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Abstract

An essential primitive in quantum tensor network simulations is the problem of approx-
imating a matrix product state with one of a smaller bond dimension. This problem
forms the central bottleneck in algorithms for time evolution and for contracting pro-
jected entangled pair states. We formulate a tangent-space based variational algorithm
to achieve this goal for uniform (infinite) matrix product states. The algorithm exhibits
a favourable scaling of the computational cost, and we demonstrate its usefulness by
several examples involving the multiplication of a matrix product state with a matrix
product operator.
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The density matrix renormalization group (DMRG) [1,2] and quantum tensor networks [3,
4] provide algorithms for simulating ground states of strongly correlated quantum many body
systems with a computational cost that scales linear in the system size, thereby overcoming
the infamous exponential wall of the quantum many body problem. The physical parameter
controlling the computational cost is the entanglement entropy, as directly reflected in the bond
dimension y of the corresponding matrix product states (MPS) [5]. However, there are many
interesting physical problems for which this bond dimension can become prohibitively large,
such as the problem of simulating time evolution of a quantum state out of equilibrium or of
contracting a tensor network comprised of a projected entangled pair state (PEPS) with a large
bond dimension. In both cases, the central problem is to approximate the product of an MPS
and a matrix product operator (MPO) with an MPS of smaller bond dimension. For both finite
and infinite systems, a well-known algorithm to achieve this is time-evolving-block-decimation
and variations thereof [6-9], all of which rely on a local truncation of Schmidt values, therefore
not being optimal for the global wavefunction. For finite systems, a considerable improvement
over those algorithms can be obtained by adopting a variational approach which optimizes the
fidelity by sweeping through the system and solving alternating linear problems [10,11]. The
computational cost of the latter algorithm has a better scaling as it does not require bringing
the joint MPS/MPO system in canonical form, and furthermore achieves a better overal fidelity
due to its variational nature.

In this paper, we present the uniform and infinite version of that algorithm. It is based on
ideas developed in the context of tangent space methods for uniform matrix product states [12,
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13] and the variational uniform matrix product state (vumps) algorithm [14,15]. Our main
motivation is the development of efficient MPS algorithms which can deal with time-evolution
methods involving MPOs with large bond dimension and of efficient and well-conditioned ways
of contracting PEPS [16]. It also overcomes a main limitation of algorithms based on the time-
dependent variational principle (TDVP) [17-19], where it is difficult to build up entanglement
starting from a low-entangled state by allowing large time steps.

The paper is organized as follows. In the first section we discuss how to approximate a
given uniform MPS variationally with another one with smaller bond dimension. In a second
section, we illustrate this algorithm with several relevant examples.

Fixed-point equations.—We start from the diagrammatic expression of a uniform MPS in the
thermodynamic limit, parametrized by a single tensor A

[w(4)) = (D—(D)—(D)—D)—()-. (1

We will assume a trivial unit cell in this text for simplicity, the case of larger unit cells is treated
straightforwardly. Using the gauge freedom of the MPS we can choose this tensor to be in the
left canonical gauge A; or the right canonical gauge Ag, with

_<, _) @

These gauge-fixed tensors are related by a matrix C as

W~ = A9 = -, 3)

allowing us to bring the MPS into the so-called mixed gauge

[W(A) = ~)—)—()——(o)-. 4

For a given MPS |¥(M) described by a tensor M, we now wish to find an MPS |¥(A))
such that the latter approximates the former in some optimal way. A natural choice for an
optimality condition is that they should have a maximal fidelity, which leads us to a variational
optimization problem for the tensor A:

(A v (M) (F(M)¥(A) D
(T(A)¥(A) '

arg rf\l’g} (log [ (5)
To have a properly defined cost function, we consider the logarithm of the fidelity, which is
an extensive quantity that scales with the system size in the thermodynamic limit, and replace
the cost function by its intensive version, i.e. the density of logarithmic fidelity, instead. Equiv-
alently, this amounts to replacing the norm in the expression for the fidelity with a modified
norm

A= lim (wA)eGON"™, (6)

where (¥(A*)|W(M))y represents the overlap of two MPS of length N with periodic boundary
conditions, made up of tensors M and A. This limit is unique and well defined if both M and
A are injective MPS tensors, and converges to the largest eigenvalue A of the mixed transfer

matrix,
O

A = Amax . (7)
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This cost function being a real-valued function of the tensor A and its conjugate A*, the
gradient is obtained by differentiating the cost function with respect to A*. An optimal point
is reached when the gradient vanishes,

(WA (M)

<%wmm(wmnr-wmﬂwm»

w) ) =o. ®)
Here, |3,¥(A)) can be interpreted as a tangent vector on the manifold of MPS [12,13]. The
MPS tangent space contains the state |¥(A)) itself, which represents the direction of infinitesi-
mal changes in phase or normalization of the tensor. However, inserting this direction in Eq. 8
yields a trivial equation, exactly because our cost function is insensitive to such changes in
phase or normalization. Using the projector P, onto the part of tangent space that is orthog-
onal to |¥(A)), the optimality condition can be reformulated as

Pal¥(M)) =0. 9
Note that the right hand side of Eq. 9 thus vanishes, but it will prove propitious to keep track
of it. An explicit form of P, in the mixed-gauge is given by [13]

i+1

i1 i i+l i1
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Applying this operator to [¥(M)), which we assume to be a uniform MPS parameterized by a
single tensor M, we find that the optimality condition [Eq. (9)] is satisfied if and only if

AL =A;C'=C'Ag, (11)

where A} and C’ are given by

G, G

: =7L, (12)

Gp Gr
= (o), (13)

with the fixed points G; and Gy given by the eigenvalue equations

where as before A is the largest eigenvalue of the mixed transfer matrix that appears here
(both with the choice A = A; and A = Ag, but this does not affect the eigenvalue as they are
related by a similarity transform). Eq. (11) can only be satisfied if C’ ~ C and A, ~ Ac.

This observation motivates an algorithm where, starting from a randomly initialised tensor
A, we identify the resulting A}, and C’ as the new target values of A; and C. As one cannot

and

3
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Algorithm 1 Variationally optimizing overlap of uniform MPS with trial state |¥'(M))

1: bring A in canonical form {A;,Ag}

2: repeat

3 compute A, G; and Gy > Eq. (14)
4 find new A7, and C’ > Egs. (12)-(13)
5: extract new A; and Ay > Eq. (15)-(16)
6 compute error € >Eq. (17)
7: until e < n

8: return A;,Ag, A

define an MPS via the center-site tensors directly, one crucial step in each iteration will be the
extraction of a new set of MPS tensors {A;,Ag} from the A and C’ that were obtained. A
close-to-optimal solution of this problem is given by the prescription [13]

" A =UP
T C rl
AL<—U1V1 , { C/=V1Q1 (15)
and
" A . =PU

where all decompositions involve unique polar decompositions or their transposed. This ap-
proach is similar to the one adopted in the standard vumps algorithm [15]. Once we have
obtained a new set {A;,Ag}, we can re-compute the fixed-point tensors G; and Gy and the
scheme can be reiterated. As a convergence measure we take the norm of the fixed-point
equation in Eq. 11, which is given by

=|0--o-o

where A7, and C are given by Eqs. 12 and 13; this convergence measure becomes zero only
when the gradient [Eq. 8] vanishes and therefore characterizes a variationally optimal approx-
imation.

A specific instance of the above scheme occurs when applying a uniform matrix product
operator (MPO) to a given MPS, and approximating the resulting state as an MPS with a certain
bond dimension. In that case the above fixed-point equations are given by

) a7

(18)

and

= (o) (19)
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(20)

Our variational method can, therefore, be used for approximating an MPS-MPO state by
an MPS with the original bond dimension of M. This is an operation that appears in many
MPS methods (see further), and we can show that our approach scales more favourably as
compared to the standard local-truncation approach [9]. Indeed, supposing that both the
original and new MPS have bond dimension y and physical dimension d and the MPO has
bond dimension D, the time-complexity of the above scheme is O(y3Dd + y2D%d?), and the
memory required scales as O(y2Dd). We can compare this to the complexity of cutting the
bond dimension by truncating local Schmidt values. The most costly operation required to cut
the bond this way is following contraction:

S @ —_
@ -

The time-complexity of this operation is O(y>D?d + y2D3d?) and the memory required
O(x2dD?). In addition, one typically performs a full singular-value decomposition of a square
x D matrix, for which the time complexity scales as O(y3D?). This analysis shows that for
MPOs of large virtual dimension D, the method we prescribe can be a significant, even crucial,
improvement.

Truncating an MPS.—Let us first illustrate this variational method by truncating the bond di-
mension of a given MPS. Again, the most commonly used technique for that purpose is the
truncation of local Schmidt values on all bonds simultaneously [7] which is not optimal for
the global wavefunction. We compare the two techniques in Fig. 1 for an MPS of considerable
dimension. We find that local truncation performs fairly well across the board, but that our
variational scheme still finds a slightly better state after convergence. This example shows that
our fidelity optimization can be useful only if precision is of the utmost importance.

Time evolution.—There are roughly two different classes of methods used to time-evolve an
infinite MPS. The first class tries to directly transform the Schrédinger equation into a (non-
linear) differential equation on the variational manifold. This is exactly the mechanism behind
TDVP [17,18], where the direction in which the state needs to change (the right hand side of
the Schrodinger equation) is projected onto the tangent space of the MPS. The second class of
methods instead starts from an approximation of the time evolution operator exp(—iH &) for
a certain time step 6. This approximation is provided in terms of a quantum circuit, or, more
generally, an MPO, and can be obtained from e.g. a Suzuki-Trotter decomposition [6,21,22]
or other schemes [16,23]. The resulting MPO is then applied to the current state, encoded
as MPS, followed by a bond truncation'. With a (low-order) Suzuki-Trotter decomposition,
the MPO bond dimension can remain low, but feasible time steps 6 are also very small. With
the cluster expansion from Ref. [16], it is easier to reach larger &, at the cost of a higher MPO
bond dimension. It is therefore infeasible to apply this MPO to an MPS and truncate directly

INote that methods based on Krylov subspaces or Taylor expansions of the evolution operator, which are com-
mon for time-evolving finite MPS, do not work in the thermodynamic limit because they are not extensive.
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Figure 1: Truncating an MPS to a lower bond dimension. We show the variational er-
ror € [Eq. (17)] in each iteration of the fidelity optimization (blue), compared to that
same variational error measure computed for the state obtained by a local singular-
value truncation (red). After eight iterations the variational error is smaller, but we
can converge a lot further using our iterative scheme. The fidelity per site A with the
original state is 1 —5.37 x 10~ and 1 —3.78 x 10> respectively, showing that we
can improve the state with our variational scheme. The starting MPS is an SU(2)-
symmetric ground-state approximation for the spin-4 Heisenberg model (which has
very large correlation length [20]) with 13 charge sectors and maximal bond dimen-
sion in each sector D,,, = 512, yielding a total bond dimension of D,,.; ~ 21600;
this state was obtained using the vumps algorithm. The truncated MPS has 8 charge
sectors with D, = 27, yielding a total bond dimension of D, ~ 700.

according to the Schmidt values due to prohibitive memory constraints or time complexity
considerations. In this case thus, our method is indispensable. This leads to a time evolution
scheme that we here simply state as a possible application of our truncation method, but is
discussed in more detail in [16].

We illustrate this usage by evolving the Néel state with the XXZ Hamiltonian.

Hyxz = D, STSTa + 587, + ASISE,
L

where S? the spin-1/2 operators at site i and we choose A = 1/2. This problem is closely
related to the one considered in Ref. [24] asserting the supremacy of quantum simulators. We
have exploited the U(1) symmetry of the system and used an MPS with a two-site unit cell and
a maximal bond dimension of 994. The MPO bond dimension is 21, which enabled an accurate
time step of up to dt = 1.2. In Fig. 2 we show the offset of the staggered magnetization from
its initial maximal value —as measured by (1 + Z)/2 on one of the two sites in the unit cell-
as a function of time, and benchmark it with a simulation with the TDVP algorithm, where we
manually expand the bond dimension with small noise [25].

6
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Figure 2: Time evolution of the staggered magnetization relative to its initial maximal
value, as measured by (1+2)/2 on one of the sites, for the Néel state evolved with the
XXZ Hamiltonian with A = 1/2. We show results for different time steps for the MPO
cluster expansion from Ref. [16]. The gray line is a reference result obtained with
TDVP with very small time step. We have made explicit use of the U(1) symmetry,
and fixed the total bond dimension to y = 994.

Power method for transfer matrices.—Let us now consider the calculation of an MPS fixed point
of an MPO transfer matrix by way of the power method: In each iteration we apply the MPO
and truncate the bond dimension, until the MPS converges to a fixed point. Power methods
have been used for computing transfer fixed points where the local singular-value truncation
was adopted in each iteration [ 9], but here we use our variational truncation. In contrast to the
former, the fixed point of our variational-truncation approach is, in fact, a variationally optimal
MPS in the sense that it optimizes the leading eigenvalue for hermitian transfer matrices.
Indeed, in the fixed point of this power method, the top-layer MPS in the fixed-point equations
[Egs. (18)-(20)] should be the same as the down-layer, and the equations reduce to the usual
fixed-point equations of the vumps algorithm (which is variationally optimal for hermitian
transfer matrices). Hence, both approaches share at least the same fixed point, which is not
true with a scheme based on local truncations.

For hermitian transfer matrices the performance of a power method is inferior to that
of the Krylov-inspired vumps algorithm [26], but it is very useful in cases of spatial symmetry
breaking where the fixed point alternates between different MPSs or for non-Hermitian MPOs.
We illustrate this case by studying the MPO transfer matrix of the classical antiferromagnetic
Ising model on the square lattice (Fig. 3). In the (low-temperature) symmetry-broken phase,
we find that the power method alternates between two MPSs that are the same up to a one-site
translation. We look at different convergence criteria and also compare to the ferromagnetic
fixed point (found using vumps), on which we performed a sublattice rotation (i.e., flipping
the spin on every other site). The results are presented in Fig. 3.

Dynamical growing of bond dimension.—Our variational-truncation approach is particularly
useful as a way of enlarging the bond dimension of an MPS when simulating time evolution
or computing fixed points of transfer matrices. With respect to the former, the most persis-
tent critique to the TDVP algorithm revolves around the fact that it projects the time evolution
on the manifold of MPS with a fixed bond dimension, and that it is impossible to grow the
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Figure 3: Different error measures to determine the convergence of the power
method approach to find the MPS fixed point of the MPO transfer matrix of the an-
tiferromagnetic Ising model at inverse temperature 3 = 1.01f3.. From top to bottom
in the legend, we show (1) one minus the one site fidelity between site 1 and site 2
an iteration later, (2) the change in the local magnetization after an iteration, (3) one
minus the fidelity with the sublattice rotated ferromagnetic vumps result, (4) differ-
ence of the local magnetization with the one from the vumps result, (5) difference
of the free energy with the one from the vumps result.

bond dimension during the evolution. Our variational algorithm is not confined to a manifold
of fixed bond dimension, because we can choose the bond dimension at each time step. We
believe that a ‘hybrid’ between TDVP and our current scheme can provide a good way of sim-
ulating time evolution variationally using MPS where the amount of entanglement increases
through time.

For fixed points of transfer matrices we can exploit our fidelity optimization in a similar
way. We imagine the situation in which we have found a fixed-point MPS of a certain bond
dimension, and we wish to find a better MPS of larger bond dimension. We can now use
the previous MPS to construct an initial guess, apply the transfer matrix to this MPS, and
then truncate to an MPS of the desired bond dimension using the equations above [Egs. (18)-
(20)]. The resulting MPS is already a more accurate approximation of the desired state than
the previous one, and thus makes an excellent initial guess for running a new fixed-point
algorithm at this higher bond dimension. This is especially useful in the context of PEPS
algorithms, where the fixed point calculation of the PEPS double layer is the main bottleneck.
Conclusions.—We have discussed a method for approximating a uniform and infinite MPS by an
MPS of smaller bond dimension in a way that is variationally optimal. We show that it performs
slightly better in terms of accuracy as compared to the standard method in the MPS literature.
Our method is proven most useful if the MPS being approximated has some substructure (e.g.,
being made up of an MPO times and MPS), because it has a significantly lower computational
cost in that case. In this case the method has lower complexity and requires less memory than
standard alternatives. We illustrate this with time evolution using an MPO that approximates
the evolution operator, a power method for finding transfer matrix fixed points, and dynamical
growing of bond dimension.

The generalization of this method to the (2+1)-dimensional case can easily be envisioned,
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and would be interesting to investigate. An algorithm that variationally determines a PEPS ap-
proximation of some other PEPS—perhaps a projected entangled-pair operator (PEPO) times
a PEPS—can readily be devised based on the algorithm in Ref. [27]. The uses of such a method
would be identical to the ones presented here: performing accurate and reliable time evolu-
tion, a power method for determining fixed points of non-hermitian PEPOs or PEPOs exhibiting
spatial symmetry breaking, and growing of a PEPS bond dimension.
Acknowledgements.—This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 647905 — QUTE and No 715861 — ERQUAF) and from the Research Foundation
Flanders (grant No G087918N).

References

[1] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev.
Lett. 69, 2863 (1992), doi:10.1103/PhysRevLett.69.2863.

[2] U. Schollwock, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259
(2005), d0i:10.1103/RevModPhys.77.259.

[3] E Verstraete, V. Murg and J. I. Cirac, Matrix product states, projected entangled pair states,
and variational renormalization group methods for quantum spin systems, Adv. Phys. 57,
143 (2008), doi:10.1080/14789940801912366.

[4] U. Schollwock, The density-matrix renormalization group in the age of matrix product
states, Ann. Phys. 326, 96 (2011), doi:10.1016/j.a0p.2010.09.012.

[5] E Verstraete and J. I. Cirac, Matrix product states represent ground states faithfully, Phys.
Rev. B 73, 094423 (2006), doi:10.1103/PhysRevB.73.094423.

[6] G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys.
Rev. Lett. 91, 147902 (2003), doi:10.1103/PhysRevLett.91.147902.

[7] A. J. Daley, C. Kollath, U. Schollwéck and G. Vidal, Time-dependent density-matrix
renormalization-group using adaptive effective Hilbert spaces, J. Stat. Mech.: Theor. Exp.
P04005 (2004), doi:10.1088/1742-5468/2004/04/p04005.

[8] S.R.White and A. E. Feiguin, Real-time evolution using the density matrix renormalization
groupp, Phys. Rev. Lett. 93, 076401 (2004), doi:10.1103/PhysRevLett.93.076401.

[9] R. Orus and G. Vidal, Infinite time-evolving block decimation algorithm beyond unitary
evolution, Phys. Rev. B 78, 155117 (2008), doi:10.1103/PhysRevB.78.155117.

[10] E Verstraete, J. J. Garcia-Ripoll and J. I. Cirac, Matrix product density operators: Simu-
lation of finite-temperature and dissipative systems, Phys. Rev. Lett. 93, 207204 (2004),
doi:10.1103/PhysRevLett.93.207204.

[11] E Verstraete and J. I. Cirac, Renormalization algorithms for quantum-many body systems
in two and higher dimensions (2004), arXiv:cond-mat/0407066.

[12] J. Haegeman, T. J. Osborne and E Verstraete, Post-matrix product state
methods:  To tangent space and beyond, Phys. Rev. B 88, 075133 (2013),
doi:10.1103/PhysRevB.88.075133.


https://scipost.org
https://scipost.org/SciPostPhysCore.4.1.004
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevB.73.094423
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1088/1742-5468/2004/04/p04005
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1103/PhysRevB.78.155117
https://doi.org/10.1103/PhysRevLett.93.207204
https://arxiv.org/abs/cond-mat/0407066
https://doi.org/10.1103/PhysRevB.88.075133

Scil SciPost Phys. Core 4, 004 (2021)

[13] L. Vanderstraeten, J. Haegeman and FE Verstraete, Tangent-space meth-
ods for uniform matrix product states, SciPost Phys. Lect. Notes 7 (2019),
doi:10.21468/SciPostPhysLectNotes.7.

[14] J. Haegeman and E Verstraete, Diagonalizing transfer matrices and matrix product opera-
tors: A medley of exact and computational methods, Annu. Rev. Condens. Matter Phys. 8,
355 (2017), doi:10.1146/annurev-conmatphys-031016-025507.

[15] V. Zauner-Stauber, L. Vanderstraeten, M. T. Fishman, E Verstraete and J. Haegeman, Vari-
ational optimization algorithms for uniform matrix product states, Phys. Rev. B 97, 045145
(2018), do0i:10.1103/PhysRevB.97.045145.

[16] B.Vanhecke, L. Vanderstraeten and E Verstraete, Symmetric cluster expansions with tensor
networks (2019), arXiv:1912.10512.

[17] B A. M. Dirac, Note on exchange phenomena in the thomas atom, Math. Proc. Camb. Phil.
Soc. 26, 376 (1930), doi:10.1017/S0305004100016108.

[18] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pizorn, H. Verschelde and E Verstraete, Time-
dependent variational principle for quantum lattices, Phys. Rev. Lett. 107, 070601 (2011),
doi:10.1103/PhysRevLett.107.070601.

[19] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken and E Verstraete, Unifying time
evolution and optimization with matrix product states, Phys. Rev. B 94, 165116 (2016),
doi:10.1103/PhysRevB.94.165116.

[20] S. Todo, H. Matsuo and H. Shitara, Parallel loop cluster quantum Monte Carlo simulation
of quantum magnets based on global union-find graph algorithm, Comp. Phys. Commun.
239, 84 (2019), doi:10.1016/j.cpc.2019.01.004.

[21] G. Vidal, Classical simulation of infinite-size quantum lattice systems in one spatial dimen-
sion, Phys. Rev. Lett. 98, 070201 (2007), doi:10.1103/PhysRevLett.98.070201.

[22] B. Pirvu, V. Murg, J. I. Cirac and E Verstraete, Matrix product operator representations,
New J. Phys. 12, 025012 (2010), doi:10.1088/1367-2630/12/2/025012.

[23] M. P Zaletel, R. S. K. Mong, C. Karrasch, J. E. Moore and E Pollmann, Time-evolving
a matrix product state with long-ranged interactions, Phys. Rev. B 91, 165112 (2015),
doi:10.1103/PhysRevB.91.165112.

[24] S. Trotzky, Y.-A. Chen, A. Flesch, I. P McCulloch, U. Schollwock, J. Eisert and I.
Bloch, Probing the relaxation towards equilibrium in an isolated strongly correlated one-
dimensional Bose gas, Nat. Phys. 8, 325 (2012), doi:10.1038/nphys2232.

[25] V. Zauner-Stauber and J. C. Halimeh, Probing the anomalous dynamical phase in long-
range quantum spin chains through Fisher-gero lines, Phys. Rev. E 96, 062118 (2017),
doi:10.1103/PhysRevE.96.062118.

[26] M. T. Fishman, L. Vanderstraeten, V. Zauner-Stauber, J. Haegeman and E Verstraete,
Faster methods for contracting infinite two-dimensional tensor networks, Phys. Rev. B 98,
235148 (2018), d0i:10.1103/PhysRevB.98.235148.

[27] L. Vanderstraeten, B. Vanhecke and E Verstraete, Residual entropies for three-dimensional
frustrated spin systems with tensor networks, Phys. Rev. E 98, 042145 (2018),
doi:10.1103/PhysRevE.98.042145.

10


https://scipost.org
https://scipost.org/SciPostPhysCore.4.1.004
https://doi.org/10.21468/SciPostPhysLectNotes.7
https://doi.org/10.1146/annurev-conmatphys-031016-025507
https://doi.org/10.1103/PhysRevB.97.045145
https://arxiv.org/abs/1912.10512
https://doi.org/10.1017/S0305004100016108
https://doi.org/10.1103/PhysRevLett.107.070601
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.1016/j.cpc.2019.01.004
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1088/1367-2630/12/2/025012
https://doi.org/10.1103/PhysRevB.91.165112
https://doi.org/10.1038/nphys2232
https://doi.org/10.1103/PhysRevE.96.062118
https://doi.org/10.1103/PhysRevB.98.235148
https://doi.org/10.1103/PhysRevE.98.042145

	References

