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Abstract

We study a tight binding model of Z3-Fock parafermions with single-particle and pair-
hopping terms. The phase diagram has four different phases: a gapped phase, a gapless
phase with central charge c=2, and two gapless phases with central charge c=1. We
characterise each phase by analysing the energy gap, entanglement entropy and differ-
ent correlation functions. The numerical simulations are complemented by analytical
arguments.
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1 Introduction

Particles in three dimensions are known to be either bosons or fermions, distinguished by
the symmetry or antisymmetry of their wave functions Ψ(x1, x2) under particle exchange, ie,
Ψ(x1, x2) = ±Ψ(x2, x1). This distinction has drastic consequences: Bosons can macroscopi-
cally occupy a quantum state, thus forming a Bose–Einstein condensate. In contrast, the asym-
metry of the fermionic wave function implies the Pauli principle, which for example underlies
the fundamentally different properties of metals and insulators.

However, the situation is completely different in lower dimensional systems, where more
complicated (and thus more interesting) quantum statistical properties become possible. Since
low-dimensional systems are ubiquitous in condensed-matter physics—think of
two-dimensional systems like graphene [1] or two-dimensional electron gases in quantum Hall
transistors [2], one-dimensional quantum wires [3], or the dimensional restriction of ultracold
atomic gases in optical lattices [4, 5]—non-trivial quantum statistics has to be considered in
these contexts.

One generalisation1 of bosonic and fermionic statistics is provided by relaxing the sym-
metry requirement of the wave functions under particle exchange. Instead of symmetry or
antisymmetry one allows wave functions satisfying Ψ(x1, x2) = eiθΨ(x2, x1) with real angle
θ [9]. In three spatial dimensions the double exchange of two particles is indistinguishable
from the absence of exchanging the particles, thus implying θ = 0 or θ = π as the only consis-
tent choices. In two dimensions, however, any real value of the exchange angle θ is allowed,
leading to the so-called (Abelian) anyon statistics [10,11]. Such anyons exist in the fractional
quantum Hall effect: The collective excitations of this system have unusual properties like
fractional charge [12] e∗ = e/3 and anyonic statistics [13, 14] with θ = π/3, both properties
have been observed in experiments [15,16].

Another generalisation of quantum statistics can be implemented starting from directly the
Pauli principle [17,18]. The idea is to ask how the number of available quantum states D will
change if∆N particles are added to the system,2 with the statistical parameter α being defined
as∆D = −α∆N . In principle this concept can be defined in any spatial dimension, with bosons
(α = 0) and fermions (α = 1) as special cases. Quasiparticles satisfying such a generalised
exclusion statistics are for example spinon excitations in spin-1/2 chains [19–21]. We note that
in a slightly simplistic way one can imagine particles satisfying generalised exclusion statistics
with exclusion parameter α as being able to occupy a single quantum state with 1/α particles.

There is a third generalisation, usually referred to as parafermions.3 Historically these
parafermions were introduced [22] to analyse clock models. The simplest quantum clock
model can be obtained from an anisotropic limit of the two-dimensional classical three-state
Potts model, which is a direct generalisation of the Ising model by allowing the degrees of
freedom at the lattice sites to take one of three, or more generally p, different values. The
resulting Hamiltonian of the quantum Potts chain is given by [23–26]

HPotts = −J
∑

j

(σ†
jσ j+1 +σ

†
j+1σ j)− f

∑

j

(τ†
j +τ j), J , f ≥ 0. (1)

Here the operators σ j and τ j act on the three states of the local Hilbert space at lattice site j
and satisfy the algebra

σ
p
j = τ

p
j = 1, σ†

j = σ
p−1
j , τ†

j = τ
p−1
j , σ jτ j = e2πi/pτ jσ j , σiτ j = τ jσi for i 6= j, (2)

1Historically there were other attempts to generalise quantum statistics like Gentile’s intermediate statistics [6]
or Green’s parafields [7,8].

2For simplicity we restrict ourselves to one particle species.
3Not to be confused with Green’s parafield construction.
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with p = 3. Similar to the transverse-field Ising chain, the quantum Potts chain (1) possesses a
phase transition between a ferromagnetic phase for f < J with three-fold degenerate ground
state and a paramagnetic phase for f > J with unique ground state. The two phases are
separated by a quantum critical point which is described by the non-trivial conformal field
theory [27,28] with central charge c = 4/5.

Motivated by the recent interest in topological order and edge zero modes the quantum
Potts chain (1) has received renewed interest. For p = 2 the Potts chain simplifies to the
transverse-field Ising model and can thus be directly linked to the Kitaev chain [29], which con-
stitutes the prototypical example for the appearance of Majorana edge zero modes. The Potts
chain provides a natural generalisation thereof to interacting systems possessing parafermion
edge modes [25]. Specifically, two parafermion operators γ2 j−1 and γ2 j at each lattice site j
can be introduced via

γ2 j−1 =

 

∏

k< j

τk

!

σ j , γ2 j =ω
(p−1)/2γ2 j−1τ j , (3)

where ω = exp(2πi/p) and the clock operators σ j and τ j satisfy the algebra (2). For the
parafermion operators this implies the relations

γ
p
j = 1, γ†

j = γ
p−1
j , γ jγk =ω

sgn(k− j)γkγ j , (4)

which for p = 2 simplify to the ones for Majorana operators, in particular the reality condition
γ†

j = γ j .
While parafermions have proven useful in statistical mechanics and the study of edge zero

modes, they possess a huge drawback. Due to the relations (4) it is not possible to interpret
γ†

j as a particle creation operator at site j. Very recently this limitation was overcome by
Cobanera and Ortiz [30] who introduced the so-called Fock parafermions (FPFs). Here the
term “Fock" refers to the fact that the newly introduced operators F†

j and F j can be interpreted
as creation and annihilation operators for particles, which act on a Fock space in the sense that
a definite number of particles at lattice site j can be defined (see next section for the detailed
definition). Hence FPFs constitute particles with anyonic and fractional exclusion statistics and
thus provide the ideal framework to study the consequences of generalised quantum statistics
on the properties of many-particle systems. In this work we will specifically investigate which
types of many-particle states of FPFs exist in one-dimensional systems.

A first step in this direction has been taken very recently by Rossini et al. [31], who studied
a tight-binding chain of FPFs simply hopping between neighbouring sites. For p = 3 (the case
we will restrict ourselves) they uncovered a gapped phase reminiscent of a Mott insulator at
unit filling, while at all other fillings a gapless anyonic Luttinger phase [32] emerged. In our
work we will extend these results by generalising the simple hopping model to include also
coherent hopping of two-particle pairs, which is possible as two FPFs may exist at the same
lattice site. As a consequence of the pair hopping two additional phases appear in the phase
diagram (see Figure 1): A second Luttinger phase (labeled R) and, between the two Luttinger
phases, a gapless phase with central charge c = 2 (labeled M).

The paper is organised as follows. In the next section we review the construction of FPFs.
In Section 3 we define the model and present its phase diagram, the main result of our paper.
In Section 4 we explain the implementation of the numerical simulations, while in Section 5 we
present our detailed results and analysis of the phase diagram. We conclude with a discussion
in Section 6.
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2 Fock parafermions

In this section we discuss Fock parafermions (FPFs) as introduced by Cobanera and Ortiz [30].
They appear as particle-like excitations constructed from parafermions in the same way as
spinless fermions are obtained from Majorana fermions. To be more specific, let us start with
discussing the concept of parafermions [22, 25], which can be viewed as a generalisation of
Majorana fermions.

Consider a set of 2L parafermion operators γ j satisfying

γ jγk =ω
sgn(k− j)γkγ j , ω= exp

�

2πi
p

�

, (5)

with integer p ≥ 2. For p = 2 we obtain the simple anti-commutation relations of Majorana
fermions, but for p > 2 the parafermions are neither commuting nor anti-commuting. The
other relations fixing the algebra are

γ
p−1
j = γ†

j , γ
p
j = 1, (6)

in which 1 is the identity operator. An explicit realisation is provided by (3).
As for Majoranas, for parafermions there is no notion of filling, ie, there are no highest and

lowest weight states as we see from Equation (6). However, for Majorana fermions this can
be remedied by introducing spinless Dirac fermions via

c j =
1
2
(γ2 j−1 + iγ2 j), c†

j =
1
2
(γ2 j−1 − iγ2 j), (7)

which then allow a direct interpretation as particle annihilation and creation operators.
In Reference [30] a similar particle description was introduced for parafermions. These

so-called FPF operators are defined as

F j =
p− 1

p
γ2 j−1 −

1
p

p−1
∑

m=1

ωm(m+p)/2γm+1
2 j−1γ

†m
2 j . (8)

They possess anyonic commutation relations on different sites,

F j Fk =ω
sgn(k− j)FkF j , F†

j Fk =ω
− sgn(k− j)FkF†

j , j 6= k, (9)

which implies that their statistical angle is given by θ = 2π/p, while on-site they satisfy

F p
j = 0, F†m

j F m
j + F p−m

j F†(p−m)
j = 1, m= 1, . . . , p− 1. (10)

The Fock space can be constructed by acting with the creation operators on the vacuum state,

|n1, n2, . . . , nL〉= F†n1
1 F†n2

2 . . . F†nL
L |0〉 . (11)

Note that due to the first relation in (10) the highest possible filling on each site is p − 1,
thus generalising the usual Pauli principle. Furthermore, we can indeed define the number
operator,

N j =
p−1
∑

m=1

F†m
j F m

j , (12)

which obeys the usual algebra with creation and annihilation operators,
�

N j , F†
j

�

= F†
j ,

�

N j , F j

�

= −F j , (13)

and acts as follows on the Fock states as

N j |n1, n2, . . . , nL〉= n j |n1, n2, . . . , nL〉 . (14)

Finally we note that for p = 4 the FPF operators can be linked to spinful fermions via a non-
linear relation [33]. However, in our work we will not use this since we focus exclusively on
the case p = 3 in the following.
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3 The model and its phase diagram

In this section we introduce the model and its symmetries and present its phase diagram, the
main result of this paper. We discuss the observables and correlation functions which will be
used to analyse the different phases in Section 5.

Having introduced the operators creating and annihilating FPFs in the previous section, we
are now in the position to define the model which we will study in this paper. We restrict our-
selves to the simplest non-trivial case of p = 3 and consider the one-dimensional Hamiltonian

H(g) = −t
L−1
∑

j=1

�

(1− g)F†
j F j+1 + gF†2

j F2
j+1 + h.c.

�

. (15)

Throughout our work we set t = 1 and use it as the energy unit. The parameter g is restricted
to the interval 0 ≤ g ≤ 1, interpolating between the extreme cases of pure single-particle
hopping and pure coherent pair hopping. The latter is allowed due to the possibility of having
two FPFs at the same lattice site. We consider a one-dimensional chain of L lattice sites with
free boundary conditions.

We note that the three-state quantum Potts chain (1) can in principle also be written in
terms of FPFs. However, the resulting expression is much more complicated than the hopping
Hamiltonian (15), containing for example terms that break the particle-number conservation.

The model (15) with g = 0, ie, the case of pure single-particle hopping, was studied by
Rossini et al. [31]. They showed that there exists a Mott-like phase at unit filling, ie, if there
are L FPFs in total, while at all other filling fractions the model is gapless and can be described
by an anyonic Luttinger liquid [32]. The aim of our work is to extend the analysis to g 6= 0
and study the effect of the additional pair hopping on the phase diagram.

Coming back to the Hamiltonian (15), we observe a U(1) symmetry which results in the
conservation of the total number of particles, N =

∑L
j=1 N j , as can be checked using Equa-

tion (13). Moreover the model is invariant under the particle-hole transformation F j → F†
j .

The proof is presented in Appendix A. This implies that, although the Hilbert space can have
states with at most N = 2L particles, it is sufficient to restrict the study to those with N ≤ L.
Since we are interested in the thermodynamic limit, the relevant quantity would rather be the
density or the filling defined by n= N/L. Therefore we will present the results for 0< n≤ 1.

Our main result is the phase diagram of the model (15) which is presented in Figure 1.
The phase diagram consists of four phases: the left phase (white region in Figure 1, which
will be indicated by L throughout the paper), the right phase (yellow region, indicated by
R), the middle phase (orange region, indicated by M) and the gapped phase (the thick violet
line at n = 1, indicated by G). To characterise and distinguish different phases we look into
different properties and observables: the energy gap, the entanglement entropy and two-
point correlation functions. The results of this characterisation are summarised in Table 1:
we find two gapless phases (L and R) that allow a Luttinger liquid description (c = 1) which
are distinguished by the different power-law behaviour of the correlation functions, another
gapless phase (M) with central charge c = 2, and a gapped phase (G) which can be regarded
as the extension of the anyonic Mott-like phase to g 6= 0. A detailed discussion of the four
phases is given in Secion 5.

Studying the energy difference between the ground state and the first excited state,
δ(L) = E1(L)−E0(L), as a function of system size, L, is a classical way of determining whether
the model is gapped. For a gapped system this difference will converge to a finite value while
for a gapless system it converges to zero as L−z , where z is the dynamical critical exponent. For
a gapless system in one dimension which can be described by a conformal field theory (CFT)
the dynamical critical exponent is z = 1 [27, 28]. The scaling behaviour of entanglement
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Figure 1: The phase diagram of the model (15). We identified four phases: the
left (L) phase (white region), the right (R) phase (yellow), the middle (M) phase
(orange) and the gapped (G) phase (thick violet line at unit filling n= 1). The prop-
erties of the phases are summarised in Table 1. The detailed analyses at the coloured
points (L1,2,3 etc.) are presented in Section 5. The black star, S ' (0.58, 0.80), indi-
cates the point where the three phases, L, R and M, meet. The phase transitions have
been determined at the black dots; for fixed n the estimated uncertainty is of the
order of ∆g = 0.01. The transition between the L and R phase seems to be second
order.

entropy (EE), S(l), as a function of subsystem size, l, is another probe to separate different
phases from each other. For a gapped phase the EE saturates to a constant value. For a gapless
system, however, the EE grows with the subsystem size. For an open chain at criticality with
an underlying CFT, one can read off the central charge, c, using the Calabrese-Cardy (CC)
formula [34,35],

S(l) =
c
6

log
�

L
π

sin
�

πl
L

��

+ S0, (16)

in which S0 is a non-universal constant. Finally, correlation functions play an essential role in
our understanding of the phases. In a gapped phase a typical two-point correlation function
decays exponentially as a function of distance with a correlation length of the order of the
inverse gap. For a gapless system, however, the two-point correlation functions show power-
law behaviour. Hence, following Reference [31], we will also study the two-point correlation
functions of FPF operators

G1(r) =

�

�

�

�

­

F†
L
2−

r
2
F L

2+
r
2

·

�

�

�

�

, G2(r) =

�

�

�

�

­

F†2
L
2−

r
2
F2

L
2+

r
2

·

�

�

�

�

. (17)
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Table 1: Summary of the properties of the four phases in Figure 1. The central charge
c is obtained from the fit of the EE to the CC fomula (16). In the L and R phase we
obtain the value c = 1 up to about 1%. In the M phase the deviation from c = 2 is
slightly larger, as indicated in the inset of Figure 7(a).

phase energy gap c G1(r) G2(r)

L gapless 1 ∼ r−2/3 ∼ r−α2(g,n)

R gapless 1 0 ∼ r−13/18

M gapless 2 ∼ r−α
′
1(g,n) ∼ r−α

′
2(g,n)

G gapped - ∼ exp [−r/ξ1(g)] ∼ exp [−r/ξ2(g)]

We measure the correlations between two lattice sites of distance r which are symmetrically
distributed around the middle of the chain. This is to minimise the finite-size effects from the
edges.

The analysis of the phases using the tools discussed above will be presented in Section 5. In
addition, in some cases it is also possible to employ analytical methods like bosonisation [36,
37], which for example allows us to obtain an effective Luttinger liquid description in the L
and R phases. Before presenting the detailed results for the phase diagram we will briefly
discuss the implementation of our numerical simulations in the next section.

4 The implementation for numerical studies

To study the model numerically we performed density matrix renormalisation group (DMRG)
simulations [38,39] using the ALPS [40–42] and TeNPy [43,44] libraries and checked that the
obtained results are the same. To implement the model for performing DMRG and bosonisation
we use the Fradkin–Kadanoff transformation [22],

F j =

 

j−1
∏

k=1

Uk

!

B j , (18)

where

Uk = 1⊗ · · · ⊗ U
︸︷︷︸

k

⊗· · · ⊗ 1, U =





1 0 0
0 ω 0
0 0 ω2



 , (19)

B j = 1⊗ · · · ⊗ B
︸︷︷︸

j

⊗· · · ⊗ 1, B =





0 1 0
0 0 1
0 0 0



 . (20)

The matrix representations of the local operators U and B are given in the local basis where
the clock operator τ is diagonal, ie, U = τ. The operators acting on different sites commute
while the on-site algebra is given by

B jU j =ωU jB j . (21)
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Applying this transformation together with the resulting relation B†2
j U2

j = B†2
j , the Hamilto-

nian (15) becomes

H(g) = −t
L−1
∑

j=1

�

(1− g)B†
j U jB j+1 + gB†2

j B2
j+1 + h.c.

�

, (22)

which is local and only consists of bosonic degrees of freedom. Hence it can be easily imple-
mented for the DMRG calculation.

The DMRG simulations for the entanglement entropy and the correlation functions were
performed for a chain of size L = 240, our default system size. To find the central charge of the
gapless phases using the CC formula or its modified variation, as it will be later introduced, we
dropped the first and the last ten sites to stay away form finite-size effects due to the edges. The
data for the correlation functions will be presented for r ∈ [10− L/2] and the same interval
will be used for the fittings. For the finite-size scaling of the energy gap we use a range of
system sizes, usually between L = 64 and L = 240. The DMRG was performed with the bond
dimension χ = 500 in the L, R and G phases, and χ = 800−1000 in the M phase. The number
of sweeps which is needed for the convergence varies and depends on the parameters. The
typical number of sweeps in the L, R and G phases is between 20 and 50. In the M phase,
however, 40 to 60 sweeps were done. Each sweep consists of minimisation from the first site
to the very last one and then from the last site back to the first one.

5 The results

In this section we present the detailed results of our numerical and analytical study of the
phase diagram. The specific values of the parameters at which we present numerical data are
indicated by coloured points in Figure 1. We will use the same colour to present the EE and
correlation functions G1 and G2 for each one of these points.

5.1 The L phase

Rossini et al. [31] studied the model (15) for the special case of g = 0 and various filling
fractions n. They found that the model is gapless for any filling n < 1 and well described by
an anyonic Luttinger liquid [32] with Luttinger parameter K = p/2 such that the correlation
functions decay as power laws G1(r) ∼ r−α1 with α1 = 2/p and G2(r) ∼ r−α2 with α2 = 4α1.
Although the numerical results of Reference [31] match very well with the theoretical pre-
dictions derived by Calabrese and Mintchev [32] for G1, there are discrepancies between the
theory and the numerics for G2. Our numerical and analytical results show that the properties
of the model at g = 0 extend to a finite region with g > 0.

The results of the numerical calculations in the L phase are shown at the points
L1 = (g, n) = (0,0.3), L2 = (0.25, 0.5) and L3 = (0.5,0.9). These points were selected to show
the typical behaviour. The L phase, which is depicted as a white region in Figure 1, is found
to be gapless with the central charge c = 1, as is confirmed by the fit of the EE shown in Fig-
ure 2(a) to the CC formula. In Figure 2(b) we show the energy difference δ(L) = E1(L)−E0(L)
at the point L2 and system sizes L ∈ [64−176]. We used a power-law function for the fitting,
δ(L) = a/Lb + δ0, which gave us b ≈ 0.99 and δ0 ' 10−4. Therefore we can conclude that
the dynamical critical exponent is given by z = 1, which confirms that the low-energy physics
can be described by a CFT.

In Figure 3 we present the two-point correlation functions G1(r) and G2(r) for the same
three points in the L phase. The correlation function G1(r) shows a power-law behaviour,
G1(r) ∼ r−α1 with α1 ≈ 2/3, as it was the case for g = 0. In addition we observe weak
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Figure 2: EE and gap for the points L1, L2 and L3 in the L phase. (a) EE as a function
of subsystem size l for a chain of size L = 240. The solid lines are the CC formula
with c = 1. We have shifted the red points by 0.2 and the green points by 0.4 for
visibility. (b) The energy difference between the first excited state and the ground
state at the point L2 as a function of 1/L for L ∈ [64− 176]. The fitting parameters
for the solid line are b ≈ 0.99 and δ0 ' 10−4, thus indicating a gapless phase.

oscillations with a wave number q1 that takes the values q1 ≈ 0.95 at L1 and q1 ≈ 1.57
at L2, while at L3 we were not able to determine q1 with sufficient accuracy. The origin of
these oscillations seems to involve doubly-occupied sites, as is indicated by comparison to the
bosonisation treatment (see below). The result on the correlation function G2 shows a power-
law decay too, G2(r) ∼ r−α2 , but the exponent α2 depends on both the pairwise hopping, g,
and the filling fraction, n, as it is indicated in the inset.

In the following we provide an argument for our finding of G1(r) ∼ r−2/3 based on a
bosonisation [36, 37] treatment. Or starting point is the observation that the probability to
have two particles at the same site is strongly suppressed throughout the L phase. For example,
at the point L2 the probability of having an empty site, a site with one particle and a site with
two particles are P(0) ' 0.54, P(1) ' 0.42 and P(2) ' 0.04, respectively. Therefore one
can argue that it is reasonable to project the model to the local Hilbert space with at most
one particle at a given site, and thus drop the second term in the Hamiltonian. Using this
projection, we can identify the operator B j in the subspace spanned by |0〉 and |1〉 with the
raising spin-1/2 operator σ+j ,

B j → σ+j =
�

0 1
0 0

�

, (23)

and simplify G1(r) to

G1(r) =
�

�




F†
0 Fr

��

�=
�

�




B†
0U0U1 · · ·Ur−1Br

��

�∼
�

�

�

¬

σ−0 U (p)0 U (p)1 · · ·U
(p)
r−1σ

+
r

¶

�

�

� , (24)

in which

U (p)k = 1⊗ · · · ⊗ U (p)
︸︷︷︸

k

⊗· · · ⊗ 1, U (p) =

�

1 0
0 ω

�

. (25)

Due to the projection we are left with two states per site. We can use a Jordan–Wigner (JW)
transformation and relate the spin-1/2 operators to a set of spinless fermions, ψ j ,

σz
j = 2n j − 1, σ+j = eiπ

∑

k< j nkψ†
j , n j =ψ

†
jψ j , (26)
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Figure 3: Correlation functions at the three points L1, L2 and L3 in the L phase. (a)
G1(r) as function of r. To avoid mixing the data points, we multiplied G1(r) for the
point L3 by 1.5. For comparison r−2/3 as derived in (34) is also plotted. (b) G2(r) as
function of r. We fitted a power law with exponent α2, the obtained values are given
in the legend. We note that both correlation functions show a power-law decay, and
that G2(r)� G1(r) at small r consistent with the strongly suppressed probability to
find two particles at the same site.

where the ψ j satisfy
�

ψi ,ψ j

	

= 0 and {ψi ,ψ
†
j} = δi j . Applying the JW transformation to

G1(r) and rewriting the matrix U (p) we obtain

G1(r)∼
�

�

�

¬

σ−0 U (p)0 U (p)1 · · ·U
(p)
r−1σ

+
r

¶

�

�

�=

�

�

�

�

�

®

σ−0

� r−1
∏

k=0

ei 2π
3 (1−nk)

�

σ+r

¸

�

�

�

�

�

(27)

=
�

�

�

¬

ψ0 e−i 2π
3

∑r−1
k=0 nk eiπ

∑r−1
l=0 nl ψ†

r

¶

�

�

�=
�

�

�

¬

ψ0 eiπ3
∑r−1

k=0 nk ψ†
r

¶

�

�

� . (28)

Assuming that the fermions have a Fermi surface, we can linearise around the two resulting
Fermi points k = ±kF,

ψ j =
p

a
�

eikF xψ+(x) + e−ikF xψ−(x)
�

, (29)

where a denotes the lattice constant and x = ja the spatial coordinate that will be treated as
a continuous variable. In addition we use the bosonisation dictionary [36,37],

ψ±(x) =
1

p
2πα

ei
p
π[±φ(x)−θ (x)], (30)

in which α−1 is the momentum cut-off, and φ(x) and θ (x) are dual fields that satisfy the
commutation relation [φ(x),θ (y)] = iΘ(y− x), with Θ(x) being the Heaviside step function.
To continue we recall that for bosonisation normal ordering is necessary. Hence for the density
operator we use nk =: nk : +n̄, in which n̄ is the average density on each site in the ground
state and : nk := ∂xφ/

p
π. Furthermore, assuming that the interactions are incorporated via

a Luttinger parameter K we rescale the bosonic fields as φ(x)→
p

Kφ(x), θ (x)→ θ (x)/
p

K
to bring the correlation function into the standard form

G1(r)∼
�

�

�

�

­

h

ei
p
π
�p

Kφ(0)− θ (0)p
K

�

+ e−i
p
π
�p

Kφ(0)+ θ (0)p
K

�

i

ei
p
πK
3 [φ(r)−φ(0)]

×
h

e−i
p
π
�p

Kφ(r)− θ (r)p
K

�

e−ikFr + ei
p
π
�p

Kφ(r)+ θ (r)p
K

�

eikFr
i

·

�

�

�

�

. (31)
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Using the Wick theorem, the neutrality condition for vertex operators, and

¬

eiβ[φ(r)−φ(0)]
¶

=
¬

eiβ[θ (r)−θ (0)]
¶

=

�

α2

α2 + r2

�

β2

4π

(32)

we get

G1(r)∼ A1

�

1
r

�
1

2K +
2
9 K �

1+ cos (2kFr)
�α

r

�
2
3 K
�

, (33)

where we have limited ourselves to the two leading terms at large separations, and A1 is a
non-universal constant. For K > 0 the first term in G1(r) decays slower than the second one
and thus is dominant at large separations. Hence we conclude that at large r

G1(r)∼ r−
1

2K −
2
9 K ∼ r−

2
3 , (34)

where in the last step we have used that for the free anyon gas [31,32] the Luttinger parameter
K is related to the statistical parameter κ = θ/π via K = 1/κ = 3/2. We stress that we have
derived the result (34) from the microscopic model (15), thereby linking it to the phenomeno-
logical theory applied by Calabrese and Mintchev [32]. In particular, our line of argument
shows why the anyonic Luttinger model indeed provides a good description of the L phase.
We note, however, that the oscillations in G1(r) observed in Figure 3(a) are not adequately
described by the second term in (33). Thus they are not captured by the line of argument
presented above, which hints at the importance of doubly-occupied sites. Moreover, the be-
haviour G2(r) ∼ r−α2 cannot be described by the bosonisation approach, as obviously doubly
occupancy will be relevant for this correlation function. We do not have a clear understanding
yet how the oscillations in G1(r) or the power-law scaling of G2(r), in particular the exponent
α2, relate to the filling n and the parameter g.

5.2 The R phase

The parameter g controls the relative strength of single-particle and pair-hopping amplitudes.
By increasing g for the filling n ® 0.8 the system directly enters the R phase (yellow region
in Figure 1) from the L phase. For larger filling, 0.8 ® n < 1, there exists a phase with the
central charge c ≈ 2 between the L phase and the R phase. This M phase will be discussed in
Section 5.3. The point where the three phases L, R and M meet is located at S ' (0.58,0.80)
and marked with a black star in the phase diagram.

In this section we present details on the R phase. Numerical results are shown for the
selected points R1 = (0.74,0.3), R2 = (0.8,0.5) and R3 = (1,0.75). The EE and energy gap
at these three points are given in Figure 4. We conclude that also the R phase is gapless with
central charge c = 1. More precisely, the energy gap scales as δ(L) = a/Lb+δ0 with b ≈ 0.99
and δ0 = 10−4, thus the dynamical critical exponent is given by z = 1.

The difference between the L and R phases shows up only when considering the correlation
functions. In the R phase the correlation function G1(r) decays exponentially as a function of
distance r, G1(r) ∼ exp(−r/ξ1), with a correlation length, ξ1, of the order of a few lattice
constants. Away from the phase transition one even finds ξ1 ∼ a, ie, the correlation function
essentially vanishes. This finding can be understood by noting that deep in the R phase the
probability of having one particle on a site is generally much smaller than having two particles
or an empty site. For instance, at the point R2 the probability of having an empty site, a site
with one particle and a site with two particles are P(0)' 0.24, P(1)' 0.01 and P(2)' 0.75,
respectively. In the special case of g = 1 we even find P(1) = 0 in the ground state. This can
be understood from the Hamiltonian H(1), in which only the operators F2

j or F†2
j appear, and
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Figure 4: EE and energy gap for three points R1, R2 and R3 in the R phase. (a) EE as a
function of subsystem size l. The solid lines are the CC formula with c = 1. We have
shifted the red points by 0.2 and the green points by 0.4 for visibility. (b) Energy gap
above the ground state at the point R2. The fitting parameters for the solid line are
b ≈ 0.99 and δ0 ' 10−4, again indicating a gapless phase.

both annihilate the one-particle state. So the on-site one-particle sector decouples and does
not play a crucial role on the low-energy physics.

We can use this information from the numerics and assume that in the R phase the low-
energy physics can be captured by the second term in the Hamiltonian only, ie, we approximate

H(p)R (g) = −t g
L−1
∑

j=1

F†2
j F2

j+1 + h.c.= −t g
L−1
∑

j=1

B†2
j B2

j+1 + h.c.. (35)

Following our line of argument used above for the L phase we project the Hamiltonian onto
the space with empty or doubly occupied on-site subspaces |0〉 and |2〉, respectively. Hence we
can identify the operator B2

j with the raising spin-1/2 operator σ+j in this subspace,

B2
j → σ

+
j =

�

0 1
0 0

�

, (36)

which gives rise to the XX-Hamiltonian,

H(p)R (g) = −t g
L−1
∑

j=1

σ−j σ
+
j+1 + h.c.. (37)

This projected Hamiltonian is quite fruitful. First of all we note that it is well-known that
the XX-model is gapless and can be described with the bosonic CFT with the central charge
c = 1 [27,28]. Moreover, we can calculate G2(r) in the same way that we calculated G1(r) in
the L phase,

G2(r) =
�

�




F†2
0 F2

r

��

�=
�

�




B†2
0 U2

0 U2
1 · · ·U

2
r−1B2

r

��

� . (38)

Using the definition of the matrix U , we see that the projection of U2 onto the subspace spanned
by |0〉 and |2〉 has the same form as the matrix U (p) in Equation (25). Therefore the calculation
we presented for the correlation function G1(r) in Section 5.1 can be directly applied to the
correlation function G2(r) in the R phase. Furthermore, since the XX-model is a free theory
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Figure 5: The correlation function G2(r) is plotted as function of r for the three points
R1, R2 and R3 in the R phase. To avoid mixing the data points, we multiplied G2(r) by
1.5 and 2 for the red and green data points, respectively. (a) For comparison we plot
the prediction (39) as solid line. (b) We fitted the data with sub-leading oscillations
decaying as a power law, ie, G2(r) = A2r−

13
18 + A′2r−β2 cos(q2r +φ2). The resulting

wave numbers q2 are given in the legend. For the point R3 the wave length 2π/q2 ≈ 5
becomes rather short, increasing the uncertainty in the fit. The accuracy of the fit for
the exponent β2 was not sufficient to obtain reliable results.

it seems reasonable to set the Luttinger parameter to its non-interacting value, K = 1. As a
result we finally arrive at the prediction

G2(r)∼ r−
1
2−

2
9 = r−

13
18 . (39)

In Figure 5 we present the correlation function G2(r) for the three points R1,2,3 deep in the
R phase. The agreement between the numerical results and the simple prediction (39) from
LL theory is quite good. On top of the power-law decay we observe oscillations with a wave
number q2. As can be seen from the fitted values given in the legend of Figure 5(b), the wave
number strongly depends on the filling fraction n. On the other hand, we determined the
wave number at the point R′2 = (1,0.5) to be q2 ≈ 0.8, indicating that there seems to be no
(strong) dependence on the parameter g. This is also consistent with results obtained along
the cut (g, 0.3) for 0.6 ≤ g ≤ 0.7 (not shown, see Figure 12 for the energy along this cut)
which show essentially constant wave numbers for both G1(r) and G2(r) within the phases L
and R.4 Furthermore, the oscillations seem not to be described by the first correction to (39),
ie, they are not captured by the Luttinger liquid description of G2(r). Thus at the moment we
lack a clear understanding of the oscillations.

Finally we note that there are subtleties in the R phase at the filling n = 1. In Figure 6
we present the EE and the pair correlation function G2(r) for the point R4 = (0.65,1). The
correlation function G1(r) vanishes, as it is the case throughout the R phase. Due to the
bifurcation in the EE profile, in order to find the central charge we use the modified CC formula
[45,46],

S(l) =
c
6

log
�

L
π

sin
�

πl
L

��

+ S0 +
a1 + a2 cos(πl)
� L
π sin

�

πl
L

��b
, (40)

4Incidentally we observe that for a fixed filling fraction n the wave numbers are approximately related by
q1 ≈ 2q2, both at n= 0.3 and n= 0.5.
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Figure 6: EE and the correlation function G2(r) at the point R4 = (0.65, 1). (a) The
EE as a function of subsystem size l together with a fit of the modified CC formula
(40). We find c = 1 and b = 0.78. The inset shows the bifurcation of the data points
between even and odd l. (b) The correlation function G2(r) together with a fit (red
solid line) to the upper branch of the data.

in which a1, a2 and b are new fitting parameters in addition to the central charge c and the
constant S0. Using the modified CC formula we get the central charge c = 1 for the filling
n= 1 in the R phase, just as was obtained for lower fillings. The same bifurcation also appears
in the correlation function G2(r). Therefore, in order to extract a power law we picked the
upper part of the data for fitting with the result G2(r)∼ r−0.78, which is still quite close to the
prediction 13/18 ≈ 0.72 we obtained deep in the R phase from bosonisation. The difference
between the prediction and the numerical value could be due to the fit to the upper part of
data and the fact that at this point P(1) ' 0.1, which means that the local state |1〉 plays a
more important role than it does deep in the R phase.

5.3 The M phase

For sufficiently large filling fractions, 0.8< n≤ 1, another gapless phase between the L and R
phases exists. This M phase is indicated as the orange region in the phase diagram, Figure 1.
The M phase is found to be gapless with central charge c = 2, as can be deduced from the fit
of the CC formula (16) to the EE calculated at the points M1 = (0.56, 0.85), M2 = (0.54, 0.9)
and M3 = (0.53,1) shown in Figure 7(a). Verifying the CFT prediction regarding the scaling
of the low-lying energy levels, δ(L) ∼ 1/L, turned out to be a hard task. This could be due
to two issues: The M phase is a fairly small region, therefore any chosen point is quite close
to the phase boundaries with the L and the R phases. This in turn demands very large system
sizes. In addition, the high central charge c = 2 and oscillatory features suggest that larger
bond dimensions are required. In Figure 7(b) we present our results for the energy gap at the
point M3, system sizes L ∈ [16 − 120] and bond dimension χ = 1000. While we observe a
strongly fluctuating dependence on the system size, the results clearly indicate a vanishing of
the energy gap in the thermodynamic limit.

The two-point correlation functions G1(r) and G2(r) are presented in Figure 8. They both
show a power-law behaviour as it is expected from CFT. The correlation function G1(r) is quite
smooth and behaves as G1(r)∼ r−α1 with an exponent α1 ' 0.75−0.8. Although ripples and
fluctuations in the correlation functions G2(r) are clearly visible, it still has a power-law trend,
G2(r) ∼ r−α2 with α2 ' 1.1. Since in the M phase all three states at each site play a role, it is
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Figure 7: (a) EE as a function of subsystem size l for the points M1, M2 and M3 in the
M phase. The fits are performed with the CC formula (16), giving a central charge of
c ≈ 2. We have shifted the red points by 0.2 and the green points by 0.4 for visibility.
(b) Energy gap above the ground state at the point M3. The fitting parameters for
the solid line are b ≈ 1 and δ0 ' 10−4.

not clear at this point whether one can relate the properties of this phase to a Luttinger liquid
picture.

The location of the M phase between the L and R phases suggests the following interpre-
tation: In the M phase one has two sets of gapless bosonic modes, which is supported by its
central charge c = 1+ 1 = 2. A priori we do not see a reason why these two theories should
have the same effective velocity.5 Now, when crossing the phase boundary to the L phase, a
gap opens in one of the bosonic theories (which is naively related to pair excitations), while
when going to the R phase the other theory develops a gap (naively related to single-particle
excitations).

5.4 The G phase

Finally we consider the gapped G phase indicated by a thick violet line in Figure 1. This phase
was identified by Rossini et al. [31] at g = 0 and interpreted as an anyonic Mott-like phase.
Our analysis reveals that this phase extends to finite values of g with the transition to the
gapless M phase located at g ' 0.45. Using DMRG we numerically calculated the energy gap
as a function of system size, ∆(L), and used a power-law fit to extract the gap ∆ = ∆(g) in
the thermodynamic limit via

∆(L) =
a
Lb
+∆. (41)

The finite-size data and fits as well as the g-dependence of the extracted gap ∆(g) are pre-
sented in Figure 9. For convenience we rescaled the gap with its value at g = 0, namely
∆(0) = 0.106 t.

We have calculated the EE and correlation functions at the points T1 = (0.2,1), T2 = (0.3, 1)
and T3 = (0.42,1) in the G phase. The data are shown in Figures 10 and 11, respectively. The
EE saturates quite quickly as a function of subsystem size l to a constant value, which is in-
dicative of a finite correlation length [34]. This is also supported by the behaviour of the

5The situation is reminiscent to the one-dimensional Hubbard model away from half filling [47], and might be
similar to the c = 3/2 phase recently discussed in Reference [48].
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Figure 8: The correlation functions G1(r) and G2(r) for the three points, M1, M2 and
M3, in the M phase are plotted in (a) and (b), respectively. To avoid mixing the data
points, G1(r) for the point M3 was multiplied by 1.2, G2(r) for M2 was multiplied by
2.5 and G2(r) for M3 was multiplied by 3.2. For both correlation functions we fitted
power laws with exponents α1,2, the obtained values are given in the legends.

correlation functions, which show an exponential decay with power-law corrections,

Gi(r) = Ai r
−βi exp(−r/ξi), i = 1,2. (42)

The obtained fitting parameters are given in Figure 11. The correlations lengths are much
smaller than system size, usually of the order 10-20 lattice constants.

5.5 On the nature of the transitions

So far we focussed on the properties of the individual phases. In this section we will exam-
ine the nature of the transitions between them by studying the ground-state energy and its
derivatives together with the information we gathered so far.

5.5.1 The transition between the L and the R phases

First we consider the phase transition between the two gapless phases with the central charge
c = 1, namely the L phase and the R phase. As discussed above, these two phases are best
distinguished by the behaviour of the correlation functions and in particular by the vanishing
of G1(r) in the R phase. To further investigate the nature of the transition we calculated the
ground-state energy E(g) at a fixed filling. For example, in Figure 12 we show E(g) and its first
and second derivatives with respect to g at the filling n= 0.3. We see that while the energy and
its first derivative are smooth and continuous, there exists a divergence in the second derivative
∂ 2E
∂ g2 at gc ' 0.64. This value is identical to the one extracted from the change of the behaviour
in G1(r). We have checked the presence of the two phases down to the filling n = 0.1. The
transition parameter gc(n) = 0.64 is the same within the accuracy of our numerics for the
fillings 0.1 ≤ n ≤ 0.4, therefore in Figure 1 we extrapolate it down to n = 0. In summary,
we conclude that the L and R phases are separated by a phase transition that seems to be of
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Figure 9: (a) Finite-size scaling of the energy gap, ∆(L), as a function of system
size L ∈ [64− 240] at several points in the G phase. (b) Rescaled energy gap in the
thermodynamic limit, ∆(g)/∆(0), as a function of g. The orange and the yellow
lines correspond to the M and the R phases, respectively, while the stars indicate the
transition points.

second order, but that future work is required to obtain a complete characterisation.

5.5.2 The transitions to the M phase

For the transition between the M phase and the L and R phases, we studied again the ground-
state energy and its first and second derivatives (not shown). While the energy and its first
derivative are smooth within our precision, the second order derivative is smooth in the L
and the R phases but quite fluctuating and spiky within the M phase. This may be related to
the presence of fluctuations as it was recently observed in the incommensurate phase of the
Kitaev–Hubbard model [49].

For the phase transitions at n = 1 between the M phase and G phase we performed a
scaling analysis. For systems of size L ∈ [64− 100] we numerically calculated the energy
difference between the first excited state and the ground state, ∆(L, g) = E1(L, g)− E0(L, g).
As it is presented in Figure 13(a) the quantity Lz∆ with z = 1 for various system sizes cross
at gc ' 0.45. This value is consistent with the critical parameter gc obtained from the EE.
Figure 13(b) also shows that by scaling the g-axis as L1/ν(g− gc) with ν= 1 all the data close
to the transition collapse to a single curve. Thus we conclude that our results are consistent
with the existence of a second-order transition. We note, however, that reasonable scaling
collapse of the data is still obtained if z is varied provided ν is adapted appropriately.

6 Conclusion and outlook

In this work we studied a one-dimensional model for FPFs with p = 3, which contained single-
particle and coherent pair-hopping terms between nearest-neighbour sites. Using a combina-
tion of numerical simulations and analytical arguments we determined the phase diagram as
a function of the relative strength between the two hopping terms and the filling fraction, ie,
the number of FPFs per lattice site. We identified four different phases: two distinct gapless
Luttinger phases with central charge c = 1, one gapless phase with c = 2, and one gapped
phase. All phases were characterised by the energy gap, entanglement entropy and behaviour
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Figure 10: EE as a function of the subsystem size l for three points T1, T2 and T3 in
the G phase. We note that in the middle of the chain the EE takes a constant value
indicating a finite correlation length [34].
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Figure 11: The correlation functions G1(r) and G2(r) for the three points T1, T2 and
T3 in the G phase are plotted in (a) and (b), respectively. To avoid mixing the data
points, G1(r) for T2 was multiplied by 1.5, G1(r) for T3 was multiplied by 2, G2(r)
for T2 was multiplied by 2.5 and G2(r) for T3 was multiplied by 4.5. We note that
both correlation functions show an exponential decay at large distances, as indicated
by the fitted functions (42) shown as solid lines.

of two-point correlation functions. While we were able to locate the phase transitions accu-
rately, their complete characterisation had to be left for future studies.

Our work can be seen as a step towards the general understanding of the many-particle
states of FPFs, or more broadly towards a better understanding of the manifestations of any-
onic statistics in many-particle phases. Of course there are many open directions for future
research: First, it would be very interesting to analyse the effects of extensions to the simple
model (15), for example by including additional complex phases. These are known [50, 51]
to have drastic effects on the phase diagram of parafermionic models, and can be crucial for
the existence of edge zero modes [25]. Similarly, the addition of BCS-like terms will break the
particle number conservation and thus is expected to support additional phases in the phase
diagram. Second, studying the properties of FPFs with p > 3 is of interest. So far only the
pure hopping model (ie, g = 0) for p = 6 was studied by Rossini et al. [31], who pointed out
analogies with counter-propagating boundary modes in the ν = 1/3 Laughlin state. Third, it
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Figure 12: Ground-state energy E(g) as well as its first and second order derivatives
with respect to the parameter g but at fixed filling n = 0.3. We observe a diver-
gence in ∂ 2E

∂ g2 at gc ' 0.64 indicating the existence of a second-order phase transition
between the L and R phase.

would be of general interest to establish possible experimental realisations of FPFs, for exam-
ple based on structures combining quantum Hall systems and superconductors, quantum Hall
bilayers, or two-dimensional topological insulators [52].
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dicates a phase transition at gc ' 0.45. (b) The scaling collapse of data using the
critical exponents z = ν= 1.

A Proof of “particle-hole" symmetry

In this section we prove that it is sufficient to study the model for 0 < n ≤ 1. First of all note
that the number operator for FPFs,

N j = 1⊗ · · · ⊗ N
︸︷︷︸

j

⊗· · · ⊗ 1 , N =





0 0 0
0 1 0
0 0 2



 , (43)

can be rewritten in terms of the bosonic operators (20) as

N j = F†2
j F2

j + F†
j F j = B†2

j B2
j + B†

j B j . (44)

We now perform the transformation

U j → U†
j , B j → B†

j , (45)

which preserves the bosonic algebra (21). From Equation (18) one can see that this transfor-
mation corresponds to F j → F†

j . Applying it to N j we get for the particle density

N j → B2
j B†2

j + B jB
†
j = 2− N j ⇒ n=

1
L

L
∑

j=1

N j → 2− n. (46)

The action of (45) on the Hamiltonian (22) is given by

H(g) = −t(1− g)
L−1
∑

j=1

�

B†
j U jB j+1 + U†

j B jB
†
j+1

�

− t g
L−1
∑

j=1

�

B†2
j B2

j+1 + B2
j B†2

j+1

�

(47)

→−t(1− g)
L−1
∑

j=1

�

B jU
†
j B†

j+1 + U jB
†
j B j+1

�

− t g
L−1
∑

j=1

�

B2
j B†2

j+1 + B†2
j B2

j+1

�

(48)

= −t(1− g)
L−1
∑

j=1

�

ωB†
j U jB j+1 + ω̄U†

j B jB
†
j+1

�

− t g
L−1
∑

j=1

�

B†2
j B2

j+1 + B2
j B†2

j+1

�

. (49)
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We recall that we can choose other representations for the matrix U in Equation (19) as long
as it satisfies the requirements U3 = 1 and U2 = U†. Thus we can redefine U j as Ũ j = ωU j ,
which still satisfies the algebra (21) with the B j ’s. Therefore Equation (49) can be rewritten
in terms of Ũ j and then retrieves its original form (47).

Note that although the model (15) can be defined for any p ≥ 3, its bosonic representation
(22) was written specifically for the case of p = 3. Hence our proof is also restricted to this
case.
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