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Abstract

We analyze the thermodynamic Casimir effect in strongly anisotropic systems from the

vectorial N — oo class in a slab geometry. Employing the imperfect (mean-field) Bose
gas as a representative example, we demonstrate the key role of spatial dimensionality
d in determining the character of the effective fluctuation-mediated interaction between
the confining walls. For a particular, physically conceivable choice of anisotropic dis-
persion relation and periodic boundary conditions, we show that the Casimir force at
criticality as well as within the low-temperature phase is repulsive for dimensionality
de (2,4) U (6,8)U(10,12)U... and attractive for d € (4,6) U(8,10)U.... We argue,
that for d € {4,6,8...} the Casimir interaction entirely vanishes in the scaling limit. We
discuss implications of our results for systems characterized by 1/N > 0 and possible
realizations in the contexts of optical lattice systems and quantum phase transitions.
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1 Introduction

The thermodynamic Casimir effect received substantial interest over the last years [ 1-8] both
from theoretical and experimental points of view. The occurrence of these fluctuation-mediated
interactions becomes recognized in an increasing number of systems of surprising diversity
(such as, for example, biological membranes [9, 10]) and their existence and properties are
nowadays firmly established experimentally [8] on both qualitative and quantitative levels.
The validity of the theoretical predictions has also been tested in extensive and impressive
numerical simulations (see e.g. [11]) .

An obviously important basic property of the Casimir force is its sign. According to ex-
act theorems [12, 13] formulated in the context of the electrodynamic Casimir effect, the
fluctuation-induced Casimir force acting between bodies related by a reflection must be at-
tractive. The same is expected to hold true for the thermodynamic Casimir effect implying
attractive character of the thermodynamic Casimir interactions in systems involving identi-
cal boundaries (representing identical molecules) immersed in a uniform fluid. The above-
mentioned expectation has been confirmed in numerous theoretical studies (both exact and
approximate) as well as in simulations. We note in passing that a repulsive Casimir effect was
also considered in complementary situations, where the boundary conditions are different on
each of the bodies and can be experimentally tuned [14, 15].

The exact statements of Refs. [12,13] rely however on the explicit form of the field propa-
gator and its quadratic dependence on momentum. In the present paper we explore situations
where this condition is not fulfilled. Our analysis indicates that it leads to a far-going deviation
from the usual situation, and, in particular, yields the Casimir interaction attractive, repulsive,
or zero depending on the system dimensionality. This is completely opposite to the usual cases
extensively studied before, where dimensionality has no impact on the force sign.

The present analysis is carried out implementing a particular microscopic model, the so-
called mean-field or imperfect Bose gas on an anisotropic lattice, but the conclusions are rel-
evant to the entire universality class, which may encompass a broad diversity of physical sys-
tems. Our primary motivation for studying Bose systems with dispersions deviating from the
quadratic form stems from the recognized tunability of the dispersion relation in anisotropic
optical-lattice systems [16,17] by the Feshbach resonances. As was discussed in Ref. [18],
considering a tight-binding type model with at least nearest- and next-to-nearest- neighbour
hoppings, one may tune the microscopic parameters so that the quadratic component of the
dispersion is cancelled. In anisotropic lattices this can be done independently in each of the
d spatial directions, leading to a dispersion which is quartic in m (m < d) spatial directions
and quadratic in the remaining d — m directions. This yields a rich phenomenology involving
effective dimensional crossovers in the bulk [19], but also drastically affecting the interfacial
properties. Concerning the Casimir effect this manifests itself in two striking effects: change
of the power law governing the decay of the Casimir force as function of the distance (which
is accompanied by appearance of a non-universal scale governing its amplitude) and a change
of the Casimir force sign.

At the heart of the theory underlying the phenomenology of Casimir interactions lies the
concept of the dimensionless scaling function A(x), describing the variation of the excess
free energy density w, upon changing the scaling variable x ~ D/&, where, in the presently
considered setup of a slab (hypercubic) geometry, D is the system extension in one of the
directions, while £ denotes the bulk correlation length. The (linear) system size L in the
remaining directions is assumed infinite (L/D — o0). The excess free energy density w, is
generically related to A(x) via
A(x)
pd-1

e8]

Q)s = kBT
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in the so-called scaling limit, where both D and & are large as compared to microscopic scales.
The scaling function A(x) is universal in the sense that it depends on the bulk universality
class and the boundary conditions imposed on the fluctuating medium by the confining walls,
but not fine microscopic details of the system. The Casimir force (per unit area) is given by
F = —%‘1‘;5. The scaling function A(x) was computed for a broad variety of systems within
exact and approximate analytical approaches as well as numerical simulations [20-30]. It
was also measured experimentally (see Ref. [8] for a recent review).

There are few known cases, where Eq. (1) does not apply. One such situation arises in
systems exhibiting strongly anisotropic scale invariance [31], where the singularity of the cor-
relation function at the phase transition is related to (at least) two correlation lengths & and

& | diverging with different critical exponents so that £ ~ & ﬁ’*, and the anisotropy exponent
04 # 1. As was demonstrated in Ref. [32], the Casimir energy decay exponent {, = d — 1
in Eq. (1) becomes in such a situation modified. This is interesting, because, for dimensional
reasons, a quantity of dimension [length] must then appear in the corresponding expression
for w,. This in turn may originate only from the microscopic quantities, thus restricting the
universal character of the Casimir interaction. Specifically, for the so-called m-axial Lifshitz
point, [33,34] Ref. [32] predicts that Eq. (1) becomes replaced by

rad(x)
s = kBT# , (2)
where p
(=" tm—1, 3)
04

and T is a dimensionful scale factor, deriving from microscopic length scales and therefore non-
universal. Equations (2) and (3) apply to the setup, where the confining walls are oriented
perpendicular to one of the m (m < d) directions, where the inverse propagator deviates from
the standard quadratic form and is (up to anomalous dimensions) quartic in momentum.

In this paper we argue that the scaling function qu(x) occurring in Eq. (2) is strictly zero
for the N — oo universality class with m = 1 and periodic boundary conditions in even dimen-
sionalities d = 2n, n € {2, 3, 4, ... }. We consider a microscopic model being a representative
of this universality class and analyze the properties of the scaling function Afn(x) upon vary-
ing dimensionality d. By an exact analysis we demonstrate in particular that A‘li (x) changes
sign for each d = 2n (and is identically equal zero for d € {4, 6, 8, ...}). In consequence,
the corresponding Casimir interaction is repulsive for d € (%,4) U (6,8)U... and attractive
for d € (4,6)U(8,10)U.... This is in stark contrast to the case of isotropic systems with
quadratic dispersion, where (for periodic boundary conditions) the Casimir force is always at-
tractive (in any dimensionality and also for the entire family of O(N) universality classes), as
guaranteed by the exact statements of Refs. [12,13]. We clarify the character of the Casimir
interaction in the peculiar case of d € {4, 6, 8, ...} by demonstrating that there is no subdom-
inant contribution to the excess free energy, surviving the scaling limit. From continuity in
1/N we argue, that (at least for some values of the scaling variable x) the sign of the Casimir
force also changes at particular (presumably non-integer) values of d provided 1/N > 0 is
sufficiently small.

A substantial technical part of our analysis heavily relies on an earlier calculation presented
in Ref. [19]. In that paper we confirmed the predictions summarized in Eq. (2) and Eq. (3)
and calculated the scaling function focusing mainly on spatial dimensionalities corresponding
to d = 3. As we demonstrate in the present analysis, varying dimensionality has a drastic and
unexpected impact on the emergent physical picture. In order to avoid repetitions, we will
frequently refer to Ref. [19] throughout the paper.
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The present calculation is exact and is carried out for the imperfect Bose gas, which con-
stitutes a particular microscopic representative of the N — oo universality class. More pre-
cisely, as established in Ref. [35] for the isotropic case, the imperfect Bose gas is equivalent
to the O(2N) model in the limit N — oo and the corresponding scaling functions [36,37] for
Casimir energy differ by a global factor of two. One may check that (at least for periodic and
von Neumann boundary conditions) the form of the dispersion has no impact on the study of
Ref. [35] in the aspects exploring connections between the imperfect Bose gas, the interact-
ing N-component Bose gas in the limit N — 00, and the classical Landau-Ginzburg ¢ *-type
theory. In consequence an analogous correspondence holds for the anisotropic situations as
well.

The outline of the paper is as follows: In Sec. IT we discuss the model and summarize the
relevant elements of its bulk thermodynamics. Sec. III contains an analysis of the saddle-point
equation. Both Sec. IT and Sec. III strongly rely on Ref. [19]. However, to drag the correct
conclusions it is necessary to keep track of remainder terms (vanishing in the scaling limit)
which constitutes the important extension of Ref. [19]. The new, physically relevant results
are contained in Sec. IV, where we analyze the excess free energy varying dimensionality.
Sec. V contains a summary and a portion of technical details of the analysis is postponed to
appendices A and B.

2 The mean-field Bose gas

We consider the mean field (imperfect) Bose gas governed by the Hamiltonian

A= e+ K2, 4)
m 2V

In addition to the standard kinetic component the model contains the repulsive mean-field
interaction term me = %I\AI 2 (a > 0), which arises from a long-range repulsive part v(r)
of a 2-particle interaction potential in the Kac limit lim,_,, ydy(yr), corresponding to vanish-
ing interaction strength and diverging range. This limit is very close in spirit to the rigorous
treatment of the van der Waals theory of classical fluids [38]. Different aspects of this model
were studied in recent years [35,39-46] considering both its bulk and finite-size properties. In
particular, for the isotropic continuum case it was established [35,43] that the Bose-Einstein
condensation in this model is a representative of bulk O(N — ©0) universality class.

If the model is considered on a lattice, the dispersion €, may in general be a complicated
function of momentum. For example, for a hypercubic lattice it takes the form

€ = Z 2t,[1—cos(kx)], (5)

where x labels the lattice points and t, are the lattice hopping parameters. Generically, when
expanded around k = 0, such a dispersion is quadratic. As was shown in Ref [18], it is however
possible to choose the hoppings so that the coefficient of the quadratic contribution cancels and
the corresponding asymptotic behavior of €y is then quartic, or even higher order in momen-
tum. This tuning procedure can be carried our independently in each of the spatial directions.
Moreover, as was demonstrated in the analysis of Ref. [18], only the low momentum asymp-
totic form of the dispersion is relevant for the critical singularities. Note that non-universal
quantities, such as the critical temperature, are certainly affected by this approximation [18].
We therefore consider

d—m d
e a= Y tokA?+ D tlkaA), (6)
i=1 i=d—m+1
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replacing the dispersion €, with its low-momentum asymptotic form €, and assuming the
hoppings had been chosen so that the dispersion is quartic in m < d directions (and quadratic
in the remaining). We also assume t, > 0, t > 0 and introduce

ékl = to(klA)z and ékd = t(de)4, (7)

for future reference. The quantity A is a microscopic length, which may be identified with a
lattice constant. The bosonic particles are assumed spinless for simplicity. The system is d-
dimensional and is enclosed in a hypercubic volume V = L4~1D, where L > D> [,;. and [,,,;,
denotes all the microscopic length scales present in the system. The quantity D measures the
system extension in the d-th direction along which the dispersion is quartic [see Eq. (6)]. We
impose periodic boundary conditions in all the directions (including the d-th one). This choice,
often preferable in numerical simulations, is clearly not the most physical one and in our study
is dictated mostly by convenience. We checked that implementing the Neumann boundary
conditions modifies some numerical factors, but does not change our major conclusions. We
also point out that the presumably most realistic Dirichlet and Robin boundary conditions add
technical complexity to the present study and will not be considered here.

Below we sketch the essential steps leading to the solution of the model [18,42,43]. We
work within the framework of the grand canonical ensemble. The corresponding grand canon-
ical partition function may be written as [42]

Pa+ioco
Z(L,D,u,T) =—iexp (ﬂ_V‘uz) 4 J ds exp[—V ¢(s)]. (8)
2a \J 21Ba )4, ico

The parameter a < 0 is arbitrary, 7! = kT and

2
LP(S)Z%(—%+S[5M)—%10g50(%,71), )
with the quantity EO(%, T) denoting the grand canonical partition function of the noninteract-
ing Bose gas [47] evaluated at chemical potential u = % and temperature T. The presence of
the volume factor in the term exp[—V ¢(s)] in Eq. (8) guarantees that the saddle point analysis
of Eq. (8) becomes exact for V — oo (i.e. L — ©00). The excess grand-canonical free energy
density

Q(L,D, T,u)

Ld-1

is related to the Casimir force (per unit area) F(D, u, T) via

0.0, T) = lim | ~Doy(T.u) | (10)

dwy(D,u,T)

FD,p,T) = ——7

(11
The grand-canonical free energy is evaluated as (L, D, T,u) = — ' InE(L, D, T, u) and the
bulk free energy density w;(T,u) is given by w;(T,u) = lim;_, o, L%Q(L,D = L, T,u). Using
Eq. (8), we may write the excess contribution to the grand potential as

(D, p, T) = lim B~ DL9(5)~ ¢4(s0)] (12)
where
_2 1
(@O=—gpt | > Z e’ 7Pa) Zlog (1—eF) . a3)
P k#(0,kg) = 1’
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§ denotes the solution to the saddle-point equation ¢’(5) = 0, while s, corresponds to § in
the bulk case (i.e. when D =L and L — o0) and ¢;(s) = limp_,; ¢(s). The strategy of the
subsequent analysis amounts to solving the saddle point equation ¢’(5) = O at finite D and
evaluating Eq. (12) for the obtained value of §. This yields the excess grand canonical free
energy, from which the Casimir force is obtained via Eq. (11).

2.1 Summary of the bulk solution

Below we summarize the presently relevant features of the system in the thermodynamic limit,
where D = L — oo (see Refs. [18,19]). Due to the anisotropic nature of the system, there are
two characteristic length scales

7(,1=2A\/E'V/3t0, A2=

related to temperature and playing roles analogous to the thermal de Broglie length in the
isotropic case. For convenience, some numerical factors are absorbed in the above definitions.
We also introduce the 'thermal volume’ parameter:

B+, (14)

F(5/ 4)

Vp = aAdmmam, (15)

Analysis of the saddle-point equation in the thermodynamic limit [ 18,19] leads to the following
expression for the critical line

a 1
)= —¢| = 16
ue(T) VTc(w), (16)
where { denotes the Riemann zeta function and
1 d m
— = 17
Y 2 4 a7

Note that Eq. (16) is correct for arbitrary T for the present model, while in a situation involving
the full lattice dispersion € instead of €y it would only describe the low-T asymptotics [18].
It follows that the critical line obeys the universal power law p.(T) ~ TY¥. The condensed
phase is stable for y > u.(T) provided % > 1. The condition % = 1 determines the lower
critical dimension d;(m) of the system. Note that for the usual isotropic case (m = 0) one
recovers d; = 2, for the 'uniaxial’ case (m=1) d; = 2, and the largest conceivable value of d;
corresponds to m = d, where one obtains d; = 4. As shown in Ref. [18], the universal bulk
properties of the system with given m are closely related to the usual isotropic case in effective
dimensionality d.g = % This in turn can be connected to the spherical [48] (Berlin-Kac)
universality class, or the N — oo limit of the O(N) models [49,50]. This correspondence is
restricted to bulk properties.

3 Saddle-point equation

The explicit expression for the saddle-point equation ¢’(5) = 0 can be obtained from Eq. (13),
and cast in the following form [19]

1 S : 1 1
G mpe) =4 ™

-5
+%(7@) __4ZF1(”0)__Z%’

T

(18)
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where g,(z) = Z;:Zl i—i denotes the Bose function, ¢ = & ;fc ,
T D s, FK(X)=foodp e b(x/pt, (19)
T T(5/4) Ay 0 p*
and
o
o(k)= f dx etkx g (20)
—00

is the Fourier transform of the quartic Gaussian. Eq. (18) is exact and valid in an arbitrary
thermodynamic state, for any D and L > D. The remainder term R(ll) arises from application
of the Euler-Maclaurin formula [19] and, importantly, can be dropped for L — oo (even at
D finite). This fact, first demonstrated here, is crucial for the physical conclusions obtained
by us in this paper. We provide an analysis of this term in appendix A. Upon neglecting R(ll)
Eq. (18) becomes equivalent to Eq. (42) of Ref. [19]. We continue by introducing the scaling
variable

4
p o * 1
el , 1<+<2,
x= (22 ) 4 Y (21)
(£). 2
the sign of which is positive below bulk T, and negative otherwise. We do not analyze the case
% = 2 (corresponding to the upper critical dimension of the bulk transition) where 5] acquires

logarlthmlc corrections. Note [18] that x ~ (D/&)))" with y = 34 for1 < ¢ <2andy=4
for 1 7> 2 The saddle-point equation is finally cast in the followmg convenient form:
1
1 c 1 (1) D\
(o ={ g3 (D= L)+ g RO+ L) )( )
TN ¥ r(5/4) v Bu
r(5/4)w - 2
o4
nw ZF (no)+ — ( ) Z ﬂekd—s
for % < 2and
(o =83 D=+ R+t ) )4+
Nx = o1 — (=
Y ¥ Y 1“(5/ 4) Y P 23)
45 o0 V. 4
&(Az) GE_4ZFi(nU)+—T(£) Z;,
i+ \D =y V) 4 ePéy= _q

for % > 2. Note that (up to the remainder terms) Eq. (22), (23) correspond to Eq. (44) and
(45) of Ref. ([19]). We shall now exclusively focus on x > 0, pertinent to T < T,., where
the Casimir interaction is expected to be long-ranged. After the above rearrangements, the
scaling variable x appears only on the left-hand side of the saddle point equation. At and
below criticality § — 0~ and we may expand the right-hand side of the saddle-point equation
for |5] < 1.

We now consider the scaling limit, where % > 1 and ¢ < 1, while the scaling variable x
may take any arbitrary nonnegative value. Recall also that L > D. In this limit, Eq. (22) takes
the following form:

o0

1. (TG4 a,[ 1 1 D i
C(w)x—( - ) o [m ¢)+F(5/4)HZ (no):| VM( ) +H.O.T.,
(24)
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while Eq. (23) can be written as

(=

r5/9\* 4 C(%) 1 Vr (DY*

Here ’H.O.T’ stands for terms of higher order in § and 2, which do not survive the analyzed
limit.

In both the above cases, the left-hand side (LHS) is positive and does not depend on |3].
The first term on the right-hand side (RHS) of Eq. (25) is manifestly negative. This implies
that the second term (involving V) must give a finite contribution in the scaling limit to assure
the existence of a solution. In consequence, |3| is of order (’)(%4) (assuming the microscopic
length scales are of order 1). The situation is similar for Eq. (24) provided % > % (form=1
this corresponds to d = 4). We now focus on this case (considering that the opposite situation
was analyzed in Ref. [19]) and inspect Eq. (24). Clearly I'(1 — %) < 0, while F 1 is bounded
from above by its behavior at small arguments (see the appendix B), which is non-positive. In
consequence, for the case described by Eq. (24) the last term must give a finite contribtition
to assure existence of a solution at x > 0 and we find || to be necessarily of order O(2 :b, 4).
In a compact way we write our result as:

Y
5] = (’)(DV) . 26)

Eq. (26) constitutes the essential new result of this section.

The key conclusion of the above analysis is that in the limit L > D > [, ;. and for T < T,
the behavior of |5| is controlled by L rather than D. Put in other words, if the limit L — oo is
performed, keeping D finite, there will be no surviving contribution to |5|. By virtue of Eq. (19)
the same applies to the quantity o. This fact opens wide the way to characterize the excess
free energy of the system in the scaling limit, which is done in the next section.

It is worth emphasizing that Eq. (26) holds only at criticality and in the low-T phase (for
T < T,) and for dimensionality d high enough, namely for 1+ > % (corresponding to d > 4
for m = 1). If the thermodynamic state is fixed above T,, the magnitude of |§| in the limit
L> D> l,,. is controlled by the distance from the phase transition (measured by the param-
eter £). On the other hand, for T < T,, but % < % 5| is controlled by D (i.e. |5] is finite for
L — oo with D finite, but vanishes if D — o0). In what follows we restrict to the cases, where
Eq. (26) holds. For an analysis of the opposite situations see Ref. [19].

4 Excess grand canonical free energy
The result of Eq. (26) greatly simplifies the analysis of Eq. (12), leading to the determination

of the excess grand canonical free energy w,. Considering the limit L — oo keeping D finite
we may simply put |5| — 0*. We obtain

d—m A d
XA
s =~k T Do 7
where
I(5/4)7 " | i
d
Al = n% UILn8+U¢ ;F%_H(HO') , (28)
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A2, . . ..
and y = x_f is a temperature-independent length scale. Note that the magnitude of the Casimir

interaction may be greatly amplified by manipulating this parameter. Upon putting 8, = % in
Eq. (3) [as pertinent to the present situation - see e.g. Refs.[31,51]] and identifying T' « y9—™
we match Eq. (3) with the derived formula of Eq. (27) and identify Ai with the scaling function
A(x) of Eq. (3).

Remarkably, Eq. (27) and Eq. (28) hold for arbitrary nonnegative value of the scaling
variable x and represent the entire expression for w, and not only the asymptotic behavior
for D large. The physically relevant new result of the present paper now follows from the
analysis of Eq. (28) upon changing dimensionality. As we demonstrate below, the sign of Afn
is sensitive to the value of % and therefore may be varied while manipulating d and m. When

restricting to the 'uniaxial’ case m = 1, we show that Afn is precisely zero for natural even
dimensionalities starting from d = 4.

We may further simplify Eq. (28) extracting the asymptotic behavior of the function F -
see the appendix B. Introducing

G(K)=f dqq™ ¢ (q), (29)
0
we obtain .
4\T(5/4)7 " (1
Al =4 (—)—4G(—+1). (30)
=) %y

Eq. (30) was already contained in Ref. [19], but its generality and the rich physical conse-
quences encoded in the properties of the function G were completely neglected in that study,
which focused mostly on the physical dimensionality d = 3. As we demonstrate below, the
function G(x) changes sign for

_4n+7

K=K, with n€{0,1,2,...}. (31)

The fact that G(k = «k,,) = 0 is proven in the appendix B. Below, in Fig. 1 we provide a plot

of G(x) evaluated numerically. Particularly interesting is the case m = 1, where % = % — %

and the zeroes of G(% + 1) fall precisely at dimensionality d = 4,6,8,.... In consequence, the
Casimir force is repulsive up to dimensionality d = 4, attractive for d € (4, 6), repulsive again
for d € (6, 8) and so on. The associated Casimir amplitude quickly diverges upon increasing d.
A remarkable observation concerns the case d € {4,6,8,...} where the entire scaling function
Adm:1 is strictly zero, and, as we showed above, there is no subleading term surviving the limit
L — oo.

The equivalence of the presently analyzed model and interacting N -component bosons was
investigated in Ref. [35] for N — oo. In particular the existence of this limit was established
therein. One may check, that the form of the dispersion does not influence the validity of
the reasoning and the obtained correspondence holds also for anisotropic dispersions. We do
not analyze corrections in 1/N or the properties of the expansion in the present paper. One
can however obtain interesting insights beyond 1/N = 0 imposing only continuity in 1/N,
by virtue of which one anticipates a small change of the scaling function when 1/N is varied
from zero to an arbitrarily small value 1/N = e. There is certainly no reason to expect that the
dimensionalities marking the boundaries between the attractive and repulsive regimes should
still correspond to even natural numbers when 1/N is elevated above zero. Nor are there
reasons to anticipate that the scaling function remains constant upon lifting 1/N. However,
considering 1/N arbitrarily small, keeping x fixed and changing d, continuity of the scaling
function requires that Admzl(x) changes sign at some d, which may (and presumably does)
depend on x.
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Figure 1: The function G(x) evaluated numerically for a range of arguments captur-
ing its first two zeroes (at k = Ky = % and k = k; = 1741). The inset shows the same
data in a restricted range of x making the position of k, clearly visible. For increasing
values of x, the magnitude of oscillations of G(x) rapidly diverges, so that neither
G(x) nor its derivative is bounded from above or below.

In Fig. 2 we have illustrated the picture we obtained at 1/N = 0 together with the antic-
ipated features at 1/N sufficiently small. It is absolutely open, what survives out of this in
the physically most interesting cases of N = 3 and N = 2, for example whether the dashed
lines (boundaries between the repulsive and attractive regimes) emerging from 1/N = 0 and
d = 4,6,8,... persist up to 1/N = 0.3(3), or (for example) merge in pairs at some values
of 1/N. Addressing this question is an interesting (presumably challenging) topic for future
research.

1/N
m=1
Rep. ;A Rep. Att.
— : — —— e} » d
2 4 6 8 10

Figure 2: Illustration of the results concerning the sign of the Casimir force for
1/N = 0 for the uniaxial case m = 1 together with the expected situation at 1/N < 1.
At 1/N = 0 the obtained interaction is repulsive for dimensionality d < 4, attractive
for d € (4,6), repulsive for d € (6,8) and so on. Occurrence of the boundaries sep-
arating the attractive and repulsive regimes (at fixed x - see the main text) is very
likely to persist for small 1/N > 0 but their fate upon increasing 1/N towards 1/3 is
completely open.
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5 Discussion and outlook

In this paper we disclose the surprising properties regarding the sign of the Casimir force in
anisotropic systems upon varying dimensionality. Employing the imperfect (mean-field) Bose
gas as a representative of the (anisotropic) vectorial N — oo class, we demonstrate the peri-
odic alternation of the sign of the Casimir energy upon changing dimensionality. Particularly
interesting is the case m = 1, where the dispersion is quartic in one of the spatial directions
and quadratic in the remaining ones. In this situation we demonstrate that the Casimir in-
teraction is repulsive for dimensionality d € (%, 4)U(6,8)U(10,12) U... and attractive for
d €(4,6)U(8,10)U.... We show moreover, that for d € {4,6,8...} the Casimir interaction
entirely vanishes in the scaling limit. Even though the analysis is performed for a system from
the 1/N = 0 universality class, from continuity in 1/N one may argue that the uncovered unex-
pected features should also occur for 1/N finite but sufficiently small. The phrase ’sufficiently
small’ is vague here, and this is by no means excluded that the physically most interesting
situations of N € {1, 2,3} fall into this category. A clarification of this issue requires further
studies e.g. from the point of view of the field-theoretic approaches with 1/N expansion, or
numerical simulations.

The possibility of modifying the sign of Casimir-type forces (for example by manipulat-
ing the boundary fields) was recently considered in a number of contexts [21,52-60]. The
presently analyzed setup predicting their oscillations as function of dimensionality and actual
vanishing at even values of d appears however entirely new and somewhat surprising.

We do not expect that our predictions appear at this point obvious for experimental tests
considering the magnitude of the considered effects and the high degree of required tuning.
They are however certainly open to verification by numerical simulations. Restricting to nat-
ural d (where simulations are usually performed) and m = 1 we then expect a repulsive
interaction at d = 3 and attractive for d = 5, while the obtained force should entirely vanish
in the vicinity of d = 4. This should be exact provided 1/N is sufficiently small. Even though
our original motivation stems from cold-atom systems in optical lattices, numerical simula-
tions may, by virtue of universality, be performed using any convenient representative of the
universality class. For lattice magnetic systems a paradigmatic choice characterized by m =1
might be the Lifshitz point of the so-called ANNNI (anisotropic next-nearest-neighbor Ising)
model [61] and its counterparts involving a larger number of magnetization components.

Apart from bosons in optical lattices and thermal phase transitions of the Lifshitz type, our
study may be of relevance in the context of quantum phase transitions. This is worth attention,
since the scaling properties of a system in the vicinity of many thermal phase transitions are
closely related to those of quantum (i.e. occurring at T = 0 and therefore driven by quantum
fluctuations) phase transitions in elevated dimensionality d, = d+z [62]. This equivalence was
in particular demonstrated for the isotropic variant of the present model [63]. To which extent
the quantum-classical correspondence also holds for anisotropic systems and for interfacial
properties needs clarifying studies. Assuming such an extension is possible, the peculiar case of
d, = 4, where the Casimir interaction vanishes should relate to physical dimensionality d = 3
for systems with a gap in the ordered phase (where z = 1). On the other hand, interacting
bosons are characterized by z = 2, which makes both dq = 4 and dq =5(d=2andd =3
respectively) physically conceivable. The quantum-classical crossover occurring in the vicinity
of the quantum critical point, might then be reflected in a crossover between two effective
dimensionalities displaying, for example, different sign of the Casimir amplitude. An avenue
to realize a quantum Lifshitz point was, for example, recently exposed [64] for imbalanced
Fermi mixtures, exhibiting competition between conventional s-wave and nonuniform (Fulde-
Ferrell-Larkin-Ovchinnikov) [65,66] superfluid phases.
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A The remainder term R(ll)

In this appendix we provide a discussion of the remainder term 7?,(11) occurring in Eq. (18).
This arises [ 19] while approximating the sum 221 f (r) with the integral fooo drf(r) for

FG)= e r T (Cr#) (32)

and C, = r(s / ) A with n € N. The Euler-Maclaurin formula for our case may be written as

M M [p/2]
fM)—£(0) b _ _
;f(r)—fo drf(r)=——3"——+ ; (z—i")!(f(z" D) - D0)+R,, (33)

with M — oo, p € N arbitrary, [p/2] denoting the integer part of p/2, b, being numerical
coefficients of no relevance here, and finally

M
R”:(_l)pﬂz% J drf®)(r)P,(r) . (34)
*JO

Here P,(r) are the periodized Bernoulli functions. The asymptotic forms of the function ¢ (x)
are given in Ref. [67]. For the present analysis it is sufficient to know that ¢(x = 0) = const
and can be expanded in powers of x in the neighborhood of x = 0, while |¢(C,r~*)| ~ ¥ x
/™" for r — 0" with y and a positive. Using these forms for r < 1 and r > 1 in the
definition of f(r) one finds that f(r) vanishes at r — 0 and r — oo together with all of its
derivatives. This is true for any values of D. In consequence, R, is the only nonzero component

on the RHS of Eq. (33). By choosing p = 1 and recalling that P;(r) = (r —[r]) — 5, we obtain

that
M M [ere) d ers— _1/4
;f(r)—fo drf(r)znlzf dr[a(rl/wqb( ))]Pl(r). (35)

0

We now introduce x = r|5|, and write R, as

L R P Co €)1l R

The integral is convergent for any §, and therefore |R ;| < O([5 |1/%), which is already sufficient
to justify dropping the remainder in Eq. (18). The bound we used is very crude, and in fact

the integral vanishes for |§| — 0 due to the violent oscillations of the term { 5] [I)sfl ] — %}
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B Properties of the F and G functions

In this appendix we exhibit the relevant properties of the functions F and G. In particular we
demonstrate the zeroes of G.
The function F,.(x) is defined in Eq. (19) and a change of variables brings it to the form

FK(x)=JO p—qb( 1/4) %JO dqq*™ 5 ¢ $g) . (37)

We are interested here only in k > 1 and sufficiently small x. The integrand on the RHS
4

of Eq. (37) is exponentially suppressed for ¢ < x, while for ¢ > x the term e may be

approximated by unity. Since ¢(q) is constant for ¢ — 0, we may replace e 4_4 —1forx < 1.
We obtain

F.(x~0)~ G(x) +..., (38)

xAKk—4
where the function G(x) is defined by Eq. (29). We have checked that for x € [%, 2) F.(x)is
a decreasing function of x, bounded from above by its behavior near x = 0.

We now demonstrate that G(k = «,) = 0 for k, 4”I 7 and n € {0,1,2,...}. Plugging
K = Kk, into the definition of G(x) and using ¢(—q) = ¢ (q) we change the order of the integrals
occurring in G(x) and obtain:

oo oo
G(x,) = %f dxe_x4f dqq*t2ela (39)

—0Q —0Q0

We now use the representation of the [-th derivative of Dirac delta:

1 oo
50(x) = —J dg(ig)'e'®™, (40)
21 ) _ o
which leads to
o0
G(xk,) = (—)**n f dx 5@ (x)e " (41)
—00

Considering that f_ozo dxD(x)f (x) = (=1)' £ D(0), we find:

4 )(4n+2)

G(x,) = m(i)*+2 (e leeg=0. (42)

In performing the last step we observed, that only the 4-th, 8-th, 12-th and so on derivatives
of the function f(x) = e are nonvanishing at x = 0.
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