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Abstract

Since the incident nuclei in heavy-ion collisions do not carry strangeness, the global
net strangeness of the detected hadrons has to vanish. We investigate the impact of
strangeness neutrality on the phase structure and thermodynamics of QCD at finite
baryon and strangeness chemical potential. To this end, we study the low-energy sec-
tor of QCD within a Polyakov loop enhanced quark-meson effective theory with 2+1 dy-
namical quark flavors. Non-perturbative quantum, thermal, and density fluctuations are
taken into account with the functional renormalization group. We show that the impact
of strangeness neutrality on thermodynamic quantities such as the equation of state is
sizable.
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1 Introduction

Ultrarelativistic heavy-ion collisions performed at RHIC and LHC aim to explore the phase
structure of quantum chromodynamics (QCD) at finite temperature and density. One of the key
challenges is to extract properties of the quark-gluon plasma (QGP) created in such collisions
from the hadronic final states that reach the detector. The success of hadron resonance
gas models (HRG), which are based on thermal distributions of noninteracting hadrons, in
describing various aspects of the hadronization process might suggest that the system at the time
of freeze-out can be described by equilibrium thermodynamics characterized by temperature
and chemical potentials [1].

Since the timescale of the weak interactions is much longer than the equilibration time of
the strongly interacting QGP, quark number conservation of the strong interactions should hold
from the initial stage up to the freeze-out. So the strangeness and charge/isospin of the incident
nuclei determine the strangeness- and isospin chemical potentials µS and µI at freeze-out. For
instance, the absence of strange quarks in nuclei implies strangeness neutrality, i.e. the net
strangeness has to vanish. The baryon chemical potential µB, which is directly related to the
baryon number at central rapidity, additionally depends on the energy of the collision because
the rapidity distributions of net-baryon number show a distinctive beam-energy dependence.
In fact, this is the basis of current and future beam-energy scan experiments aimed at exploring
different region of the QCD phase diagram [2–7].

To understand the properties of matter created in heavy-ion collisions it is therefore indis-
pensable to take these constraints into account. Since quarks, mesons and baryons can carry
finite strangeness and isospin, the details of how these constraints are fulfilled depend crucially
on the state of QCD matter. Understanding this from a theoretical point of view poses many
challenges. The different phases of QCD, including the dynamics of quarks, gluons and hadrons
at various temperatures and chemical potentials need to be captured. Hence, purely hadronic
effective models which are only valid at the lowest energies and QCD perturbation theory only
valid at very high energies are only of limited use. Owing to the notorious sign problem at
finite µB, lattice QCD simulations are restricted to vanishing chemical potential. Nonetheless,
tremendous progress has been made in recent years in exploring the QCD equation of state at
finite µB on the lattice through, e.g. the Taylor expansion of the thermodynamical potential as
a function of µB/T around µB = 0 [8] or the analytic continuation from imaginary chemical
potential [9], among many other approaches [10,11]. These techniques allowed first studies
of the freeze-out conditions of heavy-ion collisions subject to the constraints on strangeness
and isospin on the lattice [12–14]. Since both methods rely on expansions in powers of µB/T ,
exploring regions of the phase diagram with µB/T & 1 on the lattice might entail unknown
and potentially large systematic errors. For instance, at small beam energies at RHIC the HRG
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predicts µB/T > 2 at the freeze-out [15], so current experiments probe regions of the phase
diagram where state-of-the-art first principle methods might not be fully reliable.

Functional continuum methods, such as the functional renormalization group (FRG) and
Dyson-Schwinger equations (DSE) do not suffer from the sign problem, so the inclusion of finite
chemical potential is possible without the corresponding systematic errors. A lot of progress has
been made towards the study of QCD from first principles, e.g. [16–23] and references therein.
However, due to the necessity of truncating the effective action of QCD, results at finite chemical
potential from first principles are currently only accessible with unknown and potentially large
systematic errors. Functional continuum methods are in some sense complementary to the
lattice, since the most common sources of systematic errors on the lattice, such as finite-size
effects, chiral fermions and the sign problem, are not present in continuum methods and, vice
versa, the lattice does not have to rely on truncations of the effective action.

Low-energy effective theories of QCD have proven time and again that they can provide
valuable insights on the QCD phase structure. Their strength lies in the potential to identify
physically relevant effects that prevail also in the full theory. Prominent examples relevant for
the present work are Polyakov loop enhanced Nambu–Jona-Lasinio models (PNJL), Polyakov
loop enhanced quark-meson models (PQM) and (the closely related) chiral matrix models. They
can be constructed to share the same global symmetries as QCD and exhibit similar or even the
same symmetry breaking patterns as the chiral transition of QCD. Owing to the coupling to a
non-vanishing gluon background field, the deconfinement transition can also be captured in a
statistical manner [24]. In mean-field approximations, the phase structure and thermodynamics
of QCD have been studied in great detail with these models, see e.g. [25–33] and [34] for a
recent review. In this context, the constraint of strangeness neutrality has first been imposed in
the study of the phase structure in [35]. In compliance with expectations from the HRG [1] and
the lattice [12], it was demonstrated that a finite strangeness chemical potential is necessary
to ensure strangeness neutrality at finite temperature and baryon chemical potential. This is
related to the intricate interplay of quark, meson and baryon effects mentioned above.

Concerning strangeness and isospin dynamics, a major shortcoming of mean-field studies is
the lack of dynamics of the most relevant degrees of freedom in the hadronic phase. Owing
to their nature as pseudo Goldstone bosons of spontaneous chiral symmetry breaking, these
are certainly pions and kaons regarding the effects related to isospin and strangeness. It is
therefore conceivable that their quantum fluctuations have to be accounted for in order to
accurately describe the QCD medium as generated in heavy-ion collisions. A major challenge
is that hadronic fluctuations are in general of non-perturbative nature. The FRG has been
proven to be very useful here, since it allows for the non-perturbative regularization and
renormalization of quantum fluctuations in low-energy models. For two flavors, the phase
structure and thermodynamics of (P)QM models have been studied exhaustively with the FRG,
e.g. [36–46]. These works carved out the crucial role of meson fluctuations in the QCD equation
of state. Finite isospin chemical potential has been investigated in [47] within a QM model.
However, the constraint on isospin from heavy-ion collision has not been considered in this
work. Strangeness requires at least three flavors. In this case, first studies of the phase structure
with the QM beyond mean-field have been carried out in [48–50] and the PQM at vanishing
density has been studied in [51]. Fluctuations in the strange sector have been shown to be
quantitatively and qualitatively relevant for the phase structure of QCD in the former works. In
the latter work it has been demonstrated that lattice thermodynamics at vanishing density can
be reproduced by including fluctuations into the PQM model with the FRG.

In this work we extend the previous works in two ways. The first is the extension of [51] to
finite baryon chemical potential µB and the confrontation of the results on the equation of state
with most recent lattice results at finite µB. Second, and most importantly, we introduce a finite
strange chemical potential µS and derive the corresponding functional renormalization group
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equations for the 2+1 flavor PQM. This allows us to impose the strangeness neutrality condition
on the equation of state in terms of a T - and µB-dependent µS. As discussed above, this is a
property imprinted on the matter created in heavy-ion collision from its initial conditions. For
the first time, we are able to study the influence of strangeness neutrality on the thermodynamics
and phase structure of QCD beyond mean-field directly at finite baryon chemical chemical
potential. Genuine finite density effects related to the dynamics of strange hadrons are accessible
this way. This is of relevance for a general understanding of the properties of strongly interacting
matter as created in heavy-ion collisions.

This paper is organized as follows: In Sec. 2 we introduce the effective low-energy model
used here, including a discussions of the coupling of mesons to µS and the finite gluon back-
ground. The functional renormalization group and the derivation of the corresponding renor-
malization group equations is discussed in Sec. 3. We present our results in Sec. 4. After the
discussion of the initial conditions for the solution of the RG equations in Sec. 4.1, we check the
validity of our model by comparing it to lattice results at vanishing and finite µB/T in Sec. 4.2.
In Sec. 4.3 we determine the strangeness chemical potential neccesary to fulfill the strangeness
neutrality condition and discuss the role of quark, meson and baryon dynamics for our results.
In Sects. 4.4 and 4.5 we discuss the influence of strangeness neutrality of the thermodynamics
and the phase structure of QCD. A summary and a brief outlook are given in Sec. 5. Details on
the parametrization of the Polyakov loop potential, thermodynamics at large µB and the initial
conditions are provided in the appendices.

2 N f = 2+ 1 QCD at low energies

Here we discuss the construction of a low-energy effective theory of QCD that allows us to
describe the main features of strangeness and the phase structure on the same footing.

2.1 Chemical potentials

In QCD the numbers of each flavor are conserved separately. So in general there is an indepen-
dent chemical potential for each quark flavor, e.g. [52],

µu ūγ0u+µd d̄γ0d +µs s̄γ0s . (1)

The quark chemical potentials can be rewritten in terms of baryon-, strangeness- and isospin
chemical potentials as follows

µ=







µu

µd

µs






=







1
3µB +

1
2µI

1
3µB −

1
2µI

1
3µB −µS






. (2)

We remark that on the lattice the quark chemical potentials are typically written in terms of
baryon-, strangeness- and charge chemical potentials, leading to

µ=







1
3µB,lat +

2
3µQ

1
3µB,lat −

1
3µQ

1
3µB,lat −

1
3µQ −µS,lat






, (3)

see e.g. [12–14]. Comparing the two definitions we infer that µI = µQ while µB,lat = µB−1/2µQ
and µS,lat = µS − 1/2µQ. Note however, that µB,µB,lat couple to the same operator q̄γ0q and
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baryon number fluctuations are either described with derivatives w.r.t. µB or µB,lat. Moreover,
for µI = µQ = 0 the two definitions agree.

Hadrons carry charges associated to these chemical potentials, and hence couple to the
quark chemical potential µq. This coupling naturally emerges in the functional renormalization
group approach from an evolution of QCD from large momentum to low momentum scales
and the introduction of hadrons as effective low energy degrees of freedom via dynamical
hadronization [53–55], see [22,23,56–58] for applications to QCD. The coupling of the chemical
potentials to hadrons then follows directly from the Silver Blaze property of QCD [59]. At
vanishing temperature, the chemical potential dependence of an Euclidean n-point function of
fields φi with associate particle numbers ci is given by a simple shift of the external frequency
[60,61]

pi,0 → pi,0 + iciµi . (4)

Hence, one just needs to shift the frequencies of the kinetic terms in the effective action
according to the Silver Blaze property.

In the present low energy effective field theory setup it is simpler to utilise a flavor symmetry
argument, see e.g. [52]. At its core this argument carries the Silver blaze property of QCD
discussed above, and it is straightforward to check that both constructions yield the same result.
Concentrating on the mesons for the moment, we introduce the chemical potential as a vector
source. Then the chemical potential in (1) is written as

Cν ≡ δν0 C ,

C ≡ diag
�1

3
µB +

1
2
µI ,

1
3
µB −

1
2
µI ,

1
3
µB −µS

�

. (5)

Using this in the full quark part of the QCD Lagrangian we arrive at

Lq = q̄
�

γνDν + γνCν
�

q = q̄γνD̄ν q , (6)

with the modified covariant derivative D̄ν = Dν + Cν and Dµ = ∂µ − i gAµ. This action is
invariant under an extended local U(N f ) flavor symmetry if the vector source Cν transforms
under local U(N f ) transformations U(x) as

Cν → U(x)CνU†(x) +U(x)∂νU†(x) , (7)

not to be confused with chiral flavor rotations. Since the gauge part of the modified covariant
derivative is flavor-blind, gauge invariance is trivially guaranteed. Scalar and pseudoscalar
mesons are represented as entries of a flavor matrix in the adjoint representation of the flavor
rotations defined in (7),

Σ= T a(σa + iπa) . (8)

Here the generators are T0 = 1/
Æ

2N f and T a∈{1,...,N2
f −1} ∈ SU(N f ). The meson sector inherits

the local flavor symmetry of the quark sector as described above. Since the mesons transform
in the adjoint representation, one can immediately write down the corresponding covariant
derivative,

D̄νΣ= ∂νΣ+ [Cν,Σ] . (9)

The chemical potential can be rewritten conveniently as

µ=
1
3
µB 1+ diag

�1
2
µI ,−

1
2
µI ,−µS

�

. (10)

With (10) and (9) it follows trivially that the baryon chemical potential does not couple to the
mesons, as it should. In turn, mesons are sensitive to strangeness and isospin. In this work we
assume light isospin symmetry and therefore set µI = 0.
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2.2 Low energy effective theory

Here we discuss the low energy effective theory in terms of its effective action. It has to captures
the basic dynamics related to strangeness at low energies. Dynamically most relevant are the
kaons, since they are pseudo Goldstone bosons with strangeness ±1. Chiral symmetry requires
that if kaons are included in the effective action, all other mesons in the lowest scalar and
pseudoscalar meson nonet have to be taken into account as well. This can be understood
intuitively by considering the quark-antiquark scattering channels where the pseudoscalar
kaons emerge as resonances,

LK ∼
�

ūγ5s
�2
+
�

d̄γ5s
�2
+
�

s̄γ5u
�2
+
�

s̄γ5d
�2

∼
�

q̄γ5(T
4 − iT5)q

�2
+
�

q̄γ5(T
6 + iT7)q

�2

+
�

q̄γ5(T
4 + iT5)q

�2
+
�

q̄γ5(T
6 − iT7)q

�2
, (11)

where we choose the Gell-Mann matrices as SU(N f ) generators. In terms of QCD flows for the
effective action the four-fermi interactions including their momentum-dependent couplings
emerge from gluon exchange diagrams. Note that the individual terms in Eq. (11) can in
principle also have different couplings. However, it is straightforward to show that this channel
explicitly breaks U(N f )L × U(N f )R chiral symmetry in any case. Since we are also interested
in the phase transition, the only allowed sources of explicit chiral symmetry breaking are the
current quark masses, otherwise chiral symmetry restoration cannot be captured properly. The
four quark interaction channel that gives rise to a kaon resonance and respects chiral symmetry
is

LK ⊂ L4q =
�

q̄ T aq
�2
+
�

q̄ iγ5T aq
�2

. (12)

Bosonizing this channel via a standard Hubbard-Stratonovich transformation [62, 63], or
selfconsistently with dynamical hadronization, yields an effective action containing the lowest
scalar and pseudoscalar meson nonet as defined in Eq. (8), including their coupling to quarks.
Note that Eq. (12) also contains the parity partners of the kaons, the kappas (or K∗0), as
additional open-strange mesons. Chiral symmetry dictates that we have to take them into
account even though their mass is above 1 GeV so they are dynamically irrelevant. Resonances
with the quantum numbers of pions, η, η′, f0(980−1370) and the critical modes of the chiral
transition, the σ-mesons ( f0(500)), are also included in Eq. (12). Note however, that the
identification of the heavy scalar meson is not entirely clear in our case since we find a mass of
about 1150 MeV, which is between the known f0(980) and f0(1370) states. For more details
on this construction see e.g. [49]. Including these dynamical mesons, their effective potential
and coupling to quarks allows us to describe the chiral phase transition.

Statistical confinement is included via a (temporal) gluon background field Āµ ≡ Ā0δµ0
and a corresponding effective potential Uglue(Ā). This is discussed in more detail in the next
section. Putting all this together gives rise to a Polyakov loop enhanced quark-meson (PQM)
model with 2+1 dynamical quark flavors at finite baryon and strangeness chemical potential.
It is an approximation for the full effective action of low energy QCD valid below momentum
scales k . Λ with the ultraviolet cutoff scale Λ∼1 GeV. By definition Λ is the scale below which
gluons decouple from the matter sector of QCD, and hence constituent quarks and hadrons in
a gluon background field provide a good description of QCD. We will elaborate on this further
in Sec. 3.

In the current work we use the following approximation to the full scale-dependent Eu-
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clidean effective action of the 2+1 flavor PQM model,

Γk =

∫

x

¦

q̄
�

γνDν + γνCν
�

q+ h q̄Σ5q+ tr
�

D̄νΣ·D̄νΣ†
�

+ eUk(Σ, Ā) + Uglue(Ā)
©

. (13)

In (13) quantum, thermal and density fluctuations of modes with Euclidean momenta
Λ ≥ |p| ≥ k have been integrated out. The gauge covariant derivative is Dν = ∂ν − i gĀν and
Σ5 = T a(σa+ iγ5πa). The effective meson potential eUk(Σ, Ā) consist of a fully U(N f )L×U(N f )R
symmetric part plus pieces that explicitly break subgroups of the full chiral symmetry group,

eUk(Σ, Ā) = Uk(ρ1, ρ̃2, Ā)− jlσl − jsσs − cAξ . (14)

Uk is the chirally symmetric part of the meson potential. jl and js are explicit chiral sym-
metry breaking sources that account for the finite current quark masses of the light and the
strange quarks. As before, we assume light isospin symmetry. The ’t Hooft determinant
ξ= det(Σ) + det(Σ†) effectively incorporates the anomalous breaking of U(1)A [64–66]. For
simplicity, we restrict ourselves to two out of a total of N f chiral invariants,

ρ1 = trΣΣ† , ρ̃2 = tr
�

ΣΣ† −
1
2
ρ21

�2
. (15)

With the total effective potential Vk = eUk+Uglue and the solution Φ̄k(T,µB,µS) of the equations
of motion,

∂ Vk(Φ)
∂Φ

�

�

�

�

Φ̄k

= 0 , (16)

where Φ= (Σ, Ā), the k-dependent thermodynamic potential is given by

Ωk = Vk(Φ̄k) . (17)

It can be used to define the cumulants of baryon number and strangeness,

χBS
i j = −T i+ j−4 ∂

i+ jΩ0(T,µB,µS)

∂ µi
B∂ µ

j
S

. (18)

Net baryon number and strangeness are given by the first cumulants, and their densities are
obtained by dividing out the spatial volume V ,

nB =
〈NB − NB̄〉

V = χBS
10 T3 ,

nS =
〈NS̄ − NS〉

V = χBS
01 T3 . (19)

Note that strange antiquarks are defined to have 〈S〉 = nSV = 1. In the presence of a large
strange chemical potential it might be necessary to take the difference between the light and
strange sectors into account also in the symmetric part of the effective potential. This can be
achieved by first redefining the generators such that they decompose into purely strange and
non-strange parts,

�

eT0

eT8

�

=
1
p

3

�p
2 1

1 −
p

2

��

T0

T8

�

, (20)
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while keeping

eT a∈{1,...,7} = T a∈{1,...,7} . (21)

Eq. (20) is the rotation from the singlet-octet to the light-strange basis of U(N f ). The respective
fields are

Σ(L) = eT a∈{0,1,2,3}(σa + iπa) ,

Σ(S) = eT a∈{4,5,6,7,8}(σa + iπa) . (22)

eT a∈{0,1,2,3} are generators of U(2), but embedded in U(3). Since Σ(S) contains all generators
with non-vanishing off-diagonal entries in the third column and/or row, it contains the open
strange mesons, i.e., those with strangeness S = ±1. With this, the new invariants can
straightforwardly be constructed. Note that there are no mixed invariants since tr T aT b = δab/2.
But for now, we will not do this and work with the fully symmetric potential Uk. This is a good
approximation as long as the strange chemical potential is not too large. For instance, At T = 0
and µB = 0 one expects kaon condensation if µS & mK . In this case, one would certainly have
to construct the effective action based on the fields in Eq. (22). But as we discuss below, we
are only interested in strange chemical potentials µS . 200 MeV where Eq. (14) is expected to
be a good approximation.

2.3 Gluonic background

The Euclidean action of SU(Nc) Yang-Mills theory at finite temperature T is invariant under
‘twisted’ gauge transformations U which obey for β = 1/T

U(x0 + β , ~x) = zn U(x0, ~x) , (23)

where zn is an element of the center of the gauge group, i.e. zn = 1ei2πn/Nc for SU(Nc). The
Polyakov loop [67],

L(~x) =
1
Nc

trPei g
∫ β

0 d x0A0(x0,~x) , (24)

where P is the path ordering and the trace is in the fundamental representation, is invariant
under gauge transformations but not under center transformations, L→ zn L. The expectation
value of the Polyakov loop is related to the free energy Fqq̄ of a quark-antiquark pair at infinite
distance [68],

〈L〉 ∼ e−
1
2βFqq̄ . (25)

In (25) we have used declustering and 〈L̄〉= 〈L〉. Confinement implies that it takes an infinite
energy to remove the antiquark from the system, and hence Fqq̄ has to be infinity. Accordingly
〈L〉 = 0. In the deconfined phase the free energy of an isolated quark is finite and thus 〈L〉 6= 0.
Hence, the Polyakov loop serves as an order parameter for the deconfinement transition in the
static limit, which can be associated to the breaking/restoration of center symmetry.

In the spirit of the present mean-field theory for gluons the Polyakov loop is taken into
account by a temporal gluonic background Āµ = δµ0Ā0, as already mentioned before. As
the effective action is invariant under background gauge transformations, the (constant)
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background gauge field can be rotated into the Cartan subalgebra, to wit,
g

2πT
Ā0 =

g
2πT

�

Ā(3)0 t3 + Ā(8)0 t8
�

(26)

=
ϕ3

2





1 0 0
0 −1 0
0 0 0



+
ϕ8

2
p

3





1 0 0
0 1 0
0 0 −2



 ,

where we defined

ϕi =
gĀ(i)0

2πT
, i = 3,8 , (27)

for the eigenvalues of the temporal gauge field. Inserting this into Eq. (24), the integral and
trace become trivial and the Polyakov loop and antiloop are:

L =
1
3

ei πp
3
ϕ8
�

e−i
p

3πϕ8 + 2cos(πϕ3)
�

, (28)

L̄ =
1
3

e−i πp
3
ϕ8
�

ei
p

3πϕ8 + 2cos(πϕ3)
�

. (29)

Since we are working in a field theoretical approach with a gauge field Aµ we should use
L[〈A0〉] = L[Ā0], instead of 〈L[A0]〉 as computed on the lattice [69,70]. The former variable
shows a more rapid transition from the confined to the deconfined phase, and is saturated
by unity for temperatures T & 1.25 Tc. The difference is accounted for with a trivial, but
temperature-dependent normalisation factor, for more details see [71]. In the present work
we use a mean field approximation for the glue dynamics leading to L[〈A0〉] = 〈L[A0]〉. This
approximation will be lifted in future work.

Note also that our effective action (13) is manifestly gauge invariant since the gluon
background field only appears in the covariant derivative of the quarks and the gauge invariant
Polyakov loops, which are the variables of the gluon effective potential as discussed below.

The idea underlying the above formulation has been proven to be very successful in Matrix-
or Polyakov-loop models, where the simple representation of the gluon field in (26) leads to
particularly simple expression of L, while still being able to capture main features of confinement,
see e.g. [34] and references therein. By now this has been also worked out for full QCD
[69, 71, 72], which provides a natural embedding of the current model into QCD as a QCD-
assisted effective field theory, e.g. [73].

At finite chemical potential another intricacy has to be taken care of: since quarks and
antiquarks manifest themselves in the effective action with terms

L e−µq/T , and L̄ eµq/T , (30)

in the fermion occupation numbers, they have to be real valued in order to give a well-defined
equation of state. Here, we defined the quark chemical potential µq = µB/3. Furthermore, at
finite chemical potential they are also unequal. Hence, while one can assume without loss of
generality that ϕ8 = 0 at µ= 0, it has to be non-zero and imaginary at finite µ,

ϕ̄8 = −iϕ8 , ϕ̄8 ∈R . (31)

The loops then are

L =
1
3

e−
πp
3
ϕ̄8
�

e
p

3πϕ̄8 + 2cos(πϕ3)
�

,

L̄ =
1
3

e
πp
3
ϕ̄8
�

e−
p

3πϕ̄8 + 2cos(πϕ3)
�

.

(32)
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This was pointed out, e.g., in [33, 74–76]. In practice, the transition from a QM to a PQM
model can be achieved by a simple replacement of the quark distribution function, nF → NF , in
many cases. The reason is that the Ā0 eigenvalues enter the computation as a SU(Nc)-valued
imaginary shift of the chemical potential, cf. Eq. (6). Hence, in any finite-temperature loop
computation where the chemical potential only enters through the Fermi-Dirac distribution,
the non-trivial color trace (i.e. the sum over the eigenvalues) simply results in a modified
distribution function,

NF (Eq,µq; L, L̄) =
1+ 2 L̄e(Eq−µq)/T + Le2(Eq−µq)/T

1+ 3 L̄e(Eq−µq)/T + 3Le2(Eq−µq)/T + e3(Eq−µq)/T
, (33)

where Eq is the quark quasiparticle energy, Eq =
q

k2 +m2
q, where k is the modulus of the

spatial momentum. But note that we pointed out in [45] that this simple replacement is not
always correct. The modified distribution function has a very useful qualitative interpretation:
in the confined phase with L ≈ 0 one has NF ≈ 1/

�

exp[3(Eq − µq)/T] + 1
	

, which is the
distribution function for a qqq-state, a baryon. See [43] for a more careful discussion of this
behavior. In the deconfined phase NF is identical to the distribution of a single quark. The
terms exp[2(Eq − µq)/T] in Eq. (33) can be interpreted as intermediate diquark states. So
the coupling of the gluon background field Ā0 to the quarks leads to a smooth interpolation
between baryons in the hadronic phase and quarks in the QGP. Even though the effective
action in Eq. (13) only has mesons as explicit hadronic content, we can still account for baryon
dynamics. Including both a baryon- and a strange chemical potential allows us to capture the
effects of strange and nonstrange baryons separately.

To be able to capture the deconfinement phase transition, an effective gluon potential
is necessary. The strategy for Polyakov-loop enhanced models is to use a phenomenological
parametrization of the effective potential of the pure gauge theory at finite temperature in
terms of Polyakov loops. In this work we use the parametrization introduced in [77] with
Uglue(Ā) = Uglue(L, L̄) given by

Uglue(L, L̄)

T4
= −

1
2

a(T )L̄ L + b(T ) ln
�

MH(L, L̄)
�

+
1
2

c(T )(L3 + L̄3) + d(T )( L̄ L)2 , (34)

where MH is the SU(3) Haar measure in terms of the Polyakov loops,

MH(L, L̄) = 1− 6 L̄ L + 4(L3 + L̄3)− 3(L̄ L)2 . (35)

The advantage of this parametrization is that it reproduces the pressure and the Polyakov
loop susceptibilities of SU(3) Yang-Mills theory. The relevance of an accurate description of
Polyakov loop susceptibilities in particular for the cumulants of particle number distributions
has been discussed in [34,43] and explicitly demonstrated in [45]. The explicit choice for the
parameters a, b and c is discussed in App. A. There, we also discuss how the chemical potential
dependence of the Polyakov loop potential is modelled.

By relying on a parametrization of the gauge potential based only on Yang-Mills theory, we
make sure that all effects related to matter fluctuations, i.e. the unquenching, are included
dynamically within our model through the coupling of Ā0 to the quarks. Since this is not put in
by hand here, it adds to the predictive power of the model.

3 Fluctuations

It has been shown that even for zero chemical potentials at the very least pion fluctuations
are required to get reasonably accurate results for the QCD equation of state [51]. We argued
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that for strangeness dynamics kaons are the most relevant degrees of freedom at small and
moderate chemical potentials as they are the lightest strange particles in the hadronic sector.
So without kaon fluctuations crucial effects related to finite µS would certainly be missed.
To account for meson fluctuations we use the functional renormalization group. It is a semi-
analytical method providing a non-perturbative regularization and renormalization scheme for
the resummation of an infinite class of Feynman diagrams. For reviews of the FRG we refer the
reader to [54,78–83].

3.1 The Functional Renormalization Group

The FRG realizes Wilson’s renormalization group idea of successively integrating out quantum
fluctuations from large to small energy scales. The starting point is the microscopic action
Γk=Λ at some large initial momentum scale Λ in the UV. By lowering the RG scale k, quantum
fluctuations are successively integrated out until one arrives at the full macroscopic quantum
effective action Γ ≡ Γk=0 at k = 0. Ideally, one starts in the perturbative regime where the
initial effective action Γk=Λ is related to the well-known microscopic action of QCD. As already
discussed before, in the present low-energy approach we choose Λ at a scale where we assume
that gluon degrees of freedom are already integrated out. Hence, Λ is directly linked to the
Yang-Mills mass gap with Λ. 1 GeV. In Landau gauge QCD the Yang-Mills mass gap is reflected
in the gapping of the gluon propagator which leads to an effective suppression of gluonic
diagrams in a functional approach such as the FRG, see the reviews [16–19] and references
therein.

The FRG formulates the RG in terms of a functional differential equation for the evolution
of the scale dependent effective action Γk, the Wetterich equation [84–86]. In the present case,
with dynamical quarks and mesons in a gluon background, the flow equation reads

∂tΓk =
1
2

2N2
f

∑

i=1

Tr
�

Gφiφi ,k · ∂tR
φi
k

�

− 2Tr
�

Gl l̄,k · ∂tR
l
k

�

− Tr
�

Gss̄,k · ∂tR
s
k

�

, (36)

where ∂t = k d
dk denotes the logarithmic scale derivative. The trace runs over all discrete and

continuous indices, i.e. color, spinor and the loop momenta and/or frequencies respectively. The
sum in the first line is over all 2N2

f scalar and pseudoscalar mesons in Eq. (8). The generalized
meson and quark propagators are given by matrix elements in field space,

GΦiΦ j ,k[Φ] =





1

Γ
(2)
k [Φ] + Rk





ΦiΦ j

(p,−p) , (37)

with the generalized field Φ = (φ, q, q̄, Ā0), Rk is the matrix of regulators Rφi
k , Rl

k, Rs
k being

diagonal for the mesons and symplectic for the quarks, and Γ (2)k = δ2Γk/δΦ
2. Since we assume

isospin symmetry we define the light quark as l ≡ u = d and the quark field becomes q = (l, l, s).
The scale-dependent IR regulators RΦi

k can be understood as momentum-dependent masses that

suppress the infrared modes of the field Φi . In addition, the terms ∂tR
Φi
k in Eq. (36) also ensure

UV-regularity. Their definitions and a more explicit form of the flow equation will be discussed
in the next section. We use the local potential approximation (LPA) here, which means that
only the symmetric part of the meson effective potential, Uk, is running in Eq. (13). For a study
of effects beyond LPA in the QM at finite temperature and density we refer to [42,49]. While
effects beyond LPA are certainly relevant, at least the qualitative features of the relevant physics
for the present purposes are captured by the running of the effective potential.

The FRG is a method to integrate out quantum fluctuations in Euclidean spacetime in
terms of one-particle irreducible (1PI) diagrams. Consequently, the dynamics is driven by
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quantum fields propagating as internal lines of 1PI Feynman diagrams with Euclidean momenta.
All interactions are governed by off-shell fields. This implies a very simple hierarchy for
dynamically relevant contributions: the lighter the degree of freedom, the more relevant it is.
This means in particular that the contribution of particles with masses m & Λ to, for instance,
the equation of state, is negligible. Within this fluctuation-driven approach one therefore
expects that kaons and s-quarks coupled to Ā0 are sufficient to capture the relevant strangeness
effects at small to moderate chemical potentials in the same way that the dynamics of pions
and quarks coupled to Ā0 already give almost quantitative results for the equation of state
at vanishing chemical potentials, cf. [51]. This is in contrast to purely statistical approaches
without quantum fluctuations, such as the HRG [1], where the lack of dynamics and interactions
has to be compensated by taking into account all possible hadrons and their excited states.
While being very successful in the description of particle properties at the freeze-out, the QCD
phase transition and features of the QGP are not accessible in such approaches.

3.2 Flow of the effective potential

Here, we briefly discuss the RG flow equations of our model. For µS = 0 this has been discussed
in [48–51]. We therefore focus on the manifestly new contributions to the flow equation here.
As discussed in Sec. 2.1, the non-vanishing strange chemical potential also couples to the open
strange mesons. In our case these are the four scalar kappa-mesons and the four pseudoscalar
kaons. Induced by the covariant derivative D̄ν in Eq. (9), this leads to a shift of the frequency
in the kinetic terms of these particles. All other mesons are unaffected by finite µS. Their
contributions to the flow of the effective potential is therefore identical to the ones in, e.g., [49].
We will therefore only outline the changes for the open strange mesons. For definiteness, we
pick out the contribution of the charged kaons, K±. Within the present approximation, the
regulated propagator defined in Eq. (37) is:

GK+K−,k(p0, ~p ;µS) =
1

(p0 − iµS)2 + ~p 2
�

1+ rB(~p 2)
�

+m2
K ,k

, (38)

where the delta distribution for momentum conservation is omitted. Note that finite µS leads to
a linear frequency term in the propagator. We choose to regulate only the spatial momenta with
a regulator of the form Rφk = ~p

2 rB(~p ). Nonetheless, both UV and IR regularity for arbitrary
frequencies is still guaranteed. We use the flat or Litim regulator with the shape function
rB(~p 2) = (k2/~p 2 − 1)Θ(k2 − ~p 2) [87,88]. For the antiparticle propagator, only the sign of µS
changes,

GK−K+,k(p0, ~p ;µS) = GK+K−,k(p0, ~p ;−µS) . (39)

Inserting this into the flow equation (36), we find

1
2

STr GK+K−,k ∂tR
K
k

=
1
2

T
∑

n∈Z

∫

d3p
(2π)3

GK+K−,k(ωn, ~p,µS)∂tR
K
k (~p )

=
k4

12π2

k
EK

�

1+ nB(EK−µS) + nB(EK+µS)
�

≡
k4

4π2
l̄ (K)0 (µS) , (40)
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where ωn=2πnT is the bosonic Matsubara frequency, nB(E)=[exp(E/T )− 1]−1 is the Bose-
Einstein distribution, EK =

Ç

k2 +m2
K ,k is kaon energy. In this form the thermal particle,

antiparticle as well as the vacuum contribution of open strange mesons are manifest. Since
this expression is symmetric under exchange of particles and antiparticles (µS →−µS), it also
holds for the K−K+-contributions as well as for K0 and K̄0. For the contribution of the κ’s, only
the quasiparticle energy has to be replaced, EK → Eκ.

The flow of the effective potential in terms of the physical fields is given by

∂t Uk(ρ1, ρ̃2) =

k4

4π2

§

l̄ ( f0)0 (0) + 3l̄ (a0)
0 (0) + 4l̄ (κ)0 (µS) + l̄ (σ)0 (0)

+ l̄ (η)0 (0) + 3l̄ (π)0 (0) + 4l̄ (K)0 (µS) + l̄ (η
′)

0 (0)

− 4Nc

�

2l̄(l)0 (µq) + l̄(s)0 (µq −µS)
�

ª

, (41)

with the quark threshold function

l̄(q)0 (µ) =
k

3Eq

�

1− NF (Eq,µ; L, L̄) + N̄F (Eq,µ; L, L̄)
�

, (42)

and the Fermi-Dirac distribution in presence of a non-vanishing A0 background NF (33). The
antiquark distribution function is given by N̄F (El ,µ; L, L̄) = NF (El ,−µ; L̄, L). Eq. (41) is iden-
tical to the one used in [49], except that µS now enters the threshold functions of the open
strange mesons through the distribution function in Eq. (40).

3.3 Flow of the particle numbers

The computation of the cumulants of particle number distributions require derivatives of the
thermodynamic potential with respect to the chemical potential, cf. Eq. (18). While it is
simple to perform these derivatives numerically, many points in µB,S are required to ensure
numerical accuracy and for higher cumulants this is practically not feasible. One alternative
is to use algorithmic derivation techniques, see e.g. [89]. The other alternative is given by
solving the flow equations for the cumulants directly. For first discussions in this direction we
refer to [43,46]. In both cases, the accuracy of a cumulant of arbitrary order is given by the
accuracy of the differential equation solver that is used and numerical derivatives on the data
are obsolete. We will not give an exhaustive discussion here and restrict ourselves to the cases
directly relevant for the present work.

It is straightforward to derive flow equations for the cumulants. For the first cumulants,
i.e. the particle numbers, this is particularly simple due to

dΩk

dµ
=
∂Ωk

∂ µ
+
∂Ωk

∂Φ

∂Φ

∂ µ
=
∂Ωk

∂ µ
, (43)

where Φ contains all meson and quark fields as well as the Polyakov loop and antiloop. In
the last step, the equations of motion were used. Hence, only the explicit dependence of the
effective potential on µ is relevant here. Within the LPA we use in the present work, only the
effective potential is running and, under the assumption that one can interchange the RG scale
derivative and the µ-derivative, a simple flow equation for the strangeness number density nS
is obtained,

∂t nS,k = −
k4

π2

�

∂µS
l̄ (κ)0 (µS) + ∂µS

l̄ (K)0 (µS)− Nc∂µS
l̄ (s)0 (µq −µS)

�

. (44)
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As discussed above and in App. A, the Polyakov loop potential Uglue also carries an explicit µS
dependence. Since Uglue does not run, we can store its contribution into the initial condition for
convenience. If the initial action would be µS-independent, the initial strangeness would then
be trivially given by nS,Λ = −∂µS

ΩΛ = −∂µS
Uglue. However, as we discuss in the next section,

there is an important in-medium correction to the initial potential, ∆ΓΛ, so we provide the
explicit equation for the initial strangeness number in the next section.

Since the mesons do not carry baryon number, the flow equation for the corresponding
density is just given by the fermion contribution,

∂t nB,k =
Nck

4

π2
∂µB

�

2l̄ (l)0 (µq) + l̄ (s)0 (µq −µS)
�

. (45)

Again we store the k-independent gluon contribution in the initial conditions. This will be
discussed in the next section.

4 Results

4.1 Initial Conditions

The scale set by temperatures above the critical temperature Tc exceeds the cutoff scale Λ of
the effective model, 2πT & Λ. In order to describe thermodynamic quantities above Tc, we
therefore need initial conditions that depend on the temperature and, since we are interested
in finite chemical potential effects as well, also on µ. These initial conditions are governed
by integrating out fluctuations from scales Λ̄� 2πT down to Λ. Hence, we want to correct
our vacuum initial conditions for in-medium effects at the initial scale, for a recent detailed
discussion see [90]. This is achieved by integrating the initial vacuum effective action from Λ
to Λ̄ and subsequently integrating the in-medium effective action down to Λ again [91],

∆ΓΛ(T,µq,µS) =

∫ Λ̄

Λ

dk
k

�

∂tΓk(0,0, 0)− ∂tΓk(T,µq,µS)
�

. (46)

As long as the scale set by the medium parameters is smaller than Λ, ∆ΓΛ(T,µq,µS) vanishes
because the in-medium flow and the vacuum flow are identical for k ≥ Λ. Since quark
fluctuations certainly dominate over meson fluctuations for Λ& 900 MeV, we can approximate
the flows in Eq. (46) by the purely fermionic ones, to wit,

∆ΓΛ(T,µq,µS) = −
∫ ∞

Λ

dk
Nck

4

3π2

§

2
El

�

NF (El ,µq; L, L̄)

+ N̄F (El ,µq; L, L̄)
�

+
1
Es

�

NF (Es,µq −µS; L, L̄)

+ N̄F (Es,µq −µS; L, L̄)
�

ª

. (47)

We set Λ̄→∞ since the thermal contribution to the quark flow is UV regular.
It is important to note that ∆ΓΛ not only depends on the medium parameters but also

on the field expectation values. The dependence on the gluon background field in the cur-
rent mean field approximation for the glue dynamics enters through the Polyakov loops
L, L̄ = 〈L[A0]〉, 〈L̄[A0]〉, and the meson field expectation values through the quark masses.
Since the Polyakov loop expectation values approach their deconfined value only for T & 4Tc ,
cf. [94], non-trivial values for L, L̄ have to be taken into account in Eq. (47). Note that this may
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Table 1: Parameters for the initial effective action and the Polyakov loop potential.
They are chosen such that we find in the vacuum at k = 0 for the pion mass mπ = 138
MeV, for the kaon mass mK = 495 MeV, for the σ-meson mass mσ = 463 MeV, for the
sum m2

η +m2
η′ = 1.218 GeV2, for the light current quark mass ml = 302 MeV and for

the decay constants fπ = 93 MeV and fK = 113 MeV. The last two parameters belong
to the Polyakov loop potential and are fixed by the pressure of 2+1 flavor lattice QCD
at vanishing chemical potentials, see App. A.

parameter value
Λ 0.9 GeV
λ10,Λ (0.830 GeV)2

λ20,Λ 10
λ01,Λ 54

h 6.5
jl (0.121 GeV)3

js (0.336 GeV)3

cA 4.808 GeV
b0 1.6
αt 0.47

change when going beyond the mean field approximation for the glue dynamics. As discussed
before, L[〈A0〉] approaches unity far more rapidly [71].

Furthermore, if the meson part of the effective potential is computed away from its stationary
point, the relevant quark masses are those given by ml = hσl/2 and ms = hσs/

p
2, where σl

and σs are the meson background fields which, in general, do not have to coincide with their
vacuum expectation values as long as one is still able to reliably solve the corresponding equation
of motion for the mesons (e.g. by sampling the potential on a grid of field configurations as
in [48, 50] or by using the fixed background Taylor expansion as in [42, 49]). With all the
background- and medium-dependencies spelled out explicitly, the initial potential is

ΩΛ(σl ,σs, L, L̄; T,µB,µS) = eUΛ(σl ,σs) +∆ΓΛ(σl ,σs, L, L̄; T,µB,µS)

+ Uglue(L, L̄; T,µB,µS) ,
(48)

where we added the Uglue for convenience. Since it does not depend on the RG scale k, it is
irrelevant whether we add it to the initial or to the final potential. Since it also carries no
dependence on the meson fields, it only contributes to the pressure and leaves the initial meson
n-point functions unaffected. The initial meson potential is

eUΛ(σl ,σs) = UΛ(ρ1, ρ̃2)− jlσl − jsσs − cA
σ2

l σs

2
p

2

= λ10,Λρ1 +
1
2
λ20,Λρ

2
1 +λ01,Λ ρ̃2

− jlσl − jsσs − cA
σ2

l σs

2
p

2
.

(49)

It is sufficient to take only relevant and marginal operators into account at the initial scale
since meson fluctuations are small at high energies and irrelevant operators are dimensionally
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Figure 1: The pressure p, the trace anomaly I and the speed of sound squared c2
s at

µB = µS = 0 in comparison to lattice results. The temperature has been rescaled to
t ≡ (T − Tχ)/Tχ du to different pseudocritical temperatures in our model and on the
lattice. The HotQCD collaboration data is from [92] and the Wuppertal-Budapest
collaboration (WB) data from [93].

suppressed in addition. Note that irrelevant operators are generated by the RG flow at smaller
scales and are quantitatively and qualitatively relevant [42]. Our initial values are listed
in Tab. 1. The last two parameters are free parameters of the Polyakov loop potential and
are discussed in App. A. In general, these initial parameters have uncertainties related to the
uncertainties in the masses and decay constants we use to fix them. However, these uncertainties
are irrelevant within the scope of the present work and are therefore neglected.

The total contribution to the initial conditions for mesonic n-point functions can be expanded
as:

UΛ(ρ1, ρ̃2) +∆ΓΛ(σl ,σs, L, L̄; T,µB,µS) =
N
∑

n,m=0

ωnm,Λ

n!m!
(ρ1 −κ1)

n(ρ̃2 −κ2)
m , (50)

and as a consequence of the discussion above the expansion coefficients are

ωnm,Λ = λnm,Λ +
∂ n+m∆ΓΛ
∂ ρn

1∂ ρ̃
m
2

�

�

�

�

κ1,κ2

. (51)

Following Eq. (49) only the renormalizable initial parameters of the chirally symmetric part of
the effective potential, λ10,Λ, λ20,Λ, λ01,Λ, are nonzero. However, due to the meson background
field dependence of ∆ΓΛ, these and higher order initial couplings receive medium- and gluon
background dependent corrections. As the explicit symmetry breaking parameters jl , js and
cA do not run within the present approximation, they are unaffected. We discuss viable
simplifications of these complicated initial conditions in App. C.

The initial conditions for flows of the particle numbers are also affected by∆ΓΛ. As discussed
in the previous section, we store the contribution of the glue potential in the initial conditions
for convenience. Thus, we find for the the strangeness and baryon number densities:

nS,Λ = −∂µS
∆ΓΛ − ∂µS

Uglue ,

nB,Λ = −∂µB
∆ΓΛ − ∂µB

Uglue .
(52)

The system of flow equation is solved by using the fixed background Taylor expansion developed
in [42,49].

4.2 Comparison to lattice gauge theory

To demonstrate the validity of our model at vanishing chemical potentials, we compare our
results on thermodynamic quantities to the results of lattice gauge theory. Within our model,
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Figure 2: The pressure p, the baryon number density nB and the strangeness density
nS at µB/T = 2 and µS = 0 in comparison to lattice results as a function of the
rescaled temperature t. The lattice data is taken from [8].

the pseudocritical temperature of the chiral transition, which we define as the location of the
inflection point of the subtracted chiral condensate,

∆LS =

�

σL −
jL
jS
σS

��

�

T
�

σL −
jL
jS
σS

��

�

T=0

, (53)

is Tχ = 176.5 MeV. This is roughly 15% larger than the pseudocritical temperature found on
the lattice [95] so the absolute scale in our computation differs from the lattice. We therefore
use relative temperature scales t = (T − Tχ)/Tχ for our comparison. This allows us to compare
the overall shapes of the functions which are sensitive to the relevant dynamics. The pressure,
p, entropy density, s, energy density, ε, trace anomaly, I , and the speed of sound squared, c̃ 2

s ,
are defined as follows,

p = −Ω0 ,

s =
∂ p
∂ T

,

ε= −p+ Ts+µBnB +µSnS ,

I = ε− 3p ,

c̃ 2
s =

s(T,µB,µS)
∂ ε(T,µB,µS)/∂ T

.

(54)

We note that, strictly speaking, c̃ 2
s is identical to the (hydrodynamic) speed of sound only at

vanishing density, since the latter is defined at fixed entropy and particle numbers. We use c̃ 2
s

since we want to compare different thermodynamic quantities for fixed values of the baryon
chemical potential and different strangeness chemical potentials.

Our results on the pressure, the interaction measure and the speed of sound squared in
comparison to the lattice are shown in Fig. 1. We single out the trace anomaly and the speed of
sound since they are sensitive to the particle number densities and to temperature derivatives
of the pressure. We find excellent agreement with lattice results for the pressure and the trace
anomaly and good agreement for the speed of sound. But note that the former has been used
to fix the free parameters of the Polyakov loop potential, cf. the last two parameters in Tab. 1.
The speed of sound squared is thermodynamically highly nontrivial since it involves two T
derivatives of the pressure. Furthermore, since it is a ratio of two extensive thermodynamic
quantities (the entropy and the heat capacity) that grow with the number of degrees of freedom,
this effect, which dominates in particular the behavior of the pressure at large T , is cancelled
to some extent. The two minima of c2

s in our computation are due to the fact that we find quite
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different pseudocritical temperatures of deconfinement, Td , and the chiral transition, with
Td ≈ 155 MeV if defined as the inflection point of L(T ). The first minimum c2

s then corresponds
to the deconfinement transition and the second to the chiral transition.

To check the validity of our simple model also at finite µB we compare it to lattice results
obtained from a Taylor expansion of the thermodynamic potential for variousµB/T atµS = 0 [8].
Fig. 2 shows the results for µB/T = 2. We note that the comparison does not change qualitatively
for other ratios. Only the temperature is rescaled for comparison but we assumed that the ratio
µB/T is the same for our calculation and the lattice. This means that for instance at t ≈ 0.35
we have µB = 480 MeV in our calculation and µB = 420 MeV in the lattice results. We have
chosen the chiral transition temperatures Tχ for µB = 0 for the definition of t. With this, the
pressure shows perfect agreement with the lattice even at finite µB. The same is true for the
entropy density not shown here.

Most sensitive to the finite-µB effects are certainly the particle numbers, since they are only
generated by finite chemical potentials in the first place. We therefore also compare our results
on nB and nS to the lattice results in Fig. 2. The baryon number density agrees very well with
the lattice results at µB/T = 2. In contrast to the lattice, we see a larger bump in the vicinity of
the phase transition. Note that the bump appears in the lattice data only at the highest order in
the expansion of the thermodynamic potential presently available, which is µ6

B [8]. The error
on the lattice data stems from the determination of the expansion coefficients for a given order.
The systematic error, e.g., from missing higher-order corrections of the expansion, is unknown.
So it is possible that the bump becomes more pronounced in the lattice data at higher orders of
the expansion. The strangeness density drops less steep with t in our results, but the overall
agreement is still good. We want to emphasize that the difference between nB and −nS in our
computation stems solely from the fluctuations of open strange mesons at µS = 0. So within a
mean-field study of the (P)QM/(P)NJL models the physical difference between nB and −nS in
the hadronic phase at vanishing µS cannot be captured.

The discrepancy between our results and the lattice results for nS at larger t could be a hint
that strange baryon dynamics are not captured quantitatively in the PQM model. As discussed in
Sec. 2.3, they enter indirectly through the coupling to the gluon background field. This appears
to work very well for nB, on the other hand, indicating that nucleon effects are described
well. The three-quark states that contribute through the modified fermion distribution function
in Eq. (33) always contain the same quark flavor, so while l l l-states such as the nucleons
or sss-states such as the Ω are effectively taken into account, the dynamically most relevant
strange baryons, the l ls-states Λ and Σ, but also lss-states such as the Ξ might not be captured
accurately here. This could, rather heuristically, explain the very good agreement of nB and the
small deviations of nS .

4.3 µS at strangeness neutrality

We computed the strangeness density nS(T,µB,µS) for T ∈ {20, . . . , 250} MeV and
µB, 3µS ∈ {0, . . . , 675} MeV. We note that the low-energy effective theory is only valid up
to moderate chemical potentials so we refrain from exploring the region beyond 675 MeV.
This is discussed in detail in App. B. An example of nS as a function of µS for fixed µB and
different T is given in Fig. 3. It is interesting to observe that nS is a linear function of µS at
larger temperatures. The larger µB, the smaller the temperature where this linear behavior
emerges. Given that nS/T

3 = χBS
01 , we conclude that higher strangeness cumulants χBS

0n for
n≥ 3 are highly suppressed at moderate to large temperatures.

The zero crossing of nS gives the value of µS that enforces strangeness neutrality for given
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Figure 3: Strangeness density as a function of µS at µB = 300 MeV for various
temperatures.

T and µB. Put differently, nS = 0 implicitly defines the function

µS0(T,µB) = µS(T,µB)
�

�

�

nS=0
. (55)

In Fig. 4 we show our results of µS0 as a function of T for various µB at strangeness neutrality.
We see that it is always a monotonously increasing function of T for the baryon chemical
potentials considered here. At large temperatures we find µS0 ≈ µB/3, as indicated by the
dashed lines at the right edge of the figure. Furthermore, at small temperatures, T ≈ 50 MeV,
µS0 becomes nonzero only for µB & 400 MeV. For µB = 0 µS0 is zero for all T . Qualitatively,
these observations can be understood as follows: Since the baryon chemical potential couples
to all quark flavors equally, cf. Eq. (2), increasing µB will also increase the number of strange
quarks over antistrange quarks in the system. The strange chemical potential, on the other
hand, favors antistrange over strange quarks and can therefore be tuned to compensate the
strangeness generated by µB. Obviously, if µB is zero, than µS also has to be zero to ensure
strangeness neutrality. In the hadronic phase at small µB essentially all strangeness is carried
by open strange mesons, in particular kaons and antikaons, since they can always be excited
in the thermal medium. At small temperatures the Fermi surface of the baryons is very sharp
while their Fermi energy is large, so at small µB and small T essentially no baryons are excited.
The thermally excited mesons will always have as much open strange as open antistrange in
the case of isospin symmetry (µI = 0) for µS = 0. Hence, µS0 ≈ 0 at small T and µB. At large
enough µB baryons can be excited and a finite µS becomes necessary to ensure strangeness
neutrality. The corresponding strangeness will either be carried mostly by kaons (and κ) or by
baryons, depending on µB.

With increasing temperature the Fermi surface of baryons becomes increasingly diffused,
facilitating the excitation of baryons. Hence, µS has to increase accordingly with temperature
to maintain nS = 0. This explains why µS0 is monotonously increasing with temperature.
In the vicinity of the phase transition, mesons and baryons start to dissolve into quarks. In
the deconfined phase at large T the quarks are only weakly interacting and hence flavor is
decorrelated. In this case, there is an exact relation between baryon number and strangeness
that directly follows from the coupling of µB and µS to the quarks in Eq. (6). This implies
µS0 = µB/3 in the deconfined phase. Since we find that the Polyakov loops are still smaller
than one even at T = 250 MeV (characterizing the so called semi-QGP phase), complete
deconfinement is not reached for highest temperatures in Fig. 4, which explains the the
deviation of µS0 from its asymptotic value.
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Figure 4: The strange chemical potential as a function of temperature at strangeness
neutrality for various baryon chemical potentials. The asymptotic values for free
quarks are indicated by the dotted lines at the right edge of the plot. µB is increasing
from bottom to top.
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Figure 5: Comparison between our full result for µS0 (solid lines) and Eq. (56) (dashed
lines) for µB = 150, 450 and 660 MeV (from bottom to top). The color coding for µB
is the same as in Fig. 4.

Finally, we want to compare or findings to the predictions of a purely fermionic system.
In [35] an intriguing relation between the Polyakov loops and the strangeness chemical potential
at strangeness neutrality has been derived,

µS0(T,µB)≈
µB

3
−

T
2

ln
�

L̄(T,µB)
L(T,µB)

�

. (56)

The independence of the Polyakov loops on µS was assumed here. This equation can be derived
from the quark contribution to the flow of the effective potential in Eq. (41). It provides a
good measure for the effect of the quarks coupled to the gluon background field on strangeness
neutrality. For the mean-field PNJL model studied in [35] it has be shown to be be about 3%
accurate. Potential deviations from this relation could be induced by a strong µS-dependence
of L̄/L and, most importantly, fluctuations of open strange mesons.

We show a comparison between our full result for µS0 and Eq. (56) in Fig. 5. We have used
the loops computed at µS = 0 in this figure but have checked that the results depend only very
mildly on this choice. While L and L̄ show a considerable dependence on µS , their ratio does
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Figure 6: Comparison between the pressure (first row), the trace anomaly (second
row) and the speed of sound squared (third row) at strangeness neutrality (solid blue
line), at µS = 0 (dashed orange line) and at µS = µB/3 (dotted gray line) for various
µB; see Eq. (54) for the definitions of these quantities.

not, excluding the former explanation for possible deviations. We see that Eq. (56) captures
the qualitative trend of µS0 quite well, but is quantitatively very inaccurate. At temperatures
below the phase transition the difference can be attributed to the missing effect of open strange
mesons in Eq. (56). This highlights the crucial importance of meson fluctuations for strangeness
neutrality. At larger temperatures the asymptotic value µS0 = µB/3 is rapidly reached with
Eq. (56). The reason is that L̄/L ≈ 1 in this case, even though they are still smaller than one.
As argued above, in our full result the asymptotic value is not reached since the system is in
the semi-QGP phase. The heuristic relation does not capture this feature at all. We want to
emphasize that L̄/L→ 1 at large T crucially depends on the parametrization of the Polyakov
loop potential. In our case, Eq. (34), the Haar measure of the gauge group is implemented
directly into the potential. This restricts the values of the loops to L, L̄ ∈ [0,1]. For different
parametrizations without the Haar measure the ordering L̄ > L at finite µB persists for arbitrarily
large temperatures, with loops larger than one. In this case, would also yield µS0 < µB/3 at
large T .

4.4 Strangeness neutrality and QCD thermodynamics

We can now use the results of the previous section to investigate the influence of the strangeness
neutrality on thermodynamic quantities. To this end, we compare our results at µS = 0 (dashed,
orange) and µS = µB/3 (dotted, gray) to the ones at strangeness neutrality, nS = 0 (solid,
green), at various µB. This is shown in Fig. 6. The first row shows the pressure, the second the
trace anomaly and the third the speed of sound squared. For small baryon chemical potential,
µB . 300 MeV, the equation of state is not very sensitive to the chemical potentials since
baryon excitations are highly suppressed. At small temperatures pion fluctuations dominate
the equation of state in this case and hence the thermodynamic quantities are essentially
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independent of µS. At larger temperatures we find that the pressure and the trace anomaly
are always smaller at strangeness neutrality than at µS = 0. At larger µB this effect is more
pronounced. The pressure and the trance anomaly start to grow at larger T at strangeness
neutrality as compared to µS = 0, indicating that the QCD phase transition is shifted to larger
temperatures. This is also apparent from the position of the minima of c2

s , which approximately
coincide with the pseudocritical deconfinement and chiral transition temperatures. Note that at
µB = 675 MeV we find Td ≈ Tχ , so the two corresponding minima are degenerate. For µB = 675
MeV the equation of state shows a sizable dependence on the strangeness. For the pressure we
find a difference of about 20% between µS = 0 and nS = 0 at large temperatures and for the the
trace anomaly even more than 35% in the transition region. The higher sensitivity of the trace
anomaly is due to its direct dependence on the particle numbers. At strangeness neutrality, the
baryon number is always smaller than at µS = 0 for finite µB for all temperatures. This is as
expected since finite µS leads to less strange particles in the system that can contribute to the
baryon number.

In contrast to p and I , the speed of sound squared shows the highest sensitivity in the small
and intermediate temperature region. As discussed in Sec. 4.2, p and I are dominated by the
increase in the number of degrees of freedom at the phase transition, while c2

s is not. In the
hadronic regime we find a difference of about 30% between µS = 0 and nS = 0 at µB = 675
MeV. This is also apparent from the comparison to the results at µS = µB/3. As argued in the
previous section, µS = µB/3 enforces strangeness neutrality in case of uncorrelated quarks,
i.e. deep in the deconfined phase. The results for µS = µB/3 and nS = 0 should therefore
become degenerate at large temperatures. This is also what we observe for the thermodynamic
quantities. Since µS0 is already close to its asymptotic value at Tχ , cf. Fig. 4, they are already
very similar close to the chiral transition for µS = µB/3 and nS = 0. The pressure and the trace
anomaly show only very small differences between µS = µB/3 and nS = 0 at small temperatures.
c2
s shows a stronger sensitivity to the strangeness below the chiral phase transition. µS = µB/3

results in a larger and µS = 0 in a smaller speed of sound in the hadronic phase as compared
to the result at strangeness neutrality. This ordering is inverted for the pressure and the trace
anomaly.

Overall, we found that the equation of state becomes increasingly sensitive to strangeness
with increasing baryon chemical potential. At µB = 675 MeV, where the transition is still a
crossover in our model, the effects of strangeness neutrality as compared to vanishing strange
chemical potential become as large as about 30%.

4.5 Strangeness neutrality and the phase structure

As already indicated by the results in the previous section, strangeness has a sizable effect
on the phase structure at finite baryon chemical potential. In the left plot of Fig. 7 we show
the phase diagram of the chiral transition as defined by the inflection point of the subtracted
chiral condensate, Eq. (53), at strangeness neutrality (solid line) and at vanishing strangeness
chemical potential (dashed line). We see, as already concluded in the previous section, that
strangeness neutrality leads to a larger critical temperature as compared to µS = 0. The effect
increases with increasing µB, but leads to only about 6% difference in Tχ at the largest baryon
chemical potential and is therefore very small. However, since the transition is a crossover
for the parameters considered here, it is more sensible to compare the global structure of the
order parameters. To this end, we computed the relative difference between the subtracted
condensate at strangeness neutrality and at vanishing strange chemical potential,

∆LS

�

�

nS=0 −∆LS

�

�

µS=0

∆LS

�

�

nS=0

. (57)
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Figure 7: Left: Relative error of the subtracted condensate for strangeness neutrality
and µS = 0. The solid and dashed lines indicate the chiral phase boundary as defined
by the inflection point of ∆LS(T ) for nS = 0 and µS = 0 respectively. Right: The same
for the Polyakov loop. Here, the solid and dashed lines indicate the deconfinement
phase boundary as defined by the inflection point of L(T ) for nS = 0 and µS = 0.

The result is given by the density profile in the left plot of Fig. 7. The darker the color, the larger
the difference. It shows where the chiral phase structure is most sensitive to strangeness. Similar
to our findings for the pressure, the subtracted chiral condensate is most sensitive at intermediate
to large µB and above the critical temperature. In the hadronic phase, strangeness neutrality
does not have a big effect on the chiral order parameter. Even though the effect of strangeness
neutrality on the inflection point of the order parameter is rather small, we find deviations
of up to about 27% in the difference defined in Eq. (57). The relation ∆LS

�

�

nS=0 ≥ ∆LS

�

�

µS=0
holds for all T and µB considered here. Baryon effects (relative to meson effects), which tend
to make the crossover steeper, are partly suppressed at strangeness neutrality since µS > 0
effectively reduces strange baryon contributions. The chiral condensate therefore melts slower
at strangeness neutrality.

A similar conclusion can be drawn for the deconfinement transition. In the right plot of
Fig. 7 we show the deconfinement transition as defined by the inflection point of the Polyakov
loop, Eq. (24), at strangeness neutrality (solid line) and at vanishing strange chemical potential
(dashed line). The antiloop L̄ gives essentially the same critical temperature. As for the chiral
transition, the pseudocritical temperature becomes slightly larger at nS = 0 as compared to
µS = 0, where the difference increases with increasing µB. We also computed the relative
difference

L
�

�

nS=0 − L
�

�

µS=0

L
�

�

nS=0

, (58)

and the result is given by the density profile in the right plot of Fig. 7. Again, we find that the
deviation grows with µB but this time is largest in the hadronic regime right below the phase
boundary. Recalling that the deconfined phase corresponds to chiral symmetry restoration and
center symmetry breaking, we conclude that both for the chiral and the deconfinement order
parameter, the transition region at large µB towards the respective symmetry restored phase
is most sensitive to strangeness. For the Polyakov loops we always find L

�

�

nS=0 ≤ L
�

�

µS=0. The
overall effect on the deconfinement transition is a bit smaller than on the chiral transition,
but still about 20%. These findings might suggest that the results for the effect of strangeness
neutrality on the thermodynamic quantities in the previous section could be attributed to the
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pressure and the trance anomaly being more sensitive to the chiral transition, while the speed
of sound is more sensitive to the deconfinement transition.

Finally, we studied how strangeness neutrality affects the isentropes in the phase diagram.
They are defined by trajectories of constant s/nB. Without dissipation, i.e. the ideal case, the
hydrodynamic evolution of the quark-gluon plasma is along such isentropes. This is due to the
fact that without dissipation and only strong interactions, both the entropy density and the
baryon number are conserved in the hydro evolution. Even though it is established by now
that the QGP is not an inviscid fluid, given the small shear viscosity over entropy density of the
QGP suggest by hydrodynamic simulations of heavy-ion collisions, the isentropes still provide a
good estimate for the approximate path that the QGP in its late stages takes through the phase
diagram.

Our results are shown in Fig. 8. The orange dashed line corresponds to µS = 0 and the solid
blue line shows the isentropes at strangeness neutralities for various fixed ratios s/nB. The
isentropes show a very characteristic behavior: they have positive slope in the phase diagram
above the phase transition and a negative slope below. In the transition region, the slope
changes sign, with a slower ‘turning’ of the isentropes at smaller µB, where the crossover region
is wider. We find this kink even at large s/nB. Interestingly, in studies of the isentropes within
two-flavor QM and PQM models such a kink only occurs for small s/nB [40,96]. Hence, the
sensitivity of the isentropes to the phase transition at large s/nB can be attributed to srangeness.

The behavior of the isentropes in the hadronic phase is dictated by the Silver-Blaze property
of QCD. At T = 0 and µB . 3ml the baryon number has to vanish. Hence, the isentropic curves
bend toward larger µB with decreasing T . The difference between nS = 0 and µS = 0 is small at
small temperatures because the lightest baryonic resonance does not carry strangeness. Since
the system is in the semi-QGP phase above the phase transition, the entropy density has not
reached its asymptotic value yet and is hence still growing with T . The baryon number, on the
other hand, has a maximum at the chiral phase transition and slowly decreases with increasing
temperature above Tχ . Hence, the isentropes bend towards larger µB with increasing T above
the phase transition. The regions where the isentropes turn therefore clearly indicate the
transition region. Since the baryon number at strangeness neutrality is systematically smaller
than for µS = 0 at a given µB, the bending of the isentropes above the phase transition is
stronger at strangeness neutrality. We also find that the isentropes at strangeness neutrality are
systematically shifted to the right. Qualitatively, this can be understood from the fact that the
baryon number decreases with increasing µS. This effect dominates over the corresponding
effect on the entropy density (which behaves very similar to the pressure in Fig. 6). Thus,
larger µB is necessary to ensure a fixed s/nB at strangeness neutrality.

5 Summary

Strangeness neutrality is a crucial property of the matter created in heavy-ion collisions. We
studied its impact on QCD thermodynamics and the phase structure. To this end, we set up a
2+1 Polyakov loop enhanced quark-meson model that captures the dynamics of mesons, quarks
and, to some extent, baryons in a gluon background field at finite baryon and strangeness
chemical potential. We demonstrated by comparing to available lattice data that this works
very well for the QCD equation of state not only at vanishing chemical potential, but also at
finite µB/T .

Demanding that the strangeness number is always zero implicitly defines a corresponding
strange chemical potential as a function of temperature and baryon chemical potential. We
computed resulting function µS0(T,µB). Its non-trivial functional form has a transparent
interpretation in terms of competing strange meson and baryon dynamics at finite baryon
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Figure 8: Isentropes in the phase diagram. The dark and light gray lines are the chiral
and deconfinement phase boundaries respectively.

chemical potential and is therefore intimately tied to confinement. We compared these results
to the purely fermionic case, i.e. where only quark and baryon dynamics are taken into account,
and found huge discrepancies. This highlights the crucial importance of open strange meson
dynamics for the accurate description of strangeness physics and the freeze-out conditions of
heavy-ion collisions.

We used our results for µS0(T,µB) to compute QCD thermodynamics and the phase structure
at strangeness neutrality. The effect of the strangeness content of the QCD medium on its
thermodynamics is certainly interesting on its own right, but also very important as an input
for, e.g., the hydrodynamic description of heavy-ion collisions. The comparison of our results
at vanishing density to lattice QCD results show very good agreement, even for the highly
non-trivial speed of sound. To assess the effect of strangeness neutrality we confronted results
on the equation of state at fixed strange chemical potential, where we have chosen µS = 0 and
µB/3, to the equation of state at strangeness neutrality. For reasons related to the range of
validity of our model (see App. B) we restricted our analysis to µB ∈ {0, . . . , 675} MeV but note
that this covers the region probed by current beam energy scan experiments [15] (assuming
that the translation of the beam energy to the baryon chemical potential based on the hadron
resonance gas is correct). Our results show that the relevance of strangeness neutrality grows
with increasing baryon chemical potential and the difference between strangeness neutrality
and µS = 0 can be as large as about 30% at µB = 675 MeV, in particular for the trace anomaly
and the speed of sound squared.

We find a similar sensitivity of the chiral and deconfinement phase transitions on strangeness.
Overall, the pseudocritical temperatures of both transition are larger at strangeness neutrality
than at vanish strange chemical potential. Hence, strangeness neutrality ‘delays’ the transition
to the QGP. Again, while the effect is small at small µB and becomes considerable at larger
µB. This can be attributed to a suppression of symmetry-breaking fermionic fluctuations in the
strange sector due to finite µS. Due to their distinct sensitivity to the phases of QCD and the
related thermodynamics, the isentropes, which provide a good estimate for the path of the
hydrodynamic evolution of the QGP though the phase diagram, also turned out to be affected
by strangeness neutrality significantly.

In summary, we have demonstrated that the QCD equation of state and its phase structure
are highly sensitive to the strangeness content of the medium. For the accurate description
of heavy-ion collisions at varying beam energies it is indispensable to take this into account.
The underlying physics is very intriguing since the strangeness neutrality condition nS = 0
is sensitive to various characteristic properties of QCD, namely the interplay of meson and
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baryon dynamics at finite chemical potential as well as the chiral and deconfinement phase
structure. The present results facilitate the computation of fluctuation observables in heavy-ion
collisions, such as higher cumulants of baryon number and strangeness distributions including
off-diagonal cumulants, under more realistic conditions.

Towards a more realistic equation of state, the next crucial step is to also account for the
freeze-out condition related to the initial charge of the colliding nuclei by taking finite isospin
chemical potential into consideration. Also in this case, beyond mean-field effects and in
particular pion fluctuations will certainly be very important. Concerning the model, the most
relevant improvements are the inclusion of effects beyond LPA which have a high impact on
quark and meson dynamics, and the incorporation of dynamics in the gauge sector which allow
for a self-consistent computation of the Polyakov loop potential. The latter point might remedy
the thermodynamic inconsistency of the PQM model at large µB discussed in the appendix and
thus allow for an extension of the present work towards the critical endpoint of QCD. Then,
(off-diagonal) cumulants of baryon number and strangeness distributions will also become
accessible.
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A Details on the Polyakov loop potential

Here we provide the details on the Polyakov loop potential Uglue. For x = (a, c, d) the tempera-
ture dependent coefficients in Eq. (34) are of the form

x(T ) =
x1 + x2/t + x3/t2

1+ x4/t + x5/t2
,

b(T ) = b1 t−b4
�

1− eb2/t b3
�

,

(59)

where the parameters have been determined in [77] and are shown in Tab. 2. t = tred + 1 with
tred = αt(T − T0)/T0. T0 is the deconfinement temperature of the pure gauge theory, while
αt is a parameter that controls the speed of the transition. Due to unquenching effects, both
parameters deviate from the values of the pure gauge theory, T0,YM = 276 MeV and αt,YM = 1.
Since the QCD transition has a smaller critical temperature and a smoother transition, one
generally expects T0 < T0,YM and αt < αt,YM. In [97] αt = 0.57 has been determined. However,
since this depends on the number of flavors, the truncation and the parametrization of the
Polyakov loop potential, we will consider both αt and T0 as free parameters here. They can be

1J. Braun, L. Corell, A. K. Cyrol, W.-j. Fu, C. Huang, M. Leonhardt, M. Mitter, J. M. Pawlowski, M. Pospiech, F.
Rennecke, C. Schneider, R. Wen, N. Wink, S. Yin.
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Table 2: Fit parameters of the Poyakov loop potential defined in Eqs. (34) and (59).
These are taken from [77].

a1 a2 a3 a4 a5

-44.14 151.4 -90.0677 2.77173 3.56403

b1 b2 b3 b4

-0.32665 -82.9823 3.0 5.85559

c1 c2 c3 c4 c5

-50.7961 114.038 -89.4596 3.08718 6.72812

d1 d2 d3 d4 d5

27.0885 -56.0859 71.2225 2.9715 6.61433

determined, e.g., by fitting the pressure to the lattice result at vanishing density. The other fit
parameters of the potential are given by their YM values and are given in Tab. 2:

The inclusion of finite chemical potentials to the gauge sector can be achieved along the lines
of [29,41]. It is constructed phenomenologically from the identification of ΛQCD in the one-loop
beta function of QCD at large density (HTL/HDL) with the flavor dependent modification of
the critical temperature. This suggests the following modification of T0, [29],

T0(N f ,µ) = Tτe−1/(α0 bµ) , (60)

where Tτ = 1.77 GeV sets the renormalization scale with the corresponding coupling α0 = 0.304
for N f = 0. bµ encodes the flavor and chemical potential dependence of beta function:

bµ = b0 +
16
π

�

2
µ2

(γ̂Tτ)2
∆nl +

(µ−µS)2

(γ̂Tτ)2
∆ns

�

. (61)

b0 can be chosen either to be the well-known one-loop QCD beta function coefficient,
b0 = (11Nc − 2N f )/(6π), or, in the spirit of T0 as an approximation dependent free parameter,
to also be a free parameter. The second term in Eq. (61) is constructed such that the chiral and
deconfinement transition agree at finite µ at mean-field in the two flavor PQM [29]. γ̂ can be
used as an additional parameter to control the curvature of the deconfinement phase transition.
We use γ̂= 1 for the time being. The distributions ∆nl/s are introduced in order to maintain
the Silver Blaze property at vanishing temperature. For ∆nl/s = 1 the above parametrization
would yield a µ-dependent equation of state at vanishing temperature. Under the requirement
that ∆nl/s→ Θ(µ−Ml/s) at vanishing temperature, we define

∆nl =
1

e3(Ml−µ)/T + 1
+

1
e3(Ml+µ)/T + 1

2
e3Ml/T + 1

,

∆ns =
1

e3(Ms−µ+µS)/T + 1
+

1
e3(Ms+µ−µS)/T + 1

−
2

e3Ms/T + 1
,

(62)

where Ml/s are renormalized vacuum masses of the light and strange quarks.

B Thermodynamics at large µ

Throughout this work, we have used µB ≤ 675 MeV. This is below the critical endpoint of the
model, which would certainly be interesting to study also in the context of this work. We find
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μB = 750 MeV
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Figure 9: Entropy density at µB = 750 MeV and µS = 0.

that starting at µB & 700 MeV the pressure develops an increasingly strong non-monotonoticity
with increasing µB in the vicinity of the phase transition. This eventually leads to a negative
entropy density in this region, as shown in Fig. 9 at µB = 750 MeV and µS = 0. We explicitly
checked that this is independent of the parametrization of the loop potential. The origin of this
behavior can be traced back to the contribution of the gauge sector to the pressure,

p
�

�

glue = −Uglue(L, L̄) , (63)

where the Polyakov loops are part of the solutions of the equations of motion. We show this
contribution at µB = 0 and µB = 750 MeV for µS = 0 in Fig. 10. This contribution is negative
and has a minimum at around the chiral transition temperature. We see that the larger µB the
larger this negative contribution tho the pressure becomes. For the baryon chemical potentials
used in the main part of this work, where the pressure is always monotonously increasing, this
negative contributions can be interpreted as the suppression of hadronic contributions to the
pressure in the transition region due to deconfinement. This effect then is clearly overestimated
at large µB, leading to unphysical thermodynamics.

This problem originates in a combination of potential effects:
Firstly and most prominently, the construction of the Polyakov loop potential we use in

this work, Eq. (34), is based on the pressure, the expectation values of the Polyakov loops
and their two-point correlators [77]. This corresponds to Taylor expansion to second order
of the potential about the minimum. The pressure is the value of the potential, the Polyakov
loop expectation value determines the location of the minimum and the two-point correlator
determines the curvature in the minimum. Further information on the global form of the
potential comes from the temperature dependence of the parameters and the Haar measure
of the loop. Evidently, this does not fully constrain the potential away from the Yang-Mills
minimum. Moreover, the potential is best constrained for L = L̄. The further away from the
expansion point the potential has to evaluated, in particular for L 6= L̄, the less constrained it
is. This could be cured by either taking into account higher correlation functions of the loops
in an extension of [77], or by using a self-consistent Ā0-potential from the FRG [69,72,98].

Secondly, the effect of matter fluctuations is only taken into account effectively by a simple
quark flavor and chemical potential dependent rescaling of the potential as discussed in App. A.
While this works well at small chemical potential, it might be too simple at large chemical
potential. This problem could be cured by a self-consistent FRG computation as mentioned
above.

Thirdly, for large chemical potentials and temperatures the initial conditions depend on
these external parameters. Within the present approximation this is discussed in Sec. 4.1. More
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Figure 10: Contribution of the Polyakov loop potential to the pressure.
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Figure 11: The pressure at µ= 0. The solid green line is computed with the full field
dependence of ∆ΓΛ. The dotted blue line shows the results with ml = 3.6 MeV and
ms = 95 MeV. The dashed orange line correspond to ml = 300 MeV and ms = 430
MeV.

generally, information from QCD at large energy scales are required, see e.g. [99].
Lastly, for large chemical potentials it might be possible that the free energy is minimized

by an inhomogeneous solution. Consequently, our solution on a homogenous background
could potentially lead to a negative contribution to the pressure, see, e.g., [100–103] for
studies within (P)NJL and QM models. Given the explicit analysis done below and due to the
occurrence of this problem already at moderate chemical potential, this is unlikely to be the
origin of the problem in the present case. Furthermore, by using a Fierz-complete basis for the
four-quark interaction channels within a NJL model, it has been shown in [104,105] that other
channels, for instance isoscalar-vector and diquark channels, become relevant for the phase
structure at finite baryon chemical potential. Since we only account for the scalar-pseudoscalar
channel in this work (cf. Sec. 2.2), we might miss some relevant effects at larger chemical
potential.

The problems discussed above manifest themselves in the gluon contribution to the pressure
in the present work. In Fig. 10 we show the contribution of Uglue to the pressure at µB = 0 and
µB = 750 MeV at vanishing strangeness chemical potential. Since the deconfinement transition
in SU(3) Yang-Mills theory is of first order, Uglue is normalized such that its minimum is at
zero for T < T0. The Polyakov loops are also exactly zero in this case, LYM = L̄YM = 0. In
the present work, and Polyakov-loop enhanced models of QCD in general, the deconfinement
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transition is a crossover and the Polyakov loops L, L̄ are always non-zero. This means that
Uglue is probed away from its normalized minimum, so while Uglue(LYM, L̄YM) = 0 for T < T0
one has Uglue(L, L̄)> 0. For increasing µB the Polyakov loops in QCD become larger and also
unequal. So, as discussed above, we probe the potential in a region that is not well described
by the present parametrization. This explains our observation in Fig. 9 and why we refrain
from doing computations at too large µB.

C Field dependence of the initial conditions

Here, we check the effect of the meson field dependence of ∆ΓΛ as discussed in Sec. 4.1. One
may argue that it is sufficient to use the current quark, or even vanishing, masses in Eq. (47)
instead of resorting to background field dependent quark masses. However, it turns out that
this is quantitatively very inaccurate in the present case. The medium-dependent corrections
for the effective potential become relevant well before the quark masses reach their current
values. In particular in the LPA, the quarks approach their current mass very slowly above
Tc, if at all, so that they are reached well above the temperatures relevant here. As a result,
setting ml ≈ 3.6 MeV and ms ≈ 95 MeV leads to a significant overestimation of the in-medium
corrections to the initial action. The same is true for the case where the initial quark masses
that follow from the initial parameters in Tab. 1, which are about a factor of 2-3 larger than
the PDG current masses, are used.

However, it turns out that using the vacuum constituent quark masses, ml ≈ 300 MeV and
ms ≈ 430 MeV works quite well. This is shown in Fig. 11. As argued in Sec. 4.1, the most
accurate determination of the equation of state is by using the background field dependent
quark masses in the in-medium corrections of the initial conditions. This is the solid green
line in the figure. Using the current quark masses leads to a considerable overestimation of
the pressure, as shown by the dotted blue line. The dashed orange line shows the result with
the constituent quark masses and we see that it gives a very accurate result. The error of this
procedure is largest in the transition region, where it is about 8%. We have checked explicitly
that these findings are also true at finite chemical potentials. The advantage of the field
independence is obviously that ∆ΓΛ only enters in the initial pressure. Only ω00,Λ in Eq. (51)
receives a correction from ∆ΓΛ. The numerical integration of higher derivatives of Eq. (47) for
the correction to the higher Taylor coefficients becomes unnecessary and irrelevant operators
can be se to zero at the initial scale. At order φ10 this results in a speed-up by a factor of two
to three with the numerical integration we implemented. Hence, given this large numerical
speedup we accept the relatively small systematic error in our results on thermodynamics.

We would like to emphasize that these results apply to the fixed background Taylor expansion
we used to solve the flow equation of the effective potential [42,49] and might not be directly
transferrable to other methods. This is due to the fact that we expand the effective potential
about its temperature and chemical potential dependent IR minimum. Using the current quark
masses for the in-medium corrections of the initial effective potential is therefore consistent
with our expansion scheme. For a more general discussion on this matter we refer to [90].
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