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Abstract

Subtracting event samples is a common task in LHC simulation and analysis, and stan-
dard solutions tend to be inefficient. We employ generative adversarial networks to
produce new event samples with a phase space distribution corresponding to added or
subtracted input samples. We first illustrate for a toy example how such a network beats
the statistical limitations of the training data. We then show how such a network can be
used to subtract background events or to include non-local collinear subtraction events
at the level of unweighted 4-vector events.
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1 Introduction

Modern analyses of LHC data are increasingly based on a data-to-data comparison of mea-
sured and simulated events. The theoretical basis of this approach are generated samples of
unweighted or weighted LHC events. To match the experimental precision such samples have
to be generated beyond leading order in QCD. In modern approaches to perturbative QCD at
the LHC such simulations include subtraction terms, leading to events with negative weights.
Examples for such subtraction event samples are subtraction terms for fixed-order real emis-
sion [1–5], multi-jet merging including a parton shower [6,7], on-shell subtraction [8], or the
subtraction of precisely known backgrounds [9].

Generative adversarial networks or GANs [10] are neural networks which naturally lend
themselves to operations on event samples, as we will show in this paper. Such generative
networks have been proposed for a wide range of tasks related to LHC event simulation and
are expected to lead to significant progress once they become part of the standard tool box.
This includes for instance phase space integration [11], event generation [12–15], detector
simulations [16–22], unfolding [23], parton showers [24–28], or searches for physics beyond
the Standard Model [29]. Most recently, we have shown that fully conditional GANs can
be used to invert typical Monte Carlo processes at the LHC, like for instance a fast detector
simulation [30].

In this paper, we show how GANs can perform simple operations on event samples, namely
adding and subtracting existing samples. Such a network is trained to generate unweighted
events with a phase space density corresponding to a sum or difference of two or more input
samples. We will illustrate the idea behind a generative event sample subtraction and addition
in Sec. 2. This example shows how generative networks can beat the statistical limitations of
the training samples. Specifically, we produce events with statistical fluctuations which are
significantly smaller than the corresponding statistical fluctuations of the training data. The
feature behind this naively impossible improvement are the excellent interpolation properties
of neural networks in a high-dimensional phase space.

In Sec. 3 we will then subtract unweighted 4-vector events for the LHC in two examples.
First, we subtract the photon continuum from the complete Drell–Yan process and find the Z-
pole and the known interference patterns. This can be seen as a toy example for a background
subtraction at the level of parton-level event samples. For instance, this setup could allow us
to study the kinematics of four-body decay signals, simulated to high precision from observed
background and signal-plus-background samples.

Finally, we combine a hard matrix element for jet radiation with collinear subtraction
events. This gives us an event sample that follows the matrix element minus the subtrac-
tion term without any intermediate binning in the phase space. We show how this subtraction
works even if we do not make use of the local structure of the subtraction terms. It illustrates
how simulations in perturbative QCD might benefit from GANs, in soft-collinear subtraction,
on-shell subtraction, or a veto-like combination of phase space and parton shower.

2 Toy example

The advantage of GANs learning how to subtract event samples can be seen easily from sta-
tistical uncertainties in event counts. Traditionally, we generate the two samples and combine
them through some kind of histogram. If we start with N + n events and subtract N � n
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Figure 1: Structure of our subtraction GAN. The input {r} describes a batch of ran-
dom numbers and {xB,S} the true input data batches. The label c encodes the cate-
gory of the generated events. Blue arrows indicate the generator training, red arrows
the discriminators training.

statistically independent events, the uncertainty on the combined events in one bin is given by

∆n =
q

∆2
N+n +∆

2
N ≈
p

2N �
p

n . (1)

In any bin-wise analysis the bin width has to be optimized. On the one hand larger bins with
more events per bin minimize the relative statistical error, but on the other hand they reduce
the resolution of features.

In our GAN approach we avoid defining such histograms and replace the explicit event
subtraction by a subtraction of interpolated sample properties over phase space. We will first
develop this approach in terms of a simple toy example and then show how it can be extended
to unweighted 4-vector events as used in LHC simulations. Unfortunately, there does not (yet)
exist a rigid description of statistical and systematic uncertainties associated with GANs, but
we will show how the fluctuations we observe in our generated samples are visibly smaller
than what we would expect from the input data and Eq.(1).

2.1 Single subtraction

We start with a simple 1-dimensional toy model, i.e. toy events which are described by a single
real number x . We then define a base distribution PB and a subtraction distribution PS as

PB(x) =
1
x
+ 0.1 and PS(x) =

1
x

. (2)

The target distribution for the subtraction is then

PB−S = 0.1 . (3)

To produce unweighted subtracted events our GAN is trained to generate the event sets {xB}
and {xS} simultaneously. It thereby learns the distribution PB−S using the information encoded
in the two input samples.

The corresponding GAN architecture is shown in Fig. 1 and consists of a generator and
two independent discriminators, one for each dataset. The generator takes random noise {r}
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as input and generates samples {xG , c}, where xG stands for an event and c for a label. The
underlying idea is to start from an event sample which follows PB and split it into two mutually
exclusive samples following PS and PB−S , with class labels CS or CB−S . During training we
demand that the distribution over events from class CS follow PS while the full event sample
follows PB. After normalizing all samples correctly the events with class label CB−S will then
follow the distribution PB−S .

Technically, the class label c attached to each event is a real 2-dimensional vector, such
that it can be manipulated by the network. Through a SoftMax function in the final generator
layer the entries of c are forced into the interval [0,1] and sum to 1. We then create a so-called
one-hot encoding by mapping c to

cone-hot
i =

¨

1 if ci =max(c)
0 else .

(4)

This representation is two-dimensional binary and most convenient for manipulating the sam-
ples. We can use it to define the label classes via Ci = {c | cone-hot

i = 1}.

In Fig. 1 we see that for the class CS and the union of CS with CB−S we train the discrim-
inators to distinguish between events from the input samples and the generated events. The
training of the discriminators Di corresponding to the two input samples {xS} and {xB} uses
the standard discriminator loss function for instance in the conventions of Ref. [15]

LDi
=



− log Di(x)
�

x∼PT
+



− log(1− Di(x))
�

x∼PG
. (5)

We add a regularization and obtain the regularized Jensen-Shannon loss function

L(reg)
Di
= LDi

+λDi




(1− Di(x))
2 |∇φi|2

�

x∼PT
+λDi




Di(x)
2 |∇φi|2

�

x∼PG
, (6)

where we define

φi(x) = log
Di(x)

1− Di(x)
. (7)

In parallel, we train the generator to fool the discriminators by minimizing

LG =
∑

i




− log Di(x)
�

x∼PG
. (8)

An additional aspect in manipulating samples is that we need to keep track of the normal-
ization or number of events in each class. To generate a clear and differentiable assignment
we introduce the function

f (c) = e−α(max(c)2−1)2β ∈ [0, 1] for 0≤ ci ≤ 1 . (9)

Adapting α and β we can make the gradient around the maximum steeper and push f (0)→ 0.
In that case f (c)≈ 1 only if one of the entries of ci ≈ 1. By adding

L(class)
G =

�

1−
1
b

∑

c∈batch

f (c)

�2

(10)

to the loss function we reward a clear assignment of each event to one class and generate a
clear separation between classes. Finally, we use the counting function in combination with
masking to fix the normalization of each sample with

L(norm)
Gi

=

�
∑

c∈Ci
f (c)

∑

c∈CB
f (c)

−
σi

σ0

�2

. (11)
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Figure 2: Left: Generated (solid) and true (dashed) events for the two input distri-
butions and the subtracted output. Right: distribution of the subtracted events, true
and generated, including the error envelope propagated from the input statistics.

Adding these losses to the generator loss we get

LG → L(full)
G = LG +λclass L(class)

G +λnorm L(norm)
G , (12)

with properly chosen factors λclass and λnorm. In this paper we always use λclass = λnorm = 1.
For the denominator in Eq.(11) we always choose the approximation of the number of pre-
dicted events in the base class CB = CB−S∪CS as reference value . The integrated rates σi have
to be given externally. For our toy model we can compute them analytically while for an LHC
application they are given by the cross section from the Monte Carlo simulation.

Our GAN uses a vector of random numbers as input. The size of the vector has to be at
least the number of degrees of freedom. For the implementation we use KERAS 2.2.4 [31]
with a TENSORFLOW 1.14 back-end [32]. The discriminator and generator networks consist
of 5 layers with 128 units per layer using the ELU activation function. With λDi

= 5 · 10−5

and a batch size of 1024 events, we run for 4000 epochs. Each epoch consists of one update
of the generator and 20 updates of the discriminator. We found that the intense training of
the discriminator is necessary to reach sufficiently precise results. To obtain a good separation
of the classes with f (c) we set α = 10 and β = 1. Finally, using the ADAM [33] optimizer
throughout this paper, we choose a learning rate of 3 · 10−4 for generator and discriminator
and a large decay of the learning rate of 2 · 10−2 for the discriminator which stabilizes the
training. The decay for the generator is slightly smaller with 5 · 10−3. Our training datasets
consist of 105 samples for each dataset {xS} and {xB}.

We show numerical results for a single GAN subtraction and analyze the size of the sta-
tistical fluctuations in Fig. 2. In the left panel we show the two input distributions defined in
Eq.(2), as well as the true and generated subtracted distribution. The dotted lines illustrate the
shape of the training dataset, while the full lines show the generated distribution using 5 ·106

events. The former two distributions only serve to confirm that the GAN learns the input infor-
mation correctly. The generated subtracted events indeed follow the probability distribution
in Eq.(3). Aside from the fact that all three distributions show excellent agreement between
truth and GANned events, we see how the neural network interpolates especially in the tail of
the distribution. In the right panel of Fig. 2 we zoom into the subtracted sample to compare
the statistical uncertainties from the input data with the behavior of the GAN. The uncertainty
is estimated from the number of events per bin in the base and subtraction histogram NB and
NS , taking into account the corresponding normalization factors nB and nS . In analogy to

5

https://scipost.org
https://scipost.org/SciPostPhysCore.3.2.009


SciPost Phys. Core 3, 009 (2020)

Eq.(1) we compute it as

∆B−S =∆nBNB−nS NS

=
Ç

∆2
nBNB

+∆2
nS NS

=
q

n2
BNB + n2

SNS .

(13)

As mentioned above, we expect the GAN to deliver more stable results than we could expect
from the input sample, because the GAN interpolates all input distributions. This way we avoid
a bin-by-bin statistical uncertainty of the subtracted sample. Indeed, our subtracted curve in
the right panel of Fig. 2 lies safely within the 1σ region of the data. The statistical fluctuations
of the GANned events are much smaller than the statistical fluctuations in the input data. On
the other hand, the GANned distribution shows systematic deviations, but also at a visibly
smaller level than the statistical fluctuation of the input data. While this observation does not
imply a proof that GANs can beat the statistical limitations of the input data, they give a clear
hint that the interpolation properties can balance statistics at some level.

2.2 Combined subtraction and addition

To show how our approach could be generalized to subtracting and adding any number of
event samples we can extend our single subtraction toy model by a third sample to be added
to the difference described in Eq.(3). We now consider three samples corresponding to the
1-dimensional distributions

PB(x) =
1
x
+ 0.1 PS(x) =

1
x

PA(x) =
m
π

γ

γ2 + (x − x0)2
. (14)

As a third input we add the Breit-Wigner distribution PA, so our target distribution becomes

PB−S+A =
m
π

γ

γ2 + (x − x0)2
+ 0.1

=
5
π

10
100+ (x − 90)2

+ 0.1 , (15)

for the values m = 5, γ = 10, and x0 = 90. We now sample {xB}, {xS} and {xA} indi-
vidually from the input distributions and want to learn the probability distribution PB−S+A.
The approach is the same as described before, but for three classes as shown in Tab. 1 and a
three-dimensional class vector. Treating the subtraction exactly as before we obtain our target
distribution PB−S+A by adding the event with class CA.

Compared to the sample subtraction introduced before, adding samples is obviously not
a big challenge. In principle, we could just add the unweighted event samples in the correct

Table 1: Category assignment for a combined addition and subtraction of three sam-
ples.

CB−S CS CA

Data B 1 1 0
Data S 0 1 0
Data A 0 0 1

B − S + A 1 0 1
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Figure 3: Left: Generated (solid) and true (dotted) events for the three input distri-
butions and the combined output. Right: distribution of the combined events, true
and generated, including the error envelope propagated from the input statistics.

proportion, learn the phase space structure with a GAN, and then generate any number of
events very efficiently. The reason why we discuss this aspect here is that it shows how our
subtraction GAN can be generalized easily.

In Fig. 3 we show the numerical results of subtracting one distribution {xS} from the base
distribution {xB} and adding a second distribution {xA} with a distinct feature. As before, this
combination is learned from the three input distributions without binning the corresponding
phase space. The hyper-parameters are slightly modified with respect to the simple subtraction
model. The networks now consist of 7 layers with 128 units which we train for 1000 epochs
with 4 iterations. We fix the relative weight of the gradient penalty to λDi

= 5 · 10−5. The
separation of the three classes is efficient for α= 5 and β = 1. Finally, we set the learning rate
to 8 ·10−4 and its decay to 2 ·10−2 for generator and discriminator. The remaining parameters
are the same as for the pure subtraction case. In the left panel of Fig. 3 we confirm that the
GAN indeed learns the three input structures correctly and interpolates each of them smoothly.
We also see that the generated events follow the combination B − S + A with its flat tails and
the central Breit–Wigner shape. As for the pure subtraction in Fig. 2 we also compare the
statistical fluctuation of the binned input data with the behavior of the GANned events. The
GAN extracts the additional Breit–Wigner feature with high precision, but, as always, some
systematic deviations arise in the tails of the distribution.

2.3 General setup

Finally, we note that our network setup is not limited to three classes. We can generalize
it to a base distribution, M subtraction datasets, and N added datasets. The corresponding
category assignment, generalized from Tab.1, is given in Tab. 2 and encoded in an enlarged
classification vector c. The base class is then defined as

C =
M
⋃

i=0

Ci . (16)

In this case the network has to learn all M + N + 1 input distributions through individual
discriminators DB, DSi

, and DA j
with i ≤ M and j ≤ N . The rough structure of the network

is given in Fig. 4. The training of the generator follows directly from the description above.
While we do not benchmark this extended setup in this paper, we expect it to be useful when
a set of subtraction terms accounts for different features, and splitting them improves their
simulation properties.
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Figure 4: Structure of our general subtraction and addition GAN. The input {r} de-
scribes a batch of random numbers and {x} the true input data or generated batches.
The label c encodes the category of the generated events. Blue arrows indicate the
generator training, red arrows the discriminators training.

Until now we have always assumed that we can subtract a sample {xS} from a sample {xB}
and find a well-behaved distribution for B−S. Specifically, the resulting probability PB−S should
be positive all over phase space. This is not always the case. First, we note that a global sign
of the combination is not a problem, because we can always learn S−B instead of B−S. Next,
changing signs in the S or B contributions can be accommodated by splitting the respective
sample according to the sign and applying the combined subtraction and addition described
in Sec. 2.2. A phase-space dependent sign in S − B could be most easily accommodated by
adding a constant off-set either by hand or again using the combined subtraction and addition.
A typical example would be to add the Born term to the virtual correction before subtracting

Table 2: Details for the category selection in the general case.

C0 C1 C2 · · · CM CM+1 · · · CM+N

Data B 1 1 1 · · · 1 0 · · · 0
Data S1 0 1 0 · · · 0 0 · · · 0
Data S2 0 0 1 0 0 · · · 0
...

...
...

. . .
...

...
Data SM 0 0 0 1 0 · · · 0
Data A1 0 0 0 · · · 0 1 0
...

...
...

...
. . .

...
. . .

Data AN 0 0 0 · · · 0 0 1

Combination 1 0 0 · · · 0 1 · · · 1
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the dipole.

In cases where this is not a suitable solution, we can replace the categories CB−S and CS
by the three categories CB∩S , CB\S , and CS\B. They indicate events corresponding to B and S,
only B, or only S. The discriminator compares for instance the combination of CB∩S and CB\S
with the B-data. The difference B−S will be given by events with label CB\S in regions where
B > S and events with label CS\B in regions where B < S, the latter weighted with weight
minus one. While this simple extension of the label vector is very straightforward, the third
category induces an additional degree of freedom in the way the network can distribute events
into different categories. This freedom needs to be constrained to prevent the network from
simply assigning for instance all events into the categories CB\S , and CS\B. A possible solution
would be to maximize the number of events in CB∩S via a term in the loss function and force
the network to share as many events between the distributions as possible.

3 LHC events

After showing how it is possible to GAN-subtract 1-dimensional event samples from each other
we have to show how such a tool can be applied in LHC physics. In this case the (unweighted)
events are 4-momenta of external particles. We ignore all information on the particle iden-
tification, except for its mass, which allows us to reduce external 4-momenta to external 3-
momenta [15, 30]. Because the input events might have been object to detector effects we
do not assume energy-momentum conservation for the entire event. This means that the net-
work has to learn the 4-dimensional energy-momentum conservation and this subtraction of
simple LHC events is inherently multi-dimensional. We will present two simple examples for
LHC event subtraction, the separation of on-shell photon and Z contributions to the Drell-Yan
process and the subtraction of collinear gluon radiation in Z+jet production.

3.1 Background subtraction

Our first example for event subtraction at the LHC is the Drell–Yan process, which receives
contributions with distinct phase space features from the photon and from the Z-boson, as
seen in Fig. 5. The specific question in our setup is if we can subtract a background-like photon
continuum contribution from the full process and generate events only for the Z-exchange
combined with the interference term,

B : pp→ e+e−

S : pp→ γ→ e+e− .
(17)

γ, Z

e+

e−

Z

g

Figure 5: Sample Feynman diagrams for the background subtraction (left) and
collinear subtraction (right) applications.
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Figure 6: Left: Generated (solid) and true (dashed) e+e− events at the LHC for
the two input distributions and the subtracted output. Right: distribution of the
subtracted events, true and generated, including the error envelope propagated from
the input statistics.

We generate 1M events with MADGRAPH5 [34] for an LHC energy of 13 TeV, applying minimal
cuts on the outgoing electrons. We require a minimal pT of 10 GeV, a maximal rapidity of 2.5 for
each electron, and a minimal angular separation of 0.4. We do not apply a detector simulation
at this stage, because our focus is on comparing the generated and true distributions, and we
have shown that detector simulations can be included trivially in our GAN setup [15,30].

Aside from the increased dimension of the phase space the subtraction GAN has exactly
the same structure as the toy example of Sec. 2. The hyper-parameters have to be adjusted
to the increased dimensionality of the phase space. We use a 16-dimensional latent space.
The discriminator and generator networks consist of 8 layers with 80 and 160 units per layer,
respectively. In this high-dimensional case we use the LeakyRelu activation function. Further,
we choose λDi

= 10−5 and a batch size of 1024 events and train for 1000 epochs. Each epoch
consists of 5 iterations in which the discriminator gets updated twice as much as the generator.
For a proper separation of the classes with f (c) we set α = 5 and β = 1. Finally, we choose a
large decay of the learning rate of 10−2 which stabilizes the training and pick a learning rate
at the beginning of 10−3 . Our training datasets consist of 105 samples for each dataset {xB}
and {xS}.

In Fig. 6 we show the performance of the LHC event subtraction for two example distribu-
tions. First, we clearly see the Z-mass peak in the lepton energy of the full sample, compared
with the feature-less photon continuum in the subtraction sample. The subtracted curve is
expected to describe the Z-contribution and the interference. It smoothly approaches zero for
small lepton energies, where the interference is negligible. Above that we see the Jacobian
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peak from the on-shell decay, and for larger energies a small interference term enhancing the
high-energy tail. In the (usual) right panel we show the subtracted curve including the statis-
tical uncertainties from the input samples. As the second observable we show the transverse
momentum of the electron. Here the Z-pole appears as a softened endpoint at mZ/2. The pho-
ton continuum dominates the combined distribution for small transverse momenta. Indeed,
the GAN-subtracted on-shell and interference contribution is localized around the endpoint,
with a minor shift in the resolution at the edge.

Obviously, our subtraction of the background to a di-electron resonance is not a state-
of-the-art problem in LHC physics. A more interesting application of our method could be
four-body decays. We could start from a combined signal plus background sample of Higgs
decays to four fermions, generate a background-only sample using control regions, and then
GAN a set of signal events. While in a regular analysis the events we obtain from subtracting a
background from the signal-plus-background sample do not reflect the signal properties, our
GANned subtraction events should reflect all kinematic features of the signal events in the
data.

3.2 Collinear subtraction

The second example for event subtraction at the LHC is collinear radiation off the initial state,
for instance

B : pp→ Z g (matrix element)

S : pp→ Z g (collinear approximation)
(18)

We generate 1M events for the hard process with SHERPA [35], where the Z-boson decays to
electrons. For the network we combine the electron and positron momenta to a 4-momentum
of the Z-boson, so we obtain a Breit–Wigner distribution with mee = 66 ... 116 GeV instead of
an on-shell condition. We then subtract the corresponding Catani-Seymour dipoles [1] for the
gluon radiation off each of the incoming quarks, based on 1M events each. The corresponding
Feynman diagram is shown in the right panel of Fig. 5. To avoid the soft divergence we require
pT,g > 1 GeV in the training data, a smaller cutoff would be possible but increase the training
time. We apply the same external cutoff to the GANned samples, aligning the phase space
boundaries of the training and GANned data sets by hand.

The problem with this specific process is that the Catani-Seymour dipoles describe the full
matrix element over a huge part of phase space [36] and the combination of hard matrix
element and dipoles is typically tiny and negative. We discuss changing signs in probability
distributions in Sec. 2.3. In addition, the one distribution a GAN can never generate is a
probability distribution compatible with zero everywhere. In this case the GAN would either
over-fit statistical fluctuations or become unstable. This is why in our toy application we shift
the Catani-Seymour dipole by a constant such that the cancellation of the divergent matrix
element still works, but the combined result integrated over phase space remains finite.

Note that the kinematics of our subtraction terms are not the same as in fixed-order calcu-
lations, instead it is similar to the mapping in the modified subtraction method MC@NLO [37].
In this case the global efficiency of event generators at NLO accuracy is dominated by the effi-
ciency of computing the subtracted real-emission corrections, which presents a major challenge
for event simulation at the HL-LHC [38,39].

The hyper-parameters have to be modified with respect to the background subtraction
example, due to the large cancellations in the low energy regime. Now, the discriminator
and generator networks consist of 8 layers with 256 and 512 units per layer, respectively. In
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Figure 7: Left: Generated (solid) and true (dashed) Z g events at the LHC for the two
input distributions and the subtracted output. Right: distribution of the subtracted
events, true and generated, including the error envelope propagated from the input
statistics.

the generator we alternate LeakyRelu and tanh activation functions. We achieve the best and
most stable results choosing λDi

= 10−3 with a batch size of 1024 events. We train for 60000
epochs, where each epoch consists of 5 iterations in which the discriminator gets updated
twice as much as the generator. In this example, the discriminator gets the events in the
{E, pT ,η,φ} representation, which is better suited to resolve the pT distribution. The other
hyper-parameters are kept the same as in the background subtraction.

We show the results from the collinear subtraction in Fig. 7. The GAN perfectly recon-
structs the cancellation in the energy spectrum and the transverse momentum of the emitted
gluon. The left panel shows the distribution of the real (B) and dipole (S) contributions to the
process and their difference (B− S). With the logarithmic axis we see that the GAN smoothly
interpolates over the entire energy range. For small gluon energies and momenta the GAN re-
produces the rate increase towards the (enforced) phase space boundary, including the finite
value of the subtracted combination B−S. Also in the high energy region, which suffers from
low statistics, the GAN nicely matches the truth distributions. In the right panel we show the
subtracted curve as always including the error envelope of the input data.

As before, we only use the established NLO dipole as a simple structure to illustrate the fea-
tures of our subtraction GAN. Proper applications could be the more complicated subtraction
terms beyond NLO or the subtraction of on-shell resonances [8]. The latter would combine
aspects discussed in Sec. 3.1 and Sec. 3.2 and allow for a fully inclusive study of the kinemat-
ics in the off-shell process, without having to actually do a subtraction and deciding if a given
event is more likely to be part of the on-shell or off-shell sample.
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4 Outlook

We have shown how to generate events representing the difference between two input distri-
butions with a GAN. As a toy example we used events representing a 1-dimensional probability
distribution. Because the GAN interpolates the input while learning the difference between
the two distributions, it circumvents the statistical limitations of large cancellations. We have
found that the GAN-subtracted events lead to a very stable phase space coverage and beat the
statistical limitations of the input sample over the entire phase space.

For a slightly more realistic setup we have GANned background subtraction and collinear
dipole subtraction for Drell–Yan production at the LHC. In the first case the network learned
on-shell final state momenta to subtract the photon-induced continuum from the full e+e−

production. It could serve as a test case for a background subtraction for four-body decays,
such that the GANned signal events reflect the kinematic correlations of the actual signal events
hidden in the background.

In the second case we combined the hard matrix element with modified Catani-Seymour
dipoles for gluon emission into a stable finite prediction of the real emission process. We are
aware of the fact that our toy examples are not more than an illustration of what a subtraction
GAN can achieve. However, we have shown how to use a GAN to manipulate event samples
avoiding binning (at least in particle physics) and we hope that some of the people who do
LHC event simulations for a living will find this technique useful.∗
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