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Abstract

While Anderson localisation is largely well-understood, its description has traditionally
been rather cumbersome. A recently-developed theory – Localisation Landscape Theory
(LLT) – has unparalleled strengths and advantages, both computational and conceptual,
over alternative methods. To begin with, we demonstrate that the localisation length
cannot be conveniently computed starting directly from the exact eigenstates, thus mo-
tivating the need for the LLT approach. Then, we confirm that the Hamiltonian with the
effective potential of LLT has very similar low energy eigenstates to that with the physi-
cal potential, justifying the crucial role the effective potential plays in our new method.
We proceed to use LLT to calculate the localisation length for very low-energy, maxi-
mally localised eigenstates, as defined by the length-scale of exponential decay of the
eigenstates, (manually) testing our findings against exact diagonalisation. We then de-
scribe several mechanisms by which the eigenstates spread out at higher energies where
the tunnelling-in-the-effective-potential picture breaks down, and explicitly demonstrate
that our method is no longer applicable in this regime. We place our computational
scheme in context by explaining the connection to the more general problem of mul-
tidimensional tunnelling and discussing the approximations involved. Our method of
calculating the localisation length can be applied to (nearly) arbitrary disordered, con-
tinuous potentials at very low energies.

Copyright S. S. Shamailov et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 13-08-2020
Accepted 27-05-2021
Published 09-06-2021

Check for
updates

doi:10.21468/SciPostPhysCore.4.2.017

Contents

1 Introduction 2

2 System of interest 4

3 Exact diagonalisation 5

1

https://scipost.org
https://scipost.org/SciPostPhysCore.4.2.017
mailto:sophie.s.s@hotmail.com
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCore.4.2.017&amp;domain=pdf&amp;date_stamp=2021-06-09
https://doi.org/10.21468/SciPostPhysCore.4.2.017


SciPost Phys. Core 4, 017 (2021)

4 The effective potential 9

5 Eigenstate localisation length 12
5.1 Outline of the LLT method 12
5.2 Test of decay constants 17
5.3 Effect of parameters 20

6 Breakdown at higher energies 21

7 Multidimensional tunnelling 25

8 Conclusions and future work 27

References 28

1 Introduction

Anderson localisation [1,2] is a universal wave interference phenomenon, whereby transport
(i.e. wave propagation) is suppressed in a disordered medium due to dephasing upon many
scattering events from randomly-positioned obstacles. This can be understood from Feynman’s
interpretation of quantum mechanics, where one must sum over all possible paths from the
initial to the final points of interest to obtain the total transmission probability. The random
positions of the scatterers guarantee dephasing between the different paths, leading to an
attenuation of the amplitude of the wavefunction. First discovered in the context of quantised
electron conduction and spin diffusion [3], Anderson localisation of particles thus provides
direct evidence for the quantum-mechanical nature of the universe at a small scale.

In particular, Anderson localisation is characterised by an exponential decay in the tails of
the wavefunction with a length scale known as the localisation length [3]. The computation
of this key variable is not straight-forward. For continuous systems, a rough estimate can
be obtained by setting the renormalised diffusion coefficient, derived in the limit of weak
scattering where it is only slightly reduced from its classical value, to zero [2, 4, 5]. While
the resulting analytical formula is not expected to be accurate, it is of course convenient, and
is thus used by many researchers [6–9]. The diffusive picture is in general often employed
to describe Anderson localisation, even though it is strictly inapplicable in this limit [7, 9]. A
rigorous calculation can be performed using Green’s functions [2,4,5,10], but it requires many
assumptions regarding the nature of the disorder and is quite involved. On the other hand,
Green’s functions can be used to extend the classical diffusive picture into the weakly-localised
regime by computing the correction to the diffusion coefficient [2,4,5,7], and even push this
picture into the strongly localised limit by making the renormalised diffusion integral equation
self-consistent [2,4,5,7,11].

Another approach to obtain the localisation length is the Born approximation, commonly
utilised for weak scattering [6,8,12]: here, one takes the total wave in the extended scattering
body as the incident wave only, assuming that the scattered wave is negligibly small in com-
parison. Understandably, this method is inaccurate for strong disorder. Exact time-dependent
simulations with the Schrödinger [6, 8, 13, 14] or Gross-Pitaevskii [15, 16] equations can be
used instead, but this approach is very time-consuming and yields little insight into the physics.
Finally, access to the localisation length directly through the eigenstates of the Hamiltonian is
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hampered by practical considerations (as we shall show below).
Other, more model-specific methods have also been employed in the literature: [17] solved

the Schrödinger equation via a random walk on a hyperboloid, [18] derived a non-linear wave
equation to extract the Lyapunov exponents corresponding to the linear problem of inter-
est, [19] solved the kicked-rotor model analytically, and [20] derived analytical expressions
relevant for the weak disorder limit.

For discrete models, a plethora of methods to calculate the localisation length likewise ex-
ists. The most renowned is of course the transfer matrix method, allowing for the calculation
of Lyapunov exponents and thus the localisation length [21–29]. Such calculations have com-
monly been used to confirm the predictions of finite scaling theory [24,27]. While often used
together, transfer matrices and Lyapunov exponents have been combined with other elements
to obtain the localisation length: the former with analytical continuation [30] to compute mo-
ments of resistance and the density of states, and the latter in a perturbative expansion, with
numerical simulations of a quantum walker [31]. The Kubo-Greenwood formalism has also
proved highly successful [24,32,33].

Green’s functions have been as invaluable for discrete systems as for continuous [10, 12,
13,24,34,35], allowing for renormalisation techniques to be applied [35,36], or alternatively
scattering matrices, treated with the Dyson equation [10]. Out of these references, [34] ex-
amined the off-diagonal elements of the Green’s matrix as a localisation order parameter, [13]
the distribution of eigenstates which was related to the spatial extent of the eigenstates, [10]
the characteristic determinant related to the poles of the Green’s function, and Ref. [35] devel-
oped a renormalised perturbation expansion for the self energy. Recursion formulae encoding
the exact solution [37, 38] can also sometimes allow one to calculate the localisation length
(and the density of states [38]).

Out of the studies above, one-dimensional (1D) [6,13,17–19,21–23,30,31,34,35,37,38]
and two-dimensional (2D) [6–8, 10, 12, 14, 15, 20–28, 36] models have been numerically ex-
plored far more thoroughly than three-dimensional (3D) [6,27,34], simply because of the in-
creased computational requirements of higher-dimensional spaces. Possibly the most heavily
studied model of localisation is the Anderson model, also known as a tight-binding Hamil-
tonian [4, 10, 12, 13, 22–27, 29, 30, 32, 34–37, 39–44], but other examples include the kicked
rotor [19] (formally equivalent to the Anderson model), the Lloyd model [13,21], the Peierls
chain [38], a quantum walker [31], and the continuous Schrödinger equation [13, 14, 17],
with either a speckle potential [7,16], delta-function point scatterers [6,10], or more realistic
Gaussian scatterers [8,15].

It is worth noting that for 2D continuous potentials with arbitrary disorder, there is no
numerically-exact or even a fairly accurate, approximate method to compute the localisation
length, leaving the direct integration of the time-dependent Schrödinger equation as the only
currently viable approach.

Meantime, a break-through new theory – coined Localisation Landscape Theory (LLT)
[45–51] – was developed recently, completely revolutionising the field. It allows for intuitive
and transparent new insights into the physics, as well as a practical, efficient way of perform-
ing calculations. To give a brief overview, this theory relies on the construction of a function,
the localisation landscape, which governs all the low-energy, localised physics. One can treat
finite problems so that boundary effects are accounted for, and yet push the algorithms to very
large system sizes, where alternative methods are completely impractical. The validity of this
theory is not restricted to a specific noise type, making it widely applicable to a range of prob-
lems. An effective potential can be constructed, such that quantum interference effects can be
captured instead by quantum tunnelling through this effective potential (but this is restricted
to low energies, as we shall show). One can predict the main regions of existence (referred
to as “domains”) of the low-energy localised eigenstates, reconstruct the eigenstates on these
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domains, as well as compute the associated energy eigenvalues. Thus, Anderson localisation
can be fully reinterpreted in this picture, including the energy dependence of the localisation
length (so far, qualitatively). Very recently, LLT has been used to support an experimental
study of Anderson localisation [52].

In this paper, we search for a way to calculate the localisation length for an arbitrary dis-
ordered, continuous potential at very low energies. We begin by showing that the localisation
length cannot be efficiently extracted from the eigenstates of the Hamiltonian. From there, we
turn to LLT, and confirm that the Hamiltonian with the effective potential has very similar low-
energy eigenstates to that with the physical potential, which justifies basing our calculation of
the localisation length on a semiclassical treatment of tunnelling in the effective potential. In-
deed, we demonstrate how the localisation length at very low energies can be obtained from
LLT, a method that can be applied to continuous systems with any everywhere-positive po-
tential (a required condition for LLT to apply), for any strength of the disorder, at very low
energy where the eigenstates are strongly localised. Our description is in 2D, a 1D version is
much simpler and can be implemented with no additional effort, while a 3D version can be
eventually developed by a direct analogy.

Thus, we extend LLT by developing a method for the computation of the localisation length
at very low energies in 2D systems. The main achievement lies in finding an efficient way of
evaluating the exponential decay cost for crossing domain walls – barriers in the effective
potential of LLT separating neighbouring domains. We discuss how our method fits in to the
extensive literature on multidimensional tunnelling, and then test it against the results of exact
diagonalisation. We also describe the mechanisms by which the eigenstates extend to cover
larger areas at higher energies, and explain why our method cannot capture this behaviour,
which can no longer be viewed as a simple tunnelling process in the effective potential.

The paper is structured as follows. We begin by introducing the system of interest in section
2, and proceed to demonstrate what can and cannot be learned from an exact diagonalisation
of the Hamiltonian in section 3. In section 4, we show that the effective potential of LLT can
be used to access the exponential decay in the low-energy eigenstates of the physical potential
by comparing the eigenstates of the Hamiltonian with the two potentials. Then, in section
5, we extend known LLT to calculate the localisation length at very low energies, as defined
by the length scale of exponential decay in the tails of the eigenstates of the Hamiltonian,
and directly test the method by comparison to exact eigenstates. This method breaks down
at higher energies, together with the tunnelling picture, as we describe in detail in section
6. In the course of our work, we develop a simple and practical approximation to multidi-
mensional tunnelling, discussed in section 7, which has many potential applications in other
contexts. Conclusions are presented in section 8 and several ideas are discussed as directions
for a possible forthcoming investigation.

2 System of interest

We consider a (non-interacting) particle of mass m confined to a 2D plane, whose motion is
restricted to a rectangular region defined by x ∈ [0, L] and y ∈ [0, W ]. At the boundaries of
this rectangular region, we impose Dirichlet boundary conditions, requiring the wavefunction
to vanish. The particle moves in an external potential V (x , y), so that the Hamiltonian is
simply

H = −
ħh2

2m
∇2 + V (x , y). (1)
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Because we are interested in studying Anderson localisation, the potential V (x , y) is taken as
a sum of Ns randomly-placed Gaussian peaks of the form

V0 exp

�

−
(x − x0)2 + (y − y0)2

2σ2

�

, (2)

constituting what is known as “point-like” disorder, chosen for its lower percolation threshold
[8].

This system could be experimentally realised with cold atoms as in [15], where an at-
tractive 2D trap is used to contain atoms in a planar geometry, a repulsive custom potential
generated by a spatial light modulator (SLM) allows the atoms to be confined to, for example,
a rectangular box, and Gaussian point-like scatterers are generated by imaging squares of light
produced by the SLM.

Next, we must introduce a set of dimensionless units, to be used throughout the paper. Let
` be a typical physical length scale relevant for the problem (for example, `∼ σ). Lengths will
be measured in units of `, energy is units of E0 = ħh2/(2m`2), and time in t0 = ħh/E0. Typically,
for a cold-atom experiment such as [15], `∼ 1 µm, E0 ∼ 1 nK ×kB, and t0 ∼ 5 ms.

Note that the coordinates (x0, y0) of the Gaussian scatterers are drawn from a uniform
distribution of half-integers between [0, L/`] and [0, W/`], respectively. In all the simulations
to follow, L/` and W/` are further chosen as integers. This restriction is imposed to stay in
line with the discrete nature of the pixelated SLM used in [15] to both set the geometry and
produce the scatterers. In the case of this experiment, one could reasonably choose ` to be the
length of the side of the squares imaged on the SLM to produce the disorder.

The density of the scatterers is a more meaningful quantity to quote than their number,
especially when one wishes to examine the effect of system size. Therefore, we define a di-
mensionless density, referred to as the fill factor, f , as

f =
Ns`

2

LW
. (3)

Later in the article, we will discuss time-dependent simulations (direct integration of the
Schrödinger equation) as a benchmark for a comparison to our LLT calculations. Such simu-
lations will be performed in the transmission scenario, where we add empty “reservoirs” on
either side of the disorder where the potential is zero. These occupy x ∈ [−R, 0], y ∈ [0, W ]
(first reservoir, R1) and x ∈ [L, L + R], y ∈ [0, W ] (second reservoir, R2). Usually, we will
choose R = 30`, just large enough to contain the initial condition that will be used. In the
transmissive scenario, a wavefunction with centre-of-mass translation starts out in R1 and goes
through the disorder, finally arriving in R2. The Dirichlet boundary conditions are applied at
the boundaries of this extended rectangular region, including the reservoirs.

The initial condition we will use in this set up is a 1D Gaussian wavepacket1 (Gaussian
along x and uniform along y), which is fairly wide in position space and therefore has a
rather localised energy distribution. The functional form is simply

ψ= exp(ik0 x)exp

�

−
(x + R/2)2

4σ̄2

�

, (4)

where we leave out the normalisation constant. Commonly, we will choose σ̄ = 5`, and use
either of k0 = 1/` or k0 = 0.5/`.

Time-dependent partial differential equations (PDEs) are solved using Matlab’s modern
PDE solver, solvepde.m, with Dirichlet boundary conditions.

1The use of similar probing waves was independently suggested by [6] and used in the experiment [53].
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3 Exact diagonalisation

Our overall aim is to predict the localisation length for the system in section 2. Since the
system size is finite, the potential is continuous, and does not have the required statistics for
the Green’s functions method to be helpful, the standard techniques cannot help us. The only
available (accurate) methods are time-dependent Schrödinger simulations or exact diagonali-
sation. The former requires running individual simulations at each energy and involves some
ambiguity, arising from what exactly is done and how – such analysis is (mostly) left for a
separate paper [54,55]. In the present section, we pursue the latter, since all the information
is certainly contained in the Hamiltonian, its eigenstates, and its spectrum. We therefore begin
our investigation by directly diagonalising the Hamiltonian and inspecting the eigenstates and
energies, with the goals of (a) gaining intuition for our system and (b) checking whether useful
quantitative predictions may be readily obtained in this framework. For this purpose, we adapt
the new algorithm developed in [56] (implemented in the “Chebfun” toolbox for Matlab [57]
for 1D operators) by extending it to 2D. In general, our results support the well-known fact
that the localisation length increases with energy. We find that the localised eigenstates lie at
low energies, and the degree of localisation decreases as the energy increases. This can be
easily seen by eye when inspecting the eigenstates, plotting their amplitude, |ψ|. An example
is shown in Fig. 1, depicting nine low-energy eigenstates for a particular noise realisation.
Overall, as energy increases, the weight of the eigenstates spreads out over a larger area (see
Fig. 3 of [45] for another example). This process, however, is not monotonic: occasionally we
encounter very localised states with a fairly high energy, where most of the energy comes from
the rapidly changing wavefunction rather than the spatial extent and the associated potential
energy. Also quite intuitively, if f or V0 are increased, the strength of localisation increases
and the area within which the weight of the eigenstates is contained shrinks. Figure 2 demon-

Figure 1: Nine low-energy eigenstates of the Hamiltonian for a given noise realisa-
tion with L =W = 25`, f = 0.1, V0 = 20E0, σ = `/2, showing the absolute value of
the eigenstates as a colour-map. Note that all eigenstates are normalised such that
the maximum is one so that the values can be read on the same colour bar. We see
that overall, the spatial extent of the eigenstates increases with energy, quoted above
each panel. However, occasionally, very localised states are encountered at higher
energies, on account of the considerable kinetic energy such eigenstates carry.
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Figure 2: The lowest eigenstate of the Hamiltonian for some noise realisations with
L = W = 25` and σ = `/2, showing the logarithm of the absolute value of the
eigenstates as a colour-map. Top left: f = 0.1, V0 = 10E0, top right: f = 0.2,
V0 = 10E0, bottom left: f = 0.1, V0 = 20E0, bottom right: f = 0.2, V0 = 20E0.
We observe that the degree of localisation is controlled both by the density of the
scatterers and their height. The energy eigenvalue is quoted above each panel: it
increases as the area of the (node-free) localised mode decreases. Note that the
horizontal and vertical stripes seen most prominently in the right-hand-side panels
are an artefact of the diagonalisation algorithm (at the given spatial resolution used)
and are non-physical.

strates this by visually comparing the lowest energy eigenvector for different combinations of
f and V0 (different noise realisations are used for each panel). We see that both the fill factor
and the scatterer height are equally important parameters, influencing localisation properties
just as strongly.

Increasing the width of the scatterers σ also leads to stronger localisation (not illustrated),
because the area occupied by the Gaussian peaks increases, but the dependence on the scat-
terer width is not methodically explored here. Note, however, that when the width of the
scatterers becomes sufficiently large, there is a decrease in the randomness of the potential as
we approach the limit where the entire system is covered by overlapping potential bumps (the
same of course happens as the fill factor is increased strongly). Once this regime is reached,
localisation weakens with further increases of the fill-factor and the scatterer width.

The shape of the scatterers also naturally plays a role, but as long as the (“volume”) integral
over a single scatterer is kept constant, the specific functional form is expected to have a much
weaker effect on the physics than f and V0. The shape of the scatterers influences the spectral
properties of the disordered potential, the relation of which to a (possible) mobility edge could
be investigated in the future.

Next, let us consider how the localisation length may be extracted from the exact eigen-
states of the Hamiltonian. By definition, the localisation length is the length scale on which
the localised states decay exponentially, far away from the region where their main weight is
concentrated. This decay can be seen in Fig. 2 as a change of colour from dark red to red to
orange to yellow to green to blue, as the wavefunction gradually drops by orders of magni-
tude. The localisation length increases with energy, depends on the strength of the disorder,
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and should only be discussed in a configuration-averaged context.
If we inspect any one given eigenstate, assuming the energy is sufficiently low or locali-

sation is strong enough, there is usually only one peak – one local maximum – in |ψ|. If we
temporarily place our origin there and vary the azimuthal angle θ , then the curve |ψ(r)| along
different directions will certainly be different depending on θ . Still, we could average these
curves over θ , and attempt fitting an exponential function to the tail of the resultant. If the
peak is located in a corner of our rectangular system, for example, the average should only be
taken over those angles along which one has reasonable extent along r.

However, as energy increases (or localisation decreases due to changes in parameters), the
eigenstates develop a multi-peak structure: there are several “bumps” (see Fig. 1), and it is
not clear where to place our origin. Furthermore, the energy eigenvalues are of course quan-
tised, so any extracted localisation lengths from single-peak eigenstates need to be averaged
over noise realisations, only using eigenstates of roughly the same energy (binning within a
reasonable range). This makes such an approach very limited.

Now, a very common solution to this problem – heavily used in the literature (e.g. [14,
16, 58–62]) – is to compute the spatial variance of the localised states instead. Since we are
working in 2D, we could tentatively examine the quantity

�

∆x2∆y2
�1/4

, (5)

where the variance along x is

∆x2 =



x2
�

− 〈x〉2 =

L
∫

0

d x

W
∫

0

d y x2 |ψ|2 −





L
∫

0

d x

W
∫

0

d y x |ψ|2





2

, (6)

assuming the wavefunction is normalised to one, and ∆y2 is defined similarly.
Figure 3 shows a typical low energy eigenstate, plotting |ψ| on a linear scale. The small-

amplitude yet large-scale structure seen on the logarithmic plots of Fig. 2, capturing the ex-
ponential decay of the eigenstates away from their main region of existence, is completely
invisible on such a plot. When there is a single main “bump” in the eigenstates, the variance-
based length scale of (6) reports mostly on the width of the main peak (seen in Fig. 3, for
example) – analogous to the full-width-at-half-maximum or the standard deviation of a Gaus-
sian peak. It measures the size of the main bump, and carries only indirect information on the
exponential decay in the tails. In cases when there are smaller, secondary bumps in the eigen-
states, their presence increases the variance, even if their width and decay rate are identical

Figure 3: The lowest eigenstate of the Hamiltonian for a given noise realisation
with L = W = 25`, f = 0.2, V0 = 20E0, σ = `/2, plotting ` |ψ| as a colour-map.
The exponential decay away from the main region of existence of the eigenstate is
unresolvable on a linear scale.

8

https://scipost.org
https://scipost.org/SciPostPhysCore.4.2.017


SciPost Phys. Core 4, 017 (2021)

to those of the main bump. Therefore, the variance does not report on the localisation length,
as such. We thus advise caution when using the variance to quantify localisation properties, a
common practice in the literature.

4 The effective potential

Since exact diagonalisation cannot help us to efficiently extract the localisation length, we
turn to LLT for a solution. The method we develop heavily relies on the effective potential
introduced in this theory, and in this section, we justify its applicability to the problem at
hand.

The key object of LLT is the localisation landscape u, defined by the PDE Hu= 1, where H
is the Hamiltonian [45]. The associated effective potential WE is simply given by WE = 1/u.
So far, LLT has produced several extremely useful results involving WE which allow to make
physical predictions for a system with real potential V – in our case, a disordered one. In
particular, WE controls the regions of localisation of the eigenstates at different energies, the
density of states according to Weyl’s law, and the decay of the eigenstates through the valley
lines of u (paths of steepest descent starting at the saddle points of u and ending at the minima,
or terminating by exiting the system) according to the Agmon distance [48]. While the authors
of [48, 49] motivate this remarkable success of the effective potential by an auxiliary wave
equation, it appears that WE may, to a good approximation, be able to replace V in the real
Schrödinger equation, directly in the Hamiltonian, simply based on its successful use in place
of V in so many different formulae.

Ultimately, the main advantage of using the effective potential for us will lie in applying
a semiclassical approximation to describe tunnelling at low energies in this landscape, but
the semiclassical theory is an approximation to the full quantum-mechanical problem, and so
before we explore the additional complexity of this approximation, we should check whether
the substitution is valid in the full quantum mechanical treatment. This can be achieved by
comparing the eigenstates in the two potentials and checking for similarity, which will justify
the application of semiclassical tunnelling theory based on the effective potential WE to predict
the behaviour of the eigenstates in the physical potential V .

In order to solve the stationary PDE for u in large systems, it is best to use the domain
decomposition method, an implementation of which is available using the legacy solver of the
PDE toolbox in Matlab [63].

Before we begin, one may wonder whether the low-energy, localised states seen in Figs. 1
and 2 are simply trapped in local minima of the potential V , formed by surrounding Gaussian
scatterers. When examined, the effective potential WE resembles the physical potential V
quite closely, as demonstrated in Fig. 4. The scatterer positions in V largely coincide with
peak positions in WE , but the latter is a smoothed-out version of the former (on a length-scale
which depends on V (x , y)), as discussed in [48]. In particular, while V has clear gaps between
scatterers (as long as the fill factor and scatterer width are not too great to cause significant
scatterer overlap), WE has continuous potential ridges that encircle domains, allowing for
classical trapping in these regions (this was also pointed out in [48]). Meantime, due to the
smoothing, WE has lower peaks than V (which is more noticeable at weaker disorder), and an
almost constant, non-zero background value away from these peaks.

We note that since WE inherits so many of its features from V , it is also intrinsically a
random potential, and will give rise to Anderson localisation (as was already realised in [48]).
These quantum interference effects in WE will be similar to those in V in as much as the two
potentials are similar, but of course there will be differences in the localisation properties as
well: for example, the lower peaks in WE would cause weaker localisation than one would
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Figure 4: The effective potential WE (top panels) and the physical potential V (bot-
tom panels) with L = W = 25`, f = 0.1, V0 = 10E0, σ = `/2, viewed from the
top and from the side. The peak ranges of WE correspond to the valley lines of u
and govern both the localisation regions of the eigenstates and their decay outside
of their main domains of existence. While the potential barriers of WE are located
largely at the positions of the scatterers in V , WE can be thought of as a smoothed
out version of V , so that the clear gaps between the scatterers in V are annealed,
leading to the formation of proper local wells that can support classical trapping.
The smoothing operation also has the effect of creating lower peaks in WE compared
to V , which is relatively more significant for weak disorder, at the expense of creat-
ing an almost-constant, non-zero background value to the potential away from the
peaks. In addition, WE inherits the random nature of V , and is capable of supporting
Anderson localisation.

have in V .
Now, according to LLT, the valley lines of u – collectively referred to as the “valley network”

– divide the system into “domains” [45] (see the top panel of Fig. 6 for an illustrative example).
The valley lines of u are of course the peak ranges of the effective potential, simply due to the
inverse relationship between u and WE . Therefore, the domains are surrounded by potential
barriers and constitute the regions of localisation of low-energy eigenstates. Looking at Fig. 1,
we point out that the various bumps visible in the eigenstates are forced to zero at the valley
lines of the localisation landscape u, so that the weight of the eigenstates (at low energies) rests
within the domains of LLT. Increasing the energy of the eigenstates enables the wavefunction
to cross some of the potential barriers separating the domains and spread out further [48] (a
detailed discussion of this phenomenon at higher energies is given in section 6).

We now proceed to check whether the eigen-states and -energies of H with WE are similar
to those of H with V . To some extent, this is indeed the case, as demonstrated in Fig. 5. The
energy spectrum seems very similar up to a global energy shift, first proven to exist and derived
in [48], while the eigenstates themselves are closely correlated for sufficiently low energies.
We find that for eigenstates that are localised to a handful of domains, involving fundamental
local modes (i.e. there is only one density peak per domain), the similarity between eigenstates
obtained using V and WE is immediately obvious. Once localisation is weakened (e.g. by
increasing the energy) to allow the occupation of many domains (possibly in excited local
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Figure 5: Low-energy eigenspectrum (top) and six of the lowest eigenstates with
L = W = 25`, f = 0.1, V0 = 10E0, σ = `/2, showing the logarithm of the absolute
value of the eigenstates as a colour-map (bottom). A direct comparison is drawn
between the spectrum of the Hamiltonian with potential V and with WE for the same
noise realisation. The eigenvalues seem very similar, up to a global energy shift. In
the bottom panel, going across the rows, we plot consecutively the nth eigenstate
using V and the nth eigenstate using WE , alternating between the potentials before
increasing n. Thus the first and second panels can be directly compared, the third
and fourth, etc. Up to the fifth eigenstate, the correlation between the mode shapes
is clear. From the sixth eigenstate onward, there is no visible relation between the
eigenmodes of the Hamiltonian with the two potentials.
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states), the correlation is lost. If Anderson localisation is strengthened (by increasing either or
all of V0, f , σ), more low-energy eigenstates match between the spectra of H with V and H
with WE , and the agreement between the eigenstates is improved. We will discuss this further
in section 6.

As a final note, if one evolves the same initial wavepacket in V compared to WE , one finds
that transmission in the effective potential always happens more readily than in the real. This
may be explained by the observation that the eigenstates of H with WE are somewhat more
extended than the exact and have higher overlaps. Moreover, we would expect Anderson
localisation in WE to be weaker due to the lower peaks, which would lead to the same effect.

To conclude, we have shown that the lowest energy eigenstates in V are similar to those in
WE . This will later allow us to apply a semiclassical approximation to tunnelling in WE and use
it to make quantitative predictions about the decay of eigenstates in V , thus granting access
to the localisation length.

5 Eigenstate localisation length

In this section we extend LLT to compute the localisation length for very low energy, maximally
localised eigenstates, defined as the length scale of exponential decay in the tails of the eigen-
states of the Hamiltonian. A combination of several LLT concepts allows for the development
of a general methodology that can be applied to other systems, with other kinds of disorder,
or in other dimensions.

In the regime where our calculation is applicable, we explicitly test our ideas by direct
comparison to exact eigenstates and find good agreement. We highlight the unavailability of
other reliable methods for the purpose of comparison and validation of our new technique.
For example, the transfer matrix method is commonly used for discrete systems, and may be
extended to 1D continuous systems [64]), but to the best of our knowledge, not to 2D. Previous
papers that have used point-like disorder have faced a similar problem: Refs. [8,15] ran time-
dependent simulations to extract the localisation length from the density decay rate, but were
not able to compare their results to any other accurate or reliable computation.

In principle, we could compare our LLT calculation to time-dependent simulations, using a
translating Gaussian wavepacket – an excellent choice of an initial condition to detect localisa-
tion. In practice, in order to have a sufficient energy range over which the LLT results are valid
so as to accommodate the Gaussian in this narrow interval, localisation must be very strong in-
deed. In this regime, edge effects (described in more detail later) become important and cause
the localisation lengths obtained from LLT and time-evolution to differ. Time-dependent sim-
ulations can, however, be used outside of the regime of applicability of the LLT calculation
and be qualitatively tested for consistency with the indication provided by exact eigenstates
regarding the question “in which way does the LLT calculation fail at higher energies, and how
does it deviate from the true result?”.

5.1 Outline of the LLT method

Recall that LLT has taught us that the low-energy eigenstates are localised inside domains of the
valley network [45], and must tunnel through the peaks of the effective potential in order to
spread to neighbouring domains (this is in contrast to the physical potential V , where there are
gaps between scatterers, with the domains connected classically2). Within any given domain,
there is nothing to induce exponential decay – the decay does not happen continuously (as

2This statement holds at reasonable fill-factors and scatterer widths. If either parameter is increased excessively
such that the scatterers join and form closed regions in the plane, then classical trapping becomes possible.
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commonly believed), but in discrete steps, every time the wavefunction crosses a valley line
[48]. Furthermore, valley lines which are not part of a closed domain (referred to as “open”
valley lines below) are irrelevant, as the wavefunction simply goes around them without losing
amplitude.

Because of its prime importance to this section, we repeat here (from the original LLT
papers [48,49]) the definition of the energy-dependent quantity known as the Agmon distance,
which controls the decay of the eigenstates outside of their main domain of existence:

ρE(x0,x) =min
γ





∫

γ

ℜ
Æ

2m[WE(x)− E]/ħh ds



 . (7)

Since only the real part of the square root is used, the integrand is zero if E exceeds WE at
position x. The integral should be minimised over all possible paths γ going from x0 to x, and
ds is the differential arc length. If we have an eigenstate peaked at position x0 inside some
given domain, then it will have amplitude at position x outside of this main domain bounded
by

|ψ(x)|® |ψ(x0)|exp [−ρE(x0,x)] . (8)

As the authors of [48] point out, the formula (7) is commonly encountered in the context
of the Wentzel–Kramers–Brillouin (WKB) approximation in 1D (and higher dimensions), and
constitutes a semiclassical approximation of multidimensional tunnelling. The inequality (8)
assumes that the connection between the wavefunction at points x0 and x is quantum mechan-
ical tunnelling through the potential barriers between them. In 1D, Ref. [48] has shown that
(8) can be used to predict the shape of the eigenstates very closely.

If we approximate the domains on average as circular in shape and denote the diameter D,
then every distance D, the wavefunction undergoes a decay. The cost of crossing a valley line
will be bounded below by the Agmon distance ρE , such that the amplitude of the wavefunction
drops by at least a factor of exp(−ρE) on average every time. If we assume for the moment
that ρE faithfully captures the decay rate, combining these two quantities, we see that the
localisation length is simply given by

ξE = D/ρE , (9)

where the subscript E on ξ stands for “eigenstate”. Remarkably, the difference between D and
ξE was already realised in [35].

Now, evaluating ρE between any two arbitrary points in the x − y plane is extremely
difficult, as discussed in section 7. However, this is not strictly necessary for our purposes.
With the understanding that the system is divided into network domains, with every closed
domain containing a unique maximum of u, we can estimate the Agmon distance between the
minima of WE (equivalently, the maxima of u), considering only nearest neighbour domains.
In other words, if we have two neighbouring domains (which share some common segment
of domain walls), we aim to find the least-cost path, according to the Agmon measure, that
connects the two unique maxima of u which reside in these domains. Evaluating ρE along this
path would then be straight-forward.

Again, formally, finding the true least-cost path is a difficult task. We have found an ap-
proximate solution to this problem that seems much simpler to implement compared to all
currently known alternatives, while not sacrificing much in terms of accuracy at all (see sec-
tion 7 to gain perspective). Recall the valley lines are the paths of steepest descent, starting
from each saddle point and ending at minima of u (valley lines may also terminate by exiting
the system). Consider now curves that start from the saddle points and follow paths of steepest
ascent, ending at maxima of u. Each saddle point thus links two maxima of u, and the curve
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Figure 6: The original valley network (top) for some given noise realisation with
L = W = 25`, f = 0.06, V0 = 5E0, σ = `/2, and the same network after all “open”
valley lines have been removed (bottom). Both panels plot the valley lines in red and
blue (different colours are used simply to make it easier to see the structure of the
network). The extrema of u are also shown as symbols (maxima in blue, minima in
red, saddles in green). The bottom panel displays in addition all candidate approx-
imate paths of least cost with respect to the Agmon metric as green and black lines
(again, for more accessible visual interpretation), connecting neighbouring maxima
of u through the linking saddle points.

14

https://scipost.org
https://scipost.org/SciPostPhysCore.4.2.017


SciPost Phys. Core 4, 017 (2021)

formed in this way is the lowest-lying path on the inverse landscape WE that connects the two
minima of WE in question. Figure 6 first shows an example of the valley network as originally
defined [45], and then with open valley lines removed (as they do not matter for eigenstate
confinement and decay) and the candidate minimal paths connecting maxima of u through
the saddle points overlaid.

We will use these paths to compute ρE between any two neighbouring maxima of u. First
of all, we highlight that the Agmon distance is an energy-dependent quantity. Thus, along
each path, the integral must be done separately at each energy of interest, E. Now, generally
speaking, any two neighbouring domains have several common saddles on the shared section
of their domain walls (see Fig. 6 for an example). At each energy, we must choose the minimal
path which has the smallest Agmon integral out of the finite, discrete number of available
options (which is computationally trivial). The path integral along that curve then becomes
the Agmon distance ρE between the domain maxima in question at the energy considered.
This must be done for all neighbouring domains and at all energies in any given landscape u.

One may wonder, at this point, how well does our approximation capture the “real” Agmon
distance, obtained by proper path minimisation, as described in section 7. We have tested this

Table 1: A comparison of the Agmon distance found using the approximate LLT path
(the path of minimal cost out of the finite set of lowest-lying paths on WE that con-
nect neighbouring minima of WE through the saddle points), to the real semiclassical
result, obtained by solving differential equations, as described in section 7. In this
case, we used a single noise realisation with L =W = 25`, f = 0.06, V0 = 21.33E0,
σ = 0.48`, and three domain pairs, the results for which are separated by horizon-
tal lines in the table. For each domain pair, we computed the Agmon distance at
several energies, until the domains became classically connected and the cost van-
ished. In the one case where the table entry is missing (replaced by a hyphen), the
true semiclassical path could not be found. It is immediately clear that the LLT ap-
proximation of the Agmon distance is a very close one, and that in all cases, our
method only slightly overestimates the true minimal cost. This is a small price to pay
for the remarkable computational advantages of our scheme compared to the real
semiclassical solution (see section 7).

E/E0 LLT approx. True semiclassical

0 6.8349 6.2586
0.1 5.7521 5.3130
0.2 4.3178 4.0233
0.3 2.0687 1.9918
0.4 0.9004 0.8831
0.5 0.2545 0.2491
0.6 0 0
0 6.6619 6.1395

0.1 5.0021 4.6693
0.2 2.4690 2.3319
0.3 0 0
0 5.4327 5.1905

0.1 4.0763 3.9064
0.2 1.9386 1.8750
0.3 0.2674 —
0.4 0 0
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for several examples by solving the semiclassical equations and comparing the Agmon integral
to that taken over the minimal lowest-lying path on the surface of WE . We found that the
true minimal path always lies very close to the minimal lowest-lying path and the integral
along the latter is only slightly greater than the smallest possible cost obtained by proper path
minimisation; the results are summarised in Table 1.

In the decay picture painted so far, restricting our consideration exclusively to neighbouring
domains does not introduce an additional level of approximation: we only need to know
the average cost of crossing from one domain into another, and decay over large distances
can be simply composed of several such domain-to-domain tunnelling events. That is, our
calculation only requires the computation of local quantities, which makes it largely system-
size independent. Indeed, up to finite size effects which change the spacing of the valley lines
at small system sizes (as studied in [55,65]), averaging over a few large systems will give the
localisation length to the same precision as averaging over a bigger number of smaller systems:
the only important factor is how many typical domains (for the area) and domain-pairs (for
the tunnelling coefficient) are averaged over, not whether they are in one or several valley
networks.

The next question is whether the Agmon distance ρE faithfully captures the decay rate
between neighbouring domains: after all, it is a lower bound on the decay coefficient, not an
estimate thereof. We test this in the bottom panel of Fig. 7 (see the next subsection for details),
finding that the Agmon distance itself systematically underestimates the true decay rate seen
in the exact eigenstates. Therefore, rather than choosing the minimal-integral path, we take
the average of the path integrals over all candidate paths from LLT (lowest-lying paths going
through the saddle points), to obtain what we will coin the “mean” Agmon distance, ρ̄E . As
we demonstrate in the top panel of Fig. 7 below, this method of computation actually captures
the true decay rate much better, so we proceed with the understanding that

ξE = D/ρ̄E . (10)

Note that this modified decay rate fully obeys the Agmon inequality (8), and that this is an
advancement of semiclassical multidimensional tunnelling, as so far, it has only been possible
to calculate the lower bound of the decay rate, but not an approximation of the real value (see
section 7 for a further discussion).

As pointed out, ρ̄E between neighbouring domains is an intrinsically energy-dependent
quantity. Once the energy is so high that the saddle points of the candidate paths on the
effective potential WE are below E, the cost of crossing from one domain to the other vanishes:
ρ̄E becomes zero as breaks develop in the domain wall separating the two maxima of u (valley
lines only effectively constrain eigenstates if u < 1/E, evaluated on the valley lines [45]).
For our computation of ξE , we need the average of all non-zero ρ̄E across the 2D system as
a function of energy, but we also need to compute the domain area to extract the diameter,
D. This requires integrating over the individual domain areas (at E = 0), averaging over all
domains, assuming the area is that of a circle, and computing the diameter. However, as energy
goes up and domain walls break down, domains effectively merge, so that the area increases
with energy as well. Thus, in our calculation, domains are merged once ρ̄E between them
vanishes.

To summarise, the main steps of the calculation are as follows. Take a precomputed val-
ley network, remove any open valley lines and calculate all the “candidate minimal paths”
connecting saddles to maxima of u. Next, identify the valley lines (and potentially segments
of the system boundary) that form the domain walls for each domain and perform local, on-
domain integrals (e.g. to find the domain area, in which case the integrand is one). From
here, identify all saddles linking any two neighbouring domains, calculate the path integral of
the Agmon distance over all linking paths between them, and finally obtain ρ̄E by averaging
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over these integrals (including any paths that give a vanishing cost) at every energy. Then, for
each noise configuration, the mean of ρ̄E is computed over all neighbouring domain pairs, and
the mean domain area yields the diameter D. Both of these quantities are energy dependent:
zero-cost links are excluded from the average of ρ̄E and domain areas are merged as the walls
between them break down. Finally, many noise configurations need to be averaged over to
get a reasonable estimate of the localisation length.

Note that an analogue of our LLT calculation cannot be usefully performed by using V
directly, instead of the effective potential WE . This is because the exponential cost of crossing
most domain walls would be zero (exceptions would be caused by scatterer overlap), as the
scatterers in V are separated by gaps. In other words, since classical trapping in V is not
possible (at reasonable fill factors and scatterer widths), a semiclassical tunnelling picture
would predict no exponential decay. This is in addition to the fact that in order to find the
domains, one needs the localisation landscape u (1/V would not yield closed domains in the
valley network due to gaps between the scatterers). Thus, LLT is essential for our method and
one could not avoid using it.

We remark that this calculation can be performed for any given localisation landscape as
long as it has (appropriate) extrema. This includes, in particular, cases when the potential V
is regular and Anderson localisation is impossible. The resulting “localisation length” is then
of course meaningless. It is up to the researcher performing the calculation to identify cases
when one is dealing with localisation before attaching any significance to the result. This can
be done by examining the fundamental on-domain eigen-energies, and ensuring that they are
randomised, as explained in detail in [45,55,66].

5.2 Test of decay constants

We have just outlined a proposed method for computing the localisation length at very low
energies. Let us assume for the moment that the decay model we have developed applies
(i.e. that the eigenstates take the form of one or a handful of strongly occupied domains with
straight-forward decay through the valley lines into their neighbours). Under these conditions,
the domain area calculation can hardly fail to give D correctly, the mean distance separating
tunnelling-inducing valley lines. On the other hand, the decay constant from one domain
to another, ρ̄E , is a different matter entirely. As will be discussed in section 7, the level of
approximation involved is very high, and there is no a priori assurance that our method yields
numbers which faithfully capture the decay of the eigenstates. Therefore, a direct test is in
order. This can be done as follows: for the same noise realisation, we perform the full LLT
calculation, as well as find the low energy eigenstates by exact diagonalisation. Now, we
know that within each domain, the wavefunction remains roughly constant (same order of
magnitude). Therefore, we integrate |ψ| over the domains, and divide by the domain areas to
get the average of the wavefunction amplitude on each domain.

Then, by visual inspection of the eigenstates, we find examples of eigenstates and domain
pairs where it is clear that the wavefunction tunnels from one domain to the other, as opposed
to an independent occupation of the two domains (or any of the more complex behaviour
described in section 6 which is encountered at higher energies). We also avoid higher local
modes than the fundamental (excited local states involve nodes of the wavefunction within
a domain). Having identified suitable candidates, we take the ratio of the mean amplitudes
on the two domains and compute the logarithm. The resulting number is equivalent to ρ̄E
from LLT, the exponential cost of going specifically between these two domains (in this noise
realisation), at an energy equal to the eigenvalue corresponding to the eigenstate examined.

We have performed this test, and the results are shown in the top panel of Fig. 7. A clear
correlation is seen, whether the predictions of LLT are compared to the eigenstates of H with
potential V or WE . The performance of the LLT method is equally good for arbitrary strengths
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Figure 7: Exponential decay cost linking two neighbouring domains, plotting the
values measured from exact eigenstates and LLT against each other. Top: the LLT
calculation shown uses the average over all linking paths between domain pairs, and
there is a very clear correlation to the eigenstate decay coefficient: the data points
fall nicely around the identity map, shown as a black solid line. Bottom: data for the
exact same test-cases is now plotted so that the LLT calculation shows the minimal
path only over all linking paths between domain pairs, and it is obvious that this
method systematically underestimates the true decay rate. All data points presented
were obtained for a system with L = W = 25`, V0 = 21.33E0, σ = 0.48`. Blue and
red circles have f = 0.02, with blue coming from diagonalising H with WE and red
with V , while green squares used the real potential V and f = 0.1.
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of localisation (compare sparse and dense scatterer results), simply because the only numbers
included in the test are those for which the eigenstates and domains chosen are sensible (suf-
ficiently low energy, correct local modes, decay as opposed to independent occupation, etc.).
Of course there is scatter about the identity function, but since much averaging is performed
during the calculation of ξE , this scatter will disappear in the mean. This gives us confidence
in the validity of our novel computational method for very low energies.

In contrast, as mentioned earlier, the Agmon distance itself, ρE , systematically falls short
of the true decay coefficient (being a formal lower bound), as depicted in the bottom panel of
Fig. 7.

We emphasize that there is no other available method to compare our calculation of the
localisation length to. The only reliable approach is to run time-dependent simulations, inte-
grating the Schrödinger equation. The simplest test would be to initiate a translating Gaussian
wavepacket with a fairly narrow energy distribution outside the disorder, allow it to propa-
gate, and observe the resulting exponential decay set in with time. The (unnormalised) energy
distribution for our translating 1D Gaussian initial condition is simply

g(E) dE = exp



−2σ̄2

�√

√2mE

ħh2 − k0

�2




p
m

ħh
p

2E
dE. (11)

One would have to average 20 to 30 realisations to get accurate results, measure the decay
length scale seen in the density, and compare to that obtained from the energy-resolved ξE
obtained from LLT by reconstructing the expected density profile for the given energy distri-
bution according to, e.g., equation (63) of Ref. [2]. However, taking into account the energy
distribution of the wavepacket would in this case only provide a fine-tuning of ξE taken at the
mean energy of the narrow Gaussian wavepacket, which would provide a very good estimate
already.

We have attempted precisely such testing of our LLT ξE (in parameter regimes and at low
enough energies where the curve ξE(E) is smooth and monotonically increasing), to find that
the LLT prediction greatly underestimates the real localisation length, by up to as much as an or-
der of magnitude. For example, using a system geometry given by L = 50`, W = 25`, R= 30`,
noise with f = 0.1,σ = 0.48`, V0 = 21.33E0, initial condition specified by σ̄ = 5`, k0 = 1/`,
and evolving the state for a total time of 100t0, we find that quasi-steady state in the density
profiles is achieved at ∼ 40t0, after which the exponential profile changes slowly and can be
meaningfully fitted. We extract a time-dependent localisation length from the density profiles,
ξ(t), which increases from 10` to 13` over the fitted time interval (60t0) of the simulation,
and would only increase further with time before eventually equilibrating to a constant. Mean-
while, the LLT calculation, combined with equation (63) of Ref. [2] and the energy distribution
(11), together with an exponential fit to the overall predicted density profile, yields a value of
〈ξ〉 ≈ 2.746`, which is considerably smaller.

The reason for this discrepancy is that the simple decay model that we have been assuming
is only valid at very low energies, after which more complex mechanisms of how the eigen-
states can spread out spatially come into effect. These are beyond quantum tunnelling and the
semiclassical theory thereof, and are described in detail in section 6. In the example above, the
energy distribution lay fully outside of the applicability regime of the LLT calculation. Com-
parison to time-dependent simulations in a regime where the simple decay model applies are
further discussed in section 6.

5.3 Effect of parameters

Let us consider – and when possible, examine – the effect of the different parameters in the
model on the localisation length obtained via the prescription given in this section. Firstly, the
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Figure 8: The eigenstate localisation length ξE at zero energy as a function of fill
factor for two scatterer heights, blue circles: V0 = 21.33E0, red diamonds: V0 = 5E0.
For all simulations W = 25`, while L = 125`, σ = 0.48` for the data shown in blue
and L = 25`, σ = `/2 for the data plotted in red. The lines are fits according to
equation (13), with the colour matching the data set being fitted. Dashed lines fit all
the data points, while solid lines exclude the first two (as it increases the fit quality
and it is possible that the lower fill factor points are not very accurate). Error bars
show the standard error. The effect on ξE of using different system sizes in the two
cases is about 0.03` (using L = 25` for the V0 = 21.33E0 data set increases ξE by
about 0.03`), which is an order of magnitude smaller than the effect seen in the
figure. Thus, increasing the fill factor or scatterer height decreases ξE , as expected.

calculation can be performed as a function of energy, and as expected, the computed number
increases with energy monotonically until one reaches the regime where the finite extent of the
system limits the calculation and artificially reduces ξE , as well as the mobility edge predicted
by LLT but found unphysical in [55,65], beyond which it is no longer possible to perform the
calculation. However, the computation ceases to be valid much earlier than that, because the
pure decay model we assumed breaks down, as illustrated in section 6. In fact, it is usually
only very low energy eigenstates that are captured correctly by our description, and the only
method known to us of establishing when the complex decay behaviour (section 6) begins is by
visual inspection of the exact eigenstates. This “complex decay” is beyond quantum tunnelling
and semiclassical theory, and is attributed directly to Anderson localisation. We will therefore
only show data for E = 0, where the results have been confirmed as meaningful across the
range of parameters shown.

Figure 8 demonstrates that the localisation length is reduced by strengthening the disorder
by either increasing the scatterer height or the fill factor. Increasing the width of the scatterers
also decreases the localisation length, but we do not simulate this directly in this paper. System
size only influences the results weakly due to finite size effects studied thoroughly in [55,65].

Since we have the opportunity, we compare our results to the analytical formula for the
localisation length in 2D

ξ∼ `B exp
�π

2
k`B

�

, (12)

where `B is the Boltzmann mean free path and k the wavenumber associated with the energy
at which the localisation length is evaluated. The Boltzmann mean free path (the distance
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over which the wave loses memory of its initial direction) is related to the scattering mean
free path `s (the mean distance between scatterers) through the scattering cross section of a
single scatterer, which includes information about the scatterer height and shape, as well as
the energy of the wave. We recall that while this formula is quite freely used in the literature
(e.g. [15]), it is not expected to be correct, as it is derived (for a classical wave) by first
assuming weak localisation and then forcing the diffusion coefficient to zero [4,5] (in addition,
we do not have white noise or an infinite system).

One may relate the mean free path to the fill factor rather trivially by simple geometrical
arguments, yielding `s∝ 1/

p

f , and then fit the numerically-obtained ξE as a function of fill
factor to

ξ∼
a
p

f
exp

�

b
p

f

�

. (13)

This has been done in Fig. 8, and the fits are of reasonable quality. However, this does not
prove the validity of equation (12), as one would have to check the energy dependence of the
fit coefficients for consistency with the formula, an impossible task in our case since the LLT
calculation is limited to such low energies.

6 Breakdown at higher energies

As we have briefly mentioned in the previous section, the localisation length extracted from
time-dependent simulations disagrees with our LLT prediction, even when we limit ourselves
to sufficiently low energies where ξE is smooth and monotonically increasing. In fact, the
localisation length from time-dependent simulations is considerably larger, by up to as much
as an order of magnitude. In this section we explain how and why this occurs, based on an
analysis of the structure of the eigenstates, using Fig. 9 for illustration. In particular, we find
that the pure decay model (applicable for example to the first eigenstate in Fig. 9) we have
assumed thus far ceases to be relevant beyond very low energies, and describe the mecha-
nisms by which the wavefunction spreads out across the system that come into play at higher
energies. These effects are beyond quantum tunnelling and its semiclassical approximation,
violating the Agmon inequality (8), and are best ascribed to Anderson localisation directly.

We have already explained that as the energy increases, the valley lines of LLT cease to be
effective and domain walls break open, as segments of the potential barriers between them are
“submerged”. When the breaks in the domain walls are small, one still sees some exponential
decay through such walls (e.g. third eigenstate in Fig. 9, decay from second to fourth domain),
even though semiclassically (according to the formal Agmon distance), it is now possible to
go across the barrier at no cost at all. In this low-energy regime, our use of ρ̄E to capture
the tunnelling and base the domain area merging on its vanishing is sensible. However, as the
gaps in the domain walls grow, it becomes common to have single-amplitude bumps extending
between domains through these gaps (e.g. sixth eigenstate in Fig. 9, between the fourth and
eighth domains), and one can no longer talk of decay. In this regime, it would be better to use
ρE proper (which indicates that no tunnelling occurs) together with the criterion ρE = 0 to
merge domains. This is one mechanism that causes the true localisation length to be greater
than the one we compute. Since there are many others (see below) that make a sensible
calculation of ξE at higher energies impossible anyway, we choose to persist with ρ̄E , which is
the correct number to use at low energies.

A prominent, strongly dominant mechanism going beyond the pure tunnelling picture is
what we shall term the “seeded excitation” scenario. Here, ordinary tunnelling from a strongly
occupied domain into its neighbour excites a local mode inside that domain (usually manifest-
ing as a separate bump), of an amplitude set by the decayed wavefunction in the “receiving”
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Figure 9: Six of the lowest energy eigenstates (going across the panels and then
down) for a single noise realisation in a system with L = W = 25`, V0 = 21.33E0,
σ = 0.48`, f = 0.06. The colour map depicts the logarithm of the amplitude of the
wavefunction. Black and white lines (the different colours are used simply to make
the structure of the valley network clearer) show the effective domain walls (where
E < 1/u) at the given eigenstate energies, having removed any open valley lines first.
Maxima of u are marked with open black circles and the corresponding domains are
numbered for ease of reference. The eigenstates demonstrate the various possible
mechanisms by which the wavefunction can spread across the system, other than by
pure decay (see discussion in the text). Once these mechanisms come into effect, our
calculation of the localisation length loses meaning; this constrains the regime of its
applicability to very low energies.

domain. Many examples of this can be seen in Fig. 9, with the lowest-energy case occurring
in the second eigenstate, going from the seventh and eighth domains into the fourth, as well
as the fourth to second (although here the local excitation and the original decayed amplitude
are merged and it is the amplitude maximum in the second domain that is the tell-tale sign of
seeding). The effect of seeded excitation is to strongly increase the weight of the eigenstate
on the “receiving” domain (that is, increase the average value of the wavefunction on this
domain), and as a result, decrease the decay coefficient between the domain pair in question.

Another mechanism that comes into play at higher energies is “resonant excitation”. Occa-
sionally, we find domains excited without any significant decay into them from other, strongly
occupied domains (e.g. seventh domain in the third and fourth eigenstates of Fig. 9). In such
cases, the excitation is caused by “resonance” with a mode in a near-by occupied domain (in
the examples provided, it is probably the fourth domain which is responsible). Note that such
resonances can happen even between domains that are of considerably different areas, as long
as higher modes are involved, so that the mode energy is close. This scenario allows the eigen-
states to cover a larger area without undergoing a decay. As energy increases and higher mode
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Figure 10: Exponential decay cost linking two neighbouring domains, plotting the
values measured from exact eigenstates and LLT against each other. Data points
were obtained for a system with L =W = 25`, V0 = 21.33E0, σ = 0.48`, f = 0.06.
Only cases that do not fit the clean decay model tested in Fig. 7 were included in
this test, and we see that overall, the LLT method yields a larger decay coefficient
than the true value due to all the additional complex mechanisms, effective at higher
energies, discussed in section 6.

excitations become more prevalent, more and more resonances are possible as the range of
available energies to match grows.

An interesting observation regarding resonant excitations is that the distance between the
two domains in question is never very large (perhaps a gap of two or three domains at most),
so that overall, the occupied domains are still clustered and the states are localised. A possi-
ble explanation may be that intermediate detuned domains reduce the coupling between the
resonant domains, which only allows fairly local resonant excitations.

Clearly, higher-order modes (e.g. Fig. 9, the fourth domain in the fifth eigenstate has a
prominent node) are not accounted for in our description of section 5, but this is not a serious
problem, as usually, all the bumps within a single domain have similar amplitudes and the
nodes between them do not reduce the mean value of the amplitude on the domain by much.

The final complicating factor is that even simple decay can occur from several nearest
neighbours (e.g. Fig. 9, in the sixth eigenstate, the seventh domain gets a contribution from
both the fourth and eighth domains), which implies that the mean value of the wavefunction
on that domain will be greater than it would have been if only one such decay contributed to
its population.

All (but the last) of the factors outlined so far are beyond quantum tunnelling, violate
the Agmon inequality (8), and should be thought of directly as quantum interference effects.
They serve to increase the localisation length beyond the value calculated according to our
LLT method, which is therefore only valid at very low energies, for maximally-localised states.
This happens due to both larger effective distances separating decay events, which is fairly
straight-forward to both understand and visualise, and weaker decay when such events do oc-
cur. The latter has been quantitatively confirmed by comparison to exact eigenstates (Fig. 10),
this time choosing domain pairs that do not fit the pure decay model, but involve one or several
of the more complex mechanisms discussed in this section. It is clear that LLT overestimates
the decay coefficient, and the data shown can certainly accommodate the observed difference
between LLT and time-dependent simulations in a regime where these mechanisms are preva-
lent. Considering the contribution from the larger effective area (compared to that assumed
by the pure decay model of LLT) which also serves to increase the localisation length, these
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results are consistent with and explain why density profiles from time-dependent Schrödinger
simulations indicate a larger localisation length than that predicted by LLT.

We note that it is possible to set the disorder strength so high that the pure decay model is
applicable up to sufficiently high energies (confirmed by examining eigenstates) that a slowly
translating Gaussian can fit in to the range of energies where our LLT calculation should
show agreement with time-dependent simulations. We have done this test, but found that
once again LLT underestimates the localisation length extracted from time-dependent sim-
ulations. For example, in a system with L = 25`, W = 25`, R = 30`, noise parameters
f = 0.2,σ = 0.48`, V0 = 21.33E0, a translating Gaussian with σ̄ = 5`, k0 = 0.5/`, and total
evolution time of 100t0, quasi-steady state is reached at ∼ 50t0, after which the fitted locali-
sation length ξ(t) stays roughly constant at the average value of 8.3`. On the other hand, the
localisation length predicted by LLT is 〈ξ〉 ≈ 0.62`, indicating much stronger localisation. In
this case, the LLT calculation is valid over the entire range spanned by the energy distribution
of the wavepacket used.

This can be explained by “edge effects”: for the direct time-integration of the Schrödinger
equation, one needs empty, noise free “reservoirs” on either side of the disordered system to
initiate the wavefunction in and to collect any transmitted atoms. The coupling of the noisy
region to the empty reservoirs modifies the valley network in the vicinity of those edges of the
system, as the wavefunction is not forced to zero by boundary conditions, but is allowed to take
on arbitrarily high values. In particular, localisation is weakened through the fact that some
of the valley lines disappear upon addition of the reservoirs, and the barriers in the effective
potential along the remaining valley lines are lower as u near the “coupling” edges is higher.
When the disorder is so strong that the (“internal system”) localisation length, as computed
from LLT, is smaller than the typical domain size, these edge effects become important. Strong
decay happens over one or two domains, and because in the time-dependent simulations, it is
precisely the affected regions that the wavefunction passes through as the exponential decay
sets in, we observe a larger localisation length than is found away from the edges. This explains
why we still see a discrepancy in the regime where the LLT method should in principle work
well.

Now, an interesting observation is that it is not only the lowest energy eigenstates in H
with WE conforming to the pure decay model which are similar to those in H with V , but also
a few modes beyond this regime, when quantum tunnelling in WE is already insufficient to
capture the structure of the eigenstates. This can be seen in Fig. 5, for the second to fifth
eigenstates. The reason that a few low energy modes are similar even in the regime where
the tunnelling model is no longer applicable is simply the similarity of the two potentials, V
and WE , the latter being a smoothed version of the former. While the correlation between the
eigenstates in the two landscapes is lost at higher energies, all the mechanisms discussed in
this section can also be seen in the eigenstates of H with WE beyond that point.

The understanding that the pure tunnelling picture in LLT is only applicable at very low en-
ergies is novel, and establishes when and how one can use LLT in a useful manner. Two very
recent papers [67, 68] have developed generalisations of LLT to allow treatment of systems
with internal degrees of freedom, with [68] explicitly extending their technique to arbitrary
energies, while the method in [67] is amenable to such an extension [68]. These generalisa-
tions of course come at the price of added complexity, but have additional advantages as well:
for example, the method of [68] removes the constraint that the physical potential cannot be
negative on any part of the system domain, and yields some helpful features arising from the
different normalisation of the eigenstates chosen therein. On the other hand, it should be
noted that the paper [68] has only presented examples of their calculation performed at zero
energy.
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7 Multidimensional tunnelling

The Agmon distance of LLT (7), including minimisation over all paths connecting the two
points in space, gives a prescription to predict the minimal decay of eigenstates through the
barriers of WE as they tunnel out of each domain – a local potential well – and spread across
the system. In section 5 we have heuristically outlined and tested a method to quantitatively
estimate ρE between neighbouring domain minima of WE , avoiding the path minimisation
stage, but using the usual expression for the integrand along the path.

Multidimensional tunnelling is in fact an old and thoroughly-investigated problem. Of
course, brute force quantum mechanical calculations are possible, but physicists have been
striving to obtain insight into the process by generalising the WKB approximation to dimensions
higher than one to describe it. In 1D, WKB is a straight-forward and methodical approach (see,
e.g., [69]) – a controlled approximation that is fully understood. The generalisation to several
dimensions is a different matter entirely: there is a large body of literature developing and
discussing different methods, their limitations, suggesting improvements, and utilising these
techniques to solve practical problems. In this section, we will provide an overview of this
topic, to place our method of section 5 in perspective.

Let us see where the Agmon distance equation (7) comes from. The starting point of the
derivation is usually the Feynman propagator, none other than the Green’s function of the
system. One has to go through a series of approximations, listed below, in order to arrive at
this semiclassical formalism:

1. The propagator is expanded in powers of ħh, and only the zeroth order term is retained3

[70,71].

2. Next, one usually assumes that Hamilton’s principle function is pure imaginary [70,72,
73].

3. In principle, if we want to use the Feynman propagator to describe tunnelling from one
region of space where the wavefunction is initially contained to another, we must con-
sider all source points, all target points, and all possible paths to arrive from each source
to each target point. In the simplest approximation, one uses the fact that the contribu-
tion of the classical path is the largest, and as we move away from it in configuration
space, the contribution of the other paths is exponentially suppressed. Therefore, one
usually only examines the classical path, or at most a “tube” of paths around the classical
one. Moreover, it is common to only consider one source point (at which the wavefunc-
tion is maximal) and one target point (say the minimum in the potential on the other side
of the barrier). The classical trajectory method was developed and used in many papers,
e.g. [71,74–76], and relies on minimising the action via the Euler-Lagrange equations.

Assumption 1 is already a strong limitation, and to the best of our knowledge, first order
solutions were only ever obtained in the classically allowed region [70]. However, takingħh→ 0
is the essence of the semiclassical nature of the method, and not much can be practically done
to overcome this approximation.

Assumption 2 is certainly not generally justified [70,72,73]. These three references have
superbly dealt with the case of a general complex action, and demonstrated that a geometrical
ray construction, following two surfaces (equi-phase and equi-amplitude) along two orthogo-
nal paths, is necessary to solve the problem in earnest. They have proven that the imaginary
action approximation breaks down if one considers a general incoming wavefunction, incident
on a barrier such that its k-vector is arbitrarily predetermined. It has also been argued that

3An equivalent approach is to write the wavefunction in polar form and expand the phase similarly.
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this approximation can even fail for tunnelling out of a potential well [73]. The geometrical
construction proposed in these papers is extremely involved, and is completely impractical for
our purposes.

While in principle, accuracy could be improved by including more than one source and
target point, as well as considering multiple paths as in [71], all three simplifications of the
third assumption are essential for our case: we cannot afford (computationally) to calculate
many paths or to describe each domain by anything more than the point at which WE attains
its minimum. This is because the calculation needs to be done so many times that it is simply
impractical.

The usual final form of the semiclassical approximation in the forbidden region involves
solving the classical equations of motion with negative the potential and the energy, or equiv-
alently, in imaginary time. The differential equations are based on Newton’s laws, imposing
energy conservation as a constraint, and seek out the path of minimal action. In 2D, they take
the form

d2 x
ds2

=
∂ V
∂ x −

d x
ds

�

∂ V
∂ x

d x
ds +

∂ V
∂ y

d y
ds

�

2(V − E)
,

d2 y
ds2

=
∂ V
∂ y −

d y
ds

�

∂ V
∂ x

d x
ds +

∂ V
∂ y

d y
ds

�

2(V − E)
. (14)

Here, s is the arc length along the path defined by the coordinates (x , y), and V is the potential
the particle with energy E moves in. In this parametric form, the equations for the allowed
and forbidden regions are identical.

In the context of tunnelling out of a potential well, the trajectory is usually required to pass
through the turning surface (where the kinetic energy vanishes) normally, so that it can connect
smoothly to a classical trajectory in the allowed region. On the turning surface, the velocity
is aligned along the gradient of the potential [71, 76]. An alternative constraint was used
in [74]: the authors required their escape paths to pass through the saddles of the potential
and be aligned along the correct axis of the saddle at those points (which is closer in spirit
to our approach, but is less rigorous). Essentially, if the direction of the incoming wave is
predetermined and it impinges on the turning surface at any angle other than normally, the
action must be taken as complex and the classical equations are insufficient. This is the chief
difference between tunnelling out of a local well and the transmission of an incoming wave
through a barrier.

We highlight that in the final form of the semiclassical approximation, the minimal path
is energy-dependent: one must solve the set of ordinary differential equations defining the
minimal path for each energy separately. If we wish to find the classical path that connects
two specific points, knowledge of the energy gives us the magnitude of the velocity vector,
but its direction is unknown. Trial and error is called for to discover the latter: one needs
to try different initial directions of motion until a path that arrives at the desired end point
is found. Furthermore, if the two points of interest are separated by one or more turning
surfaces (which cannot be crossed classically), one must begin at each of the two points, and
try different directions until a trajectory that hits the turning surface normally and is reflected
back on to itself is found. In order to connect points lying on turning surfaces, in principle, the
initial direction of the velocity can be found from the gradient of the potential, but in practice,
fine-tuning is still necessary. Thus, in general, finding the true classical path is a piece-wise
process and takes multiple rounds of guessing the direction of the velocity. This makes the
traditional (and formally correct) solution of the semiclassical problem impractical for our
purposes.

Our method of section 5 overcomes these difficulties: no differential equations need to
be solved at all (one only needs to know the localisation landscape u), one path is computed
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for all energies, and there is no need to guess the initial condition. As we have seen in Table
1, it performs well, which justifies its use despite the many approximations in deriving the
semiclassical formulation, as well as our heuristic way of computing the escape paths. In either
case, no other level of approximation is practical for our purposes, as we need to compute the
“mean” Agmon distance between every two neighbouring domains at all energies for many
noise realisations (twenty are used in practice), at each set of parameters investigated.

The additional discovery that by averaging over all candidate paths of LLT, the mean Agmon
distance ρ̄E in fact yields the average decay rate (rather than the minimal) is a further point
of merit to our approach. The other candidate paths cannot be obtained from the rigorous
semiclassical formalism, which so far has only been able to provide a lower bound on the
decay rate.

A few final notes are in order, without which any review of multidimensional tunnelling
would be incomplete. References [77,78] have developed the path decomposition expansion
method, which allows one to divide space into separate regions, minimise the action in each
one using whatever method happens to be optimal in that vicinity (chosen based on physical
considerations), and then collate the solutions using global consistency equations. Reference
[71] deserves special attention, as an exceptional effort was made to consider many classical
paths from many source points, deriving the tunnelling current and transmission coefficient
through the potential barrier.

For a more comprehensive review of the topic, the reader is referred to [79], as well as the
original literature cited above.

8 Conclusions and future work

In this paper we used LLT to calculate the eigenstate localisation length at very low energies,
quantifying the decay length scale of the eigenstates. This required us to develop a practical
approximation to multidimensional tunnelling and a formidable extension of LLT techniques
and machinery. It also involved considerable conceptual progress, linking together domain size
and the decay exponent (the “cost”) of tunnelling through the peak ranges of WE separating
domains through the saddle points. We accounted for the effect of increasing energy by merg-
ing domains as the domain walls separating them broke down. Crucially, we explicitly tested
the decay coefficients computed from LLT against exact eigenstates, validating our computa-
tional method and the many approximations involved. We improved on the direct use of the
Agmon distance, which gives a lower bound for the true decay coefficient, and found a way of
computing the latter in a way that avoids a one-sided bias. We also reviewed multidimensional
tunnelling to set our method in context.

We gave a thorough discussion of how the eigenstates spread out over larger areas at higher
energies, beyond the regime where quantum tunnelling in WE and its semiclassical description
is applicable, and explained why the mechanisms involved are not captured by our method for
computing the localisation length, thus necessarily limiting it to very low energies. In addition,
we highlighted the difficulty in extracting the localisation length out of exact diagonalisation
calculations. We further demonstrated that the effective potential WE can replace the real
potential V in the Hamiltonian in terms of reproducing the low-energy eigenspectrum.

Some ideas for future work that naturally came up during this investigation are:

1. It may be possible to perform the LLT calculation of ξE for a system where the Green’s
functions approach would be applicable, even if it would only provide approximate re-
sults, and compare the two.

2. It would be excellent to generalise LLT to 3D, where the logic and conceptual picture are
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largely unchanged, but the practical framework and the technology are not yet in place
(everything beyond obtaining u and performing simple mathematical operations on it).
This would open the door to a large number of possible studies in 3D.

3. One should also investigate the functional dependence of ξE (at zero energy) on the
fill factor and V0. At the moment, this can only be done by running large numbers of
simulations at different parameters and examining the dependence explicitly, hoping to
discover the functional form by inspection.

4. What effect does the shape of the scatterers have? We have limited ourselves to 2D
Gaussian peaks (of more or less constant width) for this paper. What would happen if
we changed the width, or even made the scatterers, say, square?

Acknowledgements

S.S.S. warmly thanks the following researchers for extremely helpful discussions on the topics
indicated in parentheses after each name: Daniel V. Shamailov (the entire project), Antonio
Mateo-Munõz (spectral methods in exact diagonalisation), Xiaoquan Yu (importance of the
density of states for Anderson localisation), Marcel Filoche and Svitlana Mayboroda (the Ag-
mon distance). Jan Major is further gratefully acknowledged for reading the manuscript and
providing useful comments.

References

[1] C. M. Soukoulis and E. N. Economou, Electronic localization in disordered systems, Waves
in Random Media 9, 255 (1999), doi:10.1088/0959-7174/9/2/310.

[2] C. A. Müller and D. Delande, Disorder and interference: localization phenomena, (2010),
arXiv:1005.0915v3.

[3] P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492
(1958), doi:10.1103/PhysRev.109.1492.

[4] S. Ping, Introduction to wave scattering, Localization and mesoscopic phenomena, Springer
Berlin Heidelberg, ISBN 9783540291558 (2006), doi:10.1007/3-540-29156-3.

[5] P. Wölfle and D. Vollhardt, Self-consistent theory of Anderson localization:
General formalism and applications, Int. J. Mod. Phys. B 24, 1526 (2010),
doi:10.1142/S0217979210064502.

[6] M. Piraud, A. Aspect and L. Sanchez-Palencia, Anderson localization of mat-
ter waves in tailored disordered potentials, Phys. Rev. A 85, 063611 (2012),
doi:10.1103/PhysRevA.85.063611.

[7] R. C. Kuhn, C. Miniatura, D. Delande, O. Sigwarth and C. A. Müller, Localization of matter
waves in two-dimensional disordered optical potentials, Phys. Rev. Lett. 95, 250403 (2005),
doi:10.1103/PhysRevLett.95.250403.

[8] W. Morong and B. DeMarco, Simulation of Anderson localization in two-
dimensional ultracold gases for pointlike disorder, Phys. Rev. A 92, 023625 (2015),
doi:10.1103/PhysRevA.92.023625.

28

https://scipost.org
https://scipost.org/SciPostPhysCore.4.2.017
https://doi.org/10.1088/0959-7174/9/2/310
https://arxiv.org/abs/1005.0915v3
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1007/3-540-29156-3
https://doi.org/10.1142/S0217979210064502
https://doi.org/10.1103/PhysRevA.85.063611
https://doi.org/10.1103/PhysRevLett.95.250403
https://doi.org/10.1103/PhysRevA.92.023625


SciPost Phys. Core 4, 017 (2021)

[9] I. Manai, J.-F. Clément, R. Chicireanu, C. Hainaut, J. Claude Garreau, P. Szrift-
giser and D. Delande, Experimental observation of two-dimensional Anderson lo-
calization with the atomic kicked rotor, Phys. Rev. Lett. 115, 240603 (2015),
doi:10.1103/PhysRevLett.115.240603.

[10] V. Gasparian and A. Suzuki, Localization length in two-dimensional disordered sys-
tems: effects of evanescent modes, J. Phys.: Condens. Matter 21, 405302 (2009),
doi:10.1088/0953-8984/21/40/405302.

[11] Y. Ono, Self-consistent theory of Anderson localization, Prog. Theor. Phys. Suppl. 84, 138
(1985), doi:10.1143/PTPS.84.138.

[12] K. Loon Lee, B. Grémaud, C. Miniatura and D. Delande, Analytical and numerical
study of uncorrelated disorder on a honeycomb lattice, Phys. Rev. B 87, 144202 (2013),
doi:10.1103/PhysRevB.87.144202.

[13] D. J. Thouless, A relation between the density of states and range of localization for one di-
mensional random systems, J. Phys. C: Solid State Phys. 5, 77 (1972), doi:10.1088/0022-
3719/5/1/010.

[14] H. De Raedt, A. Lagendijk and P. de Vries, Transverse localization of light, Phys. Rev. Lett.
62, 47 (1989), doi:10.1103/PhysRevLett.62.47.

[15] D. H. White, T. A. Haase, D. J. Brown, M. D. Hoogerland, M. S. Najafabadi, J. L. Helm, C.
Gies, D. Schumayer and D. A. W. Hutchinson, Observation of two-dimensional Anderson
localisation of ultracold atoms, Nat. Commun. 11, 4942 (2020), doi:10.1038/s41467-
020-18652-w.

[16] S. Donsa, H. Hofstätter, O. Koch, J. Burgdörfer and I. Březinová, Long-time expansion of a
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