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Abstract

The CNOT gate is a two-qubit gate which is essential for universal quantum computation.
A well-established approach to implement it within Majorana-based qubits relies on sub-
sequent measurement of (joint) Majorana parities. We propose an alternative scheme
which operates a protected CNOT gate via the holonomic control of a handful of system
parameters, without requiring any measurement. We show how the adiabatic tuning of
pair-wise couplings between Majoranas can robustly lead to the full entanglement of two
qubits, insensitive with respect to small variations in the control of the parameters.
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1 Introduction

Topological quantum computation (TQC) is an approach to quantum computing that aims at
minimizing decoherence at the hardware level, by exploiting topological properties of non-
local degrees of freedom composed of non-Abelian anyons [1–3]. The latter are exotic quasi-
particle excitations, which feature non-trivial exchange statistics, described by multidimen-
sional representations of the braid group. A collection of non-Abelian anyons is embedded in
a degenerate ground state manifold, which allows to non-locally store quantum information
and to process it by implementing unitary transformations via braiding.

Among all non-Abelian anyons, Majorana zero-energy modes (MZMs) are the most promis-
ing ones for the development of TQC [4–8], as they are the most feasible ones in condensed
matter systems. Over the last decade, seminal experiments have indeed provided strong evi-
dence for their existence in several different platforms, such as proximitized semiconducting
nanowires [9–12], chains of magnetic adatoms [13, 14], vortices within topological super-
conductors [15,16], planar Josephson junctions [17,18] and proximitized quantum spin Hall
edges [19,20].

The building block of Majorana-based TQC is the Majorana qubit, consisting of four MZMs.
By physically braiding those MZMs it is possible to implement all single-qubit Clifford gates
[21–23]. Those gates are topologically protected, as their outcome exclusively depends on the
topology of the trajectories adiabatically followed by the anyons in a 2+1 dimensional space.
Importantly, the braiding of a single pair of MZMs can be realized in several ways, which are
all equivalent to a physical exchange of the two non-Abelian anyons [24–30]. Indeed, by con-
sidering the presence of additional (hybridized) ancilla Majoranas, we can perform braiding
by properly tuning pair-wise couplings between different MZMs [31, 32], or by performing
sequential projective parity measurements [8, 33–38]. Non-Clifford operations such as the T
gate cannot be realized via Majorana braiding and necessarily rely on implementations that
are not topologically protected and require additional error correction schemes such as magic
state distillation [23,39].

To achieve universal quantum computation, single-qubit gates must be supplemented with
an entangling gate, such as the CNOT gate. Unfortunately, this two-qubit Clifford gate cannot
be realized within a scalable architecture by exclusively using Majorana braiding operations
[22,40]. The measurement-based approach allows us to overcome this issue by implementing
the CNOT gate by performing high-fidelity projective measurements of the (joint) Majorana
parities [8, 35, 41–44]. However, while measurement-based TQC has proven to be extremely
valuable for the future development of a fully scalable topological quantum computer, the
required measurement protocols still represent a formidable challenge [35, 45, 46]. For the
time being, it is therefore desirable to devise and characterize alternative schemes, which do
not rely on high-fidelity measurements but still allow to robustly entangle distinct topological
qubits.

In this work, we propose a measurement-free realization of the CNOT gate based on a holo-
nomic approach. The key idea of holonomic quantum computation is to exploit non-Abelian
geometrical phases to implement unitary operations on a degenerate eigenspace of the un-
derlying Hamiltonian [47]. Those gauge-invariant phases emerge when the parameters of the
system are tuned along degeneracy-preserving closed loops in parameter space. This approach
is rather general and has been successfully exploited in non-topological quantum computation
schemes [47–49]. Therefore, it is interesting to utilize holonomic techniques also in TQC.
Indeed, the braiding of Majoranas itself can be interpreted as a holonomic process, where
the system follows specific, topologically-protected loops in the three-dimensional parameter
space of pair-wise Majorana couplings [8, 31]. The advantage of the holonomic description
of the braiding is that it can be easily generalized, both by considering loops with a different
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structure, within the same parameter space, and/or by considering a different parameter space
altogether. In the first case, a careful modification of the loops can effectively implement non-
Clifford (and non-topological) gates, such as the T gate [50]. We consider the second case
and demonstrate that it is possible to implement entangling gates, such as the CNOT gate,
by working in specific parameter spaces of a two-qubit system. In presence of physical con-
straints on the fermion parity of individual qubits, provided, for instance, by a finite charging
energy [30,32,36], our holonomic entangling scheme is robust with respect to the presence of
otherwise detrimental couplings between MZMs and/or limited control of system parameters.

The article is organized as follows. In Sec. 2, we introduce the structure of the specific Ma-
jorana qubits under consideration. We also briefly review the concepts of holonomic quantum
computation. In Sec. 3, we propose two different holonomic implementations of two-qubit
entangling gates, whose robustness is analyzed in Sec. 4. Finally, we summarize and discuss
our findings in Sec. 5.

2 Model

For the sake of generality, we do not focus on a specific physical implementation of Majorana
qubits. Instead, we discuss a generic low-energy effective model consisting of several couples
of Majorana modes (or Majoranas). The latter are described by the self-adjoint operators
γ j = γ

†
j which obey

{γ j ,γk}= 2δ j,k. (1)

If they commute with the system Hamiltonian [H,γ j] = 0, we refer to them as MZMs. Two
Majorana operators define a (possibly non-local) fermion

f jk =
1
2

�

γ j − iγk

�

, (2)

whose associated parity operator reads

Pjk = iγ jγk = 1− 2 f †
jk f jk. (3)

Two degenerate states with opposite parity Pjk|0 jk〉 = |0 jk〉 and Pjk|1 jk〉 = −|1 jk〉 can be
therefore associated with every pair of MZMs. As the global fermion parity of an isolated
system is fixed, a working Majorana qubit requires the presence of four different MZMs γi
(with i = 1,2, 3,4) [22]. Without loss of generality, we consider the global parity of the Majo-
rana qubit to be even and choose the following basis for the computational space of the qubit

|0̃〉= |012034〉,
|1̃〉= |112134〉.

(4)

Our goal is to operate on the Majorana qubit by following an holonomic approach, i.e. by
changing in time some of its parameters. However, a system consisting only of four MZMs does
not allow for such a manipulation, as it does not feature tunable parameters. To overcome this
issue, we add two additional Majoranas, γ0 and γ5, to the system and consider the general
Hamiltonian

H = −
5
∑

j=1

c j P0 j , (5)

which describes pair-wise couplings within a "five-point star" scheme, as sketched in Fig. 1(a).
When no operations are performed on the qubit, it is in the idle configuration which features
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Figure 1: (a) Sketch of a single Majorana qubit consisting of six MZMs. They are
connected by five lines representing the five pair-wise couplings P0 j which enter the
qubit Hamiltonian in Eq. (5). In the idle configuration, only Majoranas γ0 and γ5 are
coupled (thick red line), leaving the other four Majoranas at zero energy. The holo-
nomic braiding of MZMs γ1 and γ2 requires the additional manipulation of couplings
P01 and P02 (blue and yellow line, respectively). (b) The closed loop Γ (t) followed by
the three coupling strengths χx , χy and χz specified in Eq. (7) during the clockwise
braiding of MZMs γ1 and γ2. The "anchor points" Γ (τ j), which are listed in Tab. 1,
are highlighted with small bullets.

a single non-vanishing coupling strength c5 = Θ > 0 and leaves us with the four MZMs γi
(i = 1,2, 3,4). Without loss of generality, we consider the total fermion parity of the system
to be even P = P12P34P05 = 1. In this case, the computational space is spanned by the two
degenerate ground states

|0〉= |0̃〉|005〉= |012034005〉
|1〉= |1̃〉|005〉= |112134005〉.

(6)

The excited states, with the same total fermion parity, are separated from the ground states by
an energy gap ∆E = 2Θ.

The advantage of this five-point star architecture is that it is tunable. Indeed, it is possible
to tune the coupling strengths c j away from the idle configuration without destroying the qubit,
keeping the fixed-parity computational space degenerate and separated from the excited states
by a finite energy gap. A sufficient condition for the stability of the qubit is that, at each time t,
either one or two of the five different couplings strengths c j must be non-vanishing [31,50,51].

2.1 Holonomic description of Majorana braiding

We now briefly review a protocol which allows us to braid a couple of MZMs, say γ1 and γ2,
thus implementing a topological quantum gate. This protocol has been extensively discussed
in Ref. [8,31,50] To this end, we focus on the Hamitonian

H1↔2(t) = −χx(t)P02 −χy P01 −χz(t)P05. (7)

Starting from the idle configuration at t = τ0 = 0, we tune the three coupling strengths χ j(t)
(with j = x , y, z) along the closed loop Γ in the three-dimensional parameter space shown
Fig. 1(b). The loop consists of six straight lines connecting six key configurations reached at
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Table 1: Values of the coupling strengths χi(t) at the key configurations t = τα (with
α= 0, . . . , 6) along the closed loop shown in Fig. 1(b).

t χx(t) χy(t) χz(t)

τ0 = 0 0 0 Θ

τ1 0 Θy Θ

τ2 0 Θy 0
τ3 Θx Θy 0
τ4 Θx 0 0
τ5 Θx 0 Θ

τ6 = T 0 0 Θ

times t = τk (with k = 0, . . . , 6), see Tab. 1 for more details. At the end of the protocol
t = T = τ6, the system goes back to the original idle configuration, i.e. χ j(τ6) = χ j(τ0).
In between two subsequent configurations, two parameters are kept fixed while the third one
smoothly interpolates between 0 and its maximum value (or viceversa). For the sake of con-
creteness, in what follows, we consider the interpolating function

g(l) =
1− cos(πl)

2
, (8)

with g(0) = 0 and g(1) = 1.
This protocol clearly satisfies the (above-mentioned) sufficient condition which ensures

the preservation of the qubit computational space. We can therefore study the adiabatic time
evolution of a generic initial state |i〉 = α|0〉 + β |1〉. Once the system is back in the idle
configuration, at time t = T , the final state | f 〉 must be related to the initial one by a U(2)
transformation | f (T )〉 = UΓ |i〉. Because of the degeneracy of the computational space, the
dynamical phase picked by |0〉 during the time evolution is the same as the one picked by |1〉.
Therefore, a non-trivial UΓ can only emerge as a non-Abelian Berry phase, which depends on
the geometrical properties of the loop Γ . Notably, it is independent of the specific values of
τ j and the interpolating function g. Moreover, the conservation of [P34, H1↔2(t)] = 0 and
[P , H1↔2(t)] = 0 implies that UΓ is diagonal in the basis {|0〉, |1〉}. The Berry phase picked by
the state |0〉 (|1〉) equals (minus) the solid angle ΩΓ enclosed by the loop Γ [8,31,50]. For the
loop depicted in Fig. 1(b), up to an overall phase, this corresponds to the unitary matrix

UΓ =
�

1 0
0 −i

�

. (9)

Therefore, the holonomic scheme we briefly reviewed corresponds to a quantum phase gate
(also known as π/4 gate).

This holonomic protocol is completely equivalent to the physical clockwise braiding of γ1
and γ2. This can be easily understood by tracking the motion of the zero-energy modes, ini-
tially associated with γ1 and γ2, throughout the evolution of the system along Γ [31,51]. It is
therefore not surprising that this holonomic protocol inherits the same topological protection
featured by the physical braiding of MZMs. A single topological MZM can be completely de-
coupled from other Majoranas with exponential accuracy, for instance, by varying its distance
from the other Majoranas. This has two important consequences: (i) It guarantees the expo-
nential protection of the degeneracy of the computational space, thus preventing the onset of
unwanted dynamical phase differences. (ii) It exponentially confines the loop Γ on the three
coordinate planes χ j = 0. Therefore, the enclosed solid angle is always ΩΓ = π/2, regardless
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of deviations from the ideal "cubic" shape of the loop Γ in Fig. 1(b) which may arise due to
a limited control on the non-vanishing couplings χk [8,31,50]. Hence, the unitary operation
implemented by the holonomic protocol can approach UΓ in Eq. (9) to exponential accuracy.

With respect to the physical braiding, the advantage of the holonomic approach is that it
can be easily generalized to different classes of loops and/or to different parameter spaces. In
the first case, for example, by halving the solid angle enclosed by the loop Γ , it is possible to
implement a T gate (also known as π/8 gate). While the full topological protection is lost,
this implementation of the T gate can still take advantage of geometrical protection. Indeed,
perturbations on the loop which do not change the enclosed solid angle Ω do not affect the
gate outcome [50]. In the next section, we explain how two Majorana qubits can be entangled
by holonomic schemes.

3 Entangling gates

We consider a two-qubit system, consisting of two copies of the five-point star architecture
as shown in Fig. 2(a). It features twelve different Majorana modes γαj , with j = 0, . . . 5 and
the qubit index α = A, B. In complete analogy with the single-qubit case, we define inter-
coupling pairings Pαjk = iγαj γ

α
k and introduce the idle configuration, which features two non-

vanishing couplings Hidle = −PA
05 − PB

05 [see Fig. 2(a)]. Moreover, without loss of generality,
we assume each qubit to obey a global even fermion parity, i.e. Pα = −iγα1γ

α
2γ
α
3γ
α
4γ
α
0γ
α
5 = 1.

The computational space of the whole system in the idle configuration is thus spanned by four
degenerate ground states

{|0A0B〉, |0A1B〉, |1A0B〉, |1A1B〉}, (10)

where the single-qubit even-parity states |0α〉 and |1α〉 are defined as in Eq. (6).
While holonomic single-qubit gates can be easily implemented by manipulating the intra-

qubit couplings PA
i j , two-qubit gates require the manipulation of terms in the Hamiltonian

which act on both qubits, such as the inter-qubit couplings I jk = iγA
i γ

B
j . Importantly, these

terms do not commute with the fermion parity of each qubit, i.e. [Pα,I jk] 6= 0. Therefore, they
can potentially push the two-qubit system out of its four-dimensional computational space,
spanned by the even-even states in Eq. (10). This is precisely what happens if we braid Majo-
ranas γA

1 and γB
2 , for example by holonomically tuning parameters PB

05, PB
02, and I10. Such an

operation would entangle the two subsystems A and B but it would also induce leakages out of
the two-qubit computational space. This specific example is a consequence of the more gen-
eral non-entangling rule, introduced by Bravyi in 2006 [22] stating that no entangling gates
between distinct qubits can be realized just by braiding Ising anyons. For the sake of complete-
ness, we acknowledge that it is possible to entangle a couple of Majorana qubits, defined in a
peculiar way such that they share a pair of Ising anyons, just by using Majorana braiding [52].
However, this approach is not scalable since the image of the braiding group is a nontrivial
subgroup of the Clifford group for n≥ 3 qubits, meaning that there exist Clifford gates which
cannot be realized only by braiding [40].

To overcome the limitations posed by the non-entangling rule, it is necessary to devise
novel holonomic protocols that go beyond the simple braiding of MZMs and preserve the
fermion parity Pα of each individual qubit. To this end, it is possible to follow two differ-
ent approaches. One possibility is to manipulate more complicated operators that act on both
qubits while still commuting with each Pα. Alternatively, it is possible to ensure the conserva-
tion of fermion parity by external means, for instance, by making unfavorable single-electron
tunnelings between the qubits. In what follows, we propose two protocols which are based on
the first and second approach, respectively.
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Figure 2: (a) Sketch of a two-qubit system consisting of 12 Majoranas. In the idle
configuration, only the inter-qubit couplings PA

05 and PB
05 are non-vanishing and they

are represented with dark red and red lines, respectively. The 4γ entangling protocol,
described in Sec. 3.1, requires the control of the additional intra-qubit coupling PB

02
(yellow line) and inter-qubit interaction I11I20 (blue area). (b) Intuitive understand-
ing of the effect of the inter-qubit interaction term: depending on the parity of the
control MZM pair γA

1 and γA
2, the holonomic protocol effectively corresponds either to

a clockwise (purple loop) or anticlockwise (green dotted loop) effective braiding of
the target Majoranas γB

1 and γB
2 . (c) Spectrum of the Hamiltonian H4γ(t) along the

closed loop Γ . Each line is 16-fold degenerate. Energies are in units of Θx = Θx = Θ.
We consider the six key configurations to be equally spaced in time, i.e. a constant
τ j+1 −τ j .

3.1 The 4γ protocol

To devise an holonomic procedure which fully entangles the two qubits, we introduce the
operator

O4γ ≡ PA
12PB

01 = −γ
A
1γ

A
2γ

B
0γ

B
1 = I20I11. (11)

It represents an interacting term which involves the two qubits but preserves their individual
parities [O4γ,Pα] = 0. We argue that it allows us to realize a holonomic entangling gate by
considering the time-dependent Hamiltonian

H4γ(t) = −χx(t)P
B
02 −χy(t)P

A
12PB

01 −χz(t)P
B
05, (12)

where the coupling strengths χ j(t) adiabatically follow the loop Γ depicted in Fig. 1(b) and
described in Tab. 1.

Before presenting a detailed and rigorous analysis of this protocol, it is useful to develop
some intuition about its entangling capabilities. To this end, we notice that the Hamiltonian
H4γ closely resembles the one which would braid Majoranas γB

1 and γB
2 within the same qubit

[see Eq. (7)]. The key difference is the presence of the operator O4γ, which replaces the
simple intra-qubit coupling PB

01 with the product PA
12PB

01. This allows to effectively implement
a controlled braiding. Indeed, the parity of Majoranas γA

1 and γA
2 on the control qubit A, controls

the direction of the braiding of γB
0 and γB

1 on the target qubit B: for PA
12 = ±1, the effective

braiding on qubit B is either clockwise (+1) or anti-clockwise (−1), as shown in Fig. 2(b) with
solid purple and dotted green lines, respectively. This explains the entangling capability of the
procedure.
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In order to fully characterize the holonomic protocol, it is necessary to study the adiabatic
time evolution of the four even-even ground states in Eq. (10). Initially, at time t = 0, we
assume the system to be in one of the states |ψnm(t = 0)〉= |nAmB〉, with n, m ∈ {0, 1}. Since
the parity operators PA

34 and PB
34 are conserved throughout the whole time evolution, they

allow us to conveniently label the states at every time t, that is

PA
34|ψnm(t)〉= (−1)n|ψnm(t)〉,

PB
34|ψnm(t)〉= (−1)m|ψnm(t)〉.

(13)

Importantly, the four states |ψnm(t)〉 are always degenerate. This can be proven by identifying
zero energy operators which allow us to transform between these four states. For 0 ≤ t ≤ τ2
(see Tab. 1 and Fig. 1), we find that

RA = γ
A
2γ

A
3γ

B
0γ

B
5 , (14)

RB = γ
B
2γ

B
3 (15)

represent these operators as they commute with the Hamiltonian [H(t), RA] = [H(t), RB] = 0
and anticommute with the respective conserved quantity {Pα34, Rα}= 0. Analogously, zero en-
ergy operators can also be found for the following steps, i.e. for τ2 ≤ t ≤ τ6 = T . The energy
spectrum of the system, obtained by diagonalizing the full Hamiltonian H4γ(t), confirms the
degeneracy of states |ψnm〉 and the presence of a finite energy gap, which separates them from
excited states [see Fig. 2(c)].

The adiabatic theorem, together with the conservation of the parities Pα34, allows us to
relate the final states |ψnm(T )〉 to the initial ones via a U(4) diagonal matrix U ent

Γ . Up to a
global phase, this transformation only depends on the geometric properties of the loop Γ in
the parameter space. In order to find U ent

Γ , we compute the Berry curvature associated with
each state (see App. A.1 for more details)

~Fnm =∇ ~χ × i〈ψnm( ~χ)|∇ ~χ |ψnm( ~χ)〉

= (−1)m+n+1 ~χ

2| ~χ|3
.

(16)

Therefore, analogously to the simple holonomic braiding, the Berry phases picked up by each
element of the basis in Eq. (10) only depends on the solid angle enclosed by the closed loop Γ
in parameter space. In particular, we get

|ψnm(T )〉= exp
h

(−1)m+n i
π

4

i

|ψnm(t = 0)〉 (17)

which, up to a global phase, corresponds to the unitary transformation

U ent
Γ =







1 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 1






. (18)

The entangling power of this gate is EP(U ent
Γ ) = 2/9, which means that it is able to fully en-

tangle the two qubits [53]. For instance, starting from the product state
|i〉 = (|0A〉+ |1A〉) ⊗ (|0B〉+ |1B〉)/2, the holonomic procedure generates the maximally en-
tangled state

U ent
Γ |i〉=

|0A0B〉 − i|0A1B〉 − i|1A0B〉+ |1A1B〉
2

. (19)

These results have also been confirmed numerically, by simulating the adiabatic time evolution
of the system with the QuTip package [54, 55] [see, for example, Fig. 4(a)]. By applying
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additional single-qubit Hadamard (H) and phase (S) gates, which can be implemented using,
for example, holonomic braiding as discussed in Sec. 2.1, it is possible to obtain the control-Z
gate

CZ= U ent †
Γ (S ⊗ S) (20)

as well as the CNOT gate
CNOT= (I ⊗H)CZ(I ⊗H). (21)

The practical realization of this holonomic entangling protocol is necessarily characterized
by a finite execution time T , which inevitably induces deviations from the adiabatic result
in Eq. (19): a decrease in T increases the probability of unwanted transitions between the
computational space and the excited states. Importantly, the spectrum associated with the
controlled braiding, which is depicted in Fig. 2(c), is completely equivalent to the one featured
by a standard single-qubit holonimic braiding protocol [see, for instance, Eq. (7)]. Diabatic
errors in our 4γ entangling protocol are therefore expected to be equivalent to the ones which
characterize single-qubit holonomic braidings, whose properties have been already extensively
studied and reviewed [56–61].

We mention in passing that the unitary operator U ent
Γ can also be obtained by using a

measurement-only approach. According to Ref. [34], the latter would require four subsequent
projective forced measurements of the very same parity operators, which we tune in H4γ. That
is

U ent
Γ ∝ Π+

PB
05
Π+

PB
02
Π+

PA
12PB

01
Π+

PB
05

, (22)

where Π+P = (1+P)/2 is the projector on the eigenstate of the parity operator P with eigenval-
ues +1. This draws a formal equivalence between the two approaches. While our holonomic
protocol does not rely on the realization of projective (joint) parity measurements, it poses
(at least) two other important experimental challenges: (i) The implementation of a tunable
four-Majorana interaction term O4γ and (ii) the detrimental effect of parasitic couplings. The
latter correspond to unwanted pair-wise couplings, which can appear during the manipulation
of the Majoranas. For example, at time t = τ1, Majorana γB

0 is coupled with γB
5 [red line in

Fig. 2(a)] and it simultaneously interacts with γA
2, γA

1 and γB
1 [blue area in Fig. 2(a)]. In this

configuration, it might be difficult to prevent the onset of additional small parasitic couplings
between the involved Majoranas, such as I25 = iγA

2γ
B
5 or PA

12 = iγA
1γ

A
2. Unfortunately, these

terms do not conserve the parity of individual qubits and/or split the ground state degeneracy,
spoiling the holonomic entangling procedure. In the next section, we propose an alternative
holonomic approach that overcomes those two aforementioned drawbacks.

3.2 The double tunneling protocol

In this section, we take advantage of the framework developed for the study of the 4γ protocol
and devise a new holonomic scheme that features high resilience against parasitic couplings
and only requires to tune pair-wise Majorana couplings. As discussed before, such an approach
necessarily relies on external means to preserve the parity of each individual qubit. To this end,
we consider the additional time-independent Hamiltonian

HE = −E(PA+PB) , (23)

which makes single-electron tunneling between the two qubits energetically unfavorable (in
the regime of a significant magnitude of E). Importantly, such a Hamiltonian naturally emerges
in systems where each qubit consists of a floating superconducting island with a finite charging
energy. This feature has previously been exploited to protect qubits from quasiparticle poison-
ing and to allow joint-parity measurements of more than two Majoranas [31,35,36,46].
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Figure 3: (a) Sketch of the two-qubit system, with constraints on the single-qubit
parities imposed by a finite HE (black rectangles). The intra-qubit couplings PA

05 and
PB

05 which are non-vanishing in the idle configuration are highlighted with dark red
and red lines, respectively. The double tunneling protocol requires the additional
control of the intra-qubit coupling PB

02 (yellow line) and of the inter-qubit couplings
I20 and I11 (blue lines). Possible parasitic couplings I25, I22 and PB

02 are shown with
dashed purple, green and orange lines, respectively. (b) Spectrum of the Hamiltonian
Hd t(t) along the closed loop Γ . Only negative energies are shown. Each line is 4-fold
degenerate. Energies are in units of Θx = Θx = E = Θ. We considered the six key
configurations to be equally spaced in time, i.e. τ j+1 −τ j = T/6.

The presence of a finite HE allows us to trade the interacting term O4γ = I20I11 [see
Eq. (11)] with a simpler and more feasible one

O2γ+2γ = I20 + I11, (24)

even though the latter does not commute with the qubit parities Pα. In order to develop some
intuition, we focus at first on the limit of large E so that the individual inter-qubit tunnelings
I20 and I11 are highly suppressed. In this limit, only virtual cotunneling processes can happen
such as

(O2γ+2γ)2 = 2+ 2O4γ , (25)

whose effect is analogous to the interacting term O4γ. Hence, the time-dependent Hamiltonian

Hd t(t) = HE −χx(t)P
B
02 −χy(t) (I20 + I11)−χz(t)P

B
05, (26)

is likely to function in a similar way as previously discussed for H4γ. This is confirmed by the
careful analysis of the protocol Hd t(t) which we carry out below. Importantly, we argue that
it is not necessary to work in the limit of large E , as the holonomic entangling scheme can be
successfully implemented even for a finite E ∼ Θ (see Fig. 4). For the sake of simplicity, in Eq.
(26), we have considered the same coupling strength χy(t) for both I20 and I11. In App. B,
we show that differences in the two coupling strengths are not detrimental for the holonomic
entanglement procedure.

We characterize the protocol based on Hd t(t) along the lines of the previous section. In
particular, we observe that the parity operators PA

34 and PB
34 are still conserved and that op-

erators like RA and RB, transforming between the states of the computational space, are still
at zero energy. This guarantees the degeneracy of the four groundstates |ψnm(t)〉 throughout
the whole protocol, as nicely confirmed by the spectrum plotted in Fig. 3(b) and obtained by
the exact diagonalization of the full Hamiltonian Hd t(t). Hence, after the adiabatic evolution
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of the system, the final states |ψnm(T )〉 are related to the initial ones |ψnm(0)〉 via a U(4)
diagonal matrix which, up to a global phase, depends only on the geometrical properties of
the closed loop Γ . In order to determine this unitary transformation, we compute the Berry
phase picked up by each state by integrating the Berry connection along Γ (see App. A.2).
Even though the Berry curvature differs from the simple form in Eq. (16), we find that, up
to a global phase, the implementation of the protocol based on Hamiltonian Hd t(t) results in
the same unitary transformation U ent

Γ we obtained within the 4γ protocol. Importantly, this
result does not depend on E as long as the latter is finite. The protocol is, therefore, able to
maximally entangle the two qubits and it can be straightforwardly turned into a CNOT gate
by adding single-qubit Clifford gates according to Eq. (21).

All these results have been confirmed numerically by simulating the time evolution of the
system and testing the validity of Eq. (19) [see Fig. 4(a)]. Importantly, numerical simulations
represent also a valuable tool to fully characterize the protocol by inspecting its robustness
against non-adiabatic effects, parasitic couplings, and poor control of the tuning parameters.
These aspects, which are of fundamental importance when it comes to practical implementa-
tions of the proposed entangling scheme, are carefully discussed in the next section.

4 Robustness of the entangling protocol

So far, we have studied the entangling protocol based on the Hamiltonian Hd t(t) under ideal
conditions. Indeed, we have considered the time evolution of the system while the three
control parameters χ j(t) are adiabatically and precisely tuned along the loop Γ . This raises
the question to which degree the resulting unitary operation U ent

Γ is robust with respect to
non-ideal effects, which arise under more realistic conditions.

4.1 Adiabaticity

Strictly speaking, the existence of a finite energy gap ∆E between the ground state manifold
and the excited states guarantees the applicability of the adiabatic theorem only in the limit
T →∞. Protocols with a shorter time duration T might indeed feature diabatic transitions
(e.g. of Landau-Zener type) which push the system out of computational space and spoil the
holonomic quantum gate.

In order to analyze and quantify this effect, we numerically simulate the time evolution
of the initial state |i〉 = (|0A〉+ |1A〉) ⊗ (|0B〉+ |1B〉)/2 for several different durations T of
the whole protocol. The final states | f (T )〉 can then be compared with the expected re-
sult | f (∞)〉 = U ent

Γ |i〉 [see Eq. (19)] by computing the overlaps |〈 f (∞)| f (T )〉|2. The lat-
ter are plotted in Fig. 4(a) for E = Θ and show that the time evolution of the system be-
haves adiabatically for T ¦ 100∆−1. Faster implementations of the protocol would result in
| f (T )〉 6= | f (∞)〉. The oscillations featured by the overlap |〈 f (∞)| f (T )〉|2 for short T can
be understood as interference patterns resulting from subsequent transitions between ground
and excited states, in analogy with the Landau-Zener-Stückelberg effect [51,62].

Let us define the "adiabatic threshold" Tad as the minimal duration of the holonomic process
for which diabatic effects become negligible, say 1− |〈 f (∞)| f (T )〉|2 < 10−3 for all T ≥ Tad .
This time scale clearly depends on the spectrum of the system during the time evolution which,
in turn, depends on the energy E and on the maximum coupling strengths Θi featured by the
Γ loop specified in Tab. 1. In Fig. 4(b), we numerically compute Tad as a function of E for
three different values of Θy while keeping Θx = Θ fixed. Notably, both large and small values
of E are detrimental for the adiabaticity of the protocol: For a given Θy , the smallest values
of Tad are actually reached for E of the order of E ∼ Θy . This can be understood by observing
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Figure 4: (a) Study of diabatic effects for a finite duration T of the "double tunneling"
entangling scheme. The overlap |〈 f (∞)| f (T )〉|2 is plotted as a function of T (in
units of Θ−1). The blue line refers to the ideal protocol, i.e. Eq. (26), while the thin
orange one considers the presence of finite parasitic coupling with V = Θ/2 [see Eqs.
(28) and (29)]. The inset display 1 − |〈 f (∞)| f (T )〉|2 on a logarithmic scale. The
blue line refer to the same ideal protocol plotted in the main panel; the red one is
obtained with a different choice of the interpolating function: g̃(l) = l instead of the
g(l) in Eq. (8). The reference black dashed lines display the power laws T−4 and
T−2. Parameters: E = Θx = Θy = Θ and τ j+1 − τ j = T/6. (b) Adiabatic threshold
time Tad (units Θ−1) as a function of E (units Θ) for fixed Θy = Θx = Θ.

that, for E ,Θy < (1+
p

2)Θ, the smallest energy gap ∆E throughout the loop Γ is reached for
t = τ2 and it reads

∆E(τ2) = 2
�Ç

E2 +Θ2
y −max{E ,Θy}

�

. (27)

This gap is maximized for Θy = E , which is qualitatively consistent with the fact that Tad is
minimized for E ∼ Θy . The lack of a quantitative agreement stems from the fact that the energy
spectrum of the system [see Fig. 3(b)] features a more complicated structure with respect to
simple Landau-Zener transitions. The central role played by E in determining the spectrum
of the system, and therefore its adiabatic threshold, is a peculiarity of the "double tunneling"
protocol and has no direct counterpart in the standard single-qubit braiding schemes.

In any case, Fig. 4(b) shows that, for a wide range of parameters, Tad lays between 100Θ−1

and 200Θ−1. A reasonable estimation for the coupling strengths is Θ ∼ 10 GHz [32, 35, 56]
which corresponds to a reasonable timescale Tad ∼ 10ns. Longer durations result in even
smaller diabatic errors, which are known to be polynomially suppressed in T [56]. In par-
ticular, we find a suppression approximately proportional to T−4, as shown by the blue line
in the inset of Fig. 4(a). The onset of this specific power-law traces back to the fact that we
chose an interpolation function g(l) which features a continuous first derivative [see Eq. (8)].
A different choice could lead to a quadratic suppression [56]: see, for example, the red plot
in the inset of Fig. 4(a), which is obtained with the interpolation function g̃(l) = l. Similarly
to the standard braiding schemes, depending on the required gate fidelity, the assessment and
mitigation of diabatic errors might play an important role in realistic implementations of our
entangling scheme [56–61].

4.2 Finite tuning accuracy and parasitic couplings

A finite tuning accuracy of parameters χ j(t) results in deviations from the loop Γ specified in
Tab. 1. Importantly, in complete analogy with standard holonomic braiding schemes [8, 31],
both our 4γ and double tunneling protocols are robust with respect to errors on the control of
χ j(t). This is due to two important reasons: (i) The topological nature of the Majorana qubits
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guarantees the existence of parameters (e.g. the separation lengths) which exponentially sup-
press the coupling/interactions between the MZMs. As a result, the loops in parameter space
can be confined to the three coordinate planes χ j = 0 ( j = x , y, z) with exponential accuracy.
(ii) On each of these coordinate planes, the Berry curvature associated with the holonomic
protocols has no components perpendicular to the plane itself. This statement is proven in
App. A.2 and it can be readily seen from Eq. (16) for the 4γ protocol. Poor control over
deviations from Γ within each coordinate plane has, therefore, no influence on the resulting
unitary operation U ent

Γ .
Finally, let us discuss the robustness with respect to possible parasitic couplings. In con-

trast to the 4γ protocol, the double tunneling scheme only features three of them. In particular,
for τ0 < t < τ2 and τ2 < t < τ4, the only unwanted couplings between the involved Majo-
ranas are the inter-qubit terms I25 and I22, respectively. As for the last stage of the protocol
τ4 < t < τ6, the only possible parasitic coupling is the intra-qubit term PB

25. For the sake of
clarity, these three parasitic couplings are shown with dashed-dotted lines in Fig. 3(a).

Importantly, the presence of those three parasitic coupling is not detrimental for the im-
plementation of the holonomic entangling gate. Let us focus, for simplicity, on the first stage
of the protocol τ0 < t < τ2. In this case, the only possible parasitic coupling is I25. As it com-
mutes with both the zero energy operators RA and RB, the degeneracy of the four ground states
is preserved. The same holds for the other two stages of the protocol, i.e. τ2 < t < τ4 and
τ4 < t < τ6. Moreover, we numerically verify that the presence of any of the three parasitic
couplings does not modify the geometrical phases acquired by the qubits state throughout
the holonomic protocol. To this end, we simulate the time evolution of the initial state |i〉
according to the Hamiltonian

H pc(t) = Hd t(t) + v1(t)I25 + v2(t)I22 + v3(t)P
B
25 , (28)

where the parameters v j(t) evolve according to

v j(t) =











0 t > τ2 j+2 ∨ t < τ2 j

V (t −τ2 j) τ2 j ≤ t < τ2 j+1

V (τ2 j+2 − t) τ2 j+1 ≤ t < τ2 j+2

(29)

and control the strength of the three parasitic couplings. In the adiabatic regime, we verify
that the final state still satisfies | f (T )〉 = | f (∞)〉, independently of the maximum value V
acquired by v j(t). As an example, in Fig. 4(a), we plot the overlap |〈 f (∞)| f (T )〉|2 computed
with V = Θ/2 (orange thin line).

5 Conclusions

Two-qubit entangling gates, such as the CNOT gate, are essential building blocks for quantum
computations. In the realm of topological Majorana qubits, these gates are almost exclusively
considered within the framework of measurement-based topological quantum computation.
In this paper, we carefully analyze a complementary approach and propose two holonomic
entangling protocols. They represent non-trivial extensions to the two-qubit case of a known
technique to implement (topological) single-qubit gates.

At the formal level, the holonomic approach is equivalent to the measurement-based schemes
[34]. In contrast to the latter, however, our holonomic protocols do not require the implemen-
tations of forced and projective measurements of (joint) Majorana parities. We believe that
this might be an advantage, especially since efficient and high-fidelity measurement schemes
are still lacking. We fully characterize the protocols and prove the high degree of robustness of
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the double tunneling scheme. Importantly, the latter only requires the ability to tune pair-wise
Majorana couplings within qubits characterized by a finite charging energy. Those ingredi-
ents are actually featured by several proposed setups for TQC, such as Josephson junction
arrays [31,32], Majorana box qubits [36] and the tetron/hexon schemes [35], pointing to the
potential experimental relevance of our proposal.
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A Non-Abelian Berry curvature

As stated in Eq. (16), the non-Abelian Berry curvature associated with our holonomic entan-
glement protocols reads

~Fnm =∇ ~χ × i〈ψnm( ~χ)|∇ ~χ |ψnm( ~χ)〉 . (30)

Its analytical computation requires the knowledge of the four ground states |ψnm( ~χ)〉 as a
function of the three parameters ~χ = (χx ,χy ,χz). For both the Hamiltonians H4γ( ~χ) and
Hd t( ~χ), the expressions of |ψnm( ~χ)〉 can be conveniently computed by taking advantage of
the conservation of PA

34, PB
34, PA

05 and of the total parity PAPB. This allows us to bring the
Hamiltonians into block-diagonal form and simplify their diagonalization.

A.1 The 4γ protocol

In addition to the aforementioned four quantities, the 4γ Hamiltonian H4γ( ~χ) also commutes
with the parity of each individual qubit PA and PB. The presence of a total of five inde-
pendently conserved operators ensure the possibility to express H4γ( ~χ) in terms of 32 blocks
consisting of 2×2 square matrices. We then identify the four blocks, which the four eigenstates
|ψnm( ~χ)〉 belong to. To this end, we recall that

PA
05|ψnm( ~χ)〉= PA|ψnm( ~χ)〉= PB|ψnm( ~χ)〉= +|ψnm( ~χ)〉 (31)

and exploit Eq. (13). The four 2× 2 blocks reads

H4γ
nm( ~χ) = χxσy − (−1)m+nχyσx −χzσz , (32)

where σi are Pauli matrices. For the sake of completeness, the bases we have chosen read

n= 0; m= 0→
�

|0A
120A

240A
050B

120B
240B

05〉, |0
A
120A

240A
051B

120B
241B

05〉
	

, (33)

n= 0; m= 1→
�

|0A
120A

240A
051B

121B
240B

05〉, |0
A
120A

240A
050B

121B
241B

05〉
	

, (34)

n= 1; m= 0→
�

|1A
121A

240A
050B

120B
240B

05〉, |1
A
121A

240A
051B

120B
241B

05〉
	

, (35)

n= 1; m= 1→
�

|1A
121A

240A
051B

121B
240B

05〉, |1
A
121A

240A
050B

121B
241B

05〉
	

. (36)

In the idle configuration, we have χx = χy = 0 and χz > 0, which allows us to identify the
ground states |ψnm(χx = χy = 0)〉. The computation of the Berry curvature is then straight-

forward and yields Eq. (16). Its isotropy stems from the fact that H4γ
nm( ~χ) treats the three

parameters χi on equal ground.
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A.2 The double tunneling protocol

Since the Hamiltonian Hd t( ~χ) does not commute with the individual parity of each qubit, it
can be only brought in a block diagonal form consisting of 16 square matrices. In analogy
with the previous case, we identify the four 4×4 blocks, which the four eigenstates |ψnm( ~χ)〉
belong to. They read

Hd t
00( ~χ) = Hd t

11( ~χ) =







−χz + 2ε iχx iχy iχy
−iχx χz + 2ε −iχy −iχy
−iχy iχy −χz − 2ε −iχx
−iχy iχy iχx χz − 2ε






, (37)

Hd t
01( ~χ) = Hd t

10( ~χ) =







−χz + 2ε iχx −iχy iχy
−iχx χz + 2ε −iχy iχy
iχy iχy −χz − 2ε −iχx
−iχy −iχy iχx χz − 2ε






. (38)

(39)

The four bases we have chosen are

n= 0; m= 0→ (40)
¦

|1A
120A

240A
051B

120B
240B

05〉, |1
A
120A

240A
050B

121B
241B

05〉, |0
A
120A

240A
050B

120B
240B

05〉, |0
A
120A

240A
051B

120B
241B

05〉
©

,

n= 0; m= 1→ (41)
¦

|1A
120A

240A
050B

121B
240B

05〉, |1
A
120A

240A
051B

121B
241B

05〉, |0
A
120A

240A
051B

121B
240B

05〉, |0
A
120A

240A
050B

121B
241B

05〉
©

,

n= 1; m= 0→ (42)
¦

|0A
121A

240A
051B

120B
240B

05〉, |0
A
121A

240A
050B

120B
241B

05〉, |1
A
121A

240A
050B

120B
240B

05〉, |1
A
121A

240A
051B

120B
241B

05〉
©

,

n= 1; m= 1→ (43)
¦

|0A
121A

240A
050B

121B
240B

05〉, |0
A
121A

240A
051B

121B
241B

05〉, |1
A
121A

240A
051B

121B
240B

05〉, |1
A
121A

240A
050B

121B
241B

05〉
©

.

Again, the idle configuration allows us to promptly identify the groundstates
|ψ00(χx = χy = 0)〉. The computation of the Berry curvature is lengthy but straightforward.
As expected, we obtain ~F00 = ~F11 = −~F10 = −~F01.

Interestingly, while it is possible to trade χz for χx (and vice versa) with a simple change
of basis, the parameter χy plays a different role in the Hamiltonians Hd t

nm( ~χ). As a result,
the Berry curvatures in the parameter space still feature a rotation symmetry around the χy
axis but not a full spherical symmetry. This traces back to the peculiar nature of the coupling
O2γ+2γ we used in the double tunneling protocol. Because of the special role played by χy , it
is convenient to parametrize

~χ = R(sin(θ ) sin(φ), cos(θ ), sin(θ ) cos(φ)), (44)

which allows us to express the Berry curvature as

~Fnm(R,θ ) = F(R,θ )
¦

cos
�

ξ(R,θ ) + (1+ n+m)π
�

r̂ + sin
�

ξ(R,θ ) + (1+ n+m)π
�

êθ
©

,
(45)

with ∂ ~χ
∂ R = r̂ and ∂ ~χ

∂ θ = Rêθ . The modulus of the Berry curvature F(R,θ ) and the deviations
from the radial direction ξ(R,θ ) are plotted in Fig. 5. Importantly, we observe that, on the
three coordinate planes χi = 0, the Berry connection has no perpendicular components to the
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Figure 5: Functions F(R,θ ) (in blue) and ξ(R,θ ) (in red) for R= ε.

planes themselves. This guarantees that the double tunneling protocol, despite a more involved
structure of the Berry connection, is still topologically protected.

To find the unitary transformation U ent
Γ associated with the holonomic protocol, we com-

pute the non-Abelian Berry phase associated with the Γ loop by integrating the Berry curvature
on a surface enclosed by Γ (or, equivalently, by integrating the Berry connection
~Anm = i〈ψnm( ~χ)|∇ ~χ |ψnm( ~χ)〉 on the loop Γ ).

B Robustness with respect to asymmetries in inter-qubit couplings

The time-dependent Hamiltonian Hd t considered in Eq. (26) features the same coupling
strength χy(t) for both the I20 and I11 inter-qubit couplings. While this assumption greatly
simplifies the description of the holonomic entangling protocol, it is unrealistic from the ex-
perimental point of view since those coupling will likely be controlled by two independent
control knobs. Importantly, however, we show that the entangling protocol is robust with re-
spect to asymmetries in the coupling strengths of I20 and I11. To this end, we focus on the
more general time-dependent Hamiltonian

Hd t
As (t) = HE −χx(t)P

B
02 −χy1

(t)I11 −χy2
(t)I20 −χz(t)P

B
05 (46)

and we consider the system to follow a closed loop, in the four-dimensional parameter space,
which consists of eight straight lines connecting the eight key configurations listed in Tab. 2.
Within such a protocol, the coupling strengths χy1

(t) and χy2
(t) differ in both their maximum

values (Θy1
and Θy2

, respectively) and in their time dependence.
In order to characterize the protocol, we firstly observe that the degeneracy of the com-

putational space is preserved. Indeed, analogously to Hd t(t), also Hd t
An(t) commutes with the

conserved parity operators, PA
34 and PB

34, as well as with the operators which transform be-
tween the states of the computational space (such as RA and RB). The spectrum of Hd t

An(t),
which is plotted in Fig. 6(a), confirms that asymmetries in the inter-qubit couplings do not
affect the groundstate degeneracy. This allows us to consider the adiabatic evolution of the
system along the loop, thus implementing the holonomic entangling process. The latter re-
sults in the same unitary operation U ent

Γ , detailed in Eq. (18), which characterizes the two
other entangling protocols described in the main text. This is testified by Fig. 6(b) where, in
complete analogy with Fig. 4(a), we show the overlap between | f (∞)〉= U ent

Γ |i〉 and the final
state | f (T )〉 obtained after the implementation of the Hamiltonian Hd t

As , with total duration
T . As the latter increases, the overlap |〈 f (∞)| f (T )〉2 reaches 1. In analogy with the double
tunneling protocol, the infidelity is polynomially suppressed in T [see the inset of Fig. 6(b)].
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Table 2: Values of the coupling strengths χi(t) at the key configurations t = τα (with
α= 0, . . . , 8) along the closed loop in the four-dimensional parameter space.

t χx(t) χy1
(t) χy2

(t) χz(t)

τ0 = 0 0 0 0 Θ

τ1 0 0 Θy2
Θ

τ2 0 Θy1
Θy2

Θ

τ3 0 Θy1
Θy2

0
τ4 Θx Θy1

Θy2
0

τ5 Θx 0 Θy2
0

τ6 Θx 0 0 0
τ7 Θx 0 0 Θ

τ8 = T 0 0 0 Θ

The robustness of the double tunneling protocol with respect to asymmetries in the inter-
qubit couplings was to be expected. Indeed, because of the Hamiltonian E , inter-qubit single
electron tunnelings are ineffective. The possible unbalances between χy1

and χy2
have there-

fore no effect on the entangling process since it is only their contemporaneous presence that
matters.

Figure 6: (a) Spectrum of the Hamiltonian Hd t
As (t) along the closed loop whose key

configurations are listed in Tab. 2. Only negative energies are shown. Each line
is 4-fold degenerate. Energies are in units of Θ. (b) Overlap |〈 f (∞)| f (T )〉|2 as a
function of the total duration of the protocol T (in units of Θ−1). The inset display
1− |〈 f (∞)| f (T )〉|2 on a logarithmic scale. The reference black dashed line displays
the power law T−4. For both panels, we considered the eight key configurations to
be equally spaced in time, i.e. τ j+1 − τ j = T/8 and the parameters E = Θx = Θ,
Θy1
= 1.2Θ and Θy2

= 0.8Θ.
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