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Abstract

In this paper, our prime objective is to apply the techniques of parameter estimation
theory and the concept of Quantum Metrology in the form of Fisher Information to in-
vestigate the role of certain physical quantities in the open quantum dynamics of a two
entangled qubit system under the Markovian approximation. There exist various physi-
cal parameters which characterize such system, but can not be treated as any quantum
mechanical observable. It becomes imperative to do a detailed parameter estimation
analysis to determine the physically consistent parameter space of such quantities. We
apply both Classical Fisher Information (CFI) and Quantum Fisher Information (QFI) to
correctly estimate these parameters, which play significant role to describe the out-of-
equilibrium and the long range quantum entanglement phenomena of open quantum
system. Quantum Metrology, compared to classical parameter estimation theory, plays
a two-fold superior role, improving the precision and accuracy of parameter estimation.
Additionally, in this paper we present a new avenue in terms of Quantum Metrology,
which beats the classical parameter estimation. We also present an interesting result of
revival of out-of-equilibrium feature at the late time scales, arising due to the long range
quantum entanglement at early time scale and provide a physical interpretation for the
same in terms of Bell’s Inequality Violation in early time scale giving rise to non-locality.
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1 Introduction

A quantum system in reality is never considered to be a closed system, it always interacts with
the environment no matter how weakly. Understanding the dynamics of a quantum system
with the effect of an environment has attracted much attention recently [1–3]. A well studied
example is that of the entangled dynamics of two qubits in open quantum system (OQS),
described by the weak interaction with a massless probe scalar field, playing the role of thermal
bath or environment [4–7,10,11]. The time evolutionary picture of such an OQS is described
by the adiabatic interactions between the system under consideration (which is in our context
the two qubit entangled system) and its thermal environment and is non unitary. The non-
unitary time evolution of such a system is appearing as an outcome of quantum dissipative
effects which can be explicitly obtained by solving the effective master equation, also known
as the Gorini-Kossakowski-Sudarshan-Lindblad (GSKL) master equation, expressed in terms of
the reduced density matrix obtained by tracing out the unwanted bath degrees of freedom
from the total system 1. The non-unitarity in the evolution process is mainly controlled by
the Lindbladian operator which is primarily responsible for introducing quantum mechanical
dissipation into the system due to the interaction with the environment.

The environmental interaction is the main culprit in this discussion which spoils the unitary
time evolution of the physical system of interest under consideration. Therefore it becomes
essential to develop methods for accurately estimating the parameters of the theory which
directly controls the influence that the environment has on the physical system under con-
sideration. In the present context of discussion it is often called the coupling parameter. In
the study of any physical system to model the out-of-equilibrium [5, 12–14] scenario, it be-
comes crucial to have an estimation of the time at which the out-of-equilibrium feature starts
expressing in the system and the time at which the system finally equilibrates with the en-
vironment. This evolutionary time scale of the physical system under the influence of the
thermal bath provides an approximate estimation of the strength of the coupling between the

1Technically the partial trace operation in the present context is identified as the path integration operation
over the bath degrees of freedom
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physical system and the surroundings. Study of open quantum systems has been done both in
flat and curved spacetime [6–8,15,16] in many different contexts. Various models have been
constructed to realise an open quantum system and study its various properties. Specifically,
models consisting of one or two qubits with scalar fields acting as the thermal bath has been
extensively studied [6–8,15,16]. Studies involving two entangled qubits in different classical
gravitational background uses the Resonant Casimir Polder Interaction (RCPI) arising from the
vaccum fluctuations of quantum fields, between the two entangled qubits. It gave a new way
of extracting information about spacetime curvature from casimir physics [8,9].

The theory of Quantum Information Processing (QIP) or Parameter Estimation Theory (PET)
plays a pivotal role in the context of quantum information and computation. The study of es-
timating parameters forms the subject matter of the science of estimation theory. Since the
advent of quantum physics in early 1900s it is imperative that all careful and precision mea-
surement experiments be necessarily of a quantum nature. This comes under the purview
of Quantum Metrology, which is the study of performing high-precision measurements and
estimations with the promise of delivering techniques which outperform their classical coun-
terparts. Statistical errors form a part and parcel of any measurement process. Protocols based
on the ideas of Quantum Metrology can help one achieve precision levels which surpass their
classical counterparts and significantly reduce statistical errors. Quantum Metrology is able to
saturate the Heisenberg Limit [17, 21] which specifies how precision of a measurement scales
with variation of energy. For example, in case of interferometers, using classical measure-
ment protocols one is limited to the shot-noise limit of (∆ξ)2 ≥ 1/N where ξ is some physical
parameter to be estimated and N is the number of photons. Quantum Metrology techniques
allow one to reach the Heisenberg Limit of (∆ξ)2 ≥ 1/N . Additionally, by it’s very construction,
Quantum Metrology involves estimation of physical parameters which have classical counter-
parts as well as estimation of those which are purely quantum mechanical in origin. Hence,
Quantum Metrology not only refines precision measurement but it also provides fresh avenues
of probes which are otherwise inaccessible. The technique of fisher information has previ-
ously been used in various different models for studying the dynamics of systems in curved
spacetime [18–20]

The precision of parameter estimation is measured by Fisher information [22]. In the field
of parameter estimation, the prime focus is to give an estimate of the values of the unknown
physical parameters labelling a quantum mechanical model and to enhance the precision of
resolution. Quantum Fisher Information (QFI), considered as another version of Skew Infor-
mation [23] which is considered as one of the most important measures in the context of PET.
It measures the sensitivity or the response of a system with respect to changes in the parame-
ters that governs the information regarding the physical system under consideration. Recent
studies of QFI has shown its enormous applicability in other fields apart from PET [24–41]. It
also acts as a resource to detect the quantum entanglement and its long range effect among
qubits [42–44]. In ref. [45], the authors recently proposed an experimental scheme to quantify
the lower bounds of Fisher Information.

In this paper, we use Fisher Information to investigate the minimal evolutionary time scale
between the two distinguishable quantum states of the entangled two qubit system, which
basically represents the time scale at which out-of-equilibrium phenomenon starts appearing
in the system due to its interaction with the thermal bath and the time scale when the system
finally reaches the thermal equilibrium state of the bath. Apart from this, Quantum Fisher
Information (QFI) can also be used to determine the interaction or coupling strength with
which the bath influences the system and to provide a physical justification for considering
Markovian approximation of the environment during our analysis.

The plan of the paper is as follows:- In section : The Two Qubit Open Quantum System,
we describe our model of two entangled qubits in interaction with the thermal bath and the
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characteristics of such a model resembling an open quantum system. In section :Quantum
Fisher Information, we discuss the basics and the derivation of the expression of the fisher in-
formation. In Bloch Vector representation of Fisher Information, we provide the general Bloch
vector representation of the eigenvalues and eigenvectors of the density matrix that character-
izes our two qubit reduced subsystem. Finally, in section Estimation of Parameters : Estimation
of TimeScale, Estimation of Euclidean Distance, Estimation of Coupling Strength we apply the
techniques of Fisher Information, both Classical and Quantum to estimate some of the essential
physical parameters that plays a pivotal role in determining the time evolutionary dynamics of
the system under consideration. We end with some essential conclusions obtained from this
analysis and provide some of the future prospects where Quantum Information science can be
used as an essential probe to describe some physical phenomena in the context of Cosmology
described by an Open Quantum System.

2 The Two Qubit Open Quantum System

For our work, we review a model of two identical entangled qubits as described with much
clarity in [5]. Each of the qubits have two internal energy levels. The considered system
is conformally coupled to a massless scalar field in the static De-Sitter space-time in 3 + 1
dimensions. The interaction between the two identical qubit system and the bath is assumed
to be weak and perfectly consistent with the underlying requirement of perturbation theory.
The system of two entangled OQS is represented by the following Hamiltonian:

HT = HS ⊗ IB + IS ⊗HB +HI , (1)

where HT is the total Hamiltonian of the entire configuration of system and bath. HS , HB, HI
represent the system, bath and interaction Hamiltonian respectively. Also, IS and IB represent
identity operators of the system and bath respectively and it is used to describe the absence
of system and bath during the quantification of the Hamiltonian of the bath and system solely
generated from the self interactions. The parameter t appearing in this context is the confor-
mal time and is given by t =

�p

1− r2/ζ2
�

t ′, where ζ=
p

3/Λ, Λ> 0 for 3+ 1 dimensional
static de Sitter space and t ′ is the physical time2.

The system of two entangled qubits is described by the linear combinations of the con-
tributions coming from the individual qubit and is described by the following Hamiltonian:

HS =
ω

2

2
∑

α=1

n̂α · ~σα, (2)

where ω represents the renormalized energy level for two atoms, given by:

ω=

�

ω0 + i[K(11)(−ω0)−K(11)(ω0)] Atom 1

ω0 + i[K(22)(−ω0)−K(22)(ω0)] Atom 2
. (3)

In this construction, ω, ω0 and the factor k which is appearing in the Fourier transform of
the Wightman functions (see appendix) all are taken real to perform the Fisher Information
analysis in this paper and this is necessarily required to suffice the present purpose. In this
connection additionally it is important to note that, we have used kω � 1 in the Fourier
transform of the Wightman functions which we have used during our analysis. Also, Kαα(±ω0)
for α ∈ {1, 2} are Hilbert transformations of two-point Wightmann functions which after the
detailed computations will turn out to be imaginary and the whole combination stated in

2This is atypical because in literature use τ as the conformal time and t as the physical time.
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equation 3 ultimately makes the renormalized frequency ω real as we have previously stated
ω0 is also real strictly 3. n̂α represents the arbitrary orientation of the individual qubit and ~σ
is represented by the three basis vectors ~σ := (σ+,σ−,σ3) where σ± is defined as:

σ± :=
1
p

2
(σ1 ±σ2), (4)

where (σ1,σ2,σ3) are the Pauli matrices. Since we are considering a new transformed basis
to represent the Pauli matrix vector, we will carry forward this convention for the rest of the
computation of this paper. 4.

The massless free rescaled field Φ acting as the thermal bath is described by the following
Hamiltonian:

HB =

∫ ∞

0

dr

∫ π

0

dθ

∫ 2π

0

dφ

�

Π2
Φ

2
+χ(r,θ ,φ)

�

, (5)

where we define the function, χ(r,θ ,φ), as:

χ(r,θ ,φ) =
r2 sin2 θ

2







r2(∂rΦ)
2 +
(∂θΦ)2 +

(∂φΦ)2

sin2θ

(1− r2

α2 )







. (6)

Here ΠΦ is the canonically conjugate momenta of the field Φ.
The Hamiltonian of the interaction part between the entangled two qubit system and the

massless scalar field Φ placed at the thermal environment is characterized by:

HI(t) = µ
2
∑

α=1

ω

2
(n̂α · ~σα)

︸ ︷︷ ︸

Individual Qubit System

Φ(xα)
︸ ︷︷ ︸

Bath

︸ ︷︷ ︸

System−Bath interaction via qubit index α

. (7)

Here we assume that the interaction strength µ to be very small so that the perturbation tech-
niques can be used. Also it is important to mention that, since we are considering identical
qubits for this analysis, it is expected to have same coupling strengths for each of them with
the massless probe scalar field Φ. For the more complicated situation one may consider, dif-
ferent coupling strengths, however in this work we have not considered such possibilities for
the sake of simplicity.

The non-unitary time evolution of such an OQS is governed by the folowing GSKL master
equation:

d
d t
ρS(t) = −i[He f f (t),ρS(t)] +L[ρS(t)], (8)

where ρS(t) = TrBρT (t) is the reduced density matrix of the system with ρT being the total
density matrix of the entire configuration. Here TrB is the partial trace operation over the bath

3It is important to note that, in our previous work [4], we have used an additional condition coth(πkω0) = 0
to simplify the expressions for the derived expressions for the spectral shifts. This condition we have not strictly
used in this paper to perform the Fisher Information analysis using the density matrix, as the present analysis can
only be performed in presence of all real parameters.

4The new basis of the Pauli matrix vector resembles the light cone gauge which is commonly used in the context
of gauge theories and is used to remove the ambiguities appearing from the gauge symmetries. The only difference
is, in this kind of gauge choice, either the + or the − component is fixed to be zero and treated as the gauge
condition. But in the present context we are not using the basis transformation like the light cone gauge. So the
basis transformation in the present context can be treated as the extension of the light cone (or null) coordinate
transformation using which one can transform the Pauli matrix vector in a new redefined basis, which simplifies
further computations. Additionally, it is important to point here that, after introducing this new basis all the
physical observables computed from the present open quantum system set up will remain unchanged, only it will
help us to perform the computations in a simpler way.
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degrees of freedom. This is nothing but applying the path integral operation over the massless
bath field Φ when we represent everything in the language of constructing an effective action
for the two qubit system.

He f f is the effective Hamiltonian of the two atomic system, which incorporates the effect
of inter atomic interaction aka Resonant Casimir Polder Interaction(RCPI). Also, the last term
in the above mentioned evolution equation is known as the Lindbladian, which describes the
dissipative contribution due to the influence of the thermal bath on the two entangled atomic
system. In the appendix, we discuss about the effective Hamiltonian and the Lindbadian with
greater detail.

To have a better understanding of the system and to estimate the parameters, we must
solve the GSKL Master Equation. For this purpose, we parametrize our arbitrary two qubit
subsystem density matrix in terms of Pauli matrices by the following expression:

ρS(t) =
1
4

∑

p,q=0,+,−,3

apq(t) σp ⊗σq, (9)

where the time dependent expansion coefficients are fixed from the solution of the GSKL mas-
ter equation subject to the boundary condition applicable at the large time limiting situation
which corresponds to the thermal equilibrium.

For the sake of convenience, we have used σ+,σ− and σ3 along with σ0 (identity) to
express the density matrix in terms of Bloch vector components. In terms of the Bloch vector
representation, density matrices of two qubits are represented by:

Qubit 1 :

ρ1(t) :=
1
2
(1+A(t).σ) = 1

2

 

1+
∑

i=+,−,3

Ai(t)σi

!

, (10)

Qubit 2 :

ρ2(t) :=
1
2
(1+B(t).σ) = 1

2

 

1+
∑

j=+,−,3

B j(t)σ j

!

. (11)

Consequently, for the combined two qubit system the density matrix is represented by the
following expression:

ρS(t) = ρ1(t1)⊗ρ2(t2) =
1
4

∑

i, j=0,+,−,3

ai j(t) σi ⊗σ j , (12)

where we define:

a00(t) : = 1, (13)

ai0(t) : = Ai(t), (14)

a0i(t) : = Bi(t), (15)

ai j(t) : = Ai(t)B j(t). (16)

In ref. [4], the authors have also considered a similar two qubit system which is interacting
with the free massless scalar field acting as the thermal bath. To describe the system, the
authors have used a similar Bloch vector representation as given in equation 9. Substituting
equation 9 in the GSKL master equation, the time dependence of the Bloch vectors and hence,
the time dependence of the sub system density matrix can be calculated. The soultions to
Master equation are provided in [4]. In this paper, we use these solutions to estimate some of
the essential physical parameters that plays an essential role in studying the out-of-equilibrium
as well as the equilibrium properties of such an entangled sub system in OQS.
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3 Quantum Fisher Information (QFI)

One can argue that precision measurement forms a roadmap to better technologies and new
physical phenomena. It is possible to model a physical system in terms of parameters that can
be estimated to extract information about the relevant physical system. Fisher Information(FI)
forms the crux of Metrology, be it classical or quantum mechanical in nature. In this section
we succinctly give a brief review of Quantum Fisher Information(QFI).

Fisher Information measures the changes in states of a physical system with respect to a
parameter or a family of parameters i.e. a parameter vector. For classical statistical systems, the
states are represented as probability distributions whereas in quantum mechanical systems the
states are characterized as density matrices. The connection between FI modelled through a
parameter (or estimator) and the variance of that estimator is established through the Cramér-
Rao Bound as an inequality which limits the precision of measurement, thereby making FI a
cornerstone in the study of Quantum Metrology.

In the following section, we provide a brief review on Quantum Fisher Information (QFI)
and defer the interested readers to more careful and extensive studies. Quantum Fisher In-
formation Matrix (QFIM) plays a pivotal role in Quantum Information Theory and Quantum
Metrology by improving the accuracy of parameter estimation especially of those parameters
which are difficult to measure in principle or lie beyond experimental capability. The precision
of determining a parameter is given by QFI; larger the QFI, higher the precision. We will use
QFI as an estimator of parameters involved in the dynamics of the evolution of the system. Be-
low we arrive at a formula for QFI(M) that we are going to use in estimating the parameters
in our theory.

Let ~ξ be the parameter encoded in a quantum state, in other words our density matrix is a
function of ~ξ i.e ρ = ρ(~ξ). Then QFIM is defined as:

Fab =
1
2

Tr(ρ{La, Lb}), (17)

where La denotes the symmetric logarithmic derivative (SLD) of the parameter ξa as follows:

∂aρ =
1
2
(ρLa + Laρ), (18)

with ∂a ≡
∂
∂ ξa denoting the partial differentiation with respect to the desired parameter (here,

ξa). In this context, Fab forms a matrix called Quantum Fisher Information Matrix (QFIM)
and the diagonal elements of this matrix are our so called, Quantum Fisher Information (QFI).

The diagonal elements for the matrix 17 are given as:

Faa = Tr(ρL2
a). (19)

The parameters can be encoded to a quantum state mainly through the dynamics. Sometimes
the parameter is encoded in the Hamiltonian of the system itself and sometimes it may be
encoded through the interaction with the surrounding and sometimes through both. In this
paper, we only consider the latter where the parameter arises because of the interaction of
system with the bath.

Typical derivations of QFIM assume a full-ranked density matrix i.e. all the eigenvalues of
the density matrix are positive. This special type of density matrix can be written as:

ρ =
D−1
∑

i=0

λi |λi〉 〈λi| , (20)

where the eigenvalues λi > 0 and |λi〉 are the corresponding eigenvectors. D is the dimension
of ρ.
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After substituting the spectral decomposition of the density matrix into equation 17 and
18 and using the completeness property which is given by:

1=
D−1
∑

i=0

|λi〉 〈λi| , (21)

the QFIM for such a full rank density matrix can be obtained as follows:

Fab =
D−1
∑

i, j=0

2ℜ(〈λi|∂aρ
�

�λ j

� 


λ j

�

�∂bρ |λi〉)
λi +λ j

, (22)

where ℜ denotes the Real part of a complex number. The Support of a finite dimensional
density matrix can be given as:

S = {λi ∈ {λi}|λi 6= 0}.

In this case, the spectral decomposition of density matrix is given as

ρ =
∑

λi∈S

λi |λi〉 〈λi| .

For this case, the QFIM is given by the following expression:

Fab =
∑

λi∈S

(∂aλi)(∂bλi)
λi

+
∑

λi∈S

4λiℜ(〈∂aλi|∂bλi〉) −
∑

λi ,λ j∈S

8λiλ j

λi +λ j
ℜ(



∂aλi|λ j

� 


λ j|∂bλi

�

),

(23)
and hence the QFI can be expressed as:

Faa =
∑

λi∈S

(∂aλi)2

λi
+
∑

λi∈S

4λi〈∂aλi|∂aλi〉 −
∑

λi ,λ j∈S

8λiλ j

λi +λ j
(
�

�




∂aλi|λ j

��

�

2
). (24)

Therefore, the expression of Fisher Information, FI , can be rewritten with re-identification
of terms as

FI = Fc +Fq −Fm, (25)

where Fc and Fq respectively represent the classical and quantum part of the Fisher Infor-
mation of all pure states. The third term Fm usually arises from the mixture of the first two
terms.Explicitly these contributions are written as:

Fc =
D−1
∑

i=1

1
λi

�

∂ λi

∂ xa

�2

, (26)

Fq = 4
D−1
∑

i=1

λi

�

­

∂ λi

∂ xa

�

�

�

�

∂ λi

∂ xa

·

−
�

�

�

�

­

λi

�

�

�

�

∂ λi

∂ xa

·

�

�

�

�

2
�

, (27)

Fm = 8
D−1
∑

i 6= j

λiλ j

λi +λ j

�

�

�

�

­

λi

�

�

�

�

∂ λi

∂ xa

·

�

�

�

�

2

. (28)

Hence, for a pure state we only have the first two terms of the Fisher Information while for a
mixed state the third term needs to be subtracted. From the above argument it is clear that
the Fisher Information of a pure state is generally greater than that of a mixed state.
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3.1 Bloch Vector Representation Of Fisher Information

In this section we provide a general expression for the eigenvalues and eigenvectors of the
density matrix for any arbitrary two qubit system expressed in σ+,σ−,σ3. The significance of
calculating the eigenvalues and eigenvectors lies in parameter estimation using Fisher Infor-
mation, where the derivatives of the eigenvalues and the eigenvectors are taken with respect
to the parameter to be estimated. The eigenvalues of the density matrix in terms of the Bloch
vectors can be written as

λ1 =
1
4
(1− a33(t)−X (t)) , λ3 =

1
4
(1+ a33(t)−Y(t)) ,

λ2 =
1
4
(1− a33(t) +X (t)) , λ4 =

1
4
(1+ a33(t) +Y(t)) .

(29)

Similarly, the eigenvectors in terms of the Bloch vector components can be written as

|λ1〉=
�

0,−
p

a+−(t)
p

a−+(t)
, 1, 0

�

, |λ3〉=
�

2a03(t)−Y(t)
a−−(t)

, 0, 0, 1
�

,

|λ2〉=
�

0,

p

a+−(t)
p

a−+(t)
, 1, 0

�

, |λ4〉=
�

2a03(t) +Y(t)
a−−(t)

, 0, 0, 1
�

,

(30)

where X (t) and Y(t) represented by:

X (t) :=
Æ

a−+(t)a+−(t), (31)

Y(t) :=
q

4a2
03(t) + a−−(t)a++(t). (32)

4 Estimation of Parameters

Estimation of a parameter is associated with it’s (C/Q) Fisher Information and the quality of
estimation is established through the (C/Q)Cramér-Rao Bound. To estimate a parameter inde-
pendently of other parameters we need to obtain the corresponding diagonal element of Quan-
tum Fisher Information Matrix (QFIM) which consists of three terms : Fc ,Fq,Fm as discussed
in the preceding section. This involves taking derivatives of the eigenvalues & eigenvectors of
the density matrix with respect to the parameter of our interest.

In this paper we have mainly focused on estimating parameters, which are the most sig-
nificant ones in characterizing the non equilibrium behavior of the system in the presence of a
bath. We also take into account the parameter which determines the degree of entanglement
between the two qubits constituting our system. The influence of the bath on the evolution of
the system is also a significant consideration in any phenomenological study of an open quan-
tum model. For that purpose we have also taken into account the parameter which determines
the magnitude of the influence that the system has on the environment.

4.1 Estimation of Timescale

This section primarily focuses on estimating the time scale at which non equilibrium behaviour
starts appearing in the system and the time scale at which the system thermally equilibrates
with the bath. In any open quantum system model, non equilibrium behaviour of the system
is inevitable. So it becomes very crucial to have an estimation of the time at which the system
goes out of equilibrium and the time at which it finally equilibrates. This indirect way of
estimation can prove to be very useful if one wants to perform an experiment to study the non
equilibrium as well as the equilibrium behaviour of such an open quantum system separately.
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Figure 1: Studying behavior of CFI with changing timescale (t). To study the de-
pendence on timescale independently we have fixed : {µ=0.001, k=0.001, ω=1,
ω0 =

i
0.002 , L=1, τ= 100}. Relevant points are marked on the plot.

In Fig.1 we have studied the variation of Classical Fisher Information (CFI) with varying
time scale. According to Cramér-Rao Bound the CFI for a parameter is inversely proportional
to the variance of that parameter. This allows us to check the maximum value of CFI and select
the corresponding time scale as the best estimated time scale by our analysis which turns out
to be of the order 10−2 in our case.

We observe that the CFI remains constant up to t = 10−2 and then there is an exponential
decrease in it until around t = 10 after which is becomes comparatively vanishing. In physical
terms this means that,
for our specific model, the two qubits do not start interacting with the background field until
about t = 10−2 after which they undergo non-equilibrium evolution under interaction with the
background field until around t = 10 after which the two qubits attain equilibrium with the
background field. The dynamics between t = 10−2 and t = 10 is described according to the
principles of open quantum systems applied to a cosmological background in de Sitter Space,
i.e., Open Quantum Cosmology. This has allowed us to determine the time scales involved in
the model and establish the contrast between equilibrium regime and non-equilibrium regime
which enables one to do many interesting studies in the non-equilibrium regime. It is to be
noted that after t = 10 we cannot extract any information out of this system as the CFI becomes
comparatively negligible. This posits that to extract useful information out of this system one
needs to do all the analysis and experiments in the region 0.01≤ t ≤ 10 and that this is the
region in which information is lost due to interaction with the background field.

In Fig.2 we have studied the variation of Quantum Fisher Information (QFI) with varying
time scale. As discussed previously, we look for the value of time scale which yields the largest
value of QFI and that time scale is our best estimated time scale using QFI.

It is observed that in the range of time scale : 10−10 ≤ t ≤ 10, the behaviour of QFI is
roughly the same as that of CFI. From t = 10−10 to t = 10−2 it is almost constant with some
fluctuations and after t = 10−2 we can observe an exponential decay in the QFI as was observed
for CFI. Again, the estimated time scale when the interaction between qubits and environment
starts is around t ∼ 10−2 with non-equilibrium interaction continuing up to around t = 10. It
is after this region that QFI shows interesting and different behaviour from CFI. Whereas CFI
continues to be negligible we get a prominent peak in QFI at t = 70.11 which is the unique
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Figure 2: Studying behavior of QFI with varying timescale (t). To study the de-
pendence on timescale independently we have fixed : {µ=0.001, k=0.001, ω=1,
ω0 =

i
0.002 , L=1, τ= 100}. Relevant points are marked on the plot.
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Figure 3: Comparative study of CFI and QFI with changing timescale (t). To study
the dependence on timescale independently we have fixed : {µ=0.001, k=0.001,
ω=1, ω0 =

i
0.002 , L=1, τ= 100}

feature present in QFI. This demonstrates that one must use QFI to estimate time scale instead
of CFI. Even though their prediction for the non-equilibrium interaction time scales are roughly
same, CFI fails to capture the “revival" of information that QFI shows at t = 70.11. It is to be
noted that the order of magnitude of CFI and QFI is roughly the same up to around t = 10
which means that one can use either CFI or QFI for studying time scales in this region but
above this region one must rely exclusively on QFI to obtain all the interesting physics.

Finally, to highlight the contrast between CFI and QFI for time scale we have shown a
comparative study between them in Fig.3. It is observed that until about t = 40, CFI and QFI
have the same behavior and then they draw apart. While CFI quickly goes to equilibrium
values the QFI rises to give a peak at t = 70.11 which indicates that there is a “revival" of the
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information profile and that non-equilibrium phenomena can be detected in the approximate
range of : 67≤ t ≤ 73. This provides an interesting and new avenue for the study of non-
equilibrium phenomena which is specific to studies which consider QFI.

This motivates one to study for late time non-equilibrium phenomena in entangled systems
in cosmological deSitter background where the non-equilibrium phenomena in the late time
regime are appearing due to the entanglement generated between system and environment at
early times. We provide a detailed physical analysis of this interesting feature as follows.

In Quantum Mechanics, one of the important aspects is to generate long range quantum
correlation functions at the late time scale but it is extremely complicated to generate these
kinds of correlations in the late time scale regime. The necessary ingredient to have such kind
of correlations in Quantum Mechanics is the phenomenon of Quantum Entanglement. But
using the usual Quantum Entanglement set up within the framework of Quantum Mechanics
it is impossible to generate long range correlations at late time scale.

The only way to achieve the same is to encode non-locality in the correlations in the early
time scale, which can be established through Bell’s Inequality violation. In our earlier work
[46, 47], we have established how one can violate Bell’s inequality within the framework of
Quantum Mechanics.

So, one can interpret the “revival" in the QFI at late time scale quantum correlations which
are appearing as an outcome of non-local initial entanglement in the early time scale. On the
other hand, this type of revival also gives information about the out-of-equilibrium phenomena
at the late time scale so within our set up the non-locality in the initial correlation is actually
connected to the out of equilibrium feature at the late time scale. Additionally, it is important
to note that, though it is true that the revival of out-of-equilibrium profile is coming from
the time evolution of the initial non-local quantum entanglement we don’t exactly know the
dynamical equation that is satisfied by the information from early time scale to the late time
scale. But the important thing is that these results allow one to confidently state the existence
of long range out-of-equilibrium phenomena at the late time scale which trace their origins
to the non local Bell’s Inequality violation in early time scale i.e. one can actually establish a
connection between non-local quantum entanglement phenomena at the early time scale with the
long range out of equilibrium phenomena at late time scale.

Additionally, we can extend this analysis further in a very interesting direction. Note that
when we provide an initial condition at very early time scale the system goes to a out-of-
equilibrium phase but to get information about this random phase one needs to explicitly
compute the quantum correlation functions, but by itself the computation of these functions
are extremely complicated to perform in the quantum regime. In ref. [48], using the principles
of Random Matrix Theory the authors have given an explicit computation of these quantum
correlation function in the framework of cosmology. Recently in ref. [12], one of the authors
tried to give more elegant method of this computation in terms of computing out-of-time-
ordered correlation functions within the framework of primordial cosmology. In this context
if we wait for a large enough time then the quantum system under consideration equilibriates
and we get an estimation of the corresponding equilibrium temperature associated with the
thermal bath, which we have actually modelled with massless free scalar field in OQS. So it is
expected from our analysis that when the system reaches the thermal equilibrium then from
the saturation limiting value of the quantum correlation function one can quantify the upper
bound on a measure of quantum randomness, which these days is identified as the quantum
Lyapunov exponent, λ, which is the quantum generalization of the classical Lyapunov exponent
appearing in the classical chaotic dynamical systems. For this reason if we look into the com-
plete picture of the spectrum starting from the initial point when the system is perturbed upto
the point when the system gets saturated in terms of quantum correlations, the four point
functions, 〈Φ(t1)ΠΦ(t2)Φ(t1)ΠΦ(t2)〉β ∼ F(t1− t2) eλ(t1+t2)/2 growth factor, where λ≤ 2π/β
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Figure 4: Behavior of CFI with varying Euclidean Distance(L) between the qubits
evaluated at : {µ=0.001, k=0.001, ω=1, ω0 =

i
0.002 , t=1, τ = 100}. Relevant

points are marked in the plot.

is commonly known as Maldacena-Shenker-Stanford bound [49], here β = 1/T with T being
the equilibrium temperature of the thermal bath and 〈·〉β represents the thermal expectation
value. On the other hand, from the other two quantum correlators, 〈Φ(t1)Φ(t2)Φ(t1)Φ(t2)〉β
and 〈ΠΦ(t1)ΠΦ(t2)ΠΦ(t1)ΠΦ(t2)〉β one can study the random but non-chaotic behaviour of
correlation functions.

4.2 Estimation of Euclidean Distance

In this section we try to provide an estimation of the distance between two qubits in the static
patch of De-sitter space using both classical and quantum Fisher Information. We provide
reasons why Quantum Fisher Information is a better measure for estimating any parameter
than Classical Fisher Information. This analysis is essential to have a pre-determined idea that
an experimentalist, preparing a set up to study entanglement related phenomenon, should
have.

In Fig.(4), we have explicitly shown the behavior of Classical Fisher information of our two
atomic open quantum system in static patch of de-Sitter space with respect to the euclidean
distance between the two qubits. In this analysis we have fixed the value of the other parame-
ters. From the plot it can be seen that the Classical Fisher Information predicts some particular
values of the euclidean distance where entanglement between the qubits will be most promi-
nent. This can be seen from the peaks of the plots. However for a particular value of euclidean
distance(for these set of parameter values),around 4.37 the maximum of the plot occurs sug-
gesting it to be the most appropriate euclidean distance to study various entanglement process
like entropies etc. Thus Classical Fisher Information estimates the euclidean distance between
the qubits to be around 4.37 up to certain order of accuracy for these particular choice of other
parameter values. In Fig.(5), we have explicitly shown the behaviour of Quantum Fisher in-
formation of our two qubit open quantum system in static patch of De-Sitter space with respect
to the euclidean distance between the two qubits. The plot shows a peak around 4 which is
very close to the estimated value from the Classical Fisher Information. However Quantum
Fisher Information shows peaks for larger values of euclidean distance which could not be
probed by Classical Fisher Information. The maximum of the plot shows that QFI predicts a
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Figure 6: Comparative study of CFI and QFI with varying Euclidean Distance (L)
between the two qubits at : {µ=0.001, k=0.001, ω=1, ω0 =

i
0.002 , t=1, τ= 100}

distance of about 9.25 between the two qubits as the most appropriate one for studying en-
tanglement related phenomenon between the two qubits. Thus Quantum Fisher Information
estimates the euclidean distance between the qubits to be around 9.25 up to certain order of
accuracy for these particular choice of other parameter values.

In Fig.(6), we have done a comparison between the QFI and CFI to provide a justification
of the fact that QFI is a better way of estimating a parameter characterizing the system than
CFI. From the plot it can be seen that QFI provides a better estimation up to 8 orders than CFI
in our case for estimating the euclidean distance between the two qubits.
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ω0 =
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0.002 , L=1, t=1, τ= 100}. Relevant points are marked in the plot.

4.3 Estimation of Coupling Strength

The prime objective of here is to estimate the parameter which determines the degree of influ-
ence that the environment has on the system. For an open quantum system, the influence of
the surroundings on the system can never be neglected. No matter how small the interaction
is, it has a significant impact on the time dynamics of the system. The essentiality of this pa-
rameter can be understood when one tries to quantify the interaction between the system and
the surroundings. This analysis provides estimation of the interaction beyond which it cannot
be considered weak and perturbative analysis no longer holds.

In Fig.(7), we have tried to estimate the coupling strength of interaction between our
model system and the de-Sitter bath from Classical Fisher Information. From the graph it is
very clear that we have obtained peaks for coupling strength parameter less than one, as it
should be since we have assumed the weak interaction for Markovian process. The coupling
strength less than one means system and bath are weakly coupled and perturbation theory
can be applied. From the plot, it is clear that we have a prominent peak at 0.00147 and some
other small peaks before 0.002. It is clear that since 0.002<< 1, the perturbation method can
be implemented.

In Fig.(8), we plot QFI against interaction strength. It can be seen that we have obtained
peaks over a greater range i.e. from 0 to 0.06 of interaction strength. Beyond that we have
(almost) no peaks. Beyond establishing the conclusion from the previous graph that our es-
timated interaction strength has to be small, we observe that QFI is a better estimator of a
parameter (here interaction strength) than it’s classical counterpart as it provides a wider
range for estimation.

The third plot, Fig.(9), is a logarithmic plot in which we plot both CFI and QFI to grasp a
better clarity. Both QFI and CFI vary between their maximum value and minimum value. Here
also, we can see that QFI is a better estimator than CFI since the range between maximum and
minimum for QFI is considerably more than that of CFI. The maximum (and the minimum
value) fluctuates highly, but its average value keeps on decreasing gradually with increase in
interaction strength. With careful observation it can be noted that the range between maxi-
mum and minimum is larger at interaction strength close to zero than the interaction strength
close to 1. The wider range near the start gives us a higher chance to obtain a weak cou-
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Figure 9: Comparative study between CFI and QFI with changing coupling strength
(µ) at : {k=0.001, ω=1, ω0 =

i
0.002 , L=1, t=1, τ= 100}

pling strength, again proving our assumption right that our interaction strength should be
very small.

5 Conclusion

In this paper, we investigated Quantum Metrological ideas and techniques in the context of
Cosmological background through a simple model. We have used the Fisher Information,
both classical and quantum, to estimate certain parameters viz. Time scale, Euclidean Distance
and Interaction Strength between the system and the ambient space-time.

For time scale estimation, we observed that even though CFI and QFI provide more or
less same features in early time scale, QFI gives more information about the system in late

16

https://scipost.org
https://scipost.org/SciPostPhysCore.4.1.006


SciPost Phys. Core 4, 006 (2021)

CFI QFI

It is a measure of how quickly
a probability distribution
changes with parameters.

It represents how quickly
a quantum state changes
w.r.to some parameters.

λi plays the role of probability.
These can be thought as the

eigen values of the density matrix.

|λi〉 here represents a state.
Eigen vector information

is also needed.

This can be interpreted as
the classical corelation.

This can be interpreted as
the quantum entanglement
since

�

�




∂aλi|λ j

��

� illustrates
the quantum coherence

between the eigenvectors
of the density matrix.

For our model, we do not see
any revival of out of

equilibrium features using CFI.

In this case, we obtain
a revival of out-of-equilibrium

feature at late time scale
using QFI.

CFI cannot measure the Euclidean
distance and the interaction
strength as precisely as QFI

QFI estimates the Euclidean
distance and interaction strength
to a greater order of precision.

time scales. QFI provides evidence of late time non-equilibrium phenomena being present, for
a short period, through a revival mechanism after an initial equilibrium phase between the
system and the bath.

By estimating Euclidean distance, we observed that for our model QFI provides a better
accuracy than CFI as the peak for QFI occurs at a larger order of magnitude than the CFI. In
our case we can say that the entanglement between two spins becomes maximum when the
QFI peaks to highest value for the particular value of Euclidean distance.

From our analysis, we found that the interaction strength is estimated to be very less com-
pared to 1 and hence our assumption about weak interaction between system and the bath is
justified and the use of perturbative methods permitted.

Following the analysis, we have observed that QFI not only estimates parameters to a better
accuracy it does so with a better precision as well. Hence, QFI is indeed a superior parameter
estimator than CFI.

Here we present few subtle differences between classical and quantum Fisher information.
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Appendix

Construction of Effective Hamiltonian and Lindbladian

In the GSKL Master equation we encountered two important terms that involved Effective
Hamiltonian and Lindbladian. Here, we express these two terms with some details to help
readers. Detailed description of this can be found in [4,5].

The first term in the right hand side of the master equation is governed by constructing the
effective Hamiltonian, which describes the unitary part of the time evolution of the two qubit
system along with the quadratic interaction between the two qubits after integrating out the
contribution from the bath modes. It is given by the following expression.

He f f = HS +HLS =
ω

2

2
∑

α=1

nα ·σα −
i
2

2
∑

α=1

∑

i, j=+,−,3

Hαβi j (n
α
i ·σ

α
i )(n

α
j ·σ

α
j ). (33)

Each of the entries of Hαβi j are computed from the thermal ensemble average of the two-point
correlation functions of the massless scalar field Φ placed at two different coordinate position
of the individual qubit and HLS appears from the interaction between atomic system and the
environment and is commonly identified as the Lamb Shift Hamiltonian, which is frequently
used to determine the curvature of the static patch of De Sitter space from the spectroscopic
shifts obtained from the four possible entangled quantum states i.e. ground, excited, symmet-
ric and anti-symmetric states of the two qubit system. For two qubit system the Wightman
function basically appears as a (2× 2) matrix, where the diagonal components are same and
physically represent the two-point thermal auto correlation function. On the other hand, the
off-diagonal components are symmetric under the exchange of the qubit index and give rise to
the same expression for the two-point thermal cross correlation functions. Now to explicitly
compute these expression one needs to compute the average of the thermal ensemble. But we
all know that this operation can be performed by computing the trace operation in presence
of a thermal Boltzmann factor, exp(−βHB), where β = 1/T (in Boltzmann constant, kB = 1
natural unit) in which T represents the equilibrium temperature of the thermal bath. T is
characterized by the expression, T = 1/2πk, where k is a length scale of the theory, which is
proportional to the inverse of the square root of the 3+1 dimensional Cosmological Constant
of the static patch of de Sitter space. Here HB is the bath Hamiltonian. But we all know that
performing such thermal trace operation is not allowed in the context of the static patch of de
Sitter space as the discrete eigenstate representation of the trace operation do not exist. The
prime reason is one cannot treat the present cosmological set up as a fully quantum mechanical
experiment which can be performed many times and as a result one cannot write the outcomes
in terms of the energy eigenvalues for the present cosmological set up. For this reason we need
to extend the thermal trace operation in the finite temperature quantum field theory set up in
which by making use the basic principles of the well known Schwinger-Keldysh Path Integral
formalism one can explicitly compute the expressions for the auto and cross correlation func-
tions in the present context. Additionally, it is important to mention here that, the effective
strength of the two qubit quadratic interaction is characterized by the quantity, Hαβi j , which
can be obtained by performing the Hilbert transformation of the Fourier transformed Wightman
function. In the context of two qubit system the effective interaction strength of the quadratic
interaction is characterized by the following expression:

H(αβ)i j =

�

Mαα
1 (δi j −δ3iδ3 j)− iN αα

1 εi jkδ3k, α= β
Mαβ

2 (δi j −δ3iδ3 j)− iN αβ
2 εi jkδ3k. α 6= β

, (34)
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with i, j = +,−, 3; Hαβi j = Hβαi j and we also define:

Mαα
1 =

µ2

4

�

∆(αα)(ω0) +∆
(αα)(−ω0)

�

≈ 0, (35)

N αα
1 =

µ2

4

�

∆(αα)(ω0)−∆(αα)(−ω0)
�

≈ 0, (36)

Mαβ
2 =

µ2

4

�

∆(αβ)(ω0) +∆
(αβ)(−ω0)

�

=
πω0

2
Z(ω0, L/2), (37)

N αβ
2 =

µ2

4

�

∆(αβ)(ω0)−∆(αβ)(−ω0)
�

≈ 0, (38)

where Z(ω0, L/2) is defined later. Here ∆αβ(±ω0)∀(α,β = 1, 2) represent the Hilbert trans-
formation of the Wightman functions which can be computed as:

∆αα(±ω0) =
P

2π2i

∫ ∞

−∞
dω

1
ω∓ω0

Gαα(ω), (39)

∆αβ(±ω0) =
P

2π2i

∫ ∞

−∞
dω

1
ω∓ω0

Gαβ(ω), (40)

where Gαα(ω) and Gαβ(ω) represent the Fourier transform of all the components of Wightman
function, which are defined as:

Gαα(ω) =
∫ ∞

−∞
dT eiωT Gαα(T ) = ω

(1− e−2πkω)
, (41)

Gαβ(ω) =
∫ ∞

−∞
dT eiωT Gαβ(T ) = ωW(ω, L/2)

(1− e−2πkω)
. (42)

Here, the components of the Wightman functions, Gαα(T ) and Gαβ(T ) represent the two-point
auto and cross correlation functions respectively. Here T := τ−τ

′
represents the time interval.

Also in this context, P represents the principal part of the each integrals. For simplicity we
also define frequency and euclidean distance dependent two new functions W(ω, L/2) and
Z(ω, L/2) 5 which are given by the following expressions:

W(ω, L/2) =
sin(2kω sinh−1 (L/2k))

Lω
Æ

1+ (L/2k)2
, (43)

W2(ω, L/2) +Z2(ω, L/2) =
�

Lω
q

1+ (L/2k)2
�−2

. (44)

The second term in the master equation is the source of quantum mechanical dissipation
and describes processes like transition, dissipation and decoherence of the qubit system due to
the presence of an external field, which here is the massless probe scalar field Φ placed at the
thermal bath. It is commonly known as the Lindbladian operator in the context of OQS and is
given by the following expression:

L[ρS(t)] =
1
2

2
∑

α=1

∑

i, j=+,−,3

Cαβi j [2(n
β
i .σβi )ρS(n

α
i .σαi )− {(n

α
j .σαj )(n

β
j .σβj ),ρS}], (45)

5Here we have introduced two length scales, which are give by, the Euclidean distance scale, L = 2r sin(∆θ/2),
where ∆θ and r represent the angular separation and the radial distance of the two static qubits and the length
scale which is associated with the inverse of the Cosmological Constant, k =

p

ζ2 − r2 =
p

3/Λ − r2 is directly
related to the 3+ 1 dimension Cosmological Constant in the static patch of De Sitter space.
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where {, } represents the anti-commutation operation between two qubit matrices in the new
transformed basis. The explicit mathematical form of this Lindbladian operator appearing here
is unique in the context of two qubit system. Here, the strength of the quantum dissipation
mechanism is characterized by, Cαβi j , which can be expressed in terms of the Fourier transforma-
tion of the individual components of the Wightman function. In the context of two qubit system
the effective interaction strength of the quantum dissipation mechanism is characterized by
the following expression:

C (αβ)i j =

(

àMαα
1 (δi j −δ3iδ3 j)− ißN αα

1 εi jkδ3k, α= β
àMαβ

2 (δi j −δ3iδ3 j)− ißN αβ
2 εi jkδ3k. α 6= β

, (46)

with i, j = +,−, 3; Cαβi j = C (βα)i j and we also define:

àMαα
1 =

µ2

4

�

G(αα)(ω0) +G(αα)(−ω0)
�

=
µ2ω0

8π
coth(πkω0), (47)

ßN αα
1 =

µ2

4

�

G(αα)(ω0)− G(αα)(−ω0)
�

=
µ2ω0

8π
, (48)

àMαβ
2 =

µ2

4

�

G(αβ)(ω0) +G(αβ)(−ω0)
�

=
µ2ω0

8π
coth(πkω0)W(ω0, L/2), (49)

ßN αβ
2 =

µ2

4

�

G(αβ)(ω0)− G(αβ)(−ω0)
�

=
µ2ω0

8π
W(ω0, L/2), (50)

where Gαα(ω) and Gαβ(ω) represent the Fourier transform of the all components of Wightman
functiondefined earlier.
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