2

i , a3
i ) transform as a doublet of the SU(2)R and a1

i
as a singlet. Then the associated CB “slice” of MΓ is CΓ = {a2

i = a3
i = 0}. Since its complex

coordinate are the special coordinates a1
i , it inherits an N = 2 special Kähler structure from

the N = 3 TSK structure. Because the SU(3)R is a global isometry of MΓ , this description of
CΓ valid in a special coordinate patch extends to all of CΓ .

In the case where MΓ is an orbifold, identifying the complex structure globally is straight
forward. For instance, in the complex structure (11) take (z1

i , z2
i , z3i) ∈ C3r so that given the

homomorphism µτ : Γ → GL(r,C) defined in (4), then MΓ is, as a complex space, the orbifold

MΓ ≡ C3r/µτ(Γ )⊕µτ(Γ )⊕µτ(Γ ). (12)

This should be contrasted with its description as the orbifold (5), where its U(3)R isometry is
manifest but its complex structure is not.

Note that in the case where ρτ(Γ ) = ρτ(Γ ) is real, the two descriptions coincide. This is
precisely the case where the isometry group is enhanced to SO(6)R [7], and corresponds to
MΓ satisfying the conditions of N = 4 supersymmetry.

An N = 2 CB slice of MΓ is then clearly the orbifold

CΓ ≡ Cr/µτ(Γ ), (13)

with the metric
g = ( Imτi j)da1

i da1 j (14)

inherited from (8). In the orbifold case we can also embed an N = 2 Higgs branch HΓ ⊂MΓ

by going to the 2r-dimensional a1
i = 0 slice. This gives

HΓ ≡ C2r/µτ(Γ )⊕µτ(Γ ). (15)

This is a hyperKähler cone with an SU(2)R non-holomorphic isometry, and a U(1)F tri-holomorphic
“flavor” isometry [7].

Since the µτ(Γ ) action on Cr given by (4) is enough to reconstruct the entire TSK structure
on MΓ , we will often discuss the N = 2 CB orbifold CΓ rather than MΓ when it will allow for
a more direct and less cumbersome discussion. Such N = 2 CB orbifolds in the case where
µτ(Γ ) is a complex reflection group were considered in [10].

Generally µτ(Γ ) does not act freely on Cr . The locus V ⊂ Cr of points fixed by at least one
non-identity element µτ(Γ ) is the locus of metric non-analyticities. Since µτ(Γ ) acts holomor-
phically, V is a complex subvariety of CΓ , generically of complex co-dimension 1. Furthermore,
unless µτ(Γ ) is a complex reflection group, CΓ is not isomorphic to Cr as a complex variety,
as its coordinate ring is not freely generated [23, 24]. In such cases, a subvariety Vcplx ⊂ V
will also have complex singularities [14,25]. We emphasize that the generic point in V has a
metric non-analyticity (curvature singularity) but a smooth complex structure.

5This expression is valid, in particular, for the complex structure induced by the Q3
α

supercharge. There is a
CP2-worth of inequivalent ways of embedding one left-handed supercharge in the N = 3 algebra, so there is, in
fact, a CP2 of inequivalent complex structures on MΓ [7].
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2.3 SU(3) N = 4 superYang-Mills: an explicit example

To get a better sense of the rather abstract discussion in the previous section, let’s now carry out
the construction outlined above in a simple example, namely the SU(3)N = 4 sYM theory. We
will particularly focus on computing the fixed locus of the group action, V , compute from there
the corresponding BPS states which become massless along V and compare to the expected
result from the weak coupling limit of the sYM theory finding perfect agreement. A physical
interpretation of the other moduli space geometries we construct in section 3 will be given in
section 5.

The moduli space of vacua, MΓ (g), of an N = 4 sYM theory with gauge Lie algebra g,
is parameterized by the vevs of the complex Cartan subalgebra scalar fields, aI

i for I = 1,2, 3
and i = 1, . . . , r = rank(g). The geometry gets no quantum corrections but is orbifolded
by any gauge identifications of a given Cartan subalgebra of the gauge Lie algebra. These
identifications are given by the finite Weyl group, W(g), of the Lie algebra, thus in this case
Γ =W(g). The Weyl group acts as a real crystallographic reflection group on the real Cartan
subalgebra, i.e., via orthogonal transformations, w ∈ O(r,R) ⊂ GL(r,C), with respect to the
Killing metric on the Cartan subalgebra. From our discussion above it then follows that in the
special case of N = 4 theories, the orbifold action (12) can be written as 13 ⊗ w, where 13
denotes the 3× 3 identity matrix.

The N = 4 sYM theory can be viewed as an N = 2 theory with respect to a choice of an
N = 2 subalgebra of the N = 4 superconformal algebra. From this point of view, the N = 4
moduli space decomposes into an N = 2 Coulomb branch CΓ (g) (an r complex-dimensional
special Kähler space) and an N = 2 Higgs branch HΓ (g) (an r quaternionic-dimensional hy-
perKähler space) which are each subspaces of a 3r complex dimensional enhanced Coulomb
branch [4]. The geometries of these Coulomb and Higgs branches are induced from the ge-
ometry of MΓ (g) in the obvious way, replacing the 13 ⊗ w with w and 12 ⊗ w respectively.
Thus

CΓ (g) = Cr/W(g) W(g) ⊂ O(r,R) ⊂ GL(r,C). (16)

We take the holomorphic coordinates on Cr to be zi = a1
i , i = 1, ..., r.

In this case the complex structure of CΓ (g) turns out to be very simple: as a complex space
the N = 2 Coulomb branch is isomorphic to Cr and thus has no complex singularities. This
result follows from the powerful Chevalley-Shepard-Todd (CST) theorem [23,24] and the fact
that W(g) is a (real) complex reflection group. CΓ (g) of course still has metric singularities
(non-analyticities) at the orbifold fixed-point loci which we will discuss shortly. Furthermore,
since the action of W(g) on CΓ (g) is via orthogonal transformations, W(g) preserves a real
symmetric bilinear form s. This implies that there is always a degree 2 polynomial P2 = zis

i jz j
which is invariant under the action of the orbifold group and can be thus chosen as one of
the global holomorphic coordinates on CΓ (g). This is the distinguishing feature of geometries
associated to N = 4 theories. In fact, the existence of a dimension 2 generator of the coordi-
nate ring of CΓ (g) implies the existence of a dimension 2 generator of the CB chiral ring. It is a
standard result of superconformal representation theory that such a dimension 2 CB multiplet
contains an exactly marginal operator which is identified with the gauge coupling for g.

GL(2,C) group action and singular locus. Let us now specify the previous general discus-
sion to the case of a SU(3) N = 4 sYM theory. In this case W(su(3)) ∼= S3 and its action on
C2 giving rise to CΓ (su(3)) = C2/W(su(3)) is generated by

w1 :=

�

−1 −1
0 1

�

, w2 :=

�

0 1
1 0

�

, (17)
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which act linearly on (z1, z2) ∈ C2.
As mentioned above, CΓ (su(3)) is isomorphic to C2 as an algebraic variety. In other words

we expect that its coordinate ring is a polynomial ring in two variables, and, furthermore,
to have one degree (dimension) two generator. Using standard Hilbert series techniques (re-
viewed below) and the explicit group action in (17), we can do the computation explicitly and
obtain that coordinate ring of CΓ (su(3)) is in fact a polynomial ring generated by

u= 1
6

�

z2
1 + z2

2 + (z1 + z2)
2
�

, v = 1
2 [z1z2(−z1 − z2)] . (18)

(The normalization is arbitrary and is chosen only to simplify a later formula.) This shows
that CΓ (su(3)) as a complex variety has no singularities.

Let us now compute the metric singularities by studying the fixed loci of the group (17).
Calling V1,2, the fixed loci of w1,2, a straightforward calculation shows that:

V1 : z1 − z2 = 0, V2 : 2z1 + z2 = 0. (19)

Since V1 and V2 are connected by a W(su(3)) transformation, the singular locus has only one
connected component in this case which we will simply call V . This is even more obvious writ-
ing V in terms of the globally defined coordinates on CΓ (su(3)). Then in the (u, v) coordinates
we can write V ≡ V1 ≡ V2

V : u3 = v2. (20)

This result coincides with the known single trefoil knot singularity of the SU(3) N = 4 theory
[26].

GL(4,Z) action and symplectic form. Before discussing the monodromy transformation
picked up by the special coordinates on CΓ (su(3)) encircling V , let’s take a short detour describ-
ing how to construct an Sp(2r,Z) representation for rank-r crystallographic complex reflection
groups.

Rank-r crystallographic complex reflection groups act irreducibly on Cr and are thus nat-
urally defined in GL(r,C). But it can be shown that, by choosing an appropriate basis in Cr ,
they can actually be defined on GL(r,Z[

p
−d]) ⊂ GL(r,C), where d is a square free integer

and Z[
p
−d] is a degree two extension of Z [10, 27]. By representing

p
−d by

� 0 1
−d 0

�

we can
construct a natural representation in GL(2r,Z). Furthermore by averaging over the group we
can construct an invariant Hermitian form with coefficients in Z[

p
−d] whose imaginary part

provides an integral skew-symmetric form D which is by construction preserved by the group
action [7,10]. In general D is not principal, but when it is then there is a natural representation
of the crystallographic complex reflection group in Sp(2r,Z) ⊂ GL(2r,Z).

The situation is considerably simpler for a Weyl groupW(g). W(g) is a real crystallographic
reflection group and acts on the root lattice, Λg

root, which is a lattice of rank r, not 2r. In other
words, in the appropriate basis, the W(g) action onCr can be written as matrices w ∈ GL(r,Z).
A consequence of that is that Weyl groups act on a one (complex) parameter family of rank 2r
lattices, obtained by “complexifying” the root lattice

ΛτW(g) = τ(λ)Λ
g
root ⊕Λ

g
root , (21)

where τ(λ) is an element in the Siegel upper-half space Hr acting on the base vectors of
Λ
g
root which depends on a single complex number λ parametrizing the family of lattices. The

existence of a single free parameter is a reflection of the exactly marginal operator of the cor-
responding N = 4 theory. Choosing a basis in Cr “aligned" with the lattice (21) provides a
GL(2r,Z) representation of W(g) which can furthermore be lifted to matrices
Mw ∈ Sp(2r,Z), ∀w ∈W(g):

Mw =

�

w−T 0
0 w

�

(22)
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where w−T represents the transpose of w−1. It is straightforward to see that (22) preserves
the symplectic form

J =

�

0 −1r
1r 0

�

, (23)

thus Mw ∈ Sp(2r,Z). The action (22) is induced by the choice of the lattice in (21). In
particular (22) requires that w acts as w−T on the basis identified by the base vectors of τΛg

root.
In other words it is obtained by choosing a τ such that τ−1wτ= w−T .

It is straightforward to apply this general construction to S3. We have already written the
generators (17) as matrices in GL(2,Z). From (22) we can construct the generators of the
Sp(4,Z) representation of S3

Mw1
=







−1 0 0 0
−1 1 0 0
0 0 −1 −1
0 0 0 1






, Mw2

=







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0






, (24)

as well as the τ which implements the correct choice of the rank-2r lattice,

τ(λ)S3
=

�

λ −λ/2
−λ/2 λ

�

. (25)

Having written down the explicit expression of both the GL(2,C) and Sp(2r,Z) matrices we
can explicitly check (4) in this case: µτ(Mw1,2

) = w1,2.

Monodromy and BPS spectrum. We now have all the ingredients to study the special ge-
ometry of CΓ (su(3)). Using (9), (10), and (25) we can construct the special Kähler section:

σsu(3) =









λz1 +
λ
2 z2

λ
2 z1 +λz2

z1
z2









. (26)

Notice that for convenience we have used a slightly different τ matrix to define σsu(3) which
satisfies τ′−1w−Tτ′ = w instead. Since τ′ is related to (25) by an Sp(2r,Z) transformation
they define the same lattice ΛτS3

. We will use τ to denote the two matrices interchangeably.

Consider now a closed loop γ ∈ CΓ (su(3)) encircling V . This is not a closed loop in C2,
rather the end point of the loop z1 is related by an S3 transformation to the starting point z0:
z1 = w1,2z0. Since we have the special Kähler section in terms of the affine coordinates (26),
we immediately compute the resulting monodromy to be

σsu(3)(z0)
γ
−→ σsu(3)(w1,2z0) = Mw1,2

σsu(3)(z0), (27)

where we have used the fact that τ(λ) is fixed by the S3 action: τ(λ)w = w−Tτ(λ). This is
a check that the Weyl group orbifold identifications induce the associated EM duality mon-
odromies (24).

Physically we expect charged BPS states to become massless along V and we can use the
explicit monodromy to get some insights into the low-energy physics along V . Here we will
follow an argument outlined in section 4.2 of [26]. The basic idea is that the states becoming
massless at V are all charged under only a single low energy U(1) gauge factor: an appropriate
EM duality transformation will set, say, the last two components of these charge vectors to zero.
We will call the two factors U(1)⊥ and U(1)‖ respectively. Going to the U(1)⊥ × U(1)‖ basis
factorizes the physics into a free U(1) factor, U(1)‖, with only massive states, and a non-trivial,
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either conformal or IR free, rank-1 theory, the U(1)⊥ factor. Understanding the spectrum of
BPS states becoming massless on V is tantamount to understanding the non-trivial rank-1
piece.

The factorization of the physics should also be reflected in the monodromy matrix which
after the EM duality transformation U(1)2→ U(1)⊥ × U(1)‖, acquires a very special form. In
particular shuffling around the components of σsu(3) we can choose a different, more appro-
priate for the purpose at hand, symplectic basis where the symplectic form is

J ′ =

�

ε 0
0 ε

�

, ε :=

�

0 1
−1 0

�

. (28)

Then the monodromy matrix around V takes the general form [26]:

MV =

�

M⊥ D
f (D) 12

�

. (29)

Here D and f (D) are uninteresting matrices with zero determinant and the M⊥ ∈ SL(2,Z) is
the monodromy associated with the rank-1 theory on V which is what we are after.

Choosing an appropriate EM duality transformation, both matrices in (24) can be written
as:

MV =







−1 0 0 1
0 −1 0 0
0 −1 1 0
0 0 0 1






, (30)

which tells us immediately that M⊥ = −12. It is a well known fact that the rank-1 theory
associated with this SL(2,Z) element is the N = 4 SU(2) theory.6 We conclude, purely from
our monodromy analysis that the theory on V has to be the rank-1 N = 4 theory and the
metric singularity arises where there is an enhancement of the unbroken gauge group from
U(1)→ SU(2).

To complete our analysis of the SU(3) theory we can check explicitly that the states becom-
ing massless on V are in fact the gauge bosons associated to the unbroken SU(2) directions.
Using the BPS bound from the central charge Z(q) = qTσsu(3) and the explicit expression,
(26), for σsu(3), we can solve for the charges of the states becoming massless on V . From (19)
we obtain that

q1 = (1,−1, 0,0), q2 = (2, 1,0, 0) , (31)

which, observing that (q1, q2, 0, 0) and (q1,−q2, 0, 0) are Sp(4,Z) equivalent, perfectly match
the charges of the W± bosons under the Cartan directions in su(3). Fixing a choice of simple
roots, the two choices of q’s, and thus the difference between V1 and V2, is due to whether the
enhanced su(2) is along one of the two simple roots (q2) or the third positive root of su(3).

3 Classification of the geometries

In this section we explain how the classification of allowed Γ is carried out and characterize
the corresponding CB slice geometries CΓ = Cr/µτ(Γ ) for r ≤ 2. The strategy that we follow

6This statement is a bit too quick. In fact the only thing we can infer from the monodromy study is the scale CB
invariant geometry associated to a given theory which does not specify the theory uniquely. It is well known that
many inequivalent theories can share the same scale invariant CB geometry. In particular in this case, the N = 2
SU(2) theory with Nf = 4 also gives rise to the same −1 monodromy. In this case the existence of the N = 4
supersymmetry implies that it cannot be the Nf = 4 theory. Alternatively, a study of the N = 2-preserving mass
deformations of the Coulomb branch, or of the Higgs branch sticking out of the singular locus V would also be
able to distinguish these two possibilities.
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is to first list the τ ⊂ Hr , with r ≤ 2, fixed by at least one Sp(2r,Z) matrix. We then deter-
mine M(Γ ) ⊂ Sp(2r,Z) such that each τ ∈ Fix(Γ ). Then the action of Γ on Cr can be easily
determined by the µτ map defined in (4).

Since the discussion in this section is quite technical, the reader only interested in the
physics can mostly focus on subsection 3.3 where our results are summarized.

3.1 Mathematical preliminaries

First of all, we recall briefly a few necessary definitions and notations concerning the modular
group of rank r and the natural space on which it acts, the Siegel upper-half space. The rank,
r, is a positive integer, which we will ultimately set equal to 2. But it is useful to keep it
arbitrary for a while, as setting r = 1 in formulas helps to make the connection with the more
familiar context of the standard Sp(2,Z) = SL(2,Z) modular group.

Let Hr be the 1
2 r(r + 1)-complex-dimensional Siegel upper half space, i.e. the space of

complex symmetric r × r matrices τ with Imτ positive definite. The rank r modular group is
the group Sp(2r,Z) of 2r × 2r integer matrices of the form

M =

�

A B
C D

�

, (32)

which preserve the symplectic form

J =

�

0 1r
−1r 0

�

, (33)

meaning that MJ M T = J . Using the parameterization in (32), this is equivalent to the two
conditions

ABT and C DT symmetric, and ADT − BC T = 1r . (34)

The modular group acts naturally on the Siegel half-space via fractional linear transforma-
tions,

M : τ 7→ (Aτ+ B)(Cτ+ D)−1 . (35)

For M(Γ ) ⊂ Sp(2r,Z) a subgroup which fixes a given τ ∈ Hr , recall the definition (4) of the
homomorphism µτ,

µτ : M(Γ )→ GL(r,C) (36)

M 7→ Cτ+ D ,

where C , D are related to M as in (32). Note that for (35) to be well-defined, the matrix µτ(M)
is non-singular. The center {±12r} ⊂ Sp(2r,Z) acts trivially on Hr , so we define

∆r = Sp(2r,Z)/{±12r} . (37)

3.2 The classification strategy

In order to complete our task, the first step is to find all the possible points τ ∈ Hr that can be
fixed points of at least one element of the modular group. The fact that not all points of Hr
satisfy this condition can be intuited from the rank 1 example. In that case, the fixed points are
the cusps (which do not belong to H1 itself, but only to an appropriate closure), and the elliptic
points τ= i and τ= e2iπ/3 and their (infinitely many) images under modular transformations.
We avoid all these images by restricting our attention to a fundamental domain of the action
of ∆1, defined for instance by the interior of the region |Re(τ)| ≤ 1

2 and |τ| ≥ 1 together with
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half its boundary. For simplicity we will keep all boundaries, and call the resulting set the
fundamental region; of course the drawback is that some points on the boundaries might have
more than one image under ∆1 in the domain. This is the case for τ = e2iπ/3, whose image
τ= e2iπ/3 + 1 also lies in the fundamental region.

The general description of a fundamental region Fr ⊂ Hr of the ∆r action on Hr is a
difficult problem. We refer to chapter I of [28] for a detailed presentation. Suffice it to say
that the region is described by a finite number of algebraic conditions on τ ∈ Hr . In the case
which will be of interest to us, r = 2, the conditions for being in F2 can be reduced to 28
conditions. Writing

τ=

�

z1 z3
z3 z2

�

, (38)

with zk = xk + i yk, the conditions are

• −1
2 ≤ xk ≤

1
2 for k = 1, 2,3 ,

• 0≤ 2y3 ≤ y1 ≤ y2 ,

• |zk| ≥ 1 for k = 1,2 ,

• |z1 + z2 − 2z3 ± 1| ≥ 1 ,

• |det(Z + S)| ≥ 1 for ±S =
�0 0

0 0

�

,
�1 0

0 0

�

,
�0 0

0 1

�

,
�1 0

0 1

�

,
� 1 0

0 −1

�

,
�0 1

1 0

�

,
�1 1

1 0

�

,
�0 1

1 1

�

.

Now that we have defined our choice of fundamental region (at least for r ≤ 2), we turn
to finding the possible fixed points τ ∈ Hr under the action of subgroups of the modular
group. The simplest such fixed points correspond to those left invariant by a single matrix
M ∈ Sp(2r,Z). We will denote by Hr(M) the subsets Hr(M) ⊂ Hr of points τ ∈ Hr fixed by M .
In general, Hr(M) will be a complex submanifold of Hr , and a priori its complex dimension
can be anything between 0 and 1

2 r(r + 1). Then given a set of matrices Ω ⊂ Sp(2r,Z)— note
that Ω is not not necessarily closed under matrix multiplication — we call similarly Hr(Ω)
the intersection of all the Hr(M) for M ∈ Ω. Of course, Hr(M) can have many disconnected
components in general, since it is invariant under the action of the discrete group ∆r . It
is enough to determine the connected components that intersect the fundamental region Fr
defined above. With these notations established, our first problem can be summarized as

Step 1: Find all fixed point sets Hr(Ω) for Ω ⊂ Sp(2r,Z)
which have non-empty intersection with Fr .

Let us illustrate this in the case of rank r = 1. There the possible points in F1 fixed
by non-identity elements in ∆1 are τ1 = i, τ2 = e2iπ/3 and τ3 = eiπ/3. The elements of
Sp(2,Z) which fix τi are the sets Ωi given by Ω1 = {±

�0 −1
1 0

�

}, Ω2 = {±
� 0 1
−1 1

�

,±
�1 −1

1 0

�

}, and
Ω3 = {±

�0 −1
1 1

�

,±
� 1 1
−1 0

�

}. (Here, for brevity, we have left off ±11 in all these sets which trivially
fixes all τ ∈ H1.) Then for each subset Ω ⊂ Ωi , H1(Ω) is the corresponding τi .

For rank r = 2 this problem was completely solved in 1961 by E. Gottschling [17], and
results in a finite list of manifolds. These complex manifolds can be parameterized by complex
numbers that we denote generically by z1, z2 and z3. For instance, to the set

Ω=

















−1 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 −1

















(39)
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we associate the manifold of matrices of the form (38) satisfying z1 = z2 = 2z3 = λ, which we
denote

�

λ 1
2λ

1
2λ λ

�

. (40)

Note that the intersection of this manifold with the fundamental region described above is of
lower dimension, since the conditions impose that the real part of λ be equal to−1

2 . We will not
try to specify further the intersections with the fundamental region, and in the following we
describe the manifolds using their parameterization, as in (40). These appear in the rightmost
column in the tables below.

Now that the possible fixed points are known, the second step is to determine the subgroups
of Sp(2r,Z) that leave them invariant. For any subset S ⊂ Hr , we call ∆r(S) the maximal
subgroup of ∆r that leaves all the elements of S invariant. The problem is to

Step 2: Find all maximal subgroups ∆r(S) ⊂∆r for S ⊂ Hr .

Clearly, finding all the possible∆r(S) reduces to computing∆r(Hr(Ω)), where the Hr(Ω) have
been classified above.

For rank r = 1 the result is easily seen to be ∆1(H1) = {I}, ∆1({τ = i}) = {I , S} ' Z2,
∆1({τ = e2πi/3}) = {I , ST, STST} ' Z3, and ∆1({τ = eπi/3}) = {I , TS, TSTS} ' Z3. Here we
have described the ∆1 = PSL(2,Z) elements as words in the generators S =

� 0 1
−1 0

�

/{±1}, and
T =

�1 1
0 1

�

/{±1}. This task was also performed for r = 2 by Gottschling in a second paper the
same year [18], yielding a finite list of subgroups of ∆2.

From this, it is straightforward to lift these subgroups of∆r to the corresponding subgroups
of Sp(2r,Z) by simply “undoing” the identification in (37), thus forming a list of subgroups
that we call Lr(S).

By definition, ∆r(Hr(Ω)) is the largest subgroup of ∆r that fixes Hr(Ω), but for our pur-
poses, we also want to consider subgroups of ∆r(Hr(Ω)) which will ultimately give the list of
allowed groups we are after. Since all the groups are finite, it is in principle straightforward
to enlarge Lr so that if Γ ∈ Lr then any subgroup of Γ is also in Lr . Thus,

Step 3: Find all subgroups Lr(S) ⊂ Sp(2r,Z) for S ⊂ Hr .

Computationally, this could be a difficult task. However, the orders of the groups that come
out of Gottschling’s classification at rank 2 are small enough (the largest group contains 72
elements), making it possible to use a brute force enumeration algorithm.

For the rank r = 1 case the result is again easily obtained, though lengthy since we have
to list all subgroups: L1(H1) = {Γ1, Γ2}, L1({τ= i}) = {Γ3}, L1({τ= e2πi/3}) = {Γ4, Γ5,ζ}, and
L1({τ= eπi/3}) = {Γ7, Γ8, Γ9}, where Γ1 = {I}, Γ2 = {±I}, Γ3 = {±I ,±S}, Γ4 = {I ,−ST, STST},
Γ5 = {I , ST,−STST}, Γ6 = {±I ,±ST,±STST}, Γ7 = {I ,−TS, TSTS}, Γ8 = {I , TS,−TSTS},
Γ9 = {±I ,±TS,±TSTS}. Here we now use I =

�1 0
0 1

�

, S =
� 0 1
−1 0

�

, and T =
�1 1

0 1

�

to denote
elements of SL(2,Z), not PSL(2,Z). Note that Γ1 and Γ2 are also subgroups of the SL(2,Z)
lifts of ∆1({τ = i}), ∆1({τ = e2πi/3}), and ∆1({τ = eπi/3}), but they are not included in the
corresponding L1 since they already appeared as subgroups fixing the larger fixed point set H1.
Still, it is clear that this list of groups is highly redundant; we will eliminate this redundancy
in the next step.

But first we illustrate this third step in the rank 2 case of the example (40). Gottschling
computed that the subgroup of ∆2 that fixes (40) is an order 6 group, which upon lifting to
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Sp(4,Z) becomes an order 12 group generated by the two matrices7







−1 1 0 0
0 1 0 0
0 0 −1 0
0 0 1 1






,







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0






. (41)

This group turns out to be isomorphic to the Weyl group of the exceptional Lie algebra G2,
and the corresponding geometry appears as item number 12 in Table 2. This group has 16
subgroups: the trivial group, seven isomorphic to Z2, one isomorphic to Z3, three isomorphic
to Z2

2, one isomorphic to Z6, two isomorphic to S3 (which is the Weyl group of A2), and the full
group. For each of these groups, we recompute the manifold of fixed points. For the Z3, the
Z6 and the two S3, we find again (40), and these appear as items number 27, 30 and 6 in the
tables of the next section. For the other subgroups, we find a manifold of complex dimension
≥ 2 which contains (40) as a submanifold, and we discard them since they will appear as
subgroups of the group associated to these manifolds.

Once the list Lr and the associated fixed points are known, the next step is:

Step 4: Compute the inequivalent actions on Cr of all Γ ∈ Lr .

It is a purely mechanical task to compute the action of a given M(Γ ) ⊂ Sp(2r,Z) on Cr via the
µτ homomorphism defined in (36) for any τ where τ is any element of the fixed manifold. If
τ belongs to a non-zero complex dimensional locus, we do not have to compute it for each τ
in the fixed manifold since as abstract groups all µτ(Γ ) ' µτ′(Γ ). Furthermore, by definition,
G = µτ(Γ ) ⊂ GL(r,C) preserves the flat metric (14) on Cr . By a change of coordinates on Cr

we can realize µτ(Γ ) as a finite subgroup of U(r), which we will denote by µ(Γ ) since it is
independent of the choice of τ in the fixed manifold of Γ . Note that µ(Γ ) defines the CB slice
orbifold CΓ = Cr/µ(Γ ) as a metric and complex geometry, but does not determine the special
Kähler structure of CΓ unless the particular value of τ in the fixed manifold of Γ is also given.

In the rank 1 case, it is immediate to see that Γ1 ' Z1, Γ2 ' Z2, Γ3 ' Z4, Γ4 ' Γ5 ' Γ7 '
Γ8 ' Z3, and Γ6 ' Γ9 ' Z6 as subgroups of U(1). Thus, metrically, there are just five rank-1
orbifold CB geometries, namely C/Z1 = C := I0, C/Z2 := I∗0, C/Z3 := IV ∗, C/Z4 := I I I∗,
C/Z6 := I I∗, where we have given the names of the Kodaira types of the singularities of their
associated Seiberg-Witten curves. The I0 and I∗0 orbifolds fix any τ ∈ H1, the IV ∗ and I I∗

orbifolds fix τ = e2πi/3, and the I I I∗ orbifold fixes τ = i. This completely specifies their
special Kähler geometries.

In the rank 2 case, as constructed here, the list L2 gives a few hundreds of distinct sub-
groups of U(2), but not all of them give rise to physically distinct geometries since some are
conjugates within U(2). In order to eliminate unnecessary redundant groups, we use the fact
that the U(2) subgroups have been classified by Du Val [29]. We review this classification in
appendix A.

3.3 Results

For each Du Val class of U(2) subgroups, we have worked out an explicit presentation, all of
this being summarized in the column “Explicit form" of Table 12. Given this, we compute three
group theoretic invariants,

• the list of the orders of the elements in the group,

7The matrices which appeared in the original paper are different representatives of the same conjugacy Sp(4,Z)
class. Our choice is motivated to be consistent with the discussion in other sections of the paper.
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• the sizes of the conjugacy classes (this is an integer partition of the cardinality of the
group), and

• the unrefined Hilbert series of the ring of invariants given by the Molien formula.

The specification “unrefined” is to warn the reader that in this paper we will consider two
different Hilbert series. The second one, which we will call instead refined Hilbert series, will
be defined in the next section and will track more information thanks to extra fugacities given
by the U(3) non-holomorphic isometry of the TSK space. We recall that the Molien formula
for a finite group G of matrices takes the simple form

HG(t) =
1
|G|

∑

g∈G

1
det (1− t g)

. (42)

The resulting object is the graded dimension of the ring of invariants of the group G. In many
cases, it is instructive to compute the plethystic logarithm (PLog) of this Hilbert series, defined
by [30,31]

PLogG(t) =
∞
∑

k=1

µ(k)
k

log
�

HG(t
k)
�

, (43)

where µ is the Möbius function

µ(k) =











0 k has one or more repeated prime factors

1 k = 1

(−1)n k is a product of n distinct primes

. (44)

Let’s briefly discuss the physics interpretation of the PLog, see [14,32,33] for a more in-depth
discussion. The PLog of a Hilbert series “is a generating series for the relations and syzygies
of the variety” in the words of [32, 33]. In simpler terms, it associates to a Hilbert series
of a coordinate ring of a variety a power series in which at a given order k generators of
the coordinate ring appear with positive signs while relations among those generators appear
with negative signs. If the variety is a complete intersection, the PLog terminates, and for
non-complete intersections it is instead generally an infinite series where higher degrees count
syzygies, that is relations among relations. We will see examples of these various cases shortly.
It is worth reminding the reader that there exist many examples in which the Hilbert series
only capture a limited amount of information about the variety and its PLog fails at correctly
identifying generators, relations and syzygies of its coordinate ring.

It turns out that these three pieces of data uniquely characterize each Du Val geometry.
As a consequence, for each entry in the list L2, we can compute the same group theoretic
invariants, and read out the corresponding Du Val geometry; if two entries give the same Du
Val geometry, we list the latter only once. For instance, let’s compute the three invariants in
the case of the order 12 group considered above:

• the orders of the elements are {1,2, 2,2, 2,2, 2,2, 3,3, 6,6},

• the sizes of the conjugacy classes are {1,1, 2,2, 3,3},

• the Hilbert series of the ring of invariants is (1− t2)−1(1− t6)−1, and its PLog is t2+ t6.

This uniquely identifies the Du Val geometry DV3(1,3).
The results for rank 2 of the computations outlined in section 3.2 are presented in the form

of three tables:
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Table 2: List of geometries whose holomorphic coordinate rings are freely gener-
ated. The geometry depends not just on the abstract group Γ but on its action
µ(Γ ) ∈ GL(2,C) which is determined by its Du Val class. With an abuse of notation,
the direct product in the table above signifies that each factor of the product groups
acts irreducibly and µ(Γ1× Γ2) = µ(Γ1)⊕µ(Γ2). STn denotes the n-th Shephard-Todd
group [23]. The meaning of the colors is the same as in Table 1.

# |Γ | Γ Du Val class P LogΓ (t) O(t2) PLogMΓ
Fix(Γ )

1 1 1 DV1(1, 1,2,1) 2t 0
�

z1 z3
z3 z2

�

2 2 Z2 DV1(1, 1,4,1) t+t2 O1+O2+O3

�

z1
z1
2z1

2 z2

�

3 3 Z3 DV1(1, 1,6,1) t+t3 O3

�

z1 0
0 e2πi/3

�

4 4 W (so(4))=Z2×Z2 DV1(2, 2,2,1) 2t2 2O1+2O2+2O3

�

z1
z1
2z1

2 z2

�

5 4 Z4 DV1(1, 1,8,1) t+t4 O3

�

z1 0
0 i

�

6 6 W (su(3))=G(3, 3,2) DV′3(1,3) t2+t3 O1+O2+O3

�

z1
z1
2z1

2 z1 + 1

�

7 6 Z2×Z3 DV1(1, 1,12, 5) t2+t3 O1+O2+2O3

�

z1 0
0 e2πi/3

�

8 6 Z6 DV1(1, 1,12, 1) t+t6 O3

�

z1 0
0 e2πi/3

�

9 8 W (so(5))=G(4,4, 2) DV4(1,1) t2+t4 O1+O2+O3

� 2z3 z3

z3
z2
3−1
2z3

�

10 8 Z2×Z4 DV1(2, 2,4,1) t2+t4 O1+O2+2O3

�

z1 0
0 i

�

11 9 Z3×Z3 DV1(3, 3,2,1) 2t3 2O3

�

e2πi/3 0
0 e2πi/3

�

12 12 W (G2)=G(6, 6,2) DV3(1,3) t2+t6 O1+O2+O3

�

z1
z1
2z1

2 z1 + 1

�

13 12 Z2×Z6 DV1(2, 2,6,1) t2+t6 O1+O2+2O3

�

z1 0
0 e2πi/3

�

14 12 Z3×Z4 DV1(1, 1,24, 7) t3+t4 2O3

�

e2πi/3 0
0 i

�

15 16 Z4×Z4 DV1(4, 4,2,1) 2t4 2O3

�

i 0
0 i

�

16 16 W (so(5))oZ2=G(4,2, 2) DV3(2,2) 2t4 O3

�

i 0
0 i

�

17 18 Z3×Z6 DV1(3, 3,4,1) t3+t6 2O3

�

e2πi/3 0
0 e2πi/3

�

18 18 W (su(3))oZ3=G(3, 1,2) DV′3(3,3) t3+t6 O3

�

e2πi/3 0
0 e2πi/3

�

19 24 G(6, 3,2) DV4(1,3) t4+t6 O3
1p
3

�

2i i
i 2i

�

20 24 Z4×Z6 DV1(2, 2,12, 5) t4+t6 2O3

�

e2πi/3 0
0 i

�

21 32 G(4, 1,2) DV4(2, 2)=DV3(2, 4) t4+t8 O3

�

i 0
0 i

�

22 36 Z6×Z6 DV1(6, 6,2,1) 2t6 2O3

�

e2πi/3 0
0 e2πi/3

�

23 36 W (su(3))oZ6=G(6, 2,2) DV3(3,3) 2t6 O3

�

e2πi/3 0
0 e2πi/3

�

24 48 ST♠12 DV8(1) t6+t8 O3
1
3

�

1+2i
p

2 −1+i
p

2
−1+i

p
2 1+2i

p
2

�

25 72 G(6, 1,2) DV4(3,3) t6+t12 O3

�

e2πi/3 0
0 e2πi/3

�

♠ = ST12 is isomorphic to the binary octahedral group.

Caption
Product of rank-1 theories Known discrete gauging or S-folds

Simple N = 4 theories Theories with no known realization

• Table 2 consists of the groups where PLogΓ (t) is a polynomial with positive coefficients.
In that case, the ring of invariants is freely generated. Since we only consider rank two
geometries, PLogΓ (t) takes the form td1 + td2 where d1 and d2 are two positive integers
(which can be equal). This means that the Coulomb branch is freely generated by two
operators of dimensions d1 and d2.

• Table 3 consists of the groups where PLogΓ (t) is a polynomial with one negative coef-
ficient after some positive coefficients. For rank two geometries, in this case PLogΓ (t)
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Table 3: List of geometries which are complete intersections as complex varieties.
"Quaternion" stands for the order 8 quaternion group; Dicn is the order 4n dicyclic
group; SD16 is the semi-dihedral group of order 16; Mn(2) is the order 2n modular
maximal-cyclic group (M4(2) is sometimes called M16). See equations (79), (80) and
(81) for an explicit definition. The meaning of the colors is the same as in Table 1,
and in addition we painted in red the geometries that are excluded in Section 4.

# |Γ | Γ Du Val class PLogΓ (t) O(t2) PLogMΓ
Fix(Γ )

26 2 Z2 DV1(2, 2,1, 0) 3t2−t4 3O1+3O2+4O3+O4

�

z1 z3
z3 z2

�

27 3 Z3 DV1(1, 3,2, 1) t2+2t3−t6 O1+O2+2O3+O4

�

z1
z1
2z1

2 z1 + 1

�

28 4 Z4 DV1(2, 4,1, 0) t2+2t4−t8 O1+O2+2O3+O4

�

z1 − 1
2

− 1
2 z1 + 1

�

29 4 Z4 DV1(1, 1,8, 3) t2+t3+t4−t6 O1+O2+2O3

�

z1 0
0 i

�

30 6 Z6 DV1(2, 6,1, 0) t2+2t6−t12 O1+O2+2O3+O4

�

z1
z1
2z1

2 z1 + 1

�

31 6 Z6 DV1(2, 2,3, 1) t2+t4+t6−t8 O1+O2+2O3

�

z1 0
0 e2πi/3

�

32 6 Z6 DV1(3, 1,4, 1) 2t3+t6−t9 2O3

�

e2πi/3 0
0 e2πi/3

�

33 8 Z2×Z4 DV1(4, 4,1, 0) 3t4−t8 2O3

�

i 0
0 i

�

34 8 Quaternion DV2(1, 2)=DV3(1,2) 2t4+t6−t12 O3+O4

�

i 0
0 i

�

35 12 Z2×Z6 DV1(2, 6,2, 1) t4+2t6−t12 2O3
1p
3

�

2i i
i 2i

�

36 12 Dic3 DV2(1, 3) t4+t6+t8−t16 O3+O4
1p
3

�

2i i
i 2i

�

37 12 Z12 DV1(1,1, 24,5) t4+t5+t6−t10 2O3

�

e2πi/3 0
0 i

�

38 16 SD16 DV4(1, 2) t4+t6+t8−t12 O3
1
3

�

1+2i
p

2 −1+i
p

2
−1+i

p
2 1+2i

p
2

�

39 16 M4(2) DV4(2, 1) t4+2t8−t16 O3

�

i 0
0 i

�

40 18 Z3×Z6 DV1(6, 6,1, 0) 3t6−t12 2O3

�

e2πi/3 0
0 e2πi/3

�

41 24 SL(2,3)♣ DV5(1) t6+t8+t12−t24 O3+O4
1
3

�

1+2i
p

2 −1+i
p

2
−1+i

p
2 1+2i

p
2

�

42 24 W (so(5))oZ3 DV4(3, 1) 2t6+t12−t18 O3

�

e2πi/3 0
0 e2πi/3

�

43 36 Dic3×Z3 DV2(3, 3) t6+2t12−t24 O3

�

e2πi/3 0
0 e2πi/3

�

♣ = SL(2, 3) is isomorphic to the binary tetrahedral group.

Caption
Discrete gauging of U(1)2 N = 4 Known discrete gauging or S-folds

Excluded geometries Theories with no known realization

takes the form td1 + td2 + td3 − td4 . This means the Coulomb branch is a complete in-
tersection, generated by three operators of dimensions d1, d2 and d3 which satisfy an
algebraic relation at degree d4.

• Table 4 lists the other groups, where PLogΓ (t) is an infinite series.

In those tables, the first column is a label that we use to identify the geometries. We found
53 geometries. The second column gives the cardinality of the group and the third column give
an abstract group isomorphic to the corresponding finite U(2) subgroup. The fourth column
gives the Du Val class, followed in the fifth column by the unrefined Hilbert series of the ring
of invariants (given in the form of PLogΓ (t) in Tables 2 and 3 where the latter is a polynomial,
and given as a rational function in Table 4). Finally, the last two columns give the order t2 of
the PLog of the refined Hilbert series (more below) and the set of Fix(Γ ) in parametric form,
as described previously.

There is some arbitrariness in our choice of naming of the abstract groups appearing in
column three. For instance in the case of cyclic groups, we have the isomorphism Zp×Zq = Zpq
if p and q are mutually prime. For some non-abelian groups of low order, different names can
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Table 4: List of geometries whose holomorphic coordinate rings are neither freely
generated nor complete intersections. Note that all the groups are abelian. Since the
PLog of the Hilbert series have no simple expression, we tabulate the Hilbert series
themselves. For an explanation of the coloring code, see Section 4.1.

# |Γ | Γ Du Val class HΓ (t) O(t2) PLogMΓ
Fix(Γ )

44 3 Z3 DV1(3,1, 2,1) 2t3+1
(1−t3)2

4O3

�

e2πi/3 0
0 e2πi/3

�

45 4 Z4 DV1(4,2, 1,0) 3t4+1
(1−t4)2

4O3

�

i 0
0 i

�

46 5 Z5 DV1(1,1, 10,3) t7+t6+t4+t3+1
(1−t5)2

2O3

�

e2πi/5 1
2 i
�p

5−2
p

5+i
�

1
2 i
�p

5−2
p

5+i
�

e3πi/5

�

47 6 Z6 DV1(1,3, 4,1) t5+t4+1
(1−t3)(1−t6) 2O3

1p
3

�

2i i
i 2i

�

48 6 Z6 DV1(6,2, 1,0) 5t6+1
(1−t6)2

4O3

�

e2πi/3 0
0 e2πi/3

�

49 8 Z8 DV1(4,2, 2,1) 2t8+t4+1
(1−t4)(1−t8) 2O3

�

i 0
0 i

�

50 8 Z8 DV1(2,4, 2,1) t8+2t6+1
(1−t4)(1−t8) 2O3

1
3

�

1+2i
p

2 −1+i
p

2
−1+i

p
2 1+2i

p
2

�

51 10 Z10 DV1(2,2, 5,2) t10+t8+t6+1
(1−t4)(1−t10) 2O3

�

e2πi/5 1
2 i
�p

5−2
p

5+i
�

1
2 i
�p

5−2
p

5+i
�

e3πi/5

�

52 12 Z2×Z6 DV1(6,2, 2,1) 2t6+1
(1−t6)2

2O3

�

e2πi/3 0
0 e2πi/3

�

53 12 Z12 DV1(6,4, 1,0) 3t12+2t6+1
(1−t6)(1−t12) 2O3

�

e2πi/3 0
0 e2πi/3

�

Caption Excluded geometries

be used depending on the context; we tried to use the most common ones in the table. To help
the reader, we recall the definition of the various finite groups that we used in the captions of
the various tables, and, in appendix B, we give the definition of the G(m, p, r) series of complex
reflection groups.8

It is important to realize that the same abstract group can correspond to various distinct
geometries, depending on the way it is embedded in U(2). We give below an example of
this fact involving a complex reflection group. The Du Val label, on the contrary, entirely and
unambiguously characterizes the geometry since it encodes not just the abstract group but also
the equivalence class of its embedding in U(2). The Du Val classes are reviewed in appendix
A.

3.4 Complex singularity structure

In section 2, we discussed at length the metric singularity structures of the orbifold geometries
and their physical interpretation. Here we will spend a few words to describe, instead, the
complex singularities of these spaces. The first point to emphasize is that the locus of complex
singularities is generically a proper subvariety of the locus of metric singularities. The second
point is that these kinds of singularities have clearly distinct physical interpretations: metric
singularities occur where states charged under the low energy U(1)r gauge group become
massless, and signal the occurrence of non-trivial either interacting SCFT or IR free theories
in the IR; complex singularities occur whenever the chiral ring of moduli space operators of
the IR SCFT is not freely generated.

Let us first consider the possible dimensionality of the complex singularities. It is a well-
known fact that rank-1 orbifolds do not develop complex structure singularities (this can be de-
duced, for instance, from Table 5 by inspection). As a consequence, we expect no co-dimension
1 complex singularities in a rank-r orbifold. In the particular case of rank 2, this means that all

8We have used the standard definition for the groups G(m, p, r); note that it differs from the non-standard
notation used in [12], where the positions of m and r are exchanged.
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complex singularities will be points, and by conformal invariance there can be only one such
point, namely the origin. The question then boils down to, for each geometry, how singular
(if at all) the origin is.

By definition, all the geometries presented in Table 2 are freely generated, which means
that the orbifolds are isomorphic to C2 as complex algebraic varieties, and there are no com-
plex singularities in those cases. On the other hand, every geometry listed in Tables 3 and 4
contain complex singularities. These can be characterized algebraically, using a few tools from
invariant theory and commutative algebra, namely

• the averaging trick to generate invariant polynomials of a given degree under a finite
group;

• the Molien formula (42) to compute the Hilbert series of the invariant ring of a finite
matrix group;

• an algorithm to compute the Hilbert series of a polynomial ring defined by a homoge-
neous ideal.9

Using these tools, given a finite matrix group G = µ(Γ ) ⊂ GL(r,C) acting by left multiplication
on (z1, . . . , zr) ∈ Cr one proceeds as follows:10

1. Compute the Hilbert series HG(t) of the ring of invariants of G using (42), and look at
the lowest power d > 0 in its series expansion. This signals the fact that there exists an
invariant polynomial of G at degree d.

2. Apply the averaging trick on a basis of homogeneous polynomials in the zi of degree d
until a non-zero invariant a1 = P1(z1, . . . , zr) is produced. Compute the Hilbert series
H1(t) of the ring C[z1, . . . , zr , a1]/I1, where I1 is the ideal generated by P1.

3. If the Hilbert series is equal to HG(t), we have the ring of invariants. Otherwise, re-
peat steps 1 and 2 starting with the difference HG(t)− H1(t). This will generate a sec-
ond invariant a2 = P2(z1, . . . , zr) and the Hilbert series H2(t) of C[z1, . . . , zr , a1, a2]/I2,
where I2 is the ideal generated by P1 and P2. Iterate these steps until for some m,
HG(t) = Hm(t).

4. We now know that the ring of invariants is described by C[z1, . . . , zr , a1, . . . , am]/Im.
Compute the elimination ideal in which the z1, . . . , zr have been eliminated, and choose
a system of generators, fi , i = 1, . . . , p, of this ideal. These correspond to algebraic rela-
tions satisfied by the invariants a1, . . . , am. In other words, these describe the Coulomb
branch as a complex algebraic variety.

5. Compute the singular locus of this algebraic variety by computing the rank of the p×m
matrix of derivatives ∂ fi/∂ ak. To check whether they vanish on the variety, one can
compute a Gröbner basis associated to the fi and use Euclid’s algorithm to reduce all the
minors with respect to this basis. We compute on minors of decreasing order until we
find the order, s, at which they do not vanish, meaning that the variety has dimension
r − s. The subvariety of complex singularities is then given by the vanishing of all the
minors of order s.

Many explicit examples are given in [14] but let’s work out here how things work in one
example.

9This algorithm can be time consuming, as it involves a Gröbner basis computation.
10See also appendix A of [13] for the same algorithm applied to Lie groups.
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Example: geometry number 51. For entry 51, the geometry is DV1(2,2, 5,2). The associ-
ated group is cyclic of order 10, generated for instance by the element corresponding to x = 8
and y = 9 in (84). This means the action on C2 is given by

(z1, z2)∼ (ω3z1,ωz2) , (45)

where ω = e−2πi/10. The Hilbert series of the ring of invariants, computed using the Molien
formula, is

1+ t6 + t8 + t10

(1− t4)(1− t10)
. (46)

Steps 2 and 3 in the algorithm above produce a set of 5 invariants

a1 = z3
1z2

a2 = z2
1z4

2

a3 = z1z7
2

a4 = z10
1

a5 = z10
2 .

It turns out that the ring of invariants is generated by two primary invariants of degrees 4 and
10, and three secondary invariants of degrees 6, 8 and 10, corresponding to the standard form
(46). Using the elimination ideal, one finds a description of the algebraic variety as the set of
zeroes of the polynomials

f1 = a1a3 − a2
2 (47)

f2 = a2a3 − a1a5 (48)

f3 = a2
3 − a2a5 (49)

f4 = a4
1 − a2a4 (50)

f5 = a4a3 − a3
1a2 (51)

f6 = a3
1a3 − a4a5 . (52)

To cross-check the validity of the result, the Hilbert series of the ideal generated by these 6
polynomials should correspond to the wanted Hilbert series (46), divided by (1−t)2 to account
for the two eliminated generators z1, z2.

Now we want to find the singular locus. We look at the matrix of the partial derivatives
∂ fi/∂ x for i = 1, . . . , 6 and x = a, b, c, d, e, and check that on the variety it generically has
rank 3. The singular points correspond to the points where the rank drops, which is given by
the vanishing of all the 3 × 3 minors. Due to the large number of order 3 minors, it is easy
to find a necessary and sufficient condition for their joint vanishing. One finds that the only
singular point is the origin a = b = c = d = e = 0.

3.5 Remarks

Before delving deeper in understanding the physics associated to the geometries associated to
the groups discussed in this section, let us point out various subtleties from the mathematical
point of view.

• The freely generated geometries must correspond to (not necessarily irreducible) crys-
tallographic complex reflection groups (CRGs) [10]. These groups have been classi-
fied [34]. At rank two, the CRGs are either of the form Zd1

× Zd2
for di ∈ {1,2, 3,4, 6}

(reducible action), or of the form G(m, p, 2), or one of the 19 exceptional rank two
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CRGs, labeled by their Shephard–Todd name, STi for 4 ≤ i ≤ 22. It is a consistency
check that all the Du Val groups appearing in Table 2 indeed correspond to one of these
crystallographic CRGs.

• Weyl groups are a special case. In fact they are the only crystallographic real reflection
groups. This has two consequences. By being a reflection group, the CB coordinate
ring of the resulting geometry is freely generated and the CB is isomorphic to Cr , r
being the rank. Secondly, by being real, the Weyl group action preserves a symmetric
bilinear form which implies that one of their CB generator has always scaling dimension
2. This in turn, because of N = 3 supersymmetry, implies that the theory has an exactly
marginal operator and an extra supercharge. Thus we recover the expected result that
Weyl groups define the moduli spaces of N = 4 SCFTs.

• As we mentioned above, a given abstract group does not characterize the geometry if its
action on C2 is not specified. This explains why many abstract groups that can be seen
in some embeddings as CRGs do not give rise to freely generated geometries. This is the
case of all the cyclic groups appearing in Tables 3 and 4. For a more striking example,
geometry number 41 in Table 3 is an orbifold of C2 by the binary tetrahedral group,
which is isomorphic as an abstract group to a complex reflection group, called ST4 in
the Shephard–Todd classification. In this case the U(2) finite subgroup specified by the
Du Val label is the order 24 group generated by the two matrices

�

0 i
i 0

�

and
1
2

�

1+i 1+i
−1+i 1−i

�

. (53)

None of these matrices is a complex reflection, since they both fix only the origin. 11

• In Table 4, we have given the Hilbert series as a rational function of t in the form

P(t)
(1− td1)(1− td2)

, (57)

where P(t) is a polynomial with positive integer coefficients. When this is the case, we
say that the Hilbert series is written in a standard form. One often interprets a Hilbert
series of this form as saying that there are two primary generators of dimensions d1 and
d2. However such a form is not unique in general. For instance, taking the Hilbert series
for geometry number 51, we have

t10 + t8 + t6 + 1
(1− t4) (1− t10)

=
t12 + t10 + 2t8 + t4 + 1
(1− t6) (1− t10)

. (58)

This simply means that the denominators of the Hilbert series in Table 4 should not be
interpreted as the degrees of two generators of the Coulomb branch. A deeper analysis
is necessary in those cases, such as the one given above for entry 51. Thus the notion
of a primary operator is neither uniquely defined nor particularly useful to characterize
the physics of the corresponding geometry.

11The invariant ring C[z1, z2]G is generated by the three invariant polynomials

a = z1z2

�

z4
2 − z4

1

�

(54)

b = z8
1 + 14z4

2z4
1 + z8

2 (55)

c = z12
1 − 33z4

2z8
1 − 33z8

2z4
1 + z12

2 (56)

of respective degrees 6, 8 and 12 which satisfy the relation b3 = 108a4 + c2 at degree 24, in agreement with the
PLog given in the table.

24

https://scipost.org
https://scipost.org/SciPostPhys.9.6.083


SciPost Phys. 9, 083 (2020)

• The ring of invariants of a finite group Γ in a given representation admits what is called a
Hironaka decomposition (see [35] for a review), which identifies primary and secondary
generators of the ring. A Hilbert series in standard form is associated to such a decom-
position. However it should be emphasized that in addition to the non-uniqueness of
the standard form discussed above, it can happen that no Hironaka decomposition of the
ring of invariants corresponds to a given standard form. An example of such a situation
is given in [36], section 2.1.

4 Constraints from the Hilbert series

The last section outlined how the classification of all TSK orbifold geometries is carried out,
giving the entries of Tables 2, 3 and 4. In this section we will show that additional constraints
on physically allowed MΓ can be inferred by considering the Hilbert series of the entire moduli
space of vacua and not only that associated to a single irreducible action on an N = 2 CB
section Cr . The way that the special coordinates on C3r transform under the action of the
non-holomorphic U(3)R isometry of MΓ carries non-trivial information about the operators
whose vevs parametrize the moduli space and thus constrain the minimal operator content of
a putative theory TM realizing the moduli space. In particular we are able to count the number
of stress tensors of TM and in some cases the presence of higher spin currents which show the
existence of a free sector in TM. This in turn, as we will explain in detail below, can be turned
into a set of constraints which further refine our set of admissible geometries captured by the
color shading on the tables.

Let us first introduce some notation. Representations of U(3)R = SU(3)R × U(1)R will be
denoted (R1, R2; r) where (R1, R2) are the Dynkin labels of SU(3)R and r is the U(1)R charge.
A generic weight in this representation will be denoted similarly (λ1,λ2; r).

As mentioned, the main object we use is the Hilbert series of the coordinate ring of the
moduli space MΓ (12) [14,32,33,37–39]. Since MΓ carries a non-holomorphic U(3)R isom-
etry, we can consider a refined version of the Hilbert series, given by the Molien formula (42)
as

HMΓ
(t, v, u) =

1
|Γ |

∑

g∈Γ

1

det
�

1− t · v · u1 ·µτ(g)
�

1

det
�

1− t · v u2
u1
µτ(g)

�

1

det
�

1− t
v u2µτ(g)

� .

(59)
Let us now pause and discuss (59). First of all, the fact that the Hilbert series factorizes in
three pieces is an immediate consequence of the fact that the group action on C6 is chosen to
be a direct sum of three factors ρ(g) = µτ(g)⊕ µτ(g)⊕ µτ(g), each individually acting on a
C2. To understand the choices of fugacities in (59), recall that the holomorphic coordinates
on MΓ are (11)

(z1
i , z2

i , z3i) := (a1
i , a2

i , a3i), i = 1, . . . , 2, (60)

where the aI
i are the scalar primaries of a free N = 3 vector multiplet which transform in a

fundamental (1, 0;1) of the U(3)R symmetry. A straightforward group theory calculation then
shows that the U(3)R weights of the holomorphic coordinates above are

λ1 λ2 r
z1

i 1 0 1
z2

i −1 1 1
z3i 0 1 −1

(61)

The powers of the (u1, u2) fugacities in (59) are the SU(3)R weights while that of v is the
U(1)R charge. Note the effect of the complex conjugation in (11): while the character of the
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fundamental representation of SU(3)R is u1 +
u2
u1
+ 1

u2
(with ui , i = 1,2, complex numbers of

unit norm, so that ui =
1
ui

), the weights that appear in (59) are instead u1, u2
u1

and u2. The
parameter t is redundant but we keep it for convenience in tracking the scaling dimension of
various terms in the Hilbert series. Is worthwhile to also introduce the Hilbert series of the
coordinate ring of the N = 2 CB and HB slices of MΓ which are defined in (13) and (15). It
is straightforward to then reduce (59) to obtain

HCΓ (t, v, u) =
1
|Γ |

∑

g∈Γ

1

det
�

1− t · v · u1 ·µτ(g)
� , (62)

HHΓ (t, v, u) =
1
|Γ |

∑

g∈Γ

1

det
�

1− t · v u2
u1
µτ(g)

�

1

det
�

1− t
v u2µτ(g)

� . (63)

The definition of the PLog in this case is a straightfoward generalization of (43):

PLogMΓ /HΓ /CΓ (t, v, u) =
∞
∑

k=1

µ(k)
k

log
�

HMΓ /HΓ /CΓ (t
k, vk, uk)

�

, (64)

where uk := (uk
1, uk

2) and µ(k) is defined in (44).
Now let’s discuss the operators which can acquire a vev parametrizing an N = 3 moduli

space of vacua and thus can be tracked by the PLog of the Hilbert series defined above. As
discussed at length in [7], these are operators which are scalars, saturate a bound relating their
scaling dimensions and their R-charges and they are chiral in the chosen complex structure,

that is they are annihilated by the supercharge Q
(0,1;1)

.12 N = 3 superconformal invariance
constrains how these operators can appear. Here we will summarize the main ingredients
needed, for a more in-depth discussion of N = 3 chiral rings see [7–9].

N = 3 chiral multiplets or anti-chiral multiplets are those of types X B1 or their conjugates
in table 18 of [40].13 Complex conjugation acts on the quantum numbers of a representation
as follows:

R= (R1, R2) 7→ R = (R2, R1),

λ= (λ1,λ2) 7→ −λ= (−λ1,−λ2), (65)

where we have also shown its action on SU(3)R weights. A systematic discussion of all op-
erators which can be counted by the PLog of (59) is outside the scope of this paper; we only
mention that an analysis of the PLog of the Hilbert series of MΓ can be enough to reconstruct
the VOA associated to TM [41]. Here we will focus on a few special operators.

The special multiplets we are interested in are the stress tensor multiplet and those which,
along with operators which parametrize N = 3 moduli space, also contain higher spin cur-
rents. These are, in the nomenclature of [40],14

• B1B1[0;0](1,1;0)
2 , which contains the stress tensor.

• The only two multiplets with both a chiral ring operator and higher spin currents are

– A2B1[0; 0](1,0;8)
2 and its complex conjugate B1A2[0; 0](0,1;−8)

2 ,

12Here the superscript gives the U(3)R weights of the operator, and not the Dynkin labels of a representation.

Thus Q
(0,1;1)

refers to the highest weight component of the representation and not the whole triplet of supercharges
transforming in the antifundamental representation (0, 1;1).

13It is useful to present a dictionary between the nomenclature of [40] and that of [9]: B1B1 = bB[R1 ,R2],

A`B1 =D[R1 ,R2], j , LB1 = B[R1 ,R2],R3 , j .
14The superscripts indicate the U(3)R Dynkin labels, the subscript the scaling dimension of the superconformal

primary and between the square brackets are the Lorentz spins.
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A2B1[0; 0](0,1;4)
2

(01)

B1B1[0; 0](1,1;0)
2

(0 ,1)

Figure 1: SU(3) weight lattice, with the vector showing our choice of the weight of

the supercharge, Q
(0,1;1)

defining the chiral ring. (a) Red dots are the weights of the
(0,1) representation that correspond to A2B1[0; 0](0,1;4)

2 . The product (0, 1)⊗ (0, 1)
decomposes in (0, 2) (in orange and yellow) which contains the null states, and (1, 0)
(represented in yellow) which are non-null states. The components of a chiral mul-

tiplet in the 3 annihilated by Q
(0,1;1)

lie on the dashed line. (b) Blue dots are the
(1,1) weights corresponding to B1B1[0; 0](1,1;0)

2 . The product (1, 1)⊗ (0, 1) decom-
poses into the null states (1,2) (all green dots, dark and light) and the non-null states
(2,0) and (0, 1) (lighter shades of green). The components of a chiral multiplet in

the (1,1) annihilated by Q
(0,1;1)

lie on the dashed line. The light blue arrows show
the choice of simple roots with respect to which our Dynkin labels are defined.

– A2B1[0;0](0,1;4)
2 and its complex conjugate B1A2[0;0](1,0;−4)

2 .

The [0;0] indicates that Lorentz spin of the superconformal primary is a scalar in all of these
cases and it is in fact the operator contributing to the chiral ring. Identifying exactly which

components of the superconformal primary are annihilated by the Q
(0,1;1)

supercharge is a
straightforward group theory exercise which we will now review; for more details see [7].

Consider a superconformal primary in the (R1, R2; r) irreducible representation (irrep) of
U(3)R. Acting by Q we obtain operators transforming in the ((R1, R2) ⊗ (0,1); r + 1) which
is in general a reducible representation. The null states lie in the (R1, R2 + 1; r + 1) [40],
which is only one of the possibly many irreps into which the tensor product decomposes. A
component of the (R1, R2; r) irrep with weight (λ1,λ2; r), is mapped by the top component

Q
(0,1;1)

to a state with weight (λ1,λ2 + 1; r + 1). The null representation always contains a
component with such a weight, but that is not enough to assert that (λ1,λ2; r) is annihilated

by Q
(0,1)

since (λ1,λ2+1; r +1) might also appear as a weight of a non-null representation in
the decomposition of ((R1, R2)⊗(0,1); r+1). We conclude that (λ1,λ2; r) is null if and only if
(λ1,λ2+1; r+1) does not appear in any non-null irreps of ((R1, R2)⊗(0,1); r+1). This can be
understood very easily by drawing the weight diagrams; see Figure 1. (We did not draw the
weight diagrams corresponding to A2B1[0; 0](1,0;8)

2 or its conjugate since neither ever appear
in the orbifold geometries analyzed here.)

In order to be able to isolate the contributions from the stress tensor multiplet and those
containing higher spin currents, which are all dimension-2 operators, we need to also dis-
cussed other N = 3 chiral multiplet which contribute a chiral ring operator of scaling di-
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B1B1[0; 0](2,0;4)
2

(0,1)

B1B1[0; 0](0,2;−4)
2

(0 ,1)

(b)Figure 2: We use the same conventions as in Figure 1. (a) The product of the (2, 0)
(in red) with (0, 1) gives the null states in the (2,1) (in pink and yellow) and the non-
null states (1,0) (in yellow). (b) The product of the (0, 2) (in blue) with (0, 1) gives
the null states in the (0, 3) (in green) and the non-null states in the (1,1) (in light

green). In both cases the component of the chiral multiplets annihilated by Q
(0,1;1)

lie on the dashed line.

mension 2. Luckily the only such multiplets are B1B1[0;0](0,2;−4)
2 and B1B1[0; 0](2,0;4)

2 . These
multiplets are very special as they contain an exactly marginal deformation operator, an extra
supersymmetry-current multiplet, and an N = 2 Coulomb branch operator of scaling dimen-
sion 2. Consistent with what we said in previous section, if these multiplets are present than
the theory has an enlarged N = 4 supersymmetry. The components of the superconformal

primary of these operators annihilated by Q
(0,1;1)

are depicted in Figure 2.
The occurrence of chiral primaries from these multiplets are easily extracted from the PLog

(59). Based on Figures 1 and 2, we identify four types of contributions at order t2 of the PLog,
each representing a different N = 3 multiplet. We call them O1, O2, O3 and O4 and they
correspond to the following “characters":15

B1B
(0,2;−4)
1 ≡O1 =

u2
2

v2
,

B1B
(2,0;4)
1 ≡O2 = v2

�

u2
2

u2
1

+ u2
1 + u2

�

,

B1B
(1,1;0)
1 ≡O3 =

u2
2

u1
+ u1u2,

A2B
(0,1;4)
1 ≡O4 = u2v2.

(66)

The result of computing the PLog (59) are reported in Tables 2, 3 and 4. Since all the
special operators we have discussed have scaling dimension two, we only show the charac-
ter decomposition of the order t2 terms of the PLog. The generic form of such a term is
c1O1+c2O2+c3O3+c4O4 where the ci are interpreted as follows:

• c1 = c2 counts the number of extra supersymmetry current multiplets, which each also
contain an exactly marginal operator and a N = 2 CB operator of scaling dimension 2.

15We adopt the convention that the power of v is half the U(1)R charge.
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If c2 6= 0 there is a supersymmetry enhancement and TM is an N = 4 theory.

• c3 counts the number of stress-tensor multiplets. If c3 > 1 then TM theory is a product
theory.

• c4 counts the number of higher-spin multiplets. If c4 6= 0, then TM has a free sector.

To get a better feeling for the information which can be extracted by analyzing the O(t2)
terms of PLogMΓ

, let’s look in detail at a few examples.

Example Focus first on entry #6 of Table 2. This entry describes the moduli space of vacua
of the su(3) N = 4 theory. Because of the supersymmetry enhancement to N = 4 we expect
c1 = c2 6= 0. Moreover since the theory has a single exactly marginal operator, we expect
c1 = c2 = 1. We also expect a single stress-tensor, that is c3 = 1 and no higher spin currents
to be present as the theory is interacting, thus c4 = 0. So these well-known facts about the
su(3) N = 4 theory lead us to conclude that the 6th column of entry #6 of Table 2 should be
O1 +O2 +O3 which is in fact what we find by analyzing the Hilbert series associated to the
corresponding orbifold geometry in the following way. Evaluating (59) for the group G(3,3, 2)
defined by (95) gives

HMΓ
(t, v, u) =

1
6





1
�

t2u2
1v2 − 2tu1v + 1

�

�

t2u2
2

v2 −
2tu2

v + 1
��

t2u2
2v2

u2
1
− 2tu2v

u1
+ 1

�

+
2

�

t2u2
1v2 + tu1v + 1

�

�

t2u2
2

v2 +
tu2
v + 1

��

t2u2
2v2

u2
1
+ tu2v

u1
+ 1

�

+
3

�

1− t2u2
1v2

�

�

1− t2u2
2

v2

��

1− t2u2
2v2

u2
1

�



 , (67)

from which we extract the PLog (64) at first non-trivial order

PLogMΓ /HΓ /CΓ (t, v, u) =

�

u2
2v2

u2
1

+ u2
1v2 +

u2
2

u1
+ u1u2 +

u2
2

v2
+ u2v2

�

t2 +O(t3) . (68)

The coefficient of t2 is seen to be O1 +O2 +O3 using the characters (66).

Example For another example, look now at #21. Even though the group is much bigger than
in the previous example, giving a very prohibitively cumbersome expression for HMΓ

(t, v, u),
the PLog expansion simplifies as

PLogMΓ /HΓ /CΓ (t, v, u) =

�

u2
2

u1
+ u1u2

�

t2 +O(t3) , (69)

which we identify as O3. The fact that c1 = c2 = 0 means that there is no extra supersymmetry,
so the corresponding theory is genuinely N = 3. Having c3 = 1 and c4 = 0 shows that this is
not a product theory and there is no free sector. Indeed this geometry corresponds to a known
N = 3 S-fold.
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4.1 Constraints and explanation of color shading

Now that we have understood how to interpret the PLogMΓ
, we can state how the constraints

on the geometries, reflected by the color coding in the various tables, come about.

a. We first establish whether a given geometry can be obtained as a discrete gauging of a
known N = 4 theory. Possible discrete gaugings of interacting field theories are strongly
constrained [26] and can be easily listed; see Table 8 below. The corresponding geome-
tries in our tables are shaded in blue. All the geometries which do not appear in Table
8 cannot be interpreted this way. Another possibility is that a given geometry could be
interpreted as a discrete gauging of a free U(1)× U(1) N = 4 theory. The analysis of
this case is a bit trickier and will be described in the next section, but in short we can
establish whether this is the case or not by direct inspection of the irreducible action
µτ(Γ ). The geometries which can be interpreted as a discrete gauging of a U(1)× U(1)
N = 4 theory are instead shaded in orange in the various tables.

b. Next we look at the coefficient of O3. If c3 ≥ 2 then the theory has to be a product
theory which implies that the moduli space should be the cartesian product of two rank-
1 geometries, MΓ =M(1)

Γ ×M(2)
Γ . Since all such rank-1 geometries have an N = 2 CB

with a freely generated coordinate ring, all the entries in Tables 3 or 4 with c3 6= 1 should
be deemed unphysical and are shaded in red in the tables. This is a bit too quick though,
for it is known that discrete gaugings of interacting theories can give rise to non-freely
generated N = 2 CBs [26]. This is also the case for the discrete gauging of U(1)× U(1)
N = 4 (see below) which is a product theory. If a given entry can be interpreted as
discrete gauging of the free U(1)2 theory we keep it in the list of consistent geometries
and will shade it in orange.

c. Finally we look at the coefficient of O4. The putative theory TM realizing those geome-
tries for which c4 6= 1 should have a free sector which should give rise again to a factor
Mfree ⊂MΓ which factorizes from the rest of the moduli space. If dimCMfree = 6 then
TM is a free theory and MΓ ≡Mfree

∼= C6. If dimCMfree = 3 then the other factor
in the cartesian product should be a rank-1 theory and thus possess a freely generated
N = 2 CB slice. The entries in Tables 3 or 4 which cannot be interpreted as a discrete
gauging of the U(1)2 N = 4 with c4 6= 0 are thus unphysical and are also shaded in red.

d. Those geometries that pass all the tests described above are listed in Table 1. In Tables 1-
4 we shade in green those entries which are consistent, cannot be interpreted as discrete
gauging of known N = 4 theories and for which no TM is known.

5 Known, new and discretely gauged theories

The previous sections list the constraints that an orbifold geometry has to satisfy in order to
have a consistent interpretation as the moduli space of a putative N = 3 theory TM. In Tables
2 through 4 we have reported all the (principally polarized) rank-2 TSK orbifold geometries:
there are 53 of them. We shaded in red the 22 geometries which don’t satisfy the extra con-
straints coming from the study of the PLogMΓ

. A sanity check on the correctness of our analysis
is that all moduli spaces of known rank-2 theories should appear in the remaining list of 31
geometries. We will perform this analysis first and find that they in fact all appear. Known
theories only realize 23 entries in our tables.

We will then discuss how to interpret the remaining 8 geometries. We show that 2 of these
geometries can be interpreted as a straightforward higher-rank generalization of the discrete
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gauging in [5,11], but that the remaining 6 geometries cannot be given such an interpretation.
We conjecture that they are the moduli spaces of new rank-2 N = 3 conformal field theories.
Three of the six have freely-generated Coulomb branch chiral rings, so their c = a central
charges can be predicted following [42]. The other three have the remarkable property that
they have non-freely generated Coulomb branch chiral rings and they do not arise as discrete
gaugings of any known theory. Their c = a central charges are unknown.

For clarity, the results of the analysis of this section are gathered in Tables 6 through 11.
All the 31 geometries that are not shaded in red appear at least once in these tables (and
sometimes more than once).

It is important to stress once more that we do not make the assumption that a given ge-
ometry is realized by a single theory TM. In fact it is well-known that this is not the case and
geometries can correspond to multiple distinct theories.

5.1 Product of rank-1 theories

Let’s start by listing all the orbifolds which correspond to the moduli spaces of the product of
two rank-1 theories. Recall that in rank 1 there are only 8 admissible scale-invariant geometries
which are listed in Table 5. As discussed in detail in [7], entries 5 through 7 do satisfy all
requirements to be interpreted as CB slice of a N = 3 moduli space but these spaces fail to be
orbifolds as the identification on the flat coordinates by a group element fails to lift to a group
action on a smooth space. There are no known N = 3 theories which realize these geometries
and, as explained above, the resulting non-orbifold TSK spaces have an unusual N = 3 field
content and might be unphysical [7–9].

Table 5: The list of allowed scale-invariant CB geometries for rank-1 N ≥ 2 theories.
Only the orbifold geometries can be interpreted as N ≥ 3 theories. The “Kodaira" col-
umn give the Kodaira type of the singularity of the associated Seiberg-Witten curve.
In this table we use the term S-fold to really mean flux-full S-fold. See the discussion
in the “S-folds” paragraph below.

Kodaira Orbifold PLogΓ (t) Corresponding N ≥ 3 theory

1. I I∗ C/Z6 t6 Z3 gauging of SU(2) N = 4
Z6 gauging of U(1) N = 4

2. I I I∗ C/Z4 t4
Z4 N = 3 S-fold

Z2 gauging of SU(2) N = 4
Z4 gauging of U(1) N = 4

3. IV ∗ C/Z3 t3 Z3 N = 3 S-fold
Z3 gauging of U(1) N = 4

4. I∗0 C/Z2 t2 SU(2) N = 4
Z2 gauging of U(1) N = 4

5. IV Not an orbifold
6. I I I Not an orbifold
7. I I Not an orbifold
8. I0 C t U(1) N = 4

Each one of the remaining entries in Table 5 is realized as a CB of a known N ≥ 3 theory.
In fact, each corresponds to multiple theories as reported in the last column of Table 5. Since
we are here only interested in listing geometries with known realizations we won’t keep track
of this extra refinement.

Of course none of these geometries appear in our list directly but many entries are instead
realized as the product of two rank-1 theories T1 × T2. The geometry of the moduli space of
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the product theory is the cartesian product MΓ = MΓ1
×MΓ2

of the moduli spaces of the
individual spaces. Knowing the PLog of the individual geometries we can straightforwardly
compute the PLog of product theories T1 × T2 as PLog(T1 × T2) = PLog(T1) + PLog(T2). As
mentioned above various times, all the rank-1 geometries have a freely generated coordinate
ring and so do the rank-2 geometries constructed as cartesian product of them. The entries of
Table 2 which are realized as product of rank-1 theories are reported in Table 6.

Table 6: The list of entries in Table 2 which are interpreted as products of two rank-1
theories.

Entry # Geometry Entry # Geometry

1 −→ I0 × I0 11 −→ IV ∗ × IV ∗

2 −→ I0 × I∗0 13 −→ I∗0 × I I∗

3 −→ I0 × IV ∗ 14 −→ IV ∗ × I I I∗

4 −→ I∗0 × I∗0 15 −→ I I I∗ × I I I∗

5 −→ I0 × I I I∗ 17 −→ IV ∗ × I I∗

7 −→ I∗0 × IV ∗ 20 −→ IV ∗ × I I∗

8 −→ I0 × I I∗ 22 −→ I I∗ × I I∗

10 −→ I∗0 × I I I∗

5.2 Known genuinely rank-2 theories

Now consider the genuinely rank-2 theories whose moduli space does not factorize as the
product of two rank-1 geometries. We analyze separately N = 4 theories, N = 3 theories
which are realized as S-folds, and N = 3 theories which are realized as discrete gaugings of
N = 4 theories.

N = 4 theories. As discussed in section 2, the distinguishing feature of N = 4 theories is
the existence of a dimension two generator of the CB coordinate ring. This translates into the
presence of a t2 term in the PLogΓ (t) of the corresponding CB geometry.16 Scrolling down the
various tables, one finds that there is a one to one correspondence between the number of t2

terms in PLogΓ (t) of a given geometry and the complex dimensionality of the fixed point locus
in H2. This reflects the fact outlined above that for each generator of dimension 2 in the CB
chiral ring there exists an associated exactly marginal operator.

Since the moduli space geometry of an N = 4 gauge theory only depends on the gauge
Lie algebra and neither on the global form of the gauge group nor on the spectrum of line
operators, we expect only three non-product rank-2 N = 4 theories corresponding to the
lagrangian theories with gauge Lie algebras su(3), so(5) ∼= sp(2) and G2. The corresponding
geometries are listed in the first part of Table 9.

As discussed in [14], N = 4-preserving discrete gauging of interacting N = 4 gauge theo-
ries at rank 2 does not produce any other inequivalent CB geometry, so the above 3 geometries
might be expected to exhaust the list of N = 4 genuinely rank-2 geometries. But Tables 3 and
4 show many more geometries with a t2 term in their PLogΓ (t). These geometries do corre-
spond in fact to N = 4 theories but arise via a non-trivial generalization of N = 4-preserving
discrete gauging which only applies to product of Maxwell (i.e. U(1) with no charged matter)
theories. To our knowledge this generalization has not appeared elsewhere and thus deserves
a separate discussion. For this reason we will discuss these geometries in section 5.3 below.

16As explained in the previous section, the supersymmetry enhancement can be also seen from the study of the
PLogMΓ

as a non-zero c1 = c2. This condition is completely analogous to the one discussed in the text.
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So far we have accounted for the first 15 entries in Table 2 and entries 17, 20 and 22. Let’s
now turn to discuss those geometries which can be interpreted as a moduli space of rank-2
N = 3 theories.

S-folds. The first class of N = 3 theories to have been constructed where engineered in
F-theory using the S-fold construction [11,12]. An S-fold is roughly a generalization of an ori-
entifold which acts on its transverse space as (C3× T2)/Zm, for m= 1,2, 3,4, 6.17 They come
in two variants depending on whether a discrete torsional flux is turned on. The worldvolume
theory of r D3 branes probing an S-fold is a rank r four dimensional SCFT with N ≥ 3 super-
symmetry. Their N = 2 CBs are the orbifolds Cr/G(m, 1, r) or Cr/G(m, m, r) for the flux-full
and flux-less S-fold respectively. It was argued in [12] that not all m admit the flux-full variant
and for m = 6 only the flux-less one is allowed (which is the reason why there is no S-fold
in the entry 1 in table 5). For r = 1 the theories obtained by probing flux-less S-folds can be
engineered as discretely gauged version of U(1) N = 4 Lagrangian theories, while for r = 2
they give rise to genuine rank-2 N = 4 theories. We here use this fact, i.e. that flux-less S-folds
can be understood as variant of Lagrangian theories for r = 1,2, to avoid altogether to refer
to the flux. We will then use the term S-folds to solely refer to the flux-full case.18 The list of
CB orbifold geometries for S-folds is given in Table 7.19

Table 7: List of geometries corresponding to rank-2 S-folds. The first four lines corre-
spond to N = 4 theories (this phenomenon is specific to rank-2 S-folds) and already
appear in Table 9. Only the last two lines correspond to N = 3 S-folds.

Entry # S-fold orbifold group

4 −→ G(2, 2,2)
6 −→ G(3, 3,2)
9 −→ G(4, 4,2) = G(2, 1,2)
12 −→ G(6, 6,2)
18 −→ G(3, 1,2)
21 −→ G(4, 1,2)

Discrete gaugings of interacting N = 4 theories. Discrete gaugings of N = 4 Yang-Mills
theories which preserve N = 3 supersymmetry [13, 14] correspond to gauging certain Zk
global symmetries with k = 2, 3,4, 6. In those cases, the orbifold group is W (g)oZk, where
W (g) is the Weyl group of the N = 4 gauge algebra g. They correspond to entries 16, 18, 23
and 42 of our tables. Note however that not all values of k are allowed for any Lie algebra
g. In fact the gaugeable subgroups depend on the detailed form of the S-duality group of the
various theories [47,48]. For instance the S-duality group of the su(3) N = 4 theory only has
appropriate Zk symmetries with k = 2, 3,6. This is in agreement with our list of solutions,
which do not have an entry which would correspond to W (su(3))oZ4, whose PLogΓ (t) would
be equal to t4 + t8 + t12 − t16.

17Strictly speaking, the term S-fold is reserved to m= 3,4, 6; the case m= 1 corresponds to no identification at
all, and m= 2 is an actual orientifold plane.

18Flux-less S-folds can give rise to genuinely new theories even at rank 2; the worldvolume theory on D3 branes
probing the S-folds combined with exceptional sevenbranes gives rise to N = 2 SCFTs [43]. In this case the
flux-less S-folds give genuinely new N = 2 SCFTs even in the presence of only two D3 probes [44–46].

19In [12] it was noted that rank-2 N = 4 theories can also be realized as S-folds. This is why we include these
theories in Table 7.
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Table 8: List of geometries corresponding to rank-2 N = 3 theories obtained from
discrete gaugings of N = 4 Yang-Mills theories.

Entry # Theory

16 −→ Z2 gauging of sp(2) N = 4
18 −→ Z3 gauging of su(3) N = 4

23 −→ Z6 gauging of su(3) N = 4
Z3 gauging of G2 N = 4

42 −→ Z3 gauging of sp(2) N = 4

5.3 New rank-2 theories

Tables 6-8 list 23 of the 31 consistent geometries in Tables 2-4 and (at least one) correspond-
ing theory TM realizing them. This section is dedicated to the interpretation of the remaining
8 geometries which do not correspond to any theory previously constructed. 2 of them can
be interpreted as discrete gaugings of the U(1)2 N = 4 Maxwell theory and are thus moduli
spaces of free theories despite their complicated algebraic structure. 3 of the remaining 6 have
an N = 2 CB with a freely-generated coordinate ring but do not correspond to any known the-
ory. We speculate that a generalization of the S-fold construction might realize them. Finally
three geometries have instead a non-freely-generated N = 2 CB and thus their conjectural
associated N = 3 conformal field theories will belong to a novel class. They would provide
the first example of theories with a non-freely-generated N = 2 CB chiral ring but having a
trivial 2−form symmetry (that is, they cannot be realized by gauging a 0-form symmetry). We
will now discuss each of these three types of new geometry in detail.

Rank-2 discrete gauging of U(1)2 Maxwell theory. We start with the most boring possi-
bility: geometries which can be interpreted as a moduli space of a discretely gauged U(1)2

N = 4 free Maxwell theory. We will denote them as [U(1)2]Γ̃ , where Γ̃ is the finite subgroup of
SO(6)R× Sp(4,Z)which we gauge. All of these theories are free and thus not of much physical
interest. However, the analysis here will be useful for our purposes since it will enable us to
identify which of the geometries cannot be interpreted this way.

There are a few subtleties in generalizing the discussion of discrete gauging [5,11,13,14]
to this free rank-2 example. The R-symmetry group of a U(1)2 N = 4 theory is SO(6)diag

R , the
diagonal subgroup of SO(6)1R × SO(6)2R, where SO(6)iR acts on the supercharges implement-
ing the supersymmetry transformation of the i-th U(1). In addition, there is an Sp(4,Z) UV
EM duality group acting on the three complex dimensional conformal manifold of the theory
parameterized by τi j .

20 The theory is free and has no charged states in the spectrum, thus the
only observables which can distinguish theories with different values of τi j are their response
to infinitely massive charged probes. We must include them if we are to be able to analyze
how the theory transforms under the action of the S-duality group.

Call τUV
i j the value of the holomoprhic gauge coupling in the UV. If all charged states are

infinitely massive, then there is no RG-running and τUV
i j = τ

IR
i j . Furthermore no degree of

freedom decouples in the running and thus the effective Lagrangian at very low energy is in
fact the UV Lagrangian. It is known that an action of the S-duality group induces an action
of the low-energy EM-duality group, see for instance [49]. In this case the two groups simply
coincide, and we will denote by M ∈ Sp(4,Z) a generic element of these identical groups.

20If τ12 = 0, the two theories are completely decoupled and it is possible to talk about two separate N = 4
algebras. In this picture the R-symmetry is enhanced to the full SO(6)1R × SO(6)2R but the EM duality group is
SL(2,Z)1 × SL(2,Z)2 ⊂ Sp(4,Z). This is the right picture to describe discrete gauging giving rise to product
theories as we can act on the two separate U(1)s independently.

34

https://scipost.org
https://scipost.org/SciPostPhys.9.6.083


SciPost Phys. 9, 083 (2020)

As argued in [49], the action of the S-duality group also induces a non trivial action on the
supercharges which can always be chosen to commute with the SU(4)R action. Thus the S-
duality group acts as a phase common to all of the supercharges.21 This means that there
exists a morphism exp(−iÒφ) : Sp(4,Z)→ U(1) such that under M ∈ Sp(4,Z),

Q I → exp(−iÒφ(M))Q I (70)

for all I . We can use the identification of the S-duality with EM duality action to explicitly
compute it.

The bosonic part of the Lagrangian of the N = 4 U(1)2 theory is

Lbosonic = Im
�

τi j(a)
�

∂ aI J
i · ∂ aI J j +Fi ·F j

��

, I , J = 1, ..., 4, i, j = 1,2. (71)

Here we use complex variables satisfying the reality condition εI JK LaK L j = aI J
j . This is com-

pletely analogous to (6) with the only modification that the capital indices are SU(4)R and not
U(3)R indices. Again here the Fi are the self-dual U(1) which are related to the aI J

i (and not
to the aI J j) by supersymmetry as [7],

εI JK LFi ∼QIQJ aK L
i . (72)

M induces a transformation on τ via (35), on the aI J
i via µτ(M) (36), and on the super-

charges via exp(−iÒφ(M)). From (72) we infer that the Fi transform as

Fi → exp(−2iÒφ(M))µτ(M)
j

i F j . (73)

The phase Òφ(M) is defined up to an action of the Z4 center of SU(4)R and thus henceforth
we consider Òφ(M) ∈ [0,π/2). Note that the map µτ is a group homomorphism only for the
subgroup of Sp(4,Z) which fixes τ.

We will now identify a set of necessary conditions which allow us to identify those geome-
tries which cannot be interpreted as [U(1)2]Γ̃ .

S-duality is an equivalence between different descriptions of the same theory: different
holomorphic gauge couplings describe the same physics. Thus it is not a global symmetry
which maps distinct operators of a given description of the theory, and so gauging subgroups
of the S-duality group does not make sense in general. The situation is different for those
finite subgroups Γ ⊂ Sp(4,Z) which fix some value of the coupling, τfix, and thus act within a
single description of the theory. In the case of non-product theories and with the coupling set
to τ= τfix, such Γ may act as global symmetries which could then be gauged.

However, it turns out that such a Γ ⊂ Sp(4,Z) fixing the τ of an N = 4 U(1)2 free Maxwell
theory can fail to be a global symmetry of the theory. We can check this by computing the action
of Γ on the lagrangian (71). The first term in (71) is always preserved by the Γ action.22 But
demanding the invariance of the second term gives, using (73), the non-trivial condition

exp(−4iÒφ(M)) µτ(M)
T τ µτ(M) = τ. (74)

A solution exists only if µτ(M)T τ µτ(M) τ−1 is proportional to 12 for all M ∈ Γ .
As discussed extensively in sections 2 and 3, the orbifold geometries in Tables 2-4 are

precisely in one-to-one correspondence with subgroups Γ ⊂ Sp(4,Z) and their corresponding
τfix. Only a subset of all the Γ groups admit a solution for (74).

21The U(1) which acts as a common phase multiplication on the QI s was called chiral rotation in [49].
22While the calculation is slightly non-trivial, the result should be expected: the first term in (71) gives the metric

on the orbifold geometry, µτ(Γ ) gives the orbifold action, and the orbifold construction only works because µτ(Γ )
is in fact an isometry.
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But even if a solution does exist for a given Γ and its fixed τ, and so it acts as a global
symmetry of the N = 4 Maxwell theory which can be gauged, this is not the end of the story.
For (74) also then determines the phase, exp(−4iÒφ(M)), by which the supercharges transform.
If we were to gauge Γ , because of the non-trivial phase Òφ, we would break supersymmetry
completely. In order to preserveN = 3 supersymmetry we must gauge instead the combination
the Γ action with that of the SO(6)R elements

R(M) =





R2Òφ(M)
R2Òφ(M)

R−2Òφ(M)



 , (75)

where R2Òφ(M) implements an SO(2) rotation by 2Òφ(M). These R-symmetry rotations then

induce phase transformations of the supercharges which cancel the exp(−4iÒφ(M)) phase for
at least three of the four supercharges.

Since R(M) acts non-trivially on the aI J
i s by phase multiplication of the three complex

scalar combinations, it acts non-trivially on the moduli space. Thus the gauging of these
SO(6)R transformations further modifies the resulting moduli space of the discretely gauged
theory.

Putting this all together, the correct action of the N = 3-preserving discrete symmetry on
the moduli space is

χ : Γ → GL(2,C), χ(M) := exp(2iÒφ(M))µτ(M). (76)

Thus, upon gauging Γ , we end up with the following moduli space geometry (here we are only
focusing on an N = 2 CB slice of the moduli space)

C = C2/χ(Γ ) . (77)

By explicit computation we can go through the list of Γ , identify those for which a solution
of (74) exists and then compute C2/χ(Γ ). Those entries in Tables 2-4 which do not have any
other known construction but whose CB coincides with one of the C2/χ(Γ ) thus computed are
shaded in orange. They are entries 26 and 28 in Table 9. These have either c3 ≥ 2 or c4 6= 0,
as might be expected of a discrete gauging of a free theory.

Table 9: List of geometries corresponding to rank 2 N = 4 theories (excluding prod-
uct theories).

Entry # Theory

6 −→ N = 4 with g= su(3)
9 −→ N = 4 with g= so(5)∼= sp(2)
12 −→ N = 4 with g= G2

26 −→ Z2 gauging of N = 4 with g= u(1)⊕ u(1)
28 −→ Z4 gauging of N = 4 with g= u(1)⊕ u(1)

While the set of conditions outlined above seem a reasonable set of necessary conditions
to identify the set of geometries which can be interpreted as arising from discrete gauging of
the free U(1)2 N = 4 theory, some of the C2/χ(Γ ) orbifolds we find from the (76) action
are surprising. In particular, we expected that all the C2/χ(Γ ) should appear in our list of
possible N = 3 orbifold TSK geometries since the discrete gauging procedure we have outlined
preserves N = 3 supersymmetry and all the low energy conditions which led to Tables 2-4.
But instead we find (by direct computation) that some of the C2/χ(Γ ) orbifolds do not appear
in this set, because the map (76) spoils the crystallographic condition of the initial Γ action.
We don’t understand how to interpret this phenomenon and we leave this question for future
studies.
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N = 3 theories from complex reflection groups. TSK orbifold geometries with freely gen-
erated coordinate ring are in one-to-one correspondence with with crystallographic complex
reflection groups (CCRG) [34] which preserve a principal polarization [7, 10]. These groups
are exactly the 25 groups listed in Table 2. Excluding the geometries corresponding to prod-
ucts of rank-1 theories, N = 4 theories and its discretely gauged versions, and S-folds, there
are three new geometries, listed in Table 10. Let’s discuss briefly the interpretation of these
geometries.

Since the N = 2 CB is freely generated and since by N = 3 supersymmetry a = c, the
Shapere-Tachikawa method of computing central charges [42] applies to this case unambigu-
ously, giving

a = c =
2
∑

i=1

2∆i − 1
4

, (78)

where ∆1 and ∆2 are the scaling dimension of the generators of the CB chiral ring which
can be read off from the exponents of the PLogΓ (t) polynomial of the corresponding entries.
Applying 78 we obtain the values reported both in Tables 1 and 10.

Table 10: List of geometries corresponding to CCRGs and which are not products
of rank-1 theories nor N = 4 theories nor S-folds, and their corresponding central
charges. ST12 is isomorphic to the binary octahedral group.

Entry # Γ 4c = 4a

19 −→ G(6, 3,2) 18
24 −→ ST12 26
25 −→ G(6, 1,2) 34

By a more detailed analysis of these theories, analogous to what we carried out in section
2.3, we could extract more information about the physics. In particular we could compute the
number of components of the singular locus, the monodromies around them and thus gain a
partial understanding on the BPS spectrum of these theories. But we won’t do it here.

While it is conceivable that a generalization of the S-fold construction of [11, 12] might
realize entries # 19 and 25, it is hard to see how such a construction could give a theory
corresponding to geometry # 24. This geometry is the only rank 2 geometry obtained by
one of the exceptional CCRG groups,23 and thus there is no higher rank version of such a
theory, as would be obtained if it were realized by probing an S-fold-like singularity with a
arbitrary numbers of D3 branes. This argument, however, should not be taken too literally
as it is already known that there are special phenomena, like supersymmetry enhancement
in S-folds, that only happen at a particular rank. A more detailed analysis of this theory will
appear elsewhere [50].

New theories. We will now discuss the last but possibly most interesting geometries we find:
those which can consistently be interpreted as interacting rank 2 N = 3 field theories but
whose N = 2 CB chiral ring is not freely generated and whose CB slice is a hypersurface in C3

with a (complex) singularity at the origin. The three geometries are reported in Table 11 and
the explicit algebraic form for the CB can be straightforwardly obtained from the expression
of the PLogΓ (t) in Table 3 and will be discussed shortly. Since the finite groups which arise
in these geometries do not have standard accepted names, it is useful to explicitly give a
presentation of these groups and some information about the size of their conjugacy classes

23The classification of CCRGs is in ways analogous to the simple Lie algebra, with few infinite series and some
exceptional entries. Moduli spaces corresponding to exceptional CCRGs only exist up to rank 6.
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and orders of their elements:

SD16 :







〈a, b|a8 = b2 = 1, bab = a3〉
order : {1,25, 46, 84}
conj. classes {12, 23, 42}

(79)

M4(2) :







〈a, b|a8 = b2 = 1, bab = a5〉
order : {1,23, 44, 88}
conj. classes {14, 26}

(80)

Dic3 ×Z3 :







〈a, b, c|a3=b6=1, c2=b3, ab=ba, cac−1=a−1, cbc−1=b−1〉
order : {1,2, 38, 46, 68, 125}
conj. classes {16, 26, 36}

(81)

Here the notation x y , used both for the order of the elements and the size of the conjugacy
classes, means that the entry x repeats y times in the list.

As we have mentioned many times, the abstract presentations of the groups provided above
do not characterize the orbifold geometries. Only by using their actions on C2 can we compute
the algebraic form of the N = 2 CB of each one of these geometries as a hypersurface in C3.
We find

CSD16
:=
�

(u4, u6, u8) ∈ C3|u4u8 + u2
6 = 0

	

,

CM4(2) :=
�

(u4, u8, ũ8) ∈ C3|ũ8u8 + u4
4 = 0

	

, (82)

CDic3×Z3
:=
�

(u6, u12, ũ12) ∈ C3|u12ũ12 + u4
6 = 0

	

.

Again we could perform an analysis of these geometries along the lines of section 2.3 and learn
about their discriminant locus and possibly obtain partial information on their BPS spectrum.
It is unfortunately impossible to get any prediction for their central charges. This is related to
something that was touched upon in section 3.5, that is the fact that if the coordinate ring of
the CB is not freely generated, there isn’t a unique, nor even well-defined, notion of primary
generators of the ring of invariant polynomials. In other words there isn’t a canonical choice
of ∆1 and ∆2 which could be plugged into the Shapere-Tachikawa formula (78). In more
generality, the analysis of [42] assumes that the CB is freely generated and thus does not
apply to this case.

Table 11: The three geometries in Table 3 which could be interpreted as moduli
spaces of rank-2 interacting N = 3 theories but whose N = 2 CB chiral ring is non-
freely generated. No information on the central charges of these theories is available.

Entry # Γ

38 −→ SD16

39 −→ M4(2)
43 −→ Dic3 ×Z3

One conceivable way to compute the central charge for these theories, is to study the
corresponding VOA (more below) by guessing a set of operators and hope that their algebra
closes only for a single value of the central charges, as in the case for the VOA corresponding to
rank-1 N = 3 theories [51]. The closing of the VOA would corroborate further the hypothesis
of the existence of these truly exotic N = 3 theories corresponding to the geometries in Table
11. In any case the existence and the consistency of these geometries urge further and deeper
studies of possible realization of N = 3 theories to either construct theories realizing Table 11
or disprove their existence.
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6 Conclusion and open questions

In this manuscript we have carried out the analysis of the rank 2 geometries which can be
interpreted as moduli spaces of N = 3 theories. A crucial assumption that we make is that all
such geometries are orbifolds of C3r though, as explained in [7], it remains an open question
whether this is in fact the case.

Many of the geometries correspond either to known theories or can be interpreted as the
moduli space of discretely gauged versions of known theories. And the moduli space geome-
tries of all known rank 2 N ≥ 3 theories do appear in our classification.

But, remarkably, we find six geometries which are not realized by any known theory and
thus predict the existence of new N = 3 theories, three of which have the exotic property of
having a non-freely generated CB chiral ring. If the existence of these theories is confirmed,
they would provide the first example of theories with a non-freely generated CB chiral ring not
obtained as discretely gauged version of a theory with a freely generated CB ring. This in turn
would further strengthen our belief that the set ofN = 2 SCFTs with a CB geometry isomorphic
to Cr which corresponds, with the exceptions of extremely few cases, to the entirety of N = 2
SCFTs discussed in the literature, is only a subset of the existing theories.

It is of course possible that some or all the new geometries we have constructed here do
not correspond to any physical theory. This possibility might arise because the TSK analysis
carried out here only captures a subset of physical consistency requirements and thus some of
the geometries we label as admissible are in fact unphysical.24 It would thus be very interesting
to extend the present work by further studying the physical requirements on the moduli space
of N = 3 theories. We list some possible directions below.

Higgs branch data and associated VOA. It is known that every N = 2 conformal the-
ory comes equipped with an intricate structure, the associated vertex operator algebra (VOA)
[52–54]. In the following we might also refer to the VOA as chiral algebra. While it is un-
clear how to characterize VOA of general N = 2 SCFTs, in the case of N = 3 theories things
might be considerably more constrained. Firstly the 2d chiral algebra has an extended N = 2
super-Virasoro symmetry, and secondly the ansatz that the generators of the VOA can be fully
characterized from Higgs branch data, has worked remarkably well in all known N = 3 ex-
amples where the VOA construction has been carried out explicitly. In particular a proposal
for how to construct the VOA of N = 3 theories with a freely-generated N = 2 Coulomb
branch (those associated to orbifold geometries by complex reflection groups) was outlined
in a recent paper [41]. The authors of [41] have come up with a remarkably simple proposal
using a free-field realization which only relies on information extracted from the Hilbert se-
ries of the Higgs branch.25 Using (15) and (63), this information can be readily extracted for
all geometries considered here. The construction of a consistent chiral algebra with the right
central charges and null states would give further evidence for the physical consistency of the
new geometries we find.

Mass deformation. N = 3 and N = 4 superconformal field theories do not have any rel-
evant deformation, though there exist N = 2-preserving mass deformations. N = 4 theory
with those masses turned on are generally referred as N = 2∗ theories. Since the first N = 2
papers by Seiberg and Witten [56], it has been evident that the study of an N = 2∗ theory

24The fact that purely geometric data is insufficient for physical consistency is discussed at in [7] in the non-
orbifold case.

25For an application of similar techniques to N = 2 theories and a discussion of the applicability of free-field
construction in VOAs see [55].
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illuminates the original theory with enhanced supersymmetry. That the study of mass defor-
mations can teach us about the physics of the corresponding conformal theories has been even
more the case in the analysis of the rank-1 N = 2 SCFTs carried out in [1,2,4]. This series of
papers almost exclusively focuses on the analysis of mass deformations, including those which
break N = 3 to N = 2 [3]. Currently we do not know how to generalize the incredibly con-
straining analysis of mass deformations of rank 1 theories to higher ranks. But it is certainly
likely that understanding the behaviour of the geometries in Tables 2-4 after turning on an
N = 2-preserving mass deformation might not only give considerable insight into the physics
of these theories, but also might further constrain the set of physically consistent geometries.

Non-principally polarized Dirac pairing. Our analysis can be fairly straightforwardly ex-
tended to theories with non-principal Dirac pairing. This is particularly the case for orbifolds
generated by CCRG [10]. Non-principal Dirac pairings are very little discussed in the literature
and correspond to theories with a non-standard, and for higher ranks possibly not uniform,
normalization of electric and magnetic charges. It would be interesting to clarify the physical
properties of such theories. The analysis of rank-1 N = 2 geometries show that allowed nor-
malizations are very constrained, in fact in the rank-1 case there is a single allowed geometry
with a non-principal Dirac pairing. This geometry corresponds to a theory with intriguing prop-
erties which have not been fully understood yet. A possible interpretation is that the theory
with non-principal Dirac pairing is not a genuine field theory but rather a relative one [20].

A naive study of the Dirac pairing induced by 6d (2,0) theories compactified on Riemann
surfaces shows that non-principal choices might be allowed. It is well known that 6d (2,0)
theories are also relative field theories whose 7 dimensional bulk theory has been constructed
explicitly [57]. In order for the 4d theory obtained by compactification of a 6d theory to have
a partition function, extra structures need to be specified [57–59]. Perhaps consideration of
these subtleties might give insights into theories with non-principal Dirac pairing.
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A The Du Val nomenclature

We describe the finite subgroups of U(2) that are used in the text. We adopt the notation intro-
duced by Du Val in [29], and summarized in Table 12. In this notation, the groups are written
in the form (L/LK ; R/RK), where L ⊂ U(1) and R ⊂ SU(2) are finite subgroups, and where
LK and RK are normal subgroups of L and R, respectively, such that the quotients L/LK and
R/RK are isomorphic. We choose an explicit isomorphism φ : L/LK → R/RK . The subgroup of
U(2) = U(1)× SU(2) corresponding to the label (L/LK ; R/RK) is then

{(l, r) ∈ L × R | φ(l) = r} , (83)

where the bar denotes the projection to the quotient groups. It should be pointed out that the
enumeration found in [29] suffers from omissions and repetitions [60]. The complete list of
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Table 12: List of the finite subgroups of U(2) used in this paper (note for the list of
finite U(2) subgroups to be complete, we would need to include three more families
DV6(m), DV7(m) and DV9(m)). Here m and n are arbitrary positive integers, except
when some restrictions are explicitly noted.

Name Group Explicit form Order
DV1(m, n, r, s) (with (85)) (Z2mr/Z2m;Z2nr/Z2n)s (84) 1

2 mnr
DV2(m, n) (Z2m/Z2m; Dn/Dn) (89) 4mn
DV3(m, n) (Z4m/Z2m; Dn/Z2n) (91) 4mn

DV′3(m, n) (m, n odd) (Z4m/Zm; Dn/Zn) (94) 2mn
DV4(m, n) (Z4m/Z2m; D2n/Dn) (92) 8mn
DV5(m) (Z2m/Z2m; T/T ) (90) 24m
DV8(m) (Z4m/Z2m; O/T ) (93) 48m

finite subgroups of U(2) can be found in Theorem 2.2 of [61].
Below we give a construction of the groups that appear in our lists as explicit matrix groups.

We begin with the abelian subgroups of U(2). Up to conjugation, they are exactly the groups
of the form

DV1(m, n, r, s) =

¨

e
2πi x
mr

�

e
2πi y

nr 0

0 e−
2πi y

nr

�

| x ∈ Zmr , y ∈ Znr , x = s y mod r

«

, (84)

where m, n, r, s are four integers satisfying


















m, n, r ≥ 1

m and n have the same parity

r is even if m and n are odd

0≤ s ≤ r/2 and the greatest common divisor of s and r is 1

(85)

The order of the group DV1(m, n, r, s) is 1
2 mnr.

In order to describe the nonabelian groups, we need to introduce the following classical
subgroups of SU(2):

• The dihedral group Dn, of order 4n, which can be described as the group generated by
two matrices

Dn =

®

�

0 i
i 0

�

,

�

e
iπ
n 0

0 e−
iπ
n

�¸

. (86)

• The binary tetrahedral group T , of order 24, generated by

T =

��

0 i
i 0

�

,
1
2

�

1+i 1+i
−1+i 1−i

��

. (87)

• The binary octahedral group O, of order 48, generated by

O =

�

1
p

2

�

1+i 0
0 1−i

�

,
1
2

�

1+i 1+i
−1+i 1−i

��

. (88)

Using these, we can then describe the Du Val groups. First, we have simple extensions of Dn
and T by Z2m:

DV2(m, n) =
n

eπi x/m y
�

�

� x ∈ Z2m, y ∈ Dn

o

, (89)

DV5(m) =
n

eπi x/m y
�

�

� x ∈ Z2m, y ∈ T
o

. (90)
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Then we have extensions by Z4m of Dn, D2n, and O with certain restrictions:

DV3(m, n) =
n

eπi 2x
2m y

�

�

� x ∈ Z2m, y ∈ Dn, y2 = 1
o

∪
n

eπi 2x+1
2m y

�

�

� x ∈ Z2m, y ∈ Dn, y2 6= 1
o

,

(91)

DV4(m, n) =
n

eπi 2x
2m y

�

�

� x ∈ Z2m, y ∈ Dn

o

∪
n

eπi 2x+1
2m y

�

�

� x ∈ Z2m, y ∈ D2n−Dn

o

, (92)

DV8(m) =
n

eπi 2x
2m y

�

�

� x ∈ Z2m, y ∈ T
o

∪
n

eπi 2x+1
2m y

�

�

� x ∈ Z2m, y ∈ O− T
o

. (93)

And finally (note that this group is absent from the original Du Val list, but can be found
in [61]),

DV′3(m, n) =
⋃

k=0,1,2,3

¨

eπi 4x+k
2m

�

0 i
i 0

�k �
e2πi y/n 0

0 e−2πi y/n

�

�

�

� x ∈ Zm, y ∈ Zn

«

. (94)

B The G(m, p, r) complex reflection groups

For completeness, we give the definition of the infinite family of complete reflection groups
G(m, p, r), where m, p and n are three positive integers with p|m. Let A(m, p, r) be the set of
diagonal r × r matrices M such that

• each diagonal element of M is an m-th root of unity, and

• the determinant of M is an m
p -th root of unity.

Let S(r) be the set of r × r permutation matrices. Then

G(m, p, r) = {M P | M ∈ A(m, p, r) and P ∈ S(r)} ⊂ U(r) . (95)

This group has mr

p × r! elements. We are interested in rank r = 2, in which case the complex

reflection group G(m, p, 2) has invariants of degrees m and 2m
p .
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