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Single T gate in a Clifford circuit drives transition
to universal entanglement spectrum statistics
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Abstract

Clifford circuits are insufficient for universal quantum computation or creating t -designs
with t ≥ 4. While the entanglement entropy is not a telltale of this insufficiency, the en-
tanglement spectrum of a time evolved random product state is: the entanglement levels
are Poisson-distributed for circuits restricted to the Clifford gate-set, while the levels fol-
low Wigner-Dyson statistics when universal gates are used. In this paper we show, using
finite-size scaling analysis of different measures of level spacing statistics, that in the
thermodynamic limit, inserting a single T (π/8) gate in the middle of a random Clifford
circuit is sufficient to alter the entanglement spectrum from a Poisson to a Wigner-Dyson
distribution.
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1 Introduction

In the past few years, the dynamics of entanglement growth in non-equilibrium settings have
been intensively explored, unveiling rich structures and universality classes analogous to equi-
librium phenomena [1–5]. Recently, studies along this direction have been extended from en-
tropic measures to the full entanglement spectrum (ES) [6], which captures the finer structure
of entanglement. It has been shown that the dynamics of ES is able to distinguish between
random unitary circuits of different complexities [7–9], as well as thermalization and local-
ization phases of the underlying Hamiltonian [10–13]. Moreover, the onset of level repulsion
in the ES signals the spreading of operator fronts, which serves as an important diagnostic of
quantum chaos and information scrambling [14–16].

A crisp example that the ES reflects the complexity of the states generated by a quantum
circuit is provided by the analysis of Clifford circuits. These circuits can be efficiently simulated
classically and hence are not sufficient for universal quantum computation, due to restricted
single-qubit rotations [17, 18]. Although Clifford circuits can generate states with the same
maximal entanglement entropy as Haar random states [19], the ES of such states is either flat
(for stabilizer initial states) [4,20] or Poisson distributed (for random initial product states) [8]
as opposed to Wigner-Dyson (W-D) distributed as in the case of Haar random states. Moreover,
as shown in [6, 8], the transition between Poisson and W-D is connected to the emergent
irreversibility of random quantum circuits, which in turn is connected to the fact that the
fluctuations of the maximal entanglement entropy generated by a Clifford circuit are drastically
different from that of Haar random states.

Important related problems are those of derandomization, and randomized benchmarking,
that is, phase retrieval, quantum state distinguishability and estimates for the rate error of
quantum channels [21–28]. These tasks require the construction of a t−design, that is, a set
of gates that reproduces the first t moments of the Haar measure [29]. A random circuit of
universal gates can construct a 4−design, and a random circuit based on the Clifford group can
construct a 3−design but fails to be a 4−design, which is what one needs for several protocols
of derandomization. It is known, though, that Clifford group generates a good approximation
of a 4−design [30]. Hence, one expects that a small added perturbation – a few gates outside
the Clifford set – should suffice to reach a 4-design. In particular, perturbed Clifford circuits
should be able to reproduce the fluctuations of the entanglement entropy of a system evolved
with a universal quantum circuit, which typically requires a higher-order design than that
needed to reproduce the average entanglement entropy.

In this paper we answer the question of what density of T gates one needs to add to a
Clifford circuit to alter the ES from a Poisson to a W-D distribution, a necessary condition for
universal quantum circuits. Moreover, we put forward a conjecture about the transition to
unlearnability and higher t−designs.

Consider the setup as shown in Fig. 1 (left panel). We first evolve random product states
using random Clifford circuits, until their entanglement entropy reaches maximum. Then
we insert a layer of T gates acting on a certain number of randomly chosen qubits into the
circuit, and continue evolving with random Clifford circuits. Since the entanglement entropy
has already saturated prior to the insertion of T gates, it cannot further increase. However,
the ES may change following the second stage of time evolution. We ask the question: how
many T gates are needed in the thermodynamic limit to alter the ES from a Poisson to a W-
D distribution? Remarkably, we find, using finite-size scaling analysis of various ES statistics
measures, that a single T gate is sufficient to poison the Poisson statistics of pure Clifford
circuits in the thermodynamic limit. The deviation from W-D distribution for systems of N
qubits scales as e−γnT N , where γ is a constant of order one and nT is the number of T gates
inserted. This indicates that the ES flows to W-D distribution in the infinite system size limit
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Figure 1: Left: A schematic of the setup considered in this work. Initial product states
are first evolved under random Clifford circuits UCl until their entanglement entropy
reaches maximum. Each circuit is constructed with 500 random non-local Clifford
gates to maximize the scrambling speed. A certain number of T gates in one layer are
then inserted in the circuit, followed by a second stage of random Clifford evolution
U ′Cl also consisting of 500 random non-local Clifford gates. In the thermodynamic
limit, the entanglement spectrum approaches a W-D distribution upon inserting a
single T gate. Right: A cartoon picture showing the operator spreading of the inserted
T gates during the second stage of evolution. Each T gate spreads over a spatial region
that grows linearly in time (circuit depth), which sets the timescale for the saturation
of the ES statistics to W-D distribution. The onset of W-D statistics occurs when the
footprints of the inserted T gates cover all qubits. For this simulation, we choose
instead local Clifford gates, so that time is measured in terms of circuit depths.

for any non-zero nT . In addition, we also consider two different cases in which either: (1) the
initial states are chosen as stabilizer states; or (2) the time evolution following the insertion
of T gates is given by the inverse of the initial evolution. In the former case with stabilizer
initial states, we find that insertion of T gates in a single layer is not sufficient to obtain W-D
distributed ES, in contrast to random product initial states. The latter scenario has a natural
interpretation in terms of either the noise threshold for reversibility in quantum circuits, or the
operator spreading under Clifford dynamics. We find that in this case one needs order O(Nα)
(α≈ 0.6) T gates to get W-D distributed ES (for which the density still vanishes as 1/N1−α).

While we do not have an analytical proof of the above scalings, we present a physical
picture that elucidates the evolution of the ES in the second stage in terms of the operator
spreading of the inserted T gates, as depicted in Fig. 1 (right panel) [15, 16]. We show that
each T gate spreads over a spatial region that grows linearly in time, and hence the operator
spreading of T gates should determine the timescale for the saturation to Wigner-Dyson distri-
bution of the wavefunction ES. More specifically, we find below that at a fixed system size N ,
the ES flows from Poisson towards W-D statistics as a function of the total length of the spatial
region covered by the spreading of T gates: (nT ×τ), where τ is the depth of the circuit in the
second stage, which supports the above picture.

2 Setup

We consider a “composite” quantum circuit consisting of three pieces, as depicted schemati-
cally in Fig. 1. The initial state is first evolved under a random Clifford circuit, for which the
corresponding unitary operator is denoted as UCl =

∏

k Uk, where Uk is the evolution operator

3

https://scipost.org
https://scipost.org/SciPostPhys.9.6.087


SciPost Phys. 9, 087 (2020)

at k-th time step in the circuit. A random Clifford circuit is constructed by picking randomly
any of the following three elementary gates with equal probability at each time step: (1) H
(Hadamard) gate, which takes |0〉 → 1p

2
(|0〉+ |1〉) and |1〉 → 1p

2
(|0〉 − |1〉); (2) S (π/4) gate,

which gives a state-dependent phase factor: |0〉 → |0〉 and |1〉 → eiπ/2|1〉; and (3) CNOT
(CONTROLLED-NOT) gate, which flips the second qubit conditioned on the state of the first
one: |00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉, |11〉 → |10〉.

The initial state is evolved for sufficiently long time until the half-system entanglement
entropy saturates to its maximal value [19]. We then randomly apply to the state nT ≤ N
T gates acting on nT distinct qubits. The T gate generates a single-qubit rotation about the
σz-axis similar to the S gate, but with a different rotation angle: |0〉 → |0〉 and |1〉 → eiπ/4|1〉.
We remark that replacing S gate with T gate leads to a gate set that is sufficient for universal
quantum computation [18]. Finally, the state after applying T gates is further evolved with
another random Clifford circuit U ′Cl with the same number of gates as UCL. We shall focus on
the case where UCl and U ′Cl are distinct. However, we also consider in what follows a special
situation where U ′Cl = U−1

Cl . As we will see, the result is quite different in this special case, in
contrast to a random U ′Cl.

The initial states are chosen to be random product states
|ψ(0)〉 = ⊗N

i=1|ψi〉, where |ψi〉 = cosθi|0〉 + sinθi|1〉 with random angles θi ∈ [0,π]. No-
tice that this initial state is not a stabilizer state, and we will briefly comment on the situation
of stabilizer initial states at the end. Under random Clifford circuit evolution, the ES {pk = λ2

k},
defined as the eigenvalues of the reduced density matrix under an equi-bipartitioning of the
system ρA = trB|ψ〉〈ψ|, exhibits a Poisson level spacing distribution [8], which can be captured
by the ratio of adjacent gaps in the spectrum: rk = (λk−1 −λk)/(λk −λk+1), with λk ≥ λk+1.
Poisson distributed level spacings lead to the following distribution for r: P(r) = 1/(1+ r)2

with no level repulsion at r = 0. On the other hand, for levels of random matrix ensembles,
the distribution of r follows the W-D surmise [31]: P(r) = (r+r2)β/[Z(1+r+r2)1+3β/2], with
Z = 4π

81
p

3
and β = 2 for the Gaussian unitary ensemble (GUE). For the purpose of finite-size

scaling, it is favorable to characterize the full distribution of the level-spacing ratio of the ES
using a single number. Thus, we also compute a modified version of the r-ratio introduced
above: erk = min{δk,δk+1}/max{δk,δk+1}, where δk = λk−1 − λk is the gap between adja-
cent eigenvalues [32]. The average value 〈er〉 ≈ 0.39 for Poisson distributed spectrum, and
〈er〉 ≈ 0.6 for GUE distributed spectrum.

Since the entanglement entropy is already saturated to its maximum value prior to inserting
T gates, it cannot further increase following subsequent time evolution. Nevertheless, the
structure of the state - in particular the ES - could still evolve as the gates realizing U ′Cl are
sequentially applied, due to the operator spreading of T gates. Below, we shall first construct a
color map to visualize the wavefunction. This map reveals the qualitative change of structure
in the bipartite entanglement following the insertion of T gates. To extract a quantitative
measure, we numerically study the evolution of the ES statistics and 〈er〉 as function of nT and
N , and extrapolate to the thermodynamic limit N →∞ via a finite size scaling analysis.

3 Numerical results

3.1 Structure of the wavefunctions

We numerically simulate the time evolution protocol of the composite quantum circuit in Fig. 1
with different numbers of T gates inserted, nT ≤ N . Before performing a quantitative analysis,
let us first visualize the structure of the amplitudes of the resultant wavefunctions in a local
basis, e.g. the computational z-basis. We bipartition the system into subsystems A and B, and
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Figure 2: (Color Online) Color map of the matrix |Ψ(xA, xB)| under a bipartitioning
of the system for (1) a state evolved with a Clifford circuit; (2) a state evolved with
the composite quantum circuit in Fig. 1 with nT = 12 T gates inserted; (3) a random
state with entries drawn from a Gaussian distribution. Blue (darker) corresponds to
smaller values of |Ψ(xA, xB)| and yellow (lighter) corresponds to larger values. The
system size is N = 12.

the wavefunction can be written as:

|ψ〉=
∑

xA,xB

Ψ(xA, xB)|xA〉|xB〉 , (1)

where xA and xB label the z-basis configurations of subsystems A and B, and Ψ(xA, xB) is the
amplitude of the wavefunction recasted as a matrix. We display |Ψ(xA, xB)| by employing a
color map with xA in horizontal axis and xB in vertical axis. In Fig. 2, we plot the magnitude
of the amplitudes of three representative states:

(1) a state evolved with a Clifford circuit, whose ES is Poisson distributed;

(2) a state evolved under the composite quantum circuit in Fig. 1 with nT = N T gates
inserted, whose ES is W-D distributed;

(3) a random state with amplitudes drawn from a Gaussian distribution, whose ES is W-D
distributed.

As shown in Fig. 2, a global pattern of the wavefunction amplitudes is clearly visible for state
(1), which is completely absent for a Haar random state (3). This crude measure is already
capable of revealing the distinctions between states generated by Clifford circuits and Haar
random states, which the entanglement entropy fails to capture. The structure in state (1)
is a telltale that Clifford circuits cannot fully randomize the state, which is consistent with
the absence of level repulsion in the ES. On the other hand, for state (2) obtained with a
whole layer of T gates inserted, we observe no global structure like in state (1); instead it
shares the structureless feature of the Haar random state (3), which indicates that Clifford
circuits with few inserted T gates show properties akin to those of random unitary circuits.
The striking visual difference between the states that can be prepared by action of Clifford
gates and states that require universal resources suggests that such phases can be identified
by machine learning architectures based on neural networks [33].

Below, we shall quantify the distinctions in the wavefunction amplitudes by studying the
ES of |ψ〉, which is precisely the singular value spectrum of the matrix Ψ(xA, xB) shown in
Fig. 2. In particular, we shall address the question of how many T gates are needed in the
Clifford circuit in order to achieve a W-D distributed ES, which corresponds to a randomized
wavefunction.
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Figure 3: The average 〈er〉 plotted as a function of nTτ past the insertion of T gates,
for nT ranging from 1 to 16, and τ ranging from 4 to 80 in steps of 4. The system size
is fixed to N = 16. All curves collapse to a universal scaling function 〈er〉= h(nT ×τ)
interpolating between erPoisson ≈ 0.39 and erGUE ≈ 0.6. The plateau for smaller nT at
large τ is due to finite-size effect.

3.2 Finite-size scaling of the ES statistics

As we have explained previously, we choose the particular setup shown in Fig. 1 such that the
entanglement entropy already saturates before inserting the T gates. Therefore, the addition
of T gates has no effect on the amount of entanglement generated by the quantum circuit.
Nevertheless, the ES spectrum can still change, and in particular, level repulsion can emerge
due to the spreading of the downstream effects of inserted T gates in the second stage of
Clifford evolution U ′Cl as illustrated in Fig. 1. We shall first study how the ES transitions from
Poisson to W-D distribution by looking at the time dependence of 〈er(τ)〉 past the insertion of
T gates. Time τ is measured in terms of the circuit depth.

In Fig. 3, we plot the average 〈er(τ)〉 for a fixed system size N = 16 and varying nT . (In this
study, we use a 1-dimensional circuit brick wall layout.) We find that the curves for different
nT collapse to a universal scaling function:

〈er(τ)〉= h(nT ×τ) . (2)

This scaling form can be understood as follows. The downstream effect the action of the
inserted T gates is contained within a light-cone, such that each T gate covers a spatial region
of size ξ∼ τ at timeτ. If nT T gates are inserted, the scale of the footprint of the region affected
by the T gates is nT ξ ∼ nT τ. Hence, the crossover to GUE statistics should occur when the
footprint of the affected region covers all qubits, i.e., when nT τ ∼ N . This relation indicates
that the larger nT , the shorter time it takes to reach the asymptotic (GUE) value of 〈er〉. Note
that in Fig. 3 at small nT , 〈er〉 saturates to a plateau value less than the GUE value and peals off
from the universal scaling function. This deviation is due to finite size effects. In finite system
sizes, time evolution of only a small amount of T gates cannot fully randomize the states, and
hence the infinite-time – in practice, τ� N – average level spacing ratio 〈er(τ→∞)〉 remains
below that of a W-D distribution. To see what happens in the thermodynamic limit where the
system size N →∞, we shall now focus on the finite-size effect by looking at the infinite-time
average level spacing ratio as a function of nT and N : 〈er(τ→∞, nT , N)〉.

In Fig. 4 (left panel), we plot the infinite-time 〈er〉 for various system sizes and numbers
of T gates inserted. Remarkably, we find that all curves again collapse to a universal scaling
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Figure 4: Finite-size scaling of the infinite-time ES. Left: The infinite-time average
level spacing ratio 〈er(τ→∞)〉 versus nT N , for system sizes N = 10, 12,14, 16,18
and 20. All curves collapse to a universal scaling function 〈er(τ →∞)〉 = f (nT N)
interpolating between erPoisson ≈ 0.39 and erGUE ≈ 0.6. Inset: deviations from erGUE
in log-linear scale, indicating the exponential scaling form δer ≈ er0e−γnT N . Right:
The KL divergence between the full ES level spacing distribution and the W-D distri-
bution. DKL for different curves also collapses to a universal scaling function of the
product nT N . Inset: DKL decays exponentially with nT N , similarly to δer. The data
are averaged over 3000 (N = 10), 2000 (N = 12), 1500 (N = 14), 1000 (N = 16),
500 (N = 18), and 150 (N = 20) realizations. When not visible, the error-bars are
smaller than the size of the data points.

function of the form:
〈er(τ→∞)〉= f (nT × N) . (3)

In other words, er is only a function of the product nT N . Moreover, we find that the deviation
from erGUE takes the following form:

δer ≈ er0 e−γnT N , (4)

with some constants er0 and γ, as shown in the inset of Fig. 4 (left panel). One immediately
concludes that in the thermodynamic limit, as long as nT 6= 0, 〈er〉 = f (∞) = erGUE, that is,
all that one needs in the thermodynamic limit is a single T gate to change the ES to random
matrix theory behaviors! A single T gate inserted into the Clifford circuit acts like a “poison
pill” that completely randomizes the final state and kills the Poisson distribution. This can be
understood as follows. Although the density of T gates is vanishing, it nevertheless changes
the global phase structure of the quantum state. The ES is a global property of the full wave
function, hence the effect of even a single T gate is not negligible. Note that the nT N scaling
is consistent with the plateau values in Fig. 3, which corresponds to 〈er(τ→∞)〉 at fixed nT
and N .

Although the average value of 〈er〉 reaches that of GUE in Fig. 4 (left panel), it only char-
acterizes the first moment of the full distribution. To further substantiate that the ES level
spacing statistics follows a W-D distribution, we numerically compute the distance between
the full distribution of the ES level-spacing ratio r of the final states and the W-D distribution
(GUE in particular), defined as the Kullback-Leibler (KL) divergence:

DKL[P(r)||PGUE(r)] =
∑

i

P(ri) ln [P(ri)/PGUE(ri)] . (5)
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As shown in Fig. 4 (right panel), the KL divergence between the ES level spacing distribu-
tion and W-D distribution also collapses to a universal scaling function of the product nT N .
Therefore, the KL divergence also goes to zero in the thermodynamic limit for any nonzero nT ,
confirming that even the full ES level spacing distribution reaches the W-D distribution with
the insertion of a single T gate. The full distribution P(r) corresponding to a particular point
where 〈er〉 = erGUE is presented in Fig. 5 (left panel), showing that the full distribution of ES
level spacing statistics indeed follows W-D.
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r
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0.6

0.8

1.0

P(
r)

P(r), N = 20, nT = 8
Poisson
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Figure 5: The ES level spacing distribution P(r) for N = 20 with nT = 8 T gates
inserted.

3.3 A composite quantum circuit with U ′Cl = U−1
Cl

So far we have been considering the general situation where the Clifford circuits before and
after the insertion of T gates (i.e., UCl and U ′Cl in Fig. 1) are different and uncorrelated. It is
nonetheless interesting to look at a special case in which U ′Cl = U−1

Cl , i.e the Clifford evolution in
the second stage is the exact inverse of the initial evolution operator. This particular example
is interesting for several reasons. In the absence of any T gate inserted in the middle, UCl and
U−1

Cl will cancel exactly, bringing the final state back to the original product state. However, this
cancellation ceases to happen as more and more T gates are inserted in between. If one views
the insertion of T gates as a particular kind of noise in the circuit, this example resembles
the noise threshold for reversibility in a quantum circuit. Second, the composite quantum
circuit in this particular case coincides with the spreading of T operators under random Clifford
dynamics in the Heisenberg picture. How many T gates are needed such that their spreading
under random Clifford circuit evolution is sufficient to generate W-D distributed ES when
acting on a random product state?

In Fig. 6, we plot the infinite-time average 〈er(τ → ∞)〉 for different system sizes and
numbers of T gates inserted. In contrast to the previous case, here we find instead that different
curves collapse to another universal scaling function:

〈er〉= g(nT/N
α) , (6)

where α > 0, and we numerically find α ≈ 0.6. We emphasize that the precise value of α is
not the main focus of our study. Rather, the fact that α must be positive is the most important
message here, which is in sharp contrast to Eq. (3). The difference between Eq. (6) and
Eq. (3) drastically changes the behavior in the thermodynamic limit. From Fig. 6, we find
that the average 〈er〉 reaches erGUE when nT/N

0.6 ∼O(1). Therefore, in the infinite system size
limit, one needs number nT ∼O(N0.6) T gates to alter the ES from Poisson to W-D distribution.
Notice that even in this case, since nT is only sub-extensive in system size, the required density
of T gates still vanishes as 1/N0.4.
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Figure 6: The infinite-time average 〈er(τ→∞)〉 versus nT/N
0.6 for the special case

in which U ′Cl = U−1
Cl , for systems sizes N = 12, 14,16, 18 and 20. All curves collapse

to a universal scaling function 〈er〉= g(nT/N
0.6) interpolating between erPoisson ≈ 0.39

and erGUE ≈ 0.6. The numbers of realizations are the same as in Fig. 4. When not
visible, the error-bars are smaller than the size of the data points.

To elucidate how the insertions of the T gates alter the ES in the present case, let us consider
explicitly their spreading:

UCl

� nT
∏

k=1

Tik

�

U−1
Cl = UCl

� nT
∏

k=1

�

cosθ11+ isinθ Zik

�

�

U−1
Cl

=
nT
∏

k=1

�

cosθ11+ isinθ eZik

�

, (7)

where θ = π
8 for the T gate, and Zik is the Pauli-Z operator acting on site ik. In the second line

of Eq. (7), we have used the property that, under Clifford dynamics, a Pauli operator evolves
into a single string of Pauli operators eZik rather than a superposition of Pauli strings [18].
Upon averaging over circuit realizations, one expects that the eZik are essentially random Pauli
strings up to the fact that they remain commuting with one another, regardless of the original
positions of the inserted T gates. When acting on a product state, each Pauli string operator
eZik (and the products of which) simply produces another product state, with each qubit being
flipped or not depending on the particular type of Pauli operator on each site. Therefore,
the time-evolved operator in the above equation will generate a superposition of 2nT product
states, when applied to a random product state, and the entanglement entropy is thus upper-
bounded by

SvN ≤ nT ln2 . (8)

In this situation the insertion of O(1) T gates is insufficient to discern statistical properties of
the ES, since the rank of the density matrix is too low to yield a spectrum with enough non-
vanishing eigenvalues. This is also the reason why the data shown in Fig. 6 are noiser at small
nT . Therefore, when U ′Cl = U−1

Cl , one needs a subextensive number of T gates to alter the ES.
In Fig. 7, we plot the ES statistics of states generated by applying the operator in Eq. (7) to

random product states, but with the specific eZik operator associated with the spreading of Zik
replaced by a random string of Pauli operators. On the left panel, we use θ = π

8 , correspond-
ing to insertion of T gates, and find that the ES is W-D distributed, in agreement with what
was obtained by directly simulating the composite random circuit evolutions. In contrast, if
we use θ = π

4 instead, corresponding to insertion of S gates, the ES exhibits a Poisson distri-
bution shown in the right panel, which is consistent with known results for random Clifford
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Figure 7: ES statistics of states generated by applying Eq. 7 to random product states.
Left: W-D distribution for θ = π

8 (inserting T gates); right: Poisson distribution for
θ = π

4 (inserting S gates). The data are obtained for system size N = 12 with nT = 12
T or S gate inserted, and averaged over 800 realizations of initial states and random
Pauli strings.

T
Clifford 1 Clifford 2

T
T Clifford 3 · · ·

Figure 8: A potential architecture for universal quantum computing, where only a
small number of T gates are added at largely spaced layers.

circuits [8]. We thus conclude that replacing the specific eZik operator associated with Zik by a
random string of Pauli operators has no effect in the ES. Instead, it is the angle θ associated to
the specific single-qubit rotation that alters the relative amplitudes of the superposition of 2nT

product states to yield the ES associated with the gate set.
We remark that the above results hold when we choose as initial states random product

states, where each qubit points along different directions on the Bloch sphere to begin with.
Instead, if one starts from stabilizer states, for which random Clifford dynamics yields a flat
ES as opposed to Poisson, insertion of T gates in the same manner as in Fig. 1 does not lead
to W-D distributed ES. Therefore, the random angles imprinted in the initial states, although
by themselves cannot produce Haar random states under Clifford circuit evolution, turns out
to be essential for the T gates to wipe off the Poisson distributed ES.

4 Conclusions

In this work, we study the number of T gates needed in a random Clifford circuit to alter the
ES statistics from Poisson to W-D distribution, a necessary condition for the underlying circuit
to be universal. We construct a composite quantum circuit as in Fig. 1 with T gates inserted
in the middle, and show that a single T gate is in fact sufficient to obtain W-D distributed
ES, as is the case for Haar random states. Our results suggest that the density of T gates
needed for universal quantum computation might be vanishing in the thermodynamic limit.
Given the difficulties in realizing T gates within various experimental platforms for quantum
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computing (e.g. topological quantum computing based on Majorana zero modes), we propose
an alternative construction of quantum circuits where one may be able to generate a good
enough approximation to a random unitary by concatenating segments of Clifford evolutions
with very few T gates inserted at largely spaced layers, as illustrated in Fig. 8. While this may
lead to an overhead in the circuit depth, it is advantageous in cases where implementations of
T gates are hard.

In closing, we would like to ask the question of whether the transition driven by the density
of non-Clifford gates also characterizes the transition to 4−designs and unlearnability of ran-
dom quantum circuits. As shown in [7,8], the transition to W-D for ES level spacing statistics
corresponds to the impossibility of reversing the circuit by means of a Metropolis-based disen-
tangling algorithm. For Poisson-distributed ES, reversal is possible, and this corresponds to the
possibility of learning, via disentangling, a circuit that takes the given product state to the en-
tangled output state. Therefore, the onset of irreversibility is also a learnability-unlearnability
transition. We conjecture that learnability is due to the structure of temporal fluctuations in
2−Rényi entropy. This would imply that the transition to the W-D ES is also a transition from
3−design to (at least) 4−design. The Clifford group falls short of being a 4−design but it is a
very good approximation of it [30]. In particular, it has the same 2−Rényi entropy [34] but not
the same fluctuations. We conjecture that the transition to 4−design, W-D and unlearnability
are one and the same.

Note Added: The conjecture we put forward in this paper about the number of T gates
needed to drive a Clifford circuit to a 4-design has been recently proved in arxiv:2002.09524.
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