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Abstract

We use Dirac matrix representations of the Clifford algebra to build fracton models on
the lattice and their effective Chern-Simons-like theory. As an example, we build lattice
fractons in odd D spatial dimensions and their (D + 1) spacetime dimensional effective
theory. The model possesses an anti-symmetric K matrix resembling that of hierarchical
quantum Hall states. The gauge charges are conserved in sub-dimensional manifolds
which ensures the fractonic behavior. The construction extends to any lattice fracton
model built from commuting projectors and with tensor products of spin-1/2 degrees of
freedom at the sites.
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1 Introduction

A major goal of condensed matter physics is to understand and to classify all possible phases
of matter; another one is to uncover phases outside contemporary paradigms. While these
two goals are evidently contradictory, together they move the field forward. An example of
a new class of systems whose complete understanding is still in progress is that of what is
now commonly referred to as fractons in general, or more precisely, systems with fracton
excitations. These systems have peculiar properties, including ground state degeneracies that
depend both on topology and geometry of lattice discretizations, and excitations with restricted
mobility that, in turn, make the dynamical relaxation to the ground states slow [1–5].

Recent reviews of fractons can be found in [6] and [7]. Thus far, they are classified into
two types: in Type I phases a single fracton excitation cannot move alone, but a pair can
bind into mobile dipoles; in Type II phases, all excitations are immobile [3, 5, 8, 9]. It is this
inherent immobility of isolated excitations that lead to slow dynamical behavior [1, 10, 11].
The same restricted mobility and slow dynamical relaxation of excitations might be useful for
building quantum memories [12–14]. In addition, fractons possess connections to elasticity
theory [15,16] and gravity [17].

Fracton phases were originally constructed in lattice models; while their peculiar prop-
erties might appear unnatural for continuum descriptions, the construction of effective field
theories that capture their low-energy properties is possible, as shown by Slagle and Kim [18]
in the X-cube model [5,19]. The construction of effective field theories enables much further
progress [18, 20–25]. Some features of fracton excitations are captured by the field theories
in simple ways. Restricted mobility, for example, is encoded in additional charge conserva-
tion laws along sub-dimensional manifolds, such as planes for 3-dimensional (3D)1 models,
besides the conservation of total charge in the whole volume. The conservation of charges
in planes implies that a dipole in the perpendicular direction is conserved. Hence charge
conservation in sub-manifolds is equivalent to the conservation of vector charges (dipoles), a
feature of higher-rank gauge theories [26–39], which, in general, are gapless. Nevertheless,
gapped fracton models can be obtained from higher-rank gauge theories via the Higgs mech-
anism [40, 41]. Gapped 3D fractons can also be obtained by either stacking [34, 42–47] or
glueing [48–50] known (2+ 1)-dimensional topological orders.

You et al. present a different route to a fracton field theory that is not cast as a higher-rank
gauge model. They present a Chern-Simons-like action with vector gauge fields that contains

1When referring to the dimensionality of the spacetime in this work we will use the notation (D + 1), with D
the number of spatial components and the +1 refers to the time direction.
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the sub-manifold conservation laws, hence also conserving dipoles. Their theory is gapped,
and it can be discretized to a lattice to arrive at the Chamon model of Ref. [1]. The connection
to Chern-Simons-like theories is appealing in that one would hope they can be generalized to
describe classes of gapped fractons, much like Chern-Simons theories can describe classes of
quantum Hall states [51].

In this work, we construct families of Chern-Simons-like theories of gapped fractons. These
theories have multiple gauge charges, and are described by an anti-symmetric K matrix and
associated charge vectors. We arrive at these theories starting from microscopic lattice models,
where we place a number n of spin-1/2 degrees of freedom (or qubits) at the sites. Such
starting point is rather generic, and encompasses models such as the Chamon and Haah codes.
Instead of tensor products of Pauli operators, we use the Dirac representation of the Clifford
algebra to describe the site degrees of freedom. We show that the Dirac representation with
2n-dimensional matrices is a natural mathematical framework to build the lattice models, and
makes the connection to the field theory, a bosonization of sorts, rather simple. In the lattice
theory, the fracton nature of the models are simple consequences of the lattice connectivity and
the Clifford algebra, for example the immobility of single defects. In the continuum theory,
these properties translate into charge conservation laws in sub-manifolds.

For the sake of giving a concrete but yet general example of the construction of these
Clifford fractons, we build fracton models in any odd D = 2n + 1 spatial dimensions. This
example allows one to track more easily the use of the 2n×2n anti-commuting Dirac matrices
γI with I = 1, 2, . . . , 2n + 1, where γ1 γ2 . . . γ2n+1 = in. The model of Ref. [1] corresponds
to the simplest case, with D = 3 and 2× 2 representations of the Dirac matrices. The 2n+ 1
Dirac matrices form a maximal set of anti-commuting operators, and no operator (any product
of Dirac matrices) other than the identity commutes with less than two of the γ’s; it is this
algebraic property that impedes the propagation of single fracton excitations.

We encode the anti-commutation relations of the Dirac matrices in a 2n×2n anti-symmetric
matrix K for constructing a model in the continuum. This “bosonization”-type scheme is a
generalization of that in Ref. [18]. The generic bosonic formulation in terms of K matrices
and charge vectors allows us to take a continuum limit, and arrive at a (D+1)-dimensional
Chern-Simons-like action

L=
2n
∑

a, b=1

1
2π

Kab Aa ∂0 Ab +
1
π

∑

α

Kab A(α)0 D(α)a Ab , (1)

where the differential D(α)a =
∑D

I=1 T (I ,α)a ∂ 2
I operators are tied to charge vectors T (I ,α) dic-

tated by products of Dirac matrices in the microscopic lattice theory. The lattice model also
determines the number of conserved currents that are minimally coupled to the n fields A(α)0 ,
indexed by α= 1, . . . , n. The action is invariant under the n gauge transformations

Aa→ Aa +
∑

α

D(α)a ζ(α) , (2)

A(α)0 → A(α)0 + ∂0ζ
(α) ,

if Kab D(α)a D(β)b = 0, again a condition ensured by relations between the microscopic lattice
charge vectors T (I ,α) and the K matrix. The conservation of the n currents

∂0 J (α)0 =D(α)a Ja , (3)

not only on the full volume, but also on sub-manifolds, follows from a linear dependence of
the charge vectors,

∑D
I=1 T (I ,α) = 0, which in turn affects the differential operators D(α)a .
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These fracton models have a ground state degeneracy

GSD=
�

2
D−1

2 Pf (K)
�2D−2 L

, (4)

for systems of linear size L (hypervolume LD). In the case of the “integer” fractons we con-
structed on the lattice, the K-matrix Pfaffian equals 1, and the degeneracy is 2(D−1) 2D−3 L .

The paper is organized as follows. In Sec. 2, we construct, as an example, a microscopic
Clifford fracton model in D = 2n + 1 spatial dimensions. In Sec. 3, we construct the cor-
responding effective theory in the continuum. In Sec. 4 we examine several properties of
the effective field theories. We close in Sec. 5, with a brief summary and final remarks. De-
tails of several computations as well as additional relevant discussions are presented in the
appendices.

2 Microscopic Model in Arbitrary Odd Dimensions

The 3D model of Ref. [1] uses the simplest representation of the Clifford algebra, where the
Dirac γ matrices are 2 × 2: γI = σI , I = 1,2, 3, with the σI the Pauli matrices. The corre-
sponding Hilbert space of the local degrees of freedom is 2-dimensional.

In 5D, for example, we can use the 4×4 representation of the Clifford algebra, with the 5
Dirac matrices γI , I = 1,2, 3,4, 5. (We work in Euclidean space, so we list the matrices from
1 to 4 plus the γ5.) These matrices all anti-commute, {γI ,γJ} = 2δI J , and γ1γ2γ3γ4γ5 = i2.
The local Hilbert space is 4-dimensional in this case. (This representation is obtained from
a tensor product of two sets of Pauli matrices.) In D = 2n + 1 dimensions, we work with
2n×2n representations of the Clifford algebra, i.e. the Dirac matrices γI , I = 1, . . . , D, satisfying
∏D

I=1 γ
I = in. (We build these matrices explicitly in appendix A.)

The construction of the fractons in odd-dimensional D = 2n+1 space proceeds as follows.
We start with an face-centered hypercubic lattice, that can be thought as the even sublattice
Λe of a hypercubic lattice with orthogonal basis vectors âI , I = 1, . . . , D. We place the degrees
of freedom on this even sublattice, as well as operators Γ (I ,α) with α= 1, . . . , n acting on these
degrees of freedom. The operators Γ (I ,α) are built as products of the γ-matrices (in turn built
from tensor products of Pauli matrices, see appendix A). We take Γ (I ,1) ≡ γI , which we call
principal configuration. The need for the additional Γ (I ,α) with α= 2, . . . , n comes because the
local Hilbert is 2n dimensional, and consequently n operators are necessary to gap the theory.

A generic Γ -operator can be parametrized in terms of a set of integer-valued vectors T (I ,α)a ,
a = 1, . . . , 2n, according to

Γ (I ,α) =
�

γ1
�T (I ,α)1

�

γ2
�T (I ,α)2 . . .

�

γ2n
�T (I ,α)2n . (5)

Furthermore, since (γI)2 = 1, only the values of the T -vectors mod 2 matter. For the principal
configuration we can choose, for example, the vectors

T (I ,1)a ≡ t(I)a ≡ δ
I
a, I = 1, . . . , 2n , and T (2n+1,1)

a ≡ t(2n+1)
a ≡ −

2n
∑

I=1

t(I)a . (6)

We call this choice as the canonical form. Written explicitly,
t(1) = (1,0, . . . , 0), t(2) = (0, 1, . . . , 0),. . . , t(2n) = (0, 0, . . . , 1) and t(2n+1) = (−1,−1, . . . ,−1).
The condition

∑D
I=1 t(I)a = 0 is tied to the fact that all the γI multiply to the identity (up to a

phase).
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We define O(α) operators centered on the odd sublattice Λo,

O(α)
~x ≡

D
∏

I=1

Γ
(I ,α)
~x−âI

Γ
(I ,α)
~x+âI

, α= 1, . . . ,
(D− 1)

2
. (7)

Notice that
�

O(α)
~x

�2
= 1 follows because the Γ (I ,α) are products of Dirac matrices. Using these

operators we construct the Hamiltonian

H = −
(D−1)/2
∑

α=1

�

gα
∑

~x

O(α)
~x

�

, (8)

where all coupling constants gα are chosen to be positive. We can further choose the operators
Γ (I ,α) such that

�

O(α)
~x , O(β)

~x ′

�

= 0 , ∀ α,β and ∀ ~x , ~x ′ . (9)

In this case, the Hamiltonian is a sum of commuting projectors and there are as many commut-
ing projectors (up to constraints that we shall see in a moment give a topological degeneracy)
as the number of degrees of freedom in the problem.

Figure 1: The two possibilities for distinct operators O sharing sites. The black
squares correspond to the sites of the even sublattice Λe, while black dots corre-
spond to the sites of the odd sublattice Λo. The dotted lines represent additional
dimensions.

The connection between the choice of operators Γ (I ,α) and the commutations between the
O(α)
~x stems from the geometry imprinted via the definition Eq. (7), and is depicted in Fig. 1.

The O(α)’s trivially commute both when they are defined at the same site ~x ∈ Λo or when they
do not share any sites (in Λe); there just remains two cases to be checked: when they share
one and two sites. The neighboring O(α)’s, defined at sites ~x and ~x + 2âI of Λo, share the Λe
site at ~x + âI , and they commute if

�

Γ (I ,α) , Γ (I ,β)
�

= 0 . (10)

Neighboring O(α)’s, defined at sites ~x and ~x + âI + âJ of Λo, share the two Λe sites at ~x + âI
and ~x + âJ . The operators on those sites either commute or anti-commute, which can be cast
as

Γ (I ,α) Γ (J ,β) = (−1)η
(αβ)
I J Γ (J ,β) Γ (I ,α) , (11)

with η(αβ)I J = 0 or 1. The desired commutation relations Eq. (9) are guaranteed if

η
(αβ)
I J = η(αβ)J I . (12)

In particular, the commutation (10) implies η(α,β)
I I = 0.
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All these conditions can be satisfied using Dirac matrix representations of the Clifford al-
gebra. The simplest example is the D = 3 contained in Ref. [1], where one uses the 2 × 2
representation

Γ (I ,α) I = 1 2 3
α= 1 γ1 = σ1 γ2 = σ2 γ3 = σ3 (13)

In D = 5 we use the 4-dimensional representation of the Dirac matrices and take the following
Γ (I ,α) operators:

Γ (I ,α) I = 1 2 3 4 5
α= 1 γ1 γ2 γ3 γ4 γ5

α= 2 γ3γ5 γ4γ5 γ1γ5 γ2γ5 γ5
(14)

that satisfy Eqs. (10) and (12) and hence yield the set of commuting projectors O(1)
~x and O(2)

~x ,
~x ∈ Λo. As we shall see in the next section, the field theory formulation provides a systematic
way to construct operators of the sets α≥ 2 in arbitrary odd dimensions and satisfying all the
required commutation rules.

The ground state of these models (for any D = 2n + 1) correspond to all O(α)
~x having

eigenvalue +1. Excitations or defects correspond to those operators having instead eigenvalue
−1. That these models are fractonic requires that there is not a single local operator whose net
effect is to generate a defect pair or equivalently move a single isolated defect. In D = 5, for
example, one can easily check that there is no product of Dirac operators that anti-commutes
with a single Γ (I ,α) operator for given α. The minimum number of defects that can be created
or anihilated is four, like in the D = 3 model of Ref. [1]; this number four remains the same
for any odd dimension D model. (See appendix B for details.)

A lower bound to the topological ground state degeneracy of the model can be placed by
noticing that the O(α)

~x have the property
∏

~x∈Λo,k

O(α)
~x = 1 , k = 1, . . . , 2D−1, α= 1, . . . , (D− 1)/2 , (15)

where k accounts for all the 2D−1 sub-lattices Λo,k. Eq.(15) already give us a hint of the

degeneracy of the model, which will be at least 2[(D−1) 2D−2], but it happens that this number
is a lower bound to the degeneracy and in fact, the degeneracy can also depend on the system
size, as was shown in [2]. For a hypercube of volume LD, the degeneracy dependence on the
linear size L is 2(D−1) 2D−3 L (see appendix C for details).

3 Low-Energy Effective Field Theory

In this section we shall derive an effective field theory capturing the low-energy physical prop-
erties of the lattice models given by (8). To connect the operators that act on the microscopic
degrees of freedom with the suitable operators that possess a well-defined continuum limit,
we define a map parametrized by the vectors T (I ,α)a of Eq. (5):

Γ
(I ,α)
~x ≡ exp

�

i T (I ,α)a Kab Ab(~x)
�

, (16)

where the repeated matrix indices a, b = 1, . . . , 2n are summed. We need only D − 1 = 2n
independent fields Aa to construct all the required operators. In addition, we see that this
parametrization introduces a symmetry

A→Q A, T (I ,α)→Q T (I ,α), K →
�

Q>
�−1

K Q−1 , (17)
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with Q an arbitrary matrix.
For the case of the principal configuration, where Γ (I ,1) ≡ γI and, accordingly, T (I ,1)a ≡ t(I)a ,

we have
Γ
(I ,1)
~x ≡ γI

~x ≡ exp
�

i t(I)a Kab Ab(~x)
�

. (18)

Properties of the fields Aa and of the matrix K can be obtained from the analysis of the principal
configuration. Indeed, we start by computing

γI
~x γ

J
~x ′ = exp

�

−
�

t(I)a Kab Ab(~x) , t(J)a′ Ka′b′ Ab′(~x
′)
��

γJ
~x ′ γ

I
~x , (19)

where we have used the BCH formula and assumed that the commutator appearing in this
expression is a c-number. Since γI

~x and γJ
~x ′ must commute if ~x 6= ~x ′ and anti-commute if

~x = ~x ′ and I 6= J , we impose
�

Ab (~x) , Ab′
�

~x ′
��

≡ iπ (K−1)bb′ δ~x ~x ′ , (20)

which will be interpreted as an equal-time commutation relation in a field theory formulation
with a canonical pair Aa(~x) andΠa(~x) =

1
π (K

T )ab Ab. We shall return to this point later. Using
the commutation relation (20) in (19) leads to the further following conditions to match the
anti-commutation relations among the γI

~x :

t(I)a (K
>)ab t(J)b =

¨

1 mod 2, I 6= J

0 mod 2, I = J .
(21)

The condition (21) is particular to the principal configuration, and reflects that the building
blocks of the theory are anti-commuting objects (Dirac matrices); it is not needed for the
other T -vectors with α ≥ 2, since the associated operators (products of Dirac matrices) may
either commute or anti-commute. Notice that the conditions in (21) imply that the fields are
compact, since the shifts

Ab→ Ab + 2π
D
∑

J=1

t(J)b mJ , mJ ∈ Z , (22)

do not change γI
~x because

exp

�

2iπ
D
∑

J=1

t(I)a Kab t(J)b mJ

�

= 1 . (23)

The most general solution (independent of t) for the condition in the second line of (21)
corresponds to the case where K is an anti-symmetric matrix. In writing the commutation
relation (20) we assumed that the inverse K−1 exists, which requires det K 6= 0, a condition
only possible to satisfy for even-dimensional anti-symmetric K matrices. Recall that K is a
2n× 2n= D− 1× D− 1 matrix, so the construction works for odd dimensions D.

A useful relation involving the t-vectors emerges when we consider the product of all
matrices γ in the same site. Suppressing the matrix indices for simplicity, we have

1∼ γ1γ2 · · ·γD = ei t(1) K Aei t(2) K A · · · ei t(D) K A

= exp

�

i
D
∑

I=1

t(I) K A

�

exp

�

πi
2

∑

I<J

t(I) K t(J)
�

= exp

�

i
D
∑

I=1

t(I) K A

�

exp
�

πi
2
(D− 1)D

2

�

, (24)
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where we have used (21) in the last step. In order for the right-hand side to be proportional
to the identity, we require

D
∑

I=1

t(I)a = 0 , (25)

which we refer to as the neutrality condition. Notice that this is satisfied with the choice in
(6). Moreover, we shall require the neutrality condition for all sets of operators Γ (I ,α), which
corresponds to

D
∑

I=1

T (I ,α)a = 0 . (26)

We now proceed by analyzing the field theory counterpart of the lattice operators (7).
Using the representation (16), it follows that

O(α)
~x = exp

�

i
D
∑

J=1

�

T (J ,α)
a Kab Ab(~x + âJ ) + T (J ,α)

a Kab Ab(~x − âJ )
�

�

. (27)

Given the commutation relation (20), we have to determine the conditions on T (J ,α) and K
so as to produce commuting operators O(α)

~x , i.e., so that the field theory representation on
the right-hand side reproduces the commutations in Eq. (9). As discussed in the previous
section, there are two situations where a nontrivial commutation rule may arise: when the
operators share one or two sites. When they do not share any site, the commutation is trivially
satisfied. To take into account these two situations, we just have to consider two operators
O(α)
~x at positions ~x and ~x + ~aI + ~aJ . Thus, if I = J the operators share the site ~x + ~aI and if

I 6= J they share the two sites ~x + ~aI and ~x + ~aJ . The requirement of commutation between
the operators O(α)

~x and O(β)
~x+~aI+~aJ

is

C (αβ)I J = 0 , (28)

where
C (αβ)I J ≡ T (I ,α)a Kab T (J ,β)

b + T (J ,α)
a Kab T (I ,β)b . (29)

Notice that C (αβ)I J = C (αβ)J I and C (αβ)I J = −C (βα)I J . The symmetry in the I J indices follows directly

from the way C (αβ)I J is defined, whereas the anti-symmetry in the αβ indices follows from the
anti-symmetry of the matrix K . In particular, the condition (28) is automatically satisfied if
α = β , which is consistent with the fact that O(α)

~x operators of the same kind commute with
each other. A systematic procedure for constructing T -vectors satisfying the condition (28)
is presented in appendix B. Next we consider the continuum limit of the relation (27). The
expansion of the field Ab reads

Ab(~x ± âJ ) = Ab(~x)±
∑

I

aI
J ∂I Ab(~x) +

1
2

∑

I ,K

aI
J aK

J ∂I ∂K Ab(~x) + · · · . (30)

As the unit vectors âJ have the components aI
J = δ

I
J , we get

O(α)
~x = exp

�

2i
D
∑

J=1

T (J ,α)
a Kab Ab(~x) + i

D
∑

J=1

T (J ,α)
a Kab ∂

2
J Ab(~x) + . . .

�

. (31)

We see that the neutrality condition (26) ensures that the first term in the exponential vanishes,
so that the operator O(α)

~x reduces to

O(α)
~x = exp

�

i
D
∑

J=1

T (J ,α)
a Kab ∂

2
J Ab(~x) + · · ·

�

. (32)

8

https://scipost.org
https://scipost.org/SciPostPhysCore.4.2.012


SciPost Phys. Core 4, 012 (2021)

The Hamiltonian in (8) becomes

H ∼ −2
∑

α

gα

∫

dD x cos
�

M (α)(~x)
�

, (33)

with

M (α)(~x)≡
D
∑

J=1

T (J ,α)
a Kab ∂

2
J Ab(~x) . (34)

We see that the ground state corresponds to the case where all the cosines in (33) are simul-
taneously pinned at M (α) = 2πm(α) for all sites, where m(α) ∈ Z. We can enforce this in a
corresponding field theory description of the ground state through a Lagrange multiplier, as
we will discuss in a moment.

Before going to the field theory it is convenient to express the operator M (α)(~x) in a way
that solves the constraint of the neutrality condition (26). Thus, we single out one of the
directions, say the last one J = D, and write

M (α)(~x) =
D−1
∑

J=1

T (J ,α)
a Kab ∂

2
J Ab(~x) + T (D,α)

a Kab ∂
2
D Ab(~x)

=
D−1
∑

J=1

T (J ,α)
a Kab DJ Ab(~x) , (35)

where the derivative operator DJ is defined as DJ ≡ ∂ 2
J − ∂

2
D . It is also convenient to define

another differential operator as

D(α)a ≡
D
∑

J=1

T (J ,α)
a ∂ 2

J

=
D−1
∑

J=1

T (J ,α)
a DJ . (36)

In terms of D(α)a , the operator M (α)(~x) in (35) acquires a simple compact form

M (α)(~x) = Kab D(α)a Ab , (37)

which makes evident its invariance under gauge transformations

Aa→ Aa +
∑

α

D(α)a ζ(α) , (38)

with ζ(α) = ζ(α) (~x , t) being a set of arbitrary functions of spacetime coordinates. In fact,
notice that

Kab D(α)a D(β)b =
D
∑

I ,J=1

Kab T (I ,α)a T (J ,β)
b ∂ 2

I ∂
2
J

=
D
∑

I ,J=1

C (αβ)I J ∂ 2
I ∂

2
J

= 0 , since C (αβ)I J = 0 . (39)

Therefore, the condition above, needed for gauge invariance, is precisely the condition for
commutation of the cosine operators (28).
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With all these elements in place, we can write down a field theory which describes the
ground state of the microscopic fracton model,

S =

∫

dD x d t
1

2π

�

Kab Aa ∂0 Ab + 2
∑

α

A(α)0 Kab D(α)a Ab

�

. (40)

The first term is responsible for the commutation relation (20)2, whereas the second one en-
forces the ground state constraints, with A(α)0 a set of Lagrange multipliers. The requirement

of full gauge invariance of the action (up to boundary terms) dictates that A(α)0 must transform
as

A(α)0 → A(α)0 + ∂0ζ
(α) . (41)

Thus, we end up with a bona fide gauge theory, which resembles the Chern-Simons description
of topologically ordered systems. The gauge-invariant “electric” and “magnetic” fields can be
defined as

Ea ≡ ∂0Aa −
∑

α

D(α)a A(α)0 and B(α)a1a2···aD−3
≡ εa1a2···aD−1

D(α)aD−2
AaD−1

, (42)

where εa1a2···aD−1
is the Levi-Civita tensor of rank D− 1.

4 Properties of the Effective Theory

4.1 Level Quantization

Now we will explore some properties of the effective field theory (40). Firstly, it is interesting
to understand whether there is a notion of quantization of the “level” of the theory, which in
the present case is given by the matrix K . To address this question we consider the principal
configuration T (I ,1) = t(I). In this case, the t-vectors must satisfy the conditions in (21). Then,
we use the symmetry transformations in (17) to make a specific choice for the t-vectors. For
example, if we pick up the canonical form (6), we obtain the following level quantization
condition:

KI J = odd , with I 6= J and I , J = 1, . . . , D− 1 , (43)

i.e., all the off-diagonal elements must be odd integers, and consequently nonvanishing. Of
course, different representations of the t-vectors yield different quantization of the elements
of the matrix K , but in all the cases we end up with some notion of quantization due to the
conditions in (21).

From the field theory alone, the quantization of the level can be understood as follows.
Consider a manifold M = S1 × MD, with S1 representing the time direction with period
[0, τ) and MD a spatially closed manifold. Due to the compact nature of the fields Aa, we
have a quantized flux

∫

MD

B(α)a1a2...aD−3
≡ π p(α)a1a2...aD−3

, p(α)a1a2...aD−3
∈ Z . (44)

Consider large gauge transformations that wind around the time direction. The A(α)0 field
transform as

A(α)0 → A(α)0 +
2π
τ

n(α) , n(α) ∈ Z , (45)

2Notice that the prefactor of 1
2 in the action (40) ensures the right numerical factor in the commutation relation

(20), since for each pair of coordinates we always have two contributions because of the anti-symmetry of the
matrix K , for example, K12 (A1∂0A2 − A2∂0A1). This pair of terms must be brought into a single term through
integration by parts before computing the canonical momentum.
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and the corresponding variation of the action under these transformations is

δS = πKab

∑

α

1
(D− 3)!

n(α) εa1a2...aD−3ab p(α)a1a2...aD−3

= πKab Zab , (46)

where Zab an integer valued quantity obtained from the summation above. From this, it is
straightforward to note that in order for the quantum theory to be invariant under the large
gauge transformations (45), the K-matrix elements have to be integer valued. Further details
of this calculation are found in appendix D

4.2 Three dimensional case

It is instructive to compare the effective field theory that we have obtained for the particular
case of three spatial dimensions, D = 3, with the result of Ref. [20]. For D = 3 there is only
one configuration, the principal configuration α= 1. The matrix K in this case is

K =

�

0 k
−k 0

�

and K−1 =

�

0 −1
k

1
k 0

�

. (47)

The action, in terms of electric and magnetic fields, reduces to

S =

∫

d3 x d t
k

2π
[A1 E2 − A2 E1 + A0 B] , [A1(~x), A2(~x

′)] = −
πi
k
δ
�

~x − ~x ′
�

. (48)

With the canonical choice (6), the derivative operators entering the electric and magnetic fields
become D1 = ∂ 2

1 − ∂
2
3 and D2 = ∂ 2

2 − ∂
2
3 , whereas the coefficient k must be an odd integer,

in accordance with (43). In order to compare with [20], we just need to rename the fields
and the derivative operators according to A1 → −A2, A2 → A1, D1 → −D2, and D2 → D1
(see equation (95) of [20]), which leave both the action and the commutation relation in
(48) unchanged. In this form, we can immediately compare with the results of [20] with the
following identification between the parameters k = s/2. In that work, the original Chamon
model (with full cubic symmetry) is recovered for s = 2 (in [20], the level quantization is
s ∈ Z), which in our normalization corresponds to k = 1. This choice describes the 2-state
system at each site, as expected. Also, this choice of k is allowed by the level quantization
(43) associated with the canonical choice for the t-vectors. For a general discussion of how the
K-matrix elements are determined by the microscopic theory, we refer the reader to appendix
E.

4.3 Conservation Laws

A gauge-invariant coupling to matter can be introduced in the action (40) through the terms
∑

α A(α)0 J (α)0 + AaJa, provided that the current satisfies the continuity equation

∂0 J (α)0 =D(α)a Ja . (49)

By integrating over the whole space and assuming periodic boundary conditions along all
directions, it follows that charge is conserved in the whole system,

d
d t

∫

dD x J (α)0 =

∫

dD x D(α)a Ja = 0 . (50)

In addition, given the form of the derivative operators D(α)a , we also have more restrictive
conservation laws. These extra conservation laws require that charge is also conserved on a
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set of sub-manifolds of the system. It is due to these extra conservation laws that the fracton
behavior of the excitations emerges.

To find the sub-manifolds where charge is conserved, we use the definition of the derivative
operators D(α)a in (36) to write the continuity equation as

∂0 J (α)0 =
D−1
∑

I=1

T (I ,α)a DI Ja ,

=
D−1
∑

I=1

DI J (α)I , (51)

where we have defined J (α)I ≡ T (I ,α)a Ja. Recalling that DI ≡ ∂ 2
I − ∂

2
D , it is convenient to intro-

duced the directions x̂σI
I D ≡ âI +σI âD, with σI = ±1. In this notation, (51) can be written as

∂0 J (α)0 = 4
D−1
∑

I=1

�

∂ −I D ∂
+
I D

�

J (α)I . (52)

This form of the continuity equation induces 2D−1 extra conservation laws, explicitly, that
charge must be conserved in each of the (D − 1)-dimensional sub-manifolds labelled by
�

xσ1
1D, . . . , xσD−1

(D−1)D

�

. Indeed, if we integrate J (α)0 over any of these sub-dimensional manifolds,
we obtain the following conserved charges

Q(α)(σ1,σ2, ...,σD−1)
≡
∫

d xσ1
1D d xσ2

2D . . . d xσD−1
(D−1)D J (α)0 . (53)

These conservation laws, in turn, imply that the dipole moment in the direction perpendicular
to those manifolds is conserved. Naturally, such conservation laws impose several restrictions
on the mobility of the particles. We build in detail the form of the excitations in appendix F.

4.4 Ground State Degeneracy

Here we discuss the computation of the ground state degeneracy using the effective field the-
ory. Naturally, in the continuum limit the degeneracy is infinite so that we shall adopt some
kind of discretization (regularization) of the theory. The form of the conservation laws in the
sub-dimensional manifolds provides a very natural way to discretize the theory in a layered
structure. The basic idea is to consider the system as a stack of layers corresponding to the
sub-dimensional manifolds where charge is conserved.

Let us start with the case D = 3. The action (40) reduces to

S =

∫

d3 x d t
k
π

A1 ∂0 A2 + · · · , (54)

where we keep explicitly only the part relevant for the computation of the degeneracy. In
this case, charge is conserved in 22 sub-spaces labeled by σ1,σ2 = ±, with the corresponding
measures

∫

d xσ1
13 d xσ2

23 . (55)

The strategy is to write the action (54) in terms of the coordinates xσ1
13 , xσ2

23 , x⊥, where x⊥ is
the coordinate perpendicular to the plane defined by the directions xσ1

13 and xσ2
23 . Upon this

change of variables,
∫

d3 x →
∫

d xσ1
13 d xσ2

23 d x⊥J , (56)
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where J is the Jacobian of the transformation. As this transformation is linear, J is just a
constant and can be absorbed in d x⊥. The transformation from the coordinates x1, x2, x3 to
xσ1

13 , xσ2
23 , x⊥ will change the limits of integration. However, as the ground state degeneracy

in each plane with periodic boundary conditions (forming a torus T2) does not depend on the
area of the plane (torus), so we can ignore the area of integration in our computation as long
as we assume periodic boundary conditions along the plane xσ1

13 -xσ2
23 .

The next step is to discretize the coordinate x⊥. We consider that the perpendicular direc-
tion is composed by a stack of N layers,

∫

d x⊥→
N
∑

i=1

2a , (57)

where 2a is the separation between the planes, twice the lattice spacing of the microscopic
model. This discretization ties the number of layers to the linear size: N = L/2a. (Equivalently
N = L/2 given we set a = 1). The gauge fields Aa need to be rescaled properly

Aa(t, xσ1
13 , xσ2

23 , x⊥)→
1
p

2a
Ai

a(t, xσ1
13 , xσ2

23 ) . (58)

The action (54) becomes

S =
N
∑

i=1

∫

d t d xσ1
13 d xσ2

23
k
π

Ai
1 ∂0 Ai

2 + · · · . (59)

Thus we end up with N copies of (2+1)-dimensional theories.
The dimension of the gauge fields in mass units is [Aa] = D/2. After discretization, the

rescaled fields in (58) have dimension [Ai
a] =

D−1
2 . In particular, [Ai

a] = 1 for D = 3. Therefore,
for each of the layers, we can define the holonomies

exp

�

i

∫ li

0

d xσ1
13 Ai

1

�

and exp

�

i

∫ li

0

d xσ2
23 Ai

2

�

, (60)

where li is the size of each cycle of the 2-torus, and the arguments of the exponentials are prop-
erly dimensionless. These objects are gauge-invariant. In fact, under a gauge transformation,
the fields transform as

Ai
1→ Ai

1 + ∂
+
13 ∂

−
13 ζ

i and Ai
2→ Ai

2 + ∂
+
23 ∂

−
23 ζ

i . (61)

Let us analyse, say, the first holonomy in (60). Under a gauge transformation, it changes by a
factor

exp

�

i

∫ li

0

d xσ1
13 ∂

+
13 ∂

−
13 ζ

i

�

= exp

�

i ∂ −σ1
13 ζi

�

�

�

x
σ1
13 =li

x
σ1
13 =0

�

≡ 1 . (62)

The above condition is satisfied with the general periodic boundary condition

ζi
�

�

x
σ1
13 =li

− ζi
�

�

x
σ1
13 =0 = 2πni

1 x−σ1
13 , ni

1 ∈ Z . (63)

Infinitesimal gauge transformations correspond to ni
1 = 0, whereas ni

1 6= 0 are associated with
large gauge transformations. Similarly, for the second holonomy in (60), we obtain

ζi
�

�

x
σ2
23 =li

− ζi
�

�

x
σ2
23 =0 = 2πni

2 x−σ2
23 , ni

2 ∈ Z . (64)

A large gauge transformation satisfying all these conditions can be constructed explicitly,

ζi =
2πni

1

li
x+13 x−13 +

2πni
2

li
x+23 x−23, ni

1, ni
2 ∈ Z . (65)
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This implies an equivalence for the gauge fields

Ai
1
∼= Ai

1 +
2π
li

mi
1 and Ai

2
∼= Ai

2 +
2π
li

mi
2, mi

1, mi
2 ∈ Z . (66)

Now we consider the ground state configuration, which corresponds to solutions depend-
ing only on the time,

Ai
a(t, x+13, x−23) =

1
li

Āi
a(t) . (67)

Plugging this equation into the action (59) we obtain

S =
N
∑

i=1

∫

d t
k
π

Āi
1 ∂0 Āi

2 . (68)

The holonomies become
eiĀi

1 and eiĀi
2 . (69)

From the action (67) it follows the commutation rule

[Āi
1, Āj

2] = −
iπ
k
δi j , (70)

leading to the commutation relation between the holonomies

eiĀi
1 eiĀi

2 = eiĀi
2 eiĀi

1 e
iπ
k , (71)

which implies a 2k-fold degeneracy for each plane i. The degeneracy of the layered system is
then

(2k)N . (72)

Finally, taking into account that we have 4 sub-dimensional manifolds where charge is con-
served, the total degeneracy is

GSD= (2k)4N . (73)

Using that N = L/2, we recover the degeneracy of the lattice model in D = 3. For k = 1 it
agrees with the result of [2]: 22L .

Now let us discuss how this generalizes to higher dimensional spaces. For concreteness,
we consider the (5+1)-dimensional action

S =

∫

d t d5 x
1

2π
Kab Aa ∂0 Ab + · · · . (74)

In this case, charge is conserved in the following 24 sub-dimensional manifolds with the cor-
responding measures,

∫

d xσ1
15 d xσ2

25 d xσ3
35 d xσ4

45 . (75)

We proceed similarly to the previous case, i.e., we write the action in terms of the coordinates
of a sub-manifold where charge is conserved plus a perpendicular direction x⊥, which is then
discretized. With this, the action (74) becomes

S =
N
∑

i=1

∫

d t d xσ1
15 d xσ2

25 d xσ3
35 d xσ4

45
1

2π
Kab Ai

a ∂0 Ai
b + · · · , (76)

where the fields Ai
a were rescaled as in (58).
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Now, the key point is that we can rotate the matrix K according to (17) to bring it to the
block-diagonal form

Q K QT = Diag

��

0 k1
−k1 0

�

,

�

0 k2
−k2 0

��

, (77)

where k1 and k2 are real and positive. In this basis, the fields Ai
a decouple pairwise,

S =
N
∑

i=1

∫

d t d xσ1
15 d xσ2

25 d xσ3
35 d xσ4

45

�

k1

π
Ai

1 ∂0 Ai
2 +

k2

π
Ai

3 ∂0 Ai
4 + · · ·

�

. (78)

Thus, we can construct the following pairs of holonomies

exp

�

i li

∫ li

0

d xσ1
15 Ai

1

�

and exp

�

i li

∫ li

0

d xσ2
25 Ai

2

�

, (79)

and

exp

�

i li

∫ li

0

d xσ3
35 Ai

3

�

and exp

�

i li

∫ li

0

d xσ4
45 Ai

4

�

. (80)

Notice that we have introduced an appropriate factor of li in order to have a dimensionless
argument in the exponentials3. The above holonomies correspond to the decomposition of the
4-dimensional torus T4 in T4 = T2 × T2. Therefore, by proceeding in the same way as in the
case D = 3, we see that these holonomies lead to a (2k1 × 2k2)-fold degeneracy in each layer.
For N layers, we get

(2k1 × 2k2)
N . (81)

Finally, considering the 24 sub-dimensional manifolds, it follows that the total ground state
degeneracy is

GSD= (2k1 × 2k2)
24N =

�

22 Pf(K)
�24N

, (82)

which is expressed in a basis-independent way in terms of the Pfaffian of the original matrix
K .

The generalization to the odd D-dimensional case is immediate. We decompose the space
in a (D − 1)-dimensional sub-manifold corresponding to one of the 2D−1 sub-spaces where
charge is conserved, and a perpendicular dimension which is then discretized. Next, we make
the transformation (17) to bring the matrix K to the block-diagonal form

Q K QT = Diag

��

0 k1
−k1 0

�

,

�

0 k2
−k2 0

�

, . . . ,

�

0 k D−1
2

−k D−1
2

0

��

, (83)

where all k’s are real and positive. In this basis, the fields Aa decouple pairwise, which is
equivalent to decomposing the (D− 1)-dimensional torus as

T D−1 = T2 × T2 × · · · × T2
︸ ︷︷ ︸

D−1
2

. (84)

The corresponding degeneracy is

2k1 × 2k2 × · · · × 2k D−1
2
= 2

D−1
2 Pf(K) . (85)

3In an arbitrary odd D-dimensional space, as [A1
a] =

D−1
2 , we shall include the factor l

D−3
2

i in order to make the

argument dimensionless, i.e., the holonomies are of the form: exp
�

i l(D−3)/2
i

∫ li
0

d xσa
aD Ai

a

�

, with a = 1,2, . . . D− 1.
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Taking into account the N layers, we have

�

2
D−1

2 Pf(K)
�N

. (86)

Finally, considering all the 2D−1 sub-dimensional manifolds, we obtain the total ground state
degeneracy

GSD=
�

2
D−1

2 Pf(K)
�2D−1N

. (87)

For the case of Clifford fractons, where k1 = k2 = · · ·= k D−1
2
= 1 or, equivalently, Pf(K) = 1,

the ground state degeneracy reduces to

GSD= 2(D−1)2D−3 L , (88)

where we have again used that N = L/2. This is precisely the result shown in the end of Sec.
2 obtained directly from the lattice model.

5 Final Remarks

In this work we constructed fracton models on the lattice and identified their continuum de-
scription in terms of Chern-Simons-like theories. The construction is generic in that it applies
to any system whose microscopic Hamiltonian is a sum of commuting projectors built from
tensor products of spin-1/2 operators. Instead of working directly with tensor products of
Pauli operators that represent the local variables, we utilize the Dirac representation of Clif-
ford algebras. This representation makes a connection between the lattice model and the field
theory simple. Our formalism can, in principle, be used to analyze other lattice models, such as
those that exhibit subsystem symmetry protected topological (SSPT) phases [45,52] or type II
fracton phases [3]. Applying this formalism to these problems is a natural direction for future
work.

In the field theory, the algebraic structure of the Dirac matrices is encoded in an anti-
symmetric matrix K . The details about an specific lattice model enter via this matrix K (whose
dimension depends on the size of the representation), the charge vectors T (that specify the
operators that are placed on the sites), as well as the lattice vector positions of the sites them-
selves. Given these data, one can follow the prescription here presented and derive an effective
field theory for any type of Clifford-like fracton, such as the 3D Chamon (with a 2× 2 Dirac
representation) or the 3D Haah (with a 4×4 Dirac representation) codes. As a concrete exam-
ple, we built fracton theories in odd D spatial dimensional spaces. We discussed the properties
of the resulting Chern-Simons-like theory, such as their currents, which are conserved in sub-
manifolds, and the topological degeneracy of the ground states, which formally depends on
the Pfaffian of the matrix K and, as usual in fracton systems, on the linear size of the system.

Properties such as the mutual statistics of the quasiparticles where not explored in the
present work. The restricted mobility of fractons makes it unnatural to speak of standard
braiding. However, the authors in [53] were able to develop a theory of fusion and statistical
processes that incorporates the mobility restrictions common in fracton models. An interest-
ing question for future exploration is how our formalism could incorporate their notion of
statistics.

For readers familiar with the K-matrices and charge vectors T appearing in the description
of Abelian fractional quantum Hall states [51], as well as their quantum wire constructions
[54–57], it is tempting to expect that the description here presented – for “integer” fractons
given our K and T ’s – could possibly lend itself to the analysis of fractional fractons. This is
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an intriguing possibility that merits further investigation, but keeping the following points in
mind.

The approach of this paper resembles quantum wire constructions of topological phases,
but instead of wires we deploy (0+1)-dimensional degrees of freedom, i.e., ours is a “quantum
dot” construction. Like in the wire constructions, we identify families of commuting operators
that can be simultaneously pinned and gap the system. In the wire systems, fractionalization
already takes place in the (1+ 1)-dimensional building blocks, and it is carried over to higher
dimensions by coupling the wires, notably using only integer charge transfer operators. How-
ever, there is no fractionalization in the quantum dots of the construction of this paper. Of
course, one may generalize the construction presented here to start with wires instead of dots,
in which case fractionalization may appear more easily.

Added note : It has been brought to our attention that the word "fracton" has been used in
physics in other contexts before. An early use was in [58] in reference to fractional charges in
quantum chromodynamics. In our construction, we adopt the modern meaning of the word
as stressed in the main text.
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A Euclidean Dirac matrix representations of Clifford algebras

We construct fracton models in odd D = 2n+ 1 dimensions using representations of the Clif-
ford algebra. Specifically, we use the Euclidean Dirac matrices. Below we construct these
representations and show properties that these matrices satisfy. These properties are used, for
example, to argue that there is no operator that can move defects in the corresponding fracton
models.

Let us work with matrices defined as the tensor products of Pauli matrices:

γ(n)µ1 µ2 ...µn
≡ σµ1

⊗σµ2
⊗ · · · ⊗σµn

, (89)

with µi = 0,1, 2,3 and σ0 ≡ 1. We shall obtain a set of 2n + 1 mutually anticommuting
matrices for any n. We construct this set inductively.

For n = 1, the set contains the matrices γ(1)1 = σ1, γ(1)2 = σ2, and γ(1)3 = σ3. Equivalently,

we can label these matrices as γ(1)I , with indices I ∈ S(1) = {1,2, 3}.
For n= 2, we first construct the following 3 matrices using the γ(1)I , I ∈ S(1): γ(2)I3 = γ

(1)
I ⊗σ3.

Second, we take the following two matrices: γ(2)01 and γ(2)02 . Therefore the five matrices γ(2)I ,
with indices I ∈ S(2) = {13,23, 33,01, 02}, are all anticommuting.

We proceed by induction. Suppose that we have 2n − 1 anticommuting matrices γ(n−1)
i ,

i ∈ S(n−1). First, using the 2n− 1 matrices γ(n−1)
i , i ∈ S(n−1), build the matrices

γ
(n)
i3 = γ

(n−1)
i ⊗σ3 .

Second, take the two matrices
γ
(n)
0...01 and γ

(n)
0...02 .
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The 2n−1+2= 2n+1 matrices γ(n)I , with I ∈ S(n) = {i3 | i ∈ S(n−1)}∪ {0 . . . 01, 0 . . . 0 2} are
all anticommuting.

These 2n+ 1 matrices multiply to the identity up to a prefactor:
∏

I∈S(n)
γ
(n)
I = ±in γ

(n)
0...00 , (90)

where the ± simply depends on the order that the matrices are multiplied (the choice of order
of the indices I ∈ S(n)). This relation can also be proved by induction. Notice that it holds for
n= 1. If it holds for n− 1, then it follows that

∏

I∈S(n)
γ
(n)
I =

 

∏

i∈S(n−1)

γ
(n)
i3

!

γ
(n)
0...01 γ

(n)
0...0 2

=
�

±in−1 γ
(n)
0...03

�

γ
(n)
0...01 γ

(n)
0...0 2

= ∓in γ
(n)
0...00 . (91)

This property means that the last, or (2n+ 1)th, γ-matrix can be obtained from the product
of all the other 2n matrices. It also follows that any matrix that is a tensor product of Pauli
matrices can be written as products of these 2n γ-matrix. (Notice that there are 4n possible
tensor products of Pauli matrices, and 22n = 4n choices of whether a γ-matrix enters or not
the product of γ’s.)

The construction above yields a set of 2n+ 1 matrices γ(n)I satisfying

{γ(n)I ,γ(n)J }= 2δI J . (92)

The set of indices I ∈ S(n) can be interchanged to I = 1, . . . , 2n+ 1, which is the notation we
use in the main text for the Euclidean Dirac matrices.

A.1 Properties of the Euclidean Dirac matrices

Let us now show three useful properties of the 2n+ 1 matrices γ(n)I with I ∈ S(n).

1. The identity is the only tensor product of Pauli matrices that commutes with all
the Dirac matrices. In other words, only the matrix γ(n)J , J = 00 . . . 0, can commute the

2n+ 1 matrices γ(n)I with I ∈ S(n).

To show this property, suppose that there is a matrix γ(n)J that commutes with all the

2n+1 matrices. This J must be of the form J = j0 for γ(n)J to commute with both γ(n)0...01

and γ(n)0...02. Therefore,

[γ(n)J , γ(n)I ] = 0, ∀I ∈ S(n) ⇔ [γ(n−1)
j , γ(n−1)

i ] = 0, ∀i ∈ S(n−1) .

We can use this recursion all the way to n = 1, where only γ(1)0 commutes with the

γ
(1)
i , i ∈ S(1), and conclude that J must be J = 00 . . . 0, i.e., all the entries must be 0.

2. The set of matrices γ(n)I with I ∈ S(n) is maximal, i.e., no other matrix can be added
to the set that anticommutes with those already in. The statement is true for n = 1:
the matrices γ(1)I with I ∈ S(1) are the three Pauli matrices, leaving no other option to
include that would anticommute with these three.
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Now suppose that the statement is true up to n− 1; let us analyze the consequences for
when we consider n.

Suppose by contradiction that there exists a J /∈ S(n) such that γ(n)J anticommutes with

all the γ(n)I with I ∈ S(n). Let us break the problem in four cases, and show impossibility
in all cases.

• J = j0

This is the simplest case: γ(1)j0 commutes with both γ(n)0...01 and γ(n)0...0 2, so J = j0
cannot be added to the set.

• J = j1 (the case J = j2 is analogous)

This case is also simple: γ(1)j1 commutes with γ(n)0...0 1, so J = j1 cannot be added to
the set.

• J = j3

γ
(1)
j3 anticommutes with γ(n)0...01 and γ(n)0...0 2, so we should only consider the anticom-

mutation with the other 2n− 1 matrices γ(n)i3 , for i ∈ S(n−1). But because S(n−1) is
maximal, there is no new j /∈ S(n−1) to add.

We thus conclude that the set of 2n+ 1 matrices γ(n)I with I ∈ S(n) is maximal.

3. There is no matrix γ(n)J that commutes with 2n of the matrices γ(n)I with I ∈ S(n).
Therefore, defects cannot be created in only one direction. Phrasing it differently,
this states that there is no line defects on the model. This result will allow us to argue
that we can construct a fracton model.

The statement is true for n = 1: there is no matrix γ(1)J that commutes with two of

the matrices γ(1)I with I ∈ S(1), because no one Pauli matrix commutes with two Pauli
matrices.

Now suppose that the statement is true up to n− 1; let us analyze the consequences for
when we consider n.

Let us break the problem in four cases:

• J = j0

In this case, the commutation with γ(n)0...01 and γ(n)0...0 2 comes for free. Therefore we

reduce the problem to finding γ(n−1)
j that commutes with 2(n− 1) matrices γ(n−1)

i

with i ∈ S(n−1). Since there is no solution for this problem (the statement is true
for the case with n− 1), then there is no solution for the case with n either.

• J = j3

This is the simplest case; γ(1)j3 anticommutes with γ(n)0...0 1 and γ(n)0...02, so it is impos-

sible that there are 2n other matrices that commute with γ(n)J among the γ(n)I with
I ∈ S(n), since there are at most 2n+ 1− 2= 2n− 1< 2n.

• J = j1 (the case J = j2 is analogous)

γ
(1)
j1 commutes with γ(n)0...01 and anticommutes with γ(n)0...0 2. So we need to find 2n−1

additional matrices that commute with γ(n)j1 among the γ(n)i3 with i ∈ S(n−1). This

is equivalent to finding 2n − 1 matrices that anticommute with γ(n−1)
j among the

γ
(n−1)
i with i ∈ S(n−1). This is impossible since the set S(n−1) is maximal (see above).
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B Fracton models build from the Clifford algebra representations

We can construct a fracton model in D dimensions if D is odd. In this case we take n= (D−1)/2
and we can use the matrices γ(n)I , I ∈ S(n) in the construction. Here we shall label these 2n+1
matrices simply γI , I = 1, . . . , 2n+ 1, as we did in the main text.

The construction can be made in the D-dimensional hypercube, with orthogonal basis vec-
tors âI , I = 1, . . . , D, as presented in the main text. We place the degrees of freedom on the
even sublattice Λe. The dimension of the local Hilbert space at each site is 2n, or equivalently,
that associated with the n spins or gradings of Pauli operators used to construct the γ-matrix
representations. At these even sublattice sites we place operators Γ (I ,α),α = 1, . . . , n built as
products of the γ-matrices (in turn built from tensor products of Pauli matrices).

The first set of operators, with α = 1, is the set of Dirac matrices γI , I = 1, . . . , 2n+ 1, or
explicitly

Γ (I ,1) = γI . (93)

The other sets are needed to gap the model.
We define O(α)

~x operators centered at sites ~x on the odd sublattice Λo,

O(α)
~x ≡

D
∏

I=1

Γ
(I ,α)
~x−âI

Γ
(I ,α)
~x+âI

, α= 1, . . . ,
(D− 1)

2
, (94)

and using these the Hamiltonian

H = −
∑

α=1

�

gα
∑

~x

O(α)
~x

�

. (95)

We can choose the operators Γ (I ,α) such that
�

O(α)
~x , O(β)

~x ′

�

= 0 , ∀α,β ,∀~x , ~x ′ . (96)

As stated in the main text, in this case i) the Hamiltonian is a sum of commuting projectors,
and ii) there are as many commuting projectors as the number of degrees of freedom in the
problem (up to constraints tied to the topological degeneracy).

Let us first focus on the operators O(1) for simplicity. These are defined as

O(1)
~x =

D
∏

I=1

γI
~x−âI

γI
~x+âI

. (97)

The operators γI
~x satisfy the following commutation relations:

{γI
~x , γJ

~x ′}= 2 δI J , if ~x = ~x ′ , and [γI
~x , γJ

~x ′] = 0 , if ~x 6= ~x ′ . (98)

(We remark that these models are bosonic, and not fermionic; the Dirac matrices represent
the tensor product of local Pauli matrices, that in turn represent spin degrees of freedom on
the lattice.) Given these commutation relations, it follows that all distinct O(1)

~x and O(1)
~x ′ that

share common sites commute: 1) they either share a single site along the line that connects
them, in which case the same operator (same I), or 2) they share two sites with different
components I and J entering in each of O(1)

~x and O(1)
~x ′ , and hence there is a factor of −1 from

the anti-commutation relation of each common site, and hence in total a factor (−1)2, leading
to the commutation of the two operators.
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The operators O(1)
~x square to unity, and thus have eigenvalues ±1. The ground state has

all eigenvalues +1 for all operators. Excitations correspond to eigenvalues -1. Because we
used all the 2n+1 Dirac matrices in constructing O(1)

~x , and as demonstrated above in Sec. A.1,
there is no operator that anti-commutes with one and only one of the γI . Therefore, it is not
possible to construct a local operator whose sole effect is to create a pair of defects, or move
a single defect. Defects are only created in at least quadruplets in any dimension D = 2n+ 1,
much as in the D = 3 model in Ref. [1]. This property that defects cannot be created in pairs,
but only in at least quadruplets, underscores the fracton nature of these odd D models.

Let us now discuss the other operators O(α)
~x , α = 2, . . . , n. The argument for the commu-

tativity follows a similar line. When two operators O(α)
~x and O(β)

~x ′ share sites, there are two
cases to consider.

The case when they share one site: the neighboring O’s, defined at sites ~x and ~x + 2âI of
Λo, share the Λe site at ~x + âI , and they commute if

�

Γ (I ,α) , Γ (I ,β)
�

= 0 . (99)

The case when they share two sites: the neighboringO(α)’s, defined at sites ~x and ~x+âI+âJ
of Λo, share the two Λe sites at ~x+ âI and ~x+ âJ . The operators on those sites either commute
or anti-commute, which can be cast as

Γ (I ,α) Γ (J ,β) = (−1)η
(αβ)
I J Γ (J ,β) Γ (I ,α) , (100)

with η(αβ)I J = 0 or 1, and the desired commutation relations Eq. (96) are guaranteed if

η
(αβ)
I J = η(αβ)J I . (101)

This condition, or equivalently that η(αβ)I J +η(αβ)J I = 0 mod 2, is the counterpart to C (αβ)I J = 0
of Eq. (28) in the main text. The components T (I ,α) of the T -vectors, when computed mod
2, simply encode which of the γI matrices enter in the product defining the operator Γ (I ,α).
Because of this relation, we shall show how to construct the Γ (I ,α)’s by showing how to ensure
C (αβ)I J = 0, which we can solve more easily using integer instead of binary vectors.

Explicitly, we construct the operators Γ (I ,α) using 2n-dimensional T -vectors,
T (I ,α)a , a = 1, . . . , 2n, as follows:

Γ (I ,α) =
�

γ1
�T (I ,α)1

�

γ2
�T (I ,α)2 . . .

�

γ2n
�T (I ,α)2n . (102)

Notice that since (γI)2 = 1, only the values of the T -vectors mod 2 matter. The particular case
of the first set, see Eq. (103), corresponds to the vector

T (I ,1)a = t I
a = δ

I
a, I = 1, . . . , 2n , and T (2n+1,1)

a = −
2n
∑

I=1

t I
a . (103)

(The t I are the basis vectors.)
The commutation relations between the γ-matrices can be encoded in an integer-valued

anti-symmetric K-matrix via

γI γJ = eiπ t(I)a Kab t(J)b γJ γI , (104)

where repeated index summation over the a and b are used. The correct commutation rela-
tions follow from requiring that

t(I)a Kab t(J)b =

¨

0 mod 2, I = J

1 mod 2, I 6= J
. (105)
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It follows that the commutation relations

Γ (I ,α) Γ (J ,β) = eiπ T (I ,α)a Kab T (J ,β)
b Γ (J ,β) Γ (I ,α) , (106)

or equivalently, using Eq. (100),

η
(αβ)
I J = T (I ,α)a Kab T (J ,β)

b mod 2 . (107)

Then, condition Eq. (101) is equivalent to

C (αβ)I J = 0 mod 2 , (108)

where

C (αβ)I J ≡ T (I ,α)a Kab T (J ,β)
b + T (J ,α)

a Kab T (I ,β)b . (109)

While we just need C (αβ)I J to vanish mod 2, we can simply demand that it vanishes, and still
solve the problem as we show below.

Let us now construct vectors T (I ,α)a that satisfy C (αβ)I J = 0. We already have the first set
of T -vectors from Eq. (103). Now build the other sets of T -vectors via a family of linear
transformations L(α):

T (I ,α)a =
∑

M

L(α)I M T (M ,1)
a = L(α)Ia , I , M = 1, . . . , 2n , and T (2n+1,α)

a = −
2n
∑

I=1

T (I ,α)a . (110)

It follows, for I , J = 1, . . . , 2n, that

C (αβ)I J = T (I ,α)a Kab T (J ,β)
b + T (J ,α)

a Kab T (I ,β)b

= L(α)Ia Kab L(β)J b + L(α)Ja Kab L(β)I b

= (L(α) K L(β)
>
)I J + (L

(β) K> L(α)
>
)I J , (111)

or equivalently, that

C (αβ) = L(α) K L(β)
>
+ L(β) K> L(α)

>

= L(α) K L(β)
>
+ (L(α) K L(β)

>
)> . (112)

Hence the condition that the commutation relations C (αβ) vanish require that the sets of (α,β)-
indexed matrices (L(α) K L(β)

>
) be anti-symmetric (in the indices I and J). Let then

L(α) K L(β)
>
= A(αβ) , (113)

where the A(αβ) are anti-symmetric matrices for any of the α,β pairs. For given choices of
matrices A(αβ), we can solve sequentially for

L(α) = A(αβ) (L(β)
>
)−1 K−1 , (114)

i.e., start with β = 1 and L(1) = 1, obtain L(2) for some arbitrary choice of A(21), then for some
choice A(31) obtain L(3), and so on. In other words, we can determine the L(α) from using
β = 1 and L(1) = 1 in Eq. (114):

L(α) = A(α1) K−1 , (115)
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for anti-symmetric choices of A(α1). Notice that the L(α) cannot be equal, otherwise two sets of
T (I ,α)’s would be identical. The number of solutions (number of α′s) depend on the dimension
D− 1 of the matrices, for example the matrix K . Notice that if K is 2× 2, any anti-symmetric
matrix is proportional to iσ2, and therefore it follows from Eq. (115) that one cannot get a
non-trivial solution other than L(1)∝ 1.

There are compatibility conditions for the matrices, because one can reach, for example,
L(3) from L(1) or L(2). For example,

L(α) K L(β)
>
= A(α1) K−1 K K−1>A(β 1)>

= A(α1) K−1 A(β 1) , (116)

or equivalently

A(αβ) = A(α1) K−1 A(β 1) . (117)

B.1 Example of D = 5

Consider the following 4× 4 K-matrix:

K4 =















0 +1 +1 +1

−1 0 +1 +1

−1 −1 0 +1

−1 −1 −1 0















, (118)

with inverse

K−1
4 =















0 −1 +1 −1

+1 0 −1 +1

−1 +1 0 −1

+1 −1 +1 0















. (119)

The choice A(11) = K4 yields L(1) = 1, as it should be. Choose the anti-symmetric matrix
A(21) = K2 ⊗ 12, where K2 =

�

0 +1
−1 0

�

, or explicitly,

A(21) =















0 0 +1 0

0 0 0 +1

−1 0 0 0

0 −1 0 0















, (120)

from which we obtain

L(2) =















−1 +1 0 −1

+1 −1 +1 0

0 +1 −1 +1

−1 0 +1 −1















. (121)
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From the L matrix we obtain the vectors

T (1,2) = (−1,+1, 0,−1)

T (2,2) = (+1,−1,+1, 0)

T (3,2) = ( 0,+1,−1,+1)

T (4,2) = (−1, 0,+1,−1)

T (5,2) = (+1,−1,−1,+1) . (122)

The corresponding operators Γ (I ,2) are:

Γ (1,2) = γ1 γ2 γ4 ∼ γ3 γ5

Γ (2,2) = γ1 γ2 γ3 ∼ γ4 γ5

Γ (3,2) = γ2 γ3 γ4 ∼ γ1 γ5

Γ (4,2) = γ1 γ3 γ4 ∼ γ2 γ5

Γ (5,2) = γ1 γ2 γ3 γ4 ∼ γ5 . (123)

One can summarize the operators Γ (I ,α) in the following table, as we did in the main text:

Γ (I ,α) I = 1 2 3 4 5

α= 1 γ1 γ2 γ3 γ4 γ5

α= 2 γ3γ5 γ4γ5 γ1γ5 γ2γ5 γ5

(124)

B.2 Construction for general D = 2n+ 1

Define the following n× n anti-symmetric matrix:

Kn =





















0 +1 +1 . . . +1

−1 0 +1 . . . +1

−1 −1 0 . . . +1
...

...
. . .

...

−1 −1 . . . −1 0





















n×n

. (125)

The 2n× 2n K-matrix we need for D = 2n+ 1 is then simply K2n.
The following anti-symmetric matrices A(α1)

A(1 1) = K2n ,

A(α1) = (Kn)
2α−3 ⊗ 12 , α= 2, . . . , n , (126)

commute with both K2n and K−1
2n ; using this property and the anti-symmetry of both the A(α1)

and the K2n, one can show that the A(αβ) obtained through Eq. (117) are anti-symmetric, as
required.

With these A(α1), one can proceed to find the L(α) matrices and then the vectors T (I ,α), and
finally the operators Γ (I ,α) with the desired commutation relations.
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C Degeneracy

In the main text we argued that the topological degeneracy of the model is at least 2(D−1) 2D−2
.

This number follows from the constraints of multiplying all the O(α) operators:
∏

~x∈Λo,k

O(α)
~x = 1 , k = 1, . . . , 2D−1, α= 1, . . . , (D− 1)/2 , (127)

where k labels the 2D−1 sub-lattices Λo,k. (A unit cell of the hypercubic lattice contains 2D

sites, half of them are on the even and half on the odd sub-lattice – hence there are 2D−1

distinct sub-lattices of the odd sub-lattice.)
The degeneracy can be greater, and can depend on the system size. Here we follow Bravyi,

Leemhuis, and Terhal’s calculation in their appendix A of [2].
It follows from

∑D
I=1 T (I ,α)a = 0 that the Γ (I ,α) multiply to the identity (up to a factor of

magnitude 1, that also depends on the order of multiplication). Using this property, we arrive
at the equivalent of their parity checks:

⊕

J 6=I
q=±1

t(α)(~x + q âJ ) = 0 , ~x ∈ Λe, I = 1,2, . . . D , α= 1, . . . ,
D− 1

2
. (128)

(The t above conforms to their notation; they are not related to our t-vectors.) Notice that,
for each α, the D equations are linearly dependent, and that the sum over all of their left hand
side is identically zero. Suming any pair of these equations yield

t(α)(~x − âI)⊕ t(α)(~x + âI)⊕ t(α)(~x − âJ )⊕ t(α)(~x + âJ ) = 0 , I , J = 1,2, . . . , D . (129)

The solutions of these equations for the case when L1 = L2 = · · ·= LD in a similar way as in 3-
dimensions: first use two lines (with 2L/2= L sites on a sublattice) and generate the solution
on a plane, then two planes and generate the solution in the 3rd dimension, and after that pro-
ceed accordingly, use 2 3-dimensional hyperplanes to generate the solutions in 4-dimensions,
and so on. The number of logical quibts generated in this way is CD = L/2× 2× 2× · · · × 2,
with D − 1 2’s, i.e., CD = 2D−2 L. When we take into account all the α = 1, . . . , (D − 1)/2, we
have (D− 1) 2D−3 L logical qubits. Therefore, the ground state degeneracy is

GSD= 2(D−1) 2D−3 L . (130)

D Level quantization from the effective field theory

Here we give the details of the calculations in 4.1. To understand quantization of the matrix K
for arbitrary dimensions, it is convenient to consider large gauge transformations depending
only on time. In other words, we impose the condition t ∈ [0,τ), and place the system in a
spatially closed manifold MD:

M = S1 ×MD . (131)

As the gauge theory is compact, this implies flux quantization. According to the normalization
used in the manuscript, this reads

∫

MD

B(α)a1a2...aD−3
≡ πp(α)a1a2...aD−3

, p(α)a1a2...aD−3
∈ Z , (132)

where B(α)a1a2...aD−3
is the magnetic field given in (42), which we repeat here for convenience

B(α)a1a2...aD−3
= εa1a2...aD−1

D(α)aD−2
AaD−1

. (133)
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This implies that p(α)a1a2...aD−3
are completely anti-symmetric. It is useful to invert relation (133)

D(α)b1
Ab2
−D(α)b2

Ab1
=

1
(D− 3)!

εa1a2...aD−3 b1 b2
B(α)a1a2...aD−3

. (134)

Now, let us consider large gauge transformations that wind around the S1 (time direction)

ζ(α) ≡ 2πn(α)
t
τ

, n(α) ∈ Z . (135)

This implies

A(α)0 → A(α)0 + 2πn(α)
1
τ

. (136)

The corresponding variation of the action is

δS =

∫

dD xd t
1
π

∑

α

2πn(α)
1
τ

KabD(α)a Ab

=

∫

dD xd t
∑

α

n(α)
1
τ

Kab

�

D(α)a Ab −D(α)b Aa

�

=

∫

d t
τ

∑

α

n(α) Kab
1

(D− 3)!
εa1a2...aD−3ab

∫

dD x B(α)a1a2...aD−3
. (137)

By using the flux quantization (132), we obtain

δS = π
∑

α

n(α) Kab
1

(D− 3)!
εa1a2...aD−3ab p(α)a1a2...aD−3

. (138)

In order for the quantum theory to be invariant under large gauge transformations, we must
have

δS = 2πiZ . (139)

Equation (138) together with this condition imply the quantization of all elements of K . Let
us choose, for example, that the only nonvanishing integers in (138) are

n(1) = 1, p(1)34...D−3 = 1, and the (D− 3)! permutations of p(α)34...D−3 . (140)

In this case, (138) becomes

δS = πKabε34...(D−3)ab

= 2πK12 . (141)

Thus, K12 must be an integer. By proceeding similarly we get the quantization of all elements
of K .

The flux quantization (132) also leads properly to the charge quantization. Indeed, by
introducing the coupling to a density −A(α)0 J (α)0 , it follows the flux-attachment relation

J (α)0 =
1
π

KabD(α)a Ab . (142)

By integrating over MD, we obtain

Q(α) =

∫

MD

J (α)0 =

∫

MD

1
π

KabD(α)a Ab

=
1

2π
Kab

∫

MD

�

D(α)a Ab −D(α)b Aa

�

=
1

2π
Kab

∫

MD

1
(D− 3)!

εa1a2...aD−3abB(α)a1a2...aD−3

=
1
2

Kab

∫

MD

1
(D− 3)!

εa1a2...aD−3ab p(α)a1a2...aD−3
. (143)
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By choosing again the configuration in (140),

Q(α) =
1
2

Kabε34...(D−3)ab

= K12 , (144)

which is an integer.

E K-matrix and microscopic theory

The matrix K is determined in three steps: i) we determine its dimensionality; ii) we find
constraints on the possible values of the elements; iii) we fix the elements in order to match
the physical properties of the lattice model. The steps i) and ii) follow directly from the algebra
of the operators in (16). Step iii) is more subtle and follows from the algebra of the ground
state holonomy gauge-invariant operators of the effective field theory.

Step (i): Dimensionality of K-matrix. In the class of models we have constructed in the
manuscript, the dimensionality of the ”spin" operator acting at each site is tied to the spatial
dimensionality. Indeed,

D = 3 ⇒ σi1 ⇔ γ2×2

D = 5 ⇒ σi1 ⊗σi2 ⇔ γ4×4

D = 2n+ 1 ⇒ σi1 ⊗σi2 ⊗ · · · ⊗σin ⇔ γ2n×2n . (145)

In this way, the algebra of the spin operators in D spatial dimensions can be written in terms of
the Clifford algebra of Dirac matrices of dimensionality 2n×2n. In this case, we have 2n Dirac
matrices. Therefore, according to the representation of (16) of the paper, we need 2n distinct
fields A to reproduce properly the algebra of the Dirac matrices. This fixes the dimensionality
of the matrix K to be 2n× 2n.

Step (ii): Elements of the K-matrix. The possible values of the elements of the K-matrix
are determined from the algebra of operators at each site. Starting in D = 3, with the K-matrix
given by

K =





0 k

−k 0



 and K−1 =





0 −1
k

1
k 0



 , (146)

we have the two operators

γ1 = eikA2 and γ2 = e−ikA1 . (147)

They will anticommute if k is odd. For the D = 2n + 1 dimensional case, the reasoning is
similar. We consider a basis of fields so that the matrix K is block-diagonal (eq.(83) of the
manuscript)

Q K QT = Diag











0 k1

−k1 0



 ,





0 k2

−k2 0



 , . . . ,





0 kn

−kn 0











. (148)

Then, the representation (16) of the paper will provide the properly commutation rules
between the operators only if all k’s are odd.
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Step (iii): Lattice model and the K-matrix entries. To completely fix the ki ’s of the matrix
in (148), we need to consider the algebra of gauge-invariant operators. This is worked in
detail in Sec.4.4 of the manuscript for the case D = 3. The key equation is the algebra given
in (71) of the paper. The value of ki determines the size of the representation of the ground
state in a corresponding subdimensional manifold where charge is conserved. In other words,
the ground state will possess a Z2k symmetry that is not present in the lattice model unless
k = 1. The same reasoning goes in higher dimensions, where we have more pairs of operators
satisfying the algebra (71) of the manuscript . Thus, the K-matrix corresponding to the lattice
model is so that its block-diagonal form has k1 = k2 = . . .= kn = 1. In this sense, the K-matrix
is determined by the microscopic system since it carries information about the symmetries of
the lattice model.

The equation (17) of the manuscript suggest a class of equivalence for the K-matrices in
our description, in a similar fashion as usual Chern-Simons theories that can lead to the same
description with two different K-matrices. To make this point clear, consider a redefinition of
the basis field in the effective action according to

A→WA , (149)

where W is a matrix with integer entries. This leads to a theory with new parameters

K̃ =W>KW and T̃ (I ,α) =W−1T (I ,α) . (150)

Thus, two effective theories with parameters (K , T ) and (K̃ , T̃ ) related through (150), with
the matrix W possessing integer entries and detW = 1, describes the same fracton system.
Indeed, this implies

Pf(K̃) = Pf(W>KW ) = Pf(K) , (151)

and also leaves unchanged the quantization condition (for the principal configuration) given
in (21) of the manuscript:

t(I)a (K
>)ab t(J)b = t̃(I)a (K̃

>)ab t̃(J)b = 2n(I J) + (1−δI J ) , n(I J) ∈ Z , (152)

which is still an even integer if I = J and an odd integer if I 6= J .

F Conservation Laws and Excitations

F.1 Case D = 3

We will examine here the possible types of defects arising from this model of fractons. Let us
consider the case D = 3, so that the continuity equation reads

∂0 J0 = D1 J1 +D2 J2

= (∂ 2
x − ∂

2
z ) J1 + (∂

2
y − ∂

2
z ) J2

= (∂x + ∂z)(∂x − ∂z) J1 + (∂y + ∂z)(∂y − ∂z) J2

= ∂ +13 ∂
−
13 J1 + ∂

+
23 ∂

−
23 J2 , (153)

where the coordinates are x±13 = x ± z and x±23 = y ± z. For simplicity, we have absorbed a
factor of 1/4 in J0.

Let us try, for example, to construct a current corresponding to the creation of a single
localized charge. For simplicity, we set J2 = 0. Then, a naive solution of (153) is

J0 = θ (t)δ(y)δ(x
+
13 + a1)δ(x

−
13 + b1) and J1 = δ(t)δ(y)θ (x

+
13 + a1)θ (x

−
13 + b1) , (154)
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which corresponds to the creation of a fracton localized at x = −(a1 + b1)/2, y = 0 and
z = (b1 − a1)/2. Notice, however, that this configuration corresponds to a process where
charge is not conserved (Q = 0→ 1). Indeed,

Q =

∫

d xd ydz J0 = θ (t)

∫

d yd x+13d x−13δ(y)δ(x
+
13 + a1)δ(x

−
13 + b1) = θ (t),

dQ
dt
= δ(t) .

(155)
Consequently, it is not a full-fledged solution of the continuity equation.

We could try to avoid the violation of charge above by inserting a charge of opposite sign
in a distinct point, which corresponds

J0 = θ (t)δ(y)
�

δ(x+13 + a1)δ(x
−
13 + b1)−δ(x+13 + c1)δ(x

−
13 + d1)

�

J1 = δ(t)δ(y)
�

θ (x+13 + a1)θ (x
−
13 + b1)− θ (x+13 + c1)θ (x

−
13 + d1)

�

. (156)

This is compatible with charge conservation in the whole system, Q =
∫

d x d y dz J0, but we
still have to inspect the conservation in the sub-manifolds. Let us consider, for example, the
following charge

Q(++) =

∫

d x+13 d x+23 J0

= θ (t)

∫

d x+13 d x+23δ(y)
�

δ(x+13 + a1)δ(x
−
13 + b1)−δ(x+13 + c1)δ(x

−
13 + d1)

�

. (157)

We need to be careful in computing the integrals, since the directions x+13 and x+23 are not
orthogonal, whereas the directions x+13 and x−13 are orthogonal. This means that we can carry
out the integration over x+13 keeping x−13 fixed. Thus, we proceed by integrating over x+13,
letting x−13 untouched:

Q(++) = θ (t)

∫

d x+23δ(y)
�

δ(x−13 + b1)−δ(x−13 + d1)
�

. (158)

The computation of the remaining integral is a little trick because the directions x+13 and x+23
are not orthogonal, but actually we do not need to compute it to extract useful information.
Indeed, this expression shows that in order that the charge Q(++) to be conserved we need to
require b1 = d1. Similarly, by considering the charge

Q(−+) = θ (t)

∫

d x−13 d x+23δ(y)
�

δ(x+13 + a1)δ(x
−
13 + b1)−δ(x+13 + c1)δ(x

−
13 + d1)

�

= θ (t)

∫

d x+23δ(y)
�

δ(x+13 + a1)−δ(x+13 + c1)
�

, (159)

we see that a1 = c1 in order that this charge to be conserved. The charges Q(+−) and Q(−−)

do not provide additional conditions. Taking into account that a1 = c1 and b1 = d1 in (156),
we see that the density of charges J0 trivially vanishes. In conclusion, the process of creation
of a dipole is not compatible with the several conservation laws and, consequently, it is not
allowed.

Let us try to find a different type of configuration, which is compatible with the whole set
of conservation laws. Consider the density,

J0 = θ (t)δ(y)
�

δ(x+13 + a1)δ(x
−
13 + b1)−δ (x+13 + c1)δ(x

−
13 + d1)

− δ(x+13 + e1)δ(x
−
13 + f1) +δ(x

+
13 + g1)δ(x

−
13 + h1)

�

, (160)
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and the corresponding flux

J1 = δ(t)δ(y)
�

θ (x+13 + a1)θ (x
−
13 + b1)− θ (x+13 + c1)θ (x

−
13 + d1)

− θ (x+13 + e1)θ (x
−
13 + f1) + θ (x

+
13 + g1)θ (x

−
13 + h1)

�

, (161)

which are compatible with the continuity equation (153). It follows immediately that the
charge is conserved in the whole three-dimensional manifold. Next, let us examine the con-
servation laws in the sub-manifolds. We start with the following charges,

Q(+±) =

∫

d x+13 d x±23 J0

= θ (t)

∫

d x±23

�

δ(x−13 + b1)−δ(x−13 + d1)−δ(x−13 + f1) +δ(x
−
13 + h1)

�

.(162)

We have two possibilities ensuring charge conservation:

i) b1 = d1 and f1 = h1

ii) b1 = f1 and d1 = h1 . (163)

Similarly, the remaining charges are

Q(−±) =

∫

d x−13 d x±23 J0

= θ (t)

∫

d x±23

�

δ(x+13 + a1)−δ(x+13 + c1)−δ(x+13 + e1) +δ(x
+
13 + g1)

�

, (164)

which leads also to two possibilities

i) a1 = c1 and e1 = g1

ii) a1 = e1 and c1 = g1 . (165)

From these possibilities, it is clear that if we select choice i) of (163) and i) of (165), or ii) of
(163) and ii) of (165), the density in (160) will trivially vanish. However, we obtain a non-
vanishing density if we choose crosswise i)/ii) of (163) and ii)/i) of (165). Let us choose,
say, i) from (163) and ii) from (165). In this case, the density becomes

J0 = θ (t)δ(y)
�

δ(x+13 + a1)δ(x
−
13 + b1)−δ(x+13 + c1)δ(x

−
13 + b1)

− δ(x+13 + a1)δ(x
−
13 + f1) +δ(x

+
13 + c1)δ(x

−
13 + f1)

�

, (166)

which corresponds to the creation of four charges at the following positions:

charge q1 = + ⇒ (x , z) =
�

−
a1 + b1

2
,

b1 − a1

2

�

charge q2 = − ⇒ (x , z) =
�

−
c1 + b1

2
,

b1 − c1

2

�

charge q3 = − ⇒ (x , z) =
�

−
a1 + f1

2
,

f1 − a1

2

�

charge q4 = + ⇒ (x , z) =
�

−
c1 + f1

2
,

f1 − c1

2

�

. (167)

Let d(qi , q j) be the distance between two charges. The above expressions ensure that
d(q1, q2) = d(q3, q4) and d(q1, q3) = d(q2, q4), which physically means that the sum of all
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dipole moments of the configuration vanishes (see figure 2). This guarantees conservation
of dipole moment, which is a consequence of the conservation of charges in sub-manifolds
(planes). In fact, charge conservation along a plane implies that the dipole moment perpen-
dicular to the plane is conserved.

We see that the location of the four charges in (167) are specified by the set of arbitrary
points a1, b1, c1, f1. By varying the values of these points we change both the size of the dipoles
and their positions, in a way that preserves the structure depicted in figure 2, i.e., the charges
are always localized at the corners of a parallelogram. Physically, this means that the dipoles
can move freely in the system, but cannot be created or annihilated (remembering our previous
discussion, the creation of a single dipole is not compatible with all the conservation laws).

−

+

−

+

Figure 2: A generic four-charge configuration in the plane x − z, as given in (167).
It is clear from this figure that the total dipole vanishes.

Before closing, it is instructive to consider a simple symmetric choice, a1 = b1 = a and
c1 = f1 = −a. In this case, the density reduces to

J0 = θ (t)δ(y)
�

δ(x+13 + a)δ(x−13 + a)−δ(x+13 − a)δ(x−13 + a)

− δ(x+13 + a)δ(x−13 − a) +δ(x+13 − a)δ(x−13 − a)
�

, (168)

while the flux can be written as

J1 = δ(t)δ(y)
�

θ (x+13 + a)θ (x−13 + a)− θ (x+13 − a)θ (x−13 + a)

− θ (x+13 + a)θ (x−13 − a) + θ (x+13 − a)θ (x−13 − a)
�

= δ(t)δ(y)θ (a+ x+13)θ (a− x+13)θ (a+ x−13)θ (a− x−13) , (169)

where to write in terms of a single term we have used the property θ (x) + θ (−x) = 1. The
density J0 describes the creation of a set of four charges located at the points

x = ±a, y = 0, z = 0 ⇒ positive charges

x = 0, y = 0, z = ±a ⇒ negative charges . (170)

This configuration is depicted in figure 3.

F.2 Case D = 5

In this case we have two conservation laws given by (51),

∂0 J (1)0 = D1 J (1)1 + D2 J (1)2 + D3 J (1)3 + D4 J (1)4 , (171)

and
∂0 J (2)0 = D1 J (2)1 + D2 J (2)2 + D3 J (2)3 + D4 J (2)4 , (172)
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z

x+ +

−

−

Figure 3: Charge configuration corresponding to the process described by the density
in (156).

where J (α)I = T (I ,α)a Ja. For α= 1 and the canonical form of t ’s,

J (1)I = t(I)a Ja = JI , (173)

whereas for α= 2 it is convenient to write all components explicitly,

J (2)1 = T (1,2)
1 J1 + T (1,2)

2 J2 + T (1,2)
3 J3 + T (1,2)

4 J4

J (2)2 = T (2,2)
1 J1 + T (2,2)

2 J2 + T (2,2)
3 J3 + T (2,2)

4 J4

J (2)3 = T (3,2)
1 J1 + T (3,2)

2 J2 + T (3,2)
3 J3 + T (3,2)

4 J4

J (2)4 = T (4,2)
1 J1 + T (4,2)

2 J2 + T (4,2)
3 J3 + T (4,2)

4 J4 . (174)

Our goal here is the following. We will create an elementary excitation in the lattice model
and then we want to understand how this is reproduced from the conservation laws above.
Let us consider the case D = 5 given in (14). The application of the local operator γ1 γ2 in a
particular site of the even sub-lattice creates four defects of type α = 1 in the plane x1 − x2
and four defects of type α = 2 in the plane x3 − x4. Now let us see how this arises from the
point of view of the conservation laws.

These excitations can be reproduced with J3 = J4 = 0 and J2 = −J1, so that (171) becomes

∂0J (1)0 = (D1 − D2)J1

= (∂ 2
1 − ∂

2
2 )J1

= ∂ +12 ∂
−
12 J1 . (175)

To construct the currents for α = 2 we can read the vectors T from (122). We remember,
however, that their components are defined only mod 2, so that it is convenient to choose

J (2)1 = J (2)2 = 0

J (2)3 = −J (2)4 = J1 . (176)

With this, the conservation law (172) becomes

∂0 J (2)0 = ∂ +34 ∂
−
34 J1 . (177)

We can construct a current J1 that creates excitations simultaneously in planes x1 − x2 and
x3 − x4 by using the four-charge configurations of the case D = 3 (161) with the positions
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of the charges subject to (167), since these configurations also live in planes. In this way, we
write the generalization for the five-dimensional case as

J1 = δ(t)δ(x3)δ(x4)δ(x5)Θ(x
+
12, x−12) +δ(t)δ(x1)δ(x2)δ(x5)Θ(x

+
34, x−34) , (178)

where Θ(x+12, x−12) is defined as the θ -dependent part of (161):

Θ(x+12, x−12) ≡ θ (x+12 + a1)θ (x
−
12 + b1)− θ (x+12 + c1)θ (x

−
12 + b1)

− θ (x+12 + a1)θ (x
−
12 + f1) + θ (x

+
12 + c1)θ (x

−
12 + f1) . (179)

Plugging J1 in (175) and (177) gives the densities

J (1)0 = θ (t)δ(x3)δ(x4)δ(x5)∆(x
+
12, x−12)

+ θ (t)δ(x5)Θ(x
+
34, x−34)∂

+
12 ∂

−
12δ(x1)δ(x2) , (180)

and

J (2)0 = θ (t)δ(x1)δ(x2)δ(x5)∆(x
+
34, x−34)

+ θ (t)δ(x5)Θ(x
+
12, x−12)∂

+
34 ∂

−
34δ(x3)δ(x4) , (181)

where

∆(x+12, x−12) ≡ ∂ +12 ∂
−
12Θ(x

+
12, x−12)

= δ(x+12 + a1)δ(x
−
12 + b1)−δ(x+12 + c1)δ(x

−
12 + b1)

− δ(x+12 + a1)δ(x
−
12 + f1) +δ(x

+
12 + c1)δ(x

−
12 + f1) . (182)

There are some important points to notice in the densities J (1)0 and J (2)0 . The terms in the first
lines of both (180) and (181) correspond indeed to four-charge configurations with vanishing
total dipole, like in the case D = 3. But now, we have additional terms in the second lines.
However, such terms do not affect the physical charge and can be absorbed in a redefinition
of the currents. Indeed, we can define

J̃ (1)0 ≡ J (1)0 −Ω
(1)
0 and J̃ (1)1 ≡ J1 −Ω

(1)
1 . (183)

with similar definitions for the currents of α= 2, i.e., J̃ (2)0 ≡ J (2)0 −Ω
(2)
0 and J (2)1 ≡ J1−Ω

(2)
1 . If

Ω
(1)
0 and Ω(1)1 satisfy

∂0Ω
(1)
0 = ∂ +12 ∂

−
12Ω

(1)
1 , (184)

and
∫

d xσ1
15 d xσ2

25 d xσ3
35 d xσ4

45 Ω
(1)
0 = 0 , (185)

then the two currents (J (1)0 , J1) and (J̃ (1)0 , J̃ (1)1 ) describe the same physical situation, since the
redefined currents also satisfy

∂0 J̃ (1)0 = ∂ +12 ∂
−
12 J̃ (1)1 , (186)

and
∫

d xσ1
15 d xσ2

25 d xσ3
35 d xσ4

45 J̃ (1)0 =

∫

d xσ1
15 d xσ2

25 d xσ3
35 d xσ4

45 J (1)0 . (187)

From equations (178) and (180) we see that if we set,

Ω
(1)
0 = θ (t)δ(x5)Θ(x

+
34, x−34)∂

+
12 ∂

−
12δ(x1)δ(x2) , (188)
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and
Ω
(1)
1 = δ(t)δ(x1)δ(x2)δ(x5)Θ(x

+
34, x−34) , (189)

then the condition (184) is immediately satisfied.
Next, let us consider (185),

∫

d xσ1
15 d xσ2

25 d xσ3
35 d xσ4

45 θ (t)δ(x5)Θ(x
+
34, x−34) (∂

2
1 − ∂

2
2 )δ(x1)δ(x2) . (190)

This term vanishes identically. To see this, we notice that as xσ1
15 = x1 + σ1 x5 and

xσ2
25 = x2 +σ2 x5, with σ1,σ2 = ±, under the change of variables

x1→ σ1σ2 x2 and x2→ σ1σ2 x1 , (191)

the integration measure transforms as

d xσ1
15 → σ1σ2 d xσ2

25 and d xσ2
25 → σ1σ2 d xσ1

15 , (192)

so that d xσ1
15 d xσ2

25 is invariant (even). On the other hand, the integrand (∂ 2
1 −∂

2
2 )δ(x1)δ(x2)

is odd and hence the integral vanishes. Therefore, we can construct a redefined density simply
as

J̃ (1)0 = θ (t)δ(x3)δ(x4)δ(x5)∆(x
+
12, x−12) , (193)

which corresponds to the creation of a four-charge configuration in the plane x1− x2. We can
proceed in the same way for the density in (181), and define

J̃ (2)0 = θ (t)δ(x1)δ(x2)δ(x5)∆(x
+
34, x−34) . (194)

It remains to show that these densities satisfy the requirement of charge conservation. This
is not immediate because the four-charge configurations ∆(x+12, x−12) and ∆(x+34, x−34) involve
directions which are not appearing in the integration measure (53). For example, consider the
charge

Q(1)(σ1,σ2,σ3,σ4)
=

∫

d xσ1
15 d xσ2

25 d xσ3
35 d xσ4

45 J̃1
0

= θ (t)

∫

d xσ1
15 d xσ2

25 d xσ3
35 d xσ4

45 δ(x3)δ(x4)δ(x5)∆(x
+
12, x−12) . (195)

We have to change the integration from x±15 to x±12, since we know that
∫

d xσ1
12 ∆(x

+
12, x−12) = 0.

This can be done in the following way:

xσ1
15 = x1 +σ1 x5 ,

= x1 + σ̃1 x2 +σ1 x5 − σ̃1 x2 ,

= x σ̃1
12 − σ̃1 x−σ̃1σ1

25 . (196)

As the change from xσ1
15 to x σ̃1

12 involves x±25, we have to ensure that the coordinate appearing
in this expression is the opposite to the coordinate in the integration measure d xσ2

25 , since the
directions x+25 and x−25 are orthogonal. To this, we just need to set σ̃1 = σ1σ2,

xσ1
15 = xσ1σ2

12 −σ1σ2 x−σ2
25 . (197)

Therefore, as x−σ2
25 is fixed in the integration along the direction xσ2

25 , we can directly write
d xσ1

15 = d xσ1σ2
12 , so that

Q(1)(σ1,σ2,σ3,σ4)
= θ (t)

∫

d xσ1
12 d xσ2

25 d xσ3
35 d xσ4

45 δ(x3)δ(x4)δ(x5)∆(x
+
12, x−12) = 0 , (198)

where we have renamed σ1σ2 → σ1. The same reasoning can be done with the charges
associated with the density J̃ (2)0 .
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