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Abstract

The harmonic oscillator is the paragon of physical models; conceptually and compu-
tationally simple, yet rich enough to teach us about physics on scales that span classical
mechanics to quantum field theory. This multifaceted nature extends also to its inverted
counterpart, in which the oscillator frequency is analytically continued to pure imagi-
nary values. In this article we probe the inverted harmonic oscillator (IHO) with recently
developed quantum chaos diagnostics such as the out-of-time-order correlator (OTOC)
and the circuit complexity. In particular, we study the OTOC for the displacement oper-
ator of the IHO with and without a non-Gaussian cubic perturbation to explore genuine
and quasi scrambling respectively. In addition, we compute the full quantum Lyapunov
spectrum for the inverted oscillator, finding a paired structure among the Lyapunov ex-
ponents. We also use the Heisenberg group to compute the complexity for the time
evolved displacement operator, which displays chaotic behaviour. Finally, we extended
our analysis to N-inverted harmonic oscillators to study the behaviour of complexity at
the different timescales encoded in dissipation, scrambling and asymptotic regimes.
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1 Introduction

One would be hard-pressed to find a physical system that we have collectively learnt more
from than the harmonic oscillator. Indeed, from the simple pendulum of classical mechanics
to mode expansions in quantum field theory, there is no more versatile laboratory than the
harmonic oscillator (and its many variants). This is due in no small part to two central properties
of harmonic oscillator systems; they are mathematically and physically rich and simultaneously
remarkably simple. It is also the universal physical response in perturbation theory.

This utility has again come into sharp relief in two seemingly disparate contexts; quantum
chaos and the emerging science of quantum complexity. While neither subject is particularly
new, both have seen some remarkable recent developments of late. To see why, note that
conservative Hamiltonian systems come in one of two types, they are either integrable or non-
integrable. The latter in turn can be classified as either completely chaotic or mixed (between
chaotic, quasiperiodic or periodic), depending on whether the defining Hamiltonian is smooth
or not [1,2]. By far, most non-integrable classical systems are of the latter type. The former
however includes some iconic Hamiltonian systems such as the Sinai billiard model, kicked
rotor and, of particular interest to us in this article, the inverted harmonic oscillator (IHO).

Classical chaotic systems are characterised by a hypersensitivity to perturbations in initial
conditions under the Hamiltonian evolution. This hypersensitivity is usually diagnosed by
studying individual orbits in phase space. However, as a result of the Heisenberg uncertainty
principle, the volume occupied by a single quantum state in the classical phase space is∼ ħhN , for
a system with N degrees of freedom, and we no longer have the luxury of following individual
orbits. This necessitates the need for new chaos diagnostics for quantum systems. One such
diagnostic, discovered by Wigner in the 1950’s already, is encoded in the statistical properties of
energy spectra; quantum chaotic Hamiltonians have eigenvalue spacing distributions that are
given by Gaussian random matrix ensembles. Unfortunately though, a direct spectral analysis
of the Hamiltonian is computationally taxing for all but the simplest, or exceedingly special,
systems. It therefore makes sense to develop other, complimentary diagnostics that probe
different aspects of quantum chaos, say, at different times or energy scales.

One such tool, originally considered in the context of superconductivity, but rapidly gaining
traction in the high energy and condensed matter communities, is the out-of-time-order correlator
[3–5], OTOC(t)≡ 〈B†(0)A†(t)B(0)A(t)〉β , for Heisenberg operators A(t) and B(t), and where
〈O〉β = Tr

�

e−βHO
�

/Tr e−βH denotes a thermal average at temperature T = 1/β . One reason
for this popularity is its relation to the double commutator CT (t) = −〈[A(t), B(0)]2〉β , which is
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the quantum analog of the classical expectation value,
�

�

∂ x(t)
∂ x(0)

�2�

β

∼
∑

n

cne2λn t , (1)

for a chaotic system with Lyapunov exponents λn. Indeed, it will often be more convenient to
work with the double commutator instead of the four-point function OTOC(t) and since, for
unitary operators, the two are related through CT (t) = 2 (1−Re (OTOC(t))), their information
content, and exponential growth, is the same and are usually referred to interchangeably. In a
chaotic many-body system, CT (t) exhibits a characteristic exponential growth from which the
quantum Lyapunov exponent can be extracted. In this sense, the OTOC captures the early-time
scrambling behaviour of the quantum chaotic system.

However, like any new technology, the OTOC is not without its subtlties. Among these are;

• the fact that its reliability breaks down at late times, when the chaotic system starts to
exhibit random matrix behaviour,

• a related mismatch to its classical value, where the commutator in the definition of CT (t)
is replaced by the Poisson bracket, and

• no exponential growth for several single-particle quantum chaotic systems, such as the
well-known stadium billiards model, or chaotic lattice systems, such as spin chains.

All three of these points are related in some sense to Ehrenfest saturation where quantum
corrections are of the same order as classical leading terms1 and point to the need for a deeper
understanding of the OTOC.

On the other hand, it is becoming increasingly clear that while no single diagnostic captures
all the features of a quantum chaotic system, there is an emerging web of interconnected
tools that offer complementary insight into quantum chaos [6,7]. There is, for example, the
(annealed) spectral form factor (SFF),

g(t;β)≡
〈|Z(β , t)|2〉J
〈Z(β , 0)〉J

, (2)

where Z(β , t) is the analytic continuation of the thermal partition function and the average is
taken over different realizations of the system. The SFF interpolates between the essentially
quantum mechanical OTOC and more standard random matrix theory (RMT) measures making
it a particularly useful probe of systems transitioning between integrable and chaotic behaviour
where it displays a characteristic dip-ramp-plateau shape [8, 9]. However, except in some
special cases like bosonic quantum mechanics where it can be shown that the two-point SFF is
obtained by averaging the four-point OTOC over the Heisenberg group [10], computing the
SFF is a difficult task, compounded by various subtleties inherent to the spectral analysis of the
chaotic Hamiltonian.

More recently, this diagnostic toolbox has been further expanded with the introduction of a
number of more information-theoretic resources with varying degrees of utility. One of these is
the fidelity [11,12] of a quantum system. Let U be a unitary map and |ψ(0)〉, some fiducial
state in the Hilbert space. Now evolve this initial state with U to |ψ(n)〉 = Un|ψ(0)〉 and again,
but with a sequence of small perturbations by some non-specific field perturbation operator, to
| eψ(n)〉=

�

e−iVδU
�n |ψ(0)〉. It was shown in [13] that the fidelity

F(n) = |〈ψ(n)| eψ(n)|2 , (3)

1We would like to thank the anonymous referee for their insight on this, and an earlier point.
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for a classically chaotic quantum system, exhibits a characteristic, and efficiently computable,
exponential decay under a sufficiently strong perturbation. This quantity has recently been
shown [14–16] to be intrinsically related to the OTOC.

Closer to the focus of this article, another related tool drawn from theoretical computer
science is the notion of computational (or circuit) complexity [17], which, in the lingo of
computer science, measures the minimum number of operations required to implement a
specific task in the following sense: fix a reference state |ΨR〉 and target state |ΨT〉 and construct
a unitary U from a set of elementary gates by sequential operation on the reference state such
that |ΨT〉= U |ΨR〉. Then the complexity of |ΨT〉 is defined to be the minimal number of gates
required to implement the unitary transformation from reference to target states. Determining
the computational complexity is then essentially an optimisation problem, one that was more
or less solved by Nielsen in [18]. Nielsen’s geometrical approach proceeds by defining a cost
functional

D[U(t)]≡
∫ 1

0

d t F
�

U(t), U̇(t)
�

(4)

on the space of unitaries which is then optimised subject to the boundary conditions U(0) = 11
and U(t) = U . For a long time, the idea of circuit complexity was viewed as a curiosity
of computer science, living on the periphery of theoretical physics. This situation changed
dramatically with the introduction, by Susskind and collaborators [19–21], of complexity as
a probe of black hole physics. Further, the idea of complexity has extended to quantum field
theory in recent time [22–48,48,48]. Following this line of reasoning, two disjoint subsets of
the current authors conjectured that not only does the computational complexity furnish an
equivalent chaos diagnostic to the OTOC [49–52,52], but in addition, a response matrix may be
defined to characterize the fine structure of the complexity in response to initial perturbations,
giving rise to the full Lyapunov spectrum in the classical limit [53]. Table I summarises the
findings of these studies and compares the time development of the complexity to that of the
OTOC. It is worth emphasizing that the universal behaviors summarized in Table I are for
generic operators and complex chaotic systems; one can always cook up special scenarios which
are not described by these generic forms. For instance, as shown in the following sections, the
OTOC of the IHO for the displacement operators does not decay at all, whereas the OTOC for
canonical variables, i.e., x and p, the OTOC exhibits intermediate exponential decay. The early
scrambling regime of the OTOC will not be discussed in the work, it has been demonstrated for
coupled IHOs in Ref. [14]. We also stressed that the presence of the early scrambling is limited,
i.e., models exhibiting this regime usually show a large hierarchy between scrambling and local
dissipation time scales [5]. Many chaotic systems, e.g., spin chains [54], only manifest a pure
exponential intermediate decay. On the other hand, our study of the complexity reveals both
the early and intermediate regimes, as well as the local dissipation before the scrambling time
scale. (Fig. 2)

Table 1: Universal correspondence between OTOC and complexity, complexity
∼ − log(OTOC). This relation holds at both the early scrambling and intermediate
decay regime.

Early scrambling Intermediate regime
OTOC 1− εeλt ∼ exp(−εeλt) e−Γ t

Complexity εeλt Γ t

In both cases, the system chosen to exhibit this relationship between the complexity and
quantum chaos was arguably among simplest conceivable; the inverted harmonic oscillator.
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The inverted harmonic oscillator does not resemble typical large N chaotic systems in that
the decay of the OTOC, or the growth in the complexity, here captures an instability of the
system, rather than chaos.Nevertheless, it remains a useful toy model with which to study the
various chaos diagnostics. The present article builds on these ideas by returning to the inverted
oscillator, developing the treatment of the OTOC as well as the computational complexity of
particular states in the model and then connecting them. In addition to its pedagogical value
the oscillator again provides a rich and intuitively clear example within which to understand
further the OTOC and computational complexity. It is therefore fitting that we begin with a
brief overview of the inverted harmonic oscillator.

2 The IHO Model

We start with the harmonic oscillator Hamiltonian

H =
p2

2m
+

mω2

2
x2, (5)

where p ≡ −iħh d
d x is the momentum operator. We will work in natural units in which ħh = 1 and,

without any loss of generality, assume that the mass of the oscillator m= 1. By choosing the
value of the frequency ω, three different cases can be obtained:

ω=











Ω harmonic oscillator,

0 free particle,

iΩ inverted harmonic oscillator.

Here Ω is a positive real number. In this work, we will be mainly concerned with the Hamilto-
nian of the inverted harmonic oscillator.

An important point to note is that the regular and inverted harmonic oscillators are genuinely
different. As a result, one cannot take for granted that formulae known for the regular oscillator
and extrapolate them to the inverted oscillators by simply replacing Ω with iΩ. For instance,
the regular harmonic oscillator has a discrete energy spectrum (n+ 1/2)Ω, while the spectrum
for an inverted oscillator is a continuum. However, in some other cases, such as the Heisenberg
evolution for the position or momentum operator, the derivation follows in much the same way
for both the regular and inverted oscillators. In such cases, we will explicitly point this out and
use the variable ω to cover both classes of oscillator. It will be useful in what follows, to define
the annihilation and creation operators [55],

a±ω =
1
p

2
(∓ip+ωx) . (6)

3 Out-of-Time Order Correlator

We will consider the OTOC for the displacement operators in the IHO, which are defined in
terms of the creation and annihilation operators as

D (α) = exp
�

αa† −α∗a
�

. (7)

This is a well known operator whose phase space OTOC has been the subject of recent study
for continuous variable (CV) systems [56]. There the authors argued that, for a Gaussian-CV
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system, the OTOC does not display any genuine scrambling2. In this section, we would like
to explicitly check this claim for the IHO. Since the Hamiltonian of the IHO belongs to the
category of Gaussian-CV systems, we expect the OTOC for the displacement operators to display
such quasi-scrambling. More explicitly, the OTOC only changes by an overall phase, while
the magnitude remains constant. We follow this by adding a cubic-gate perturbation to the
oscillator potential and explore the OTOC analytically. In contrast to its Gaussian counterpart,
this model does indeed display generic scrambling behavior.

In the second part of this section, we will investigate another important feature of chaos; the
Lyapunov spectrum. Our goal will be to use the IHO to check whether the quantum Lyapunov
exponents exhibit a similar pairing structure to the classical case.

3.1 OTOC for the Displacement Operator

To warmup, we will evaluate the OTOC for the displacement operator for the regular
harmonic oscillator with real frequency ω = Ω. Our derivation is esentially independent of
the choice of the frequency ω. Therefore, by choosing appropriate values of the frequency, we
derive expressions for both the regular and inverted harmonic oscillator. The displacement
operator in Eq.(7) for a single mode harmonic oscillator can be written as

D(α) = exp
�

i
p

2 (Im(α)ωx −Re(α)p)
�

. (8)

To evaluate the OTOC, we need to find the time evolution of the displacement operator (8),
i.e.,

D(α, t) = eiH t D(α, t = 0) e−iH t , (9)

which can be evaluated by implementing the Hadamard lemma. Some straightforward algebra
puts this into the form,

D(α, t) = exp
�

i
p

2 (Im(α) cos(ωt) +Re(α) sin(ωt)ω) x

+ i
p

2 (Im(α) sin(ωt)/ω−Re(α) cos(ωt)) p
�

.
(10)

The corresponding OTOC function, C2(α,β; t)ρ is defined as

C2(α,β; t)ρ ≡ 〈D†(α, t)D†(β)D(α, t)D(β)〉

= Tr[ρD†(α, t)D†(β)D(α, t)D(β)],
(11)

where ρ is a given state of the harmonic oscillator. By using (10), the OTOC (11) simplifies to
the following form

C2(α,β; t)ρ = exp(iθ ), (12)

where
θ = 2ωRe(αβ∗) sin(ωt) + 2Im(αβ∗) cos(ωt). (13)

We can immediately see that θ is real-valued for both ω = Ω and ω = iΩ and we conclude
that the magnitude of the OTOC (12) does not decay in time for either the regular or inverted
harmonic oscillators. This implies that the harmonic oscillator potential is quasi-scrambling,
in agreement with the general conclusion for the Gaussian dynamics found in [56]. We can
extend the IHO Hamiltonian to a simple non-Gaussian one by adding a so-called cubic-gate as
follows:

H =
p2

2m
+

mω2

2
x2 + γ

x3

3!
.

2 An initial operator will be said to be genuinely scrambling (non-Gaussian) when it is localized in phase space
and spreads out under time evolution of the system. A local ensemble of operators is said to be quasi scrambling
(Gaussian) when it distorts but the overall volume of the phase space remains fixed.
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To display more clearly the role of the different contributions in the Hamiltonian to the OTOC
we rewrite the Hamiltonain in the following form

H = kp2 + l x2 + J x3,

where k = 1
2m , l = mω2

2 and γ
3! = J . As in the previous Gaussian case, we first find the time

evolution of the displacement operator (8) for this cubic model. It has the following form

D(α, t) = exp
�

i
�

A0 + A1p+ A2p2 + A3 x + A4 x2

+O(x3, p3, px , t3)
��

,
(14)

where Ai ’s are functions of k, l , J and t. From this expression, the OTOC can be computed
exactly as

C2(α,β; t)ρ = exp (iθ (k, l, J)) χ(12iJ tRe(α)Re(β),ρ), (15)

where χ(12iJ tRe(α)Re(β),ρ) is the characteristic function [57], which typically decays in
time. To illustrate this, consider a thermal state ρnth

for which the characteristic function has
the form

χ(ξ,ρnth
) = exp

�

−(nth +
1
2
)|ξ|2

�

. (16)

Using this, the OTOC reads

C2(α,β; t)ρnth
= exp(iθ ) χ(2iγtRe(α)Re(β),ρnth

)

= exp(iθ ) exp
�

−2(2nth + 1)
�

Re(ξ)2 + Im(ξ)2
��

, (17)

where

Re(ξ) = −6kJRe(α)Re(β)t2,

Im(ξ) = −6JRe(α)Re(β)t − 6JkIm(αβ∗)t2.
(18)

We can immediately see that there will be an exponential decay when the cubic term is added
to the Hamiltonian. This essential role of the cubic term is clear from Eq. (17) and Eq. (18).
More precisely, the overall minus sign of the exponent in the amplitude of eq. (17) signals
a Gaussian decay in time. When J = 0 (and k 6= 0), the entire exponent vanishes, and the
amplitude becomes unity. This is true for any value of k. On the other hand, when J 6= 0
and k = 0 we still get exponential decay. This is the case discussed in [56]. Finally when
both J 6= 0, k 6= 0, we get contributions from both of them, namely from the x3 and p2 terms.
However, the contribution coming from the p2 will never cancel the contribution coming from
the cubic term. We have also checked that even if we add the higher order Ai ’s, our conclusion,
namely the decaying of the OTOC, remains intact. It is worth emphasising that our analysis,
namely the structure and the behaviour of the derived equations, are independent of the fact
whether the oscillator inverted or regular.

3.2 Quantum Lyapunov Spectrum

A defining property of a classical chaotic system is its hyper-sensitivity to initial conditions
in the phase space. This manifests in the exponential divergence of the distance between two
initially nearby trajectories. The rate of this divergence is encoded in the so-called Lyapunov
exponent. Technically, this is only the largest of a sequence of such exponents that constitute
the Lyapunov spectrum. For a 2n-dimensional phase space, the Lyapunov spectrum consists of
2n characteristic numbers captured by the eigenvalues of the Jacobian matrix

Mi j(t)≡
∂ zi(t)
∂ z j

, (19)
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where the zi are phase space coordinates. The eigenvalues si(t) of the Jacobian matrix evolve
exponentially in time and the Lyapunov spectrum can is extracted in the asymptotic limit,

λi ≡ lim
t→∞

1
t

ln si(t). (20)

If the initial perturbation in the phase space is applied to the “eigen-direction” with respect to
one eigenvalue in the Lyapunov spectrum, the trajectories diverge with a corresponding expo-
nential rate. For generic perturbations which involve all exponents in the Lyapunov spectrum,
in the asymptotic limit, the exponential with the largest exponent will eventually dominate. In
this case only the maximum Lyapunov exponent is visible.

It is worth emphasizing that the Lyapunov spectrum is typically computed from the eigen-
values of the matrix

L(t)≡ M(t)†M(t). (21)

Due to the intrinsic symplectic structure of the classical phase space, the M -matrix is symplectic
and, hence, the Lyapunov exponents always come in pairs with opposite signs.

Now let’s think about quantum systems. In form of the commutator square, the OTOC
typically grows exponentially, with a rate analogous to the classical Lyapunov exponent, i.e.,
for generic operators,

〈[W (t), V ]2〉 ∼ εeλt , (22)

up-to the time scale known as the scrambling (or Ehrenfest) time [5]. For systems with a
classical counterpart, e.g., quantum kicked rotor, the growth rate of the OTOC indeed matches
the maximum classical Lyapunov exponent. A natural question to ask is if it possible to fine-tune
the operators in the OTOC and extract a full spectrum of Lyapunov exponents, instead of only
the leading one? Some recent attempts [58,59] to tackle this problem generalized the Jacobian
matrix to quantum systems using the OTOCs:

Mi j(t)≡ i[zi(t), z j]. (23)

Here zi ranges over canonical variables, and zi(t) is the Heisenberg evolution. In contrast to
the classical case, the quantum instability matrix (23) lacks a symplectic structure. Known
examples such as spin chains and the finite size SY K-model show that the quantum Lyaponov
exponents do not come in pairs [58]. However, these models lack any well-behaved exponential
growth in the first place.

For the IHO, the Heisenberg evolution of the canonical pair of variables {x , p} can be
computed exactly,

x(t) = x(0) coshΩt +
1

mΩ
p(0) sinhΩt

p(t) = p(0) coshΩt +mΩx(0) sinhΩt.
(24)

This in turn allows us to compute the quantum Jacobian matrix,

M(t) =

�

sinhΩt/(mΩ) − coshΩt
coshΩt −mΩ sinhΩt

�

, (25)

the elements of which are OTOCs that all grow exponentially with the largest Lyapunov
exponent Ω. Once we diagonalize the above matrix, the hyperbolic functions arrange in such a
way that a pair of exponentials emerge with exponents ±Ω. This coincides with the Lyapunov
exponent of the classical inverted oscillator.
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4 Complexity for Inverted Harmonic Oscillator

Recently by using the inverted harmonic oscillator, complexity has been proposed as a new
diagnostic of quantum chaos [6, 60]. Depending on the setup and details of the quantum
circuit, the scope and sensitivity of computational complexity as a diagnostic can vary. Since
this is a fairly new diagnostic, its full capacity to capture chaotic behaviour is not yet fully
understood. Therefore, to gain further insight into quantum chaotic systems, we will extend our
investigation in two different directions. First, we compute the complexity for the displacement
operator by using the operator method of Nielsen [18,22,61,62], which explores how one can
construct a given operator from the identity. Then we will develop a construction based on the
Heisenberg group, which provides a natural basis choice for the displacement operator. Notice
that this displacement operator description is analogous to the doubly evolved quantum circuit
constructed in Ref. [60]. We would like to explore if this operator formalism is consistent with
the existing results and whether it can provide us with any additional information about chaos.

In the second part of this section, we will use the wave function, or correlation matrix
method, for a system of N-oscillators to study the behaviour of complexity at different timescales,
namely, dissipation, scrambling and asymptotic regimes. This particular setup introduces two
new parameters into the problem: the number of oscillators and the lattice spacing, and we
will also determine how complexity and the scrambling time depends on them.

4.1 Complexity for the Displacement Operator

Now let’s compute the circuit complexity corresponding to the time evolved displacement
operator. We evolve the displacement operator mentioned in (8) by the inverted harmonic
oscillator Hamiltonian. We get the following,

D(α, t) = exp
�

A(t) i x + B(t) i p
�

, (26)

where

A(t) =
p

2 (Im(α) cosh(Ωt)−Re(α) sinh(Ωt)Ω) ,

B(t) =
p

2 (Im(α) sinh(Ωt)/Ω−Re(α) cosh(Ωt)) .
(27)

Evidently it is an element of the Heisenberg group. Consequently, we can parametrize the
unitary as,

U(τ) =
←−
P exp(i

∫ τ

0

dτH(τ)), (28)

where,
H(τ) =

∑

a

Y a(τ)Oa. (29)

Oa = {i x , i p,−iħh I} generators of Heisenberg group whose algebra is defined by,

[i x , i p] = −iħh I , [i x ,−iħh I] = 0, [i p,−iħh I] = 0. (30)

The associated complexity function is defined as,

C(U) =
∫ 1

0

dτ
Æ

GabY a(τ)Y b(τ). (31)
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We choose Gab = δab. To proceed further we choose to work with following representation of
Heisenberg generators. For ease of computation, we start with the 3-dimensional representation
of the Heisenberg group generators [63].

M1 =





0 1 0
0 0 0
0 0 0



 , M2 =





0 0 0
0 0 1
0 0 0



 , M3 =





0 0 1
0 0 0
0 0 0



 . (32)

It can be easily checked that these Ma ’s satisfy the same algebra as that of (30). From (28),
and using the expressions of Ma ’s we can easily show that,

Y a = Tr(∂τU(τ).U−1(τ).M T
a ). (33)

This in turn helps us to define a metric on this space of unitaries,

ds2 = δab(Tr(∂τU(τ).U−1(τ).M T
a ))×

× (Tr(∂τU(τ).U−1(τ).M T
b )) .

(34)

The last step is to minimize the complexity functional (31). The minimum value that it takes
will then give the required complexity. It can be shown, following [22,25,64], that (31) can be
minimized by evaluating it on the geodesics of (34) with the boundary conditions,

τ= 0, U(τ= 0) = I ,τ= 1, U(τ= 1) = D(α, t), (35)

where in the representation (32) D(α, t) becomes,

D(α, t) =





1 A(t) 1
2A(t)B(t)

0 1 B(t)
0 0 1



 . (36)

For our case U(τ) is an element of Heisenberg group so we can parametrize U(τ) as,

U(τ) =





1 x1(τ) x3(τ)
0 1 x2(τ)
0 0 1



 , (37)

and, given this parametrization, from (34) we find that,

ds2 = (1+ x2
2)d x2

1 + d x2
2 + d x2

3 − 2x2 d x1d x3, (38)

and the complexity functional,

C(U) =
∫ 1

0

dτ
q

gi j ẋ i(τ) ẋ j(τ), (39)

where, x i = {x1, x2, x3}. We have to minimize (39) using the boundary conditions (35). For
this we need to solve for the geodesics of this background, which amounts to solving second
order differential equations. Alternatively, we can find the killing vectors of this space and the
corresponding conserved charges to formulate the system as a first order one. We first list the
Killing vectors below,

k1 =
∂

∂ x1
,

k2 =
∂

∂ x2
+ x1

∂

∂ x3
,

k3 =
∂

∂ x3
.

(40)
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The corresponding conserved charges (cI = (kI)i gi j ẋ
j) are,

c1 = (1+ x2(τ)
2) ẋ1(τ)− x2(τ) ẋ3(τ),

c2 = ẋ2(τ) + x1(τ) ẋ3(τ)− x1(τ)x2(τ) ẋ1(τ),

c3 = ẋ3(τ)− x2(τ) ẋ1(τ).
(41)

To solve these first order differential equations we first set c3 = 0 in (41) to get,

ẋ1(τ) = c1,

ẋ2(τ) = c2,

ẋ3(τ) = x2(τ) ẋ1(τ).
(42)

The solutions for these equations are,

x1(τ) = χ1 + c1τ,

x2(τ) = χ2 + c2τ,

x3(τ) = χ3 + c1χ2τ+
1
2

c1c2τ
2 .

(43)

From τ= 0 boundary condition, χ1 = χ2 = χ3 = 0. Then we are left with,

x1(τ) = c1τ,

x2(τ) = c2τ,

x3(τ) =
1
2

c1c2τ
2 .

(44)

Then from the final boundary condition at τ= 1 we have,

c1 = A(t), c2 = B(t). (45)

Then finally we have,

x1(τ) = A(t)τ, x2 = B(t)τ, x3(τ) =
1
2

A(t)B(t)τ2. (46)

We evaluate the complexity with this solution,

C(U) =
Æ

A(t)2 + B(t)2. (47)

This is a remarkably simple expression. We suspect that this is a consequence of the simple
structure of the Heisenberg group. One can immediately see the behaviour of complexity at
large times where it grows as a simple exponential

C(U)≈ Im(α)−Re(α)Ω
p

2Ω
(
p

1+Ω2)eΩt . (48)

Fig. 1 displays the time evolution of complexity for two different sets of parameters in the
logarithmic scale. Note that the overall behaviour is chaotic as expected for IHO and it matches
with Ref. [60]. The late time behavior for both cases are exponential as expected. The early
times behaviour on the other hand is a bit subtle. Looking closer, we notice that for a particular
set of values of the parameters there is a minimum in the evolution of complexity during the
scrambling-time regime. This strange feature is absent for the complexity computed from the
correlation matrix method used in Ref. [60]. The physical significance of this minimum is
unclear to us at this point. To understand its implications and whether it is a generic feature
for this method will require further investigations of other models. Naively though, it hints that
the operator method is perhaps more sensitive than the wave function method for computing
complexity. We would like to investigate these issues elsewhere. Also, we note that conclusion
drawn here is not sensitive to the choice of the cost functional (39). One could have certainly
chosen another cost functional. For a detailed discussion of the various choices of interested
readers are referred to [64].
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Figure 1: Time evolution of complexity of the displacement operator (computed
from the operator method), for different choice of parameters. The red and
the blue dotted curves correspond to {Im(α) = 0.1, Re(α) = 0.1,Ω = 0.1} and
{Im(α) = 5, Re(α) = 0.1,Ω= 0.5} respectively

4.2 Complexity for N-Oscillators and Scrambling

To further investigate the scrambling behaviour for the inverted harmonic oscillator, in this
sub-section we will take a different approach. First of all we will compute the state complexity
instead of operator complexity. Secondly, we will consider a large number of inverted harmonic
oscillators. To establish our point we will use the model used by Ref. [49], where the authors
extended the inverted harmonic oscillator model and considered the field theory limit. Below
we start with a review of the model studied in Ref. [49].

First we will consider two free scalar field theories ((1+1)-dimensional c = 1 conformal
field theories) deformed by a marginal coupling as in Ref. [49]. The Hamiltonian for such
model is given by

H = H0 +HI =
1
2

∫

d x
�

Π2
1 + (∂xφ1)

2 +Π2
2 + (∂xφ2)

2

+m2(φ2
1 +φ

2
2)
�

+λ

∫

d x(∂xφ1)(∂xφ2).
(49)

We will discretize this theory by putting it on a lattice. Using the following re-definitions

x(~n) = δφ(~n), p(~n) = Π(~n)/δ, ω= m,

Ω=
1
δ2

, λ̂= λδ−4 and m̂=
m
δ

,
(50)

we get the following Hamiltonian

H =
δ

2

∑

n

�

p2
1,n + p2

2,n +
�

Ω2 (x1,n+1 − x1,n)
2

+Ω2 (x2,n+1 − x2,n)
2 +

�

m̂2(x2
1,n + x2

2,n)

+ λ̂ (x1,n+1 − x1,n)(x2,n+1 − x2,n)
��

.

(51)
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Next we perform a series of transformations,

x1,a =
1
p

N

N−1
∑

k=0

exp
�2π i k

N
a
�

x̃1,k,

p1,a =
1
p

N

N−1
∑

k=0

exp
�

−
2π i k

N
a
�

p̃1,k,

x2,a =
1
p

N

N−1
∑

k=0

exp
�2π i k

N
a
�

x̃2,k,

p2,a =
1
p

N

N−1
∑

k=0

exp
�

−
2π i k

N
a
�

p̃2,k,

p̃1,k =
ps,k + pa,kp

2
, p̃2,k =

ps,k − pa,kp
2

,

x̃1,k =
xs,k + xa,kp

2
, x̃2,k =

xs,k − pa,kp
2

,

(52)

that lead to the Hamiltonian

H =
δ

2

N−1
∑

k=0

�

p2
s,k + Ω̄

2
k x2

s,k + p2
a,k +Ω

2
k x2

a,k

�

, (53)

where

Ω̄2
k =

�

m̂2 + 4 (Ω2 + λ̂) sin2
�π k

N

�

�

,

Ω2
k =

�

m̂2 + 4 (Ω2 − λ̂) sin2
�π k

N

�

�

.
(54)

Note that the underlying model of interest is still the inverted harmonic oscillators. It becomes
immediately clear by appropriately tuning the value of λ̂–the frequencies Ωk can be made
arbitrarily negative resulting in coupled inverted oscillators. The other frequency, Ω̄k, however,
will be always positive. Therefore, effectively this model (53) can be seen as the sum of a regular
and inverted oscillator for each value of k. Since we are interested in the inverted oscillators
we will ignore the regular oscillator part and we will simply use the inverted oscillator part of
the Hamiltonian

H̃(m,Ω, λ̂) =

δ

2

N−1
∑

k=0

�

p2
k +

�

m̂2 + 4 (Ω2 − λ̂) sin2
�

π k
N

��

x2
k

�

.
(55)

Even with this Hamiltonian, by tuning λ̂ we can get both regular and inverted oscillators.
It is worth stressing that the above Hamiltonian originates from the discretization of the

scalar field (49). This imposes a UV cut-off inverse proportional to the lattice spacing. As long
as only the low energy physics is concerned, Hamiltonian (55) for the uncoupled oscillators
should describe the original field theory very well.

Now we will talk about the structure of the quantum circuit we will be using to study
the complexity. At t = 0 we start with the ground state of H̃(m,Ω, λ̂ = 0) and then time
evolve it with H̃(m,Ω, λ̂ 6= 0) and H̃ ′(m,Ω, λ̂′ 6= 0) with two slightly different couplings, λ̂ and
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Figure 2: Universal growth of the complexity in Eq. (56) at different time scales.
Top, middle, and bottom figures show, respectively, the power-law dissipation, the
exponential scrambling in semi-log scale, and the intermediate linear growth. Blue
dotted, black, and red dashed curves correspond to {δ = 0.4, N = 100}, {δ = 0.5,
N = 200}, and {δ = 0.5, N = 100}, respectively. Other parameters are fixed as m = 1,
λ= 10, δλ= 0.01.

λ̂′ = λ̂+δλ̂, where δλ̂ is small. The complexity of the state evolved by H with respect to the
state evolved by H ′ is given by [26,28,60]

Ĉ(Ũ) = 1
2

√

√

√

√

N−1
∑

k=0

�

cosh−1

�

ω2
r,k + |ω̂k(t)|2

2ωr,k Re(ω̂k(t))

��2

, (56)

where

ω̂k(t) = i Ω′k cot(Ω′k t) +
Ω′2k

sin2(Ω′k t)
�

ωk(t) + iΩ′k cot(Ω′k t)
� (57)

and

Ω′2k = m̂2 + 4 (Ω2 − λ̂−δλ̂) sin2
�π k

N

�

. (58)

The frequencies-squared ωk(t)2, ω2
r,k are given by

ωk(t) = Ωk

�

Ωk − iωr,k cot(Ωk t)

ωr,k − iΩk cot(Ωk t)

�

, (59)
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Interestingly, this simple model exhibits three universal behaviors for the complexity growth
in three different time scales.

As shown in Fig. 2, the complexity starts to grow as a power-law, in a transient time known
as the dissipation time [5]. This is a time scale when local perturbation relaxes. It corresponds
to an exponential decay of time-ordered correlators of local observable. At larger times the
complexity switches to an exponential growth, i.e., scrambling, which corresponds to the early
exponential decay of the OTOC, 1−εeλt . Asymptotically, the complexity grows linearly in time.
This corresponds to the exponential relaxing of the OTOC. Note that the inverted harmonic
oscillators are not bounded, the complexity grows forever without saturation.

We also identified the scaling of the complexity growth in terms of parameters N and δ in
the model. In the dissipation and intermediate linear growth regime, the complexity scales
as C ∼

p
Nδ−2 t. In the scrambling regime the complexity grows as C ∼

p
N expδ−2 t. The

scrambling time, i.e., the time scale for which the complexity becomes O(1), can then be
extracted as td ∼ δ2 log 1/

p
N . As before, the conclusion drawn here is not sensitive to the

choice of the cost functional (56). This generic features of the complexity for this system still
persists even if we use different cost functional.

5 Discussion

The harmonic oscillator is one of the most versatile toy models in all of physics. Largely,
this is because the oscillator Hamiltonian is quadratic, and Gaussian integrals are a staple of
any physicist’s diet. This article details our systematic study of the inverted harmonic oscillator
as a vehicle to explore quantum chaos and scrambling in a controlled and tractable setting.
In particular, since the inverted harmonic oscillator is classically unstable but not chaotic, our
expectation for the quantum system is to find scrambling, but not true chaotic behavior. We
set out to ask if, and how, this expectation manifests at the level of some frequently used
diagnotics. Concretely, we focused on two recently developed probes of chaos; the out-of-time-
order correlator and the circuit complexity, both of which we computed for the displacement
operator in eq.(8). The OTOC in particular appears to be insensitive to whether or not the
oscillator is inverted. On the other hand, the fact the oscillator Hamitonian is quadratic is a key
feature of this computation. To test this, we extended the Hamiltonian by adding a cubic-gate
perturbation and found that, with this additional term in the IHO Hamiltonian, the OTOC
exhibits a crossover from no-decay to exponential-decay, consistent with the above expectation.
We further computed the full quantum Lyapunov spectrum for the IHO, finding that it exhibits
a paired structure among the Lyapunov exponents. This in turn leads us to conjecture that
as long as the OTOC scrambles exponentially, such a structure will manifest in the Lyapunov
spectrum.

Using the operator method we then computed the complexity of a target displacement
operator obtained from a simple reference displacement operator by the chaotic Gaussian
dynamical evolution expected of the IHO. Our construction is primarily based on Nielsen’s
geometric formalism, making use of the Heisenberg group as a natural avatar for the displace-
ment operator. The takeaway from this analysis is that the choice of operator or wave function
approaches in the computation of the complexity really depends on the physical problem in
question. For example, the wave function approach is more convenient for the study of a system
of N -oscillators, where we showed that both the complexity and scrambling time depend on
two new parameters, namely, the number of oscillators and lattice spacing between them.

As elucidating as this study of the chaos and complexity properties of the inverted harmonic
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oscillator is, there are several questions remain to be addressed. Among these, we count:

• A clear recipe for the penalization procedure, which usually accompanies the circuit
complexity, is still missing for continuous systems such as the inverted oscillator and,
more pressingly, in quantum field theory.

• While progress in understanding circuit complexity has come in leaps and bounds since
it entered into the horizon of high energy theory and black hole physics, much of this
progress has been focused on simple linear systems. For the purposed of understanding
interacting systems, it would be of obvious benefit to push the operator complexity
computation beyond the Heisenberg group. Here too, the inverted oscillator offers some
hints. For example, one conceptually straightforward extension that may shed some light
into this matter would be precisely the cubic-gate perturbation that we considered above.

• Finally, and more speculatively, there is the novel and largely unexplored class of Hamilto-
nians with unbroken PT symmetry which describe non-isolated systems in which the loss
to, and gain from the environment are exactly balanced. In a sense then, PT-symmetric
Hamiltonians interpolate between Hermitian and non-Hermitian Hamiltonians but with
spectra that are real, positive and discrete. An example relevant to our study here is the
1-parameter family of Hamiltonians

H(ε) =
p2

2
+ x2(i x)ε ,

with real parameter ε. Clearly H(0) = p2/2+ x2 is just the familiar harmonic oscillator.
On the other hand H(1) = p2/2+ i x3 is not only unfamiliar, it is also complex! Continuing
along ε, we find the inverted quartic Hamiltonian H(2) = p2/2− x4 which looks decidedly
unstable. Nevertheless, it was rigorously shown in [65] that the eigenvalues of H(ε) are
real for all ε ≥ 0. Given the numerous manifestations of PT-symmetric Hamiltonians in
for example optics, superconductivity and even graphene systems, it would be interesting
to explore both its quantum chaotic as well complexity properties with some of the tools
that we have explored here.

We leave these and related questions for further study.

Note added in proof

After our article appeared on the arXiv, another article [66] was posted, discussing and
further motivating the study of the inverted harmonic oscillator. There, using a recently
developed technique for computing the thermal OTOC in single-particle quantum mechanics
[67], the authors argue that the inverted harmonic oscillator emerges quite generically anytime
one isolates one degree of freedom in a large N system with a gravity dual, and integrates out
the remaining degrees of freedom - essentially forming a quadratic hilltop potential. They find
an exponential growth of the OTOC with quantum Lyapunov exponent of order the classical
Lyapunov exponent generated at the hilltop. In fact, they find that λOTOC ≤ cT at temperature
T and for some constant c ∼O(1), therby generalizing the MSS chaos bound to single-particle
quantum mechanics. This may seem to be in conflict with our finding for the OTOC, however,
as pointed out above, we compute the OTOC for displacement operators which, being built
out of ladder operators are composite. In this sense, our results are reminiscent of the operator
thermalization hypothesis introduced in [68]. The reconciliation of these findings is, no doubt,
of great interest and we leave this for future work.
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