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Abstract

We investigate entanglement dynamics for a nanomechanical resonator coupled to an
optical cavity field through the analysis of the associated entanglement entropies. The
effects of time variation of several parameters, such as the optical frequency and the cou-
pling strength, on the evolution of entanglement entropies are analyzed. We consider
three kinds of entanglement entropies as the measures of the entanglement of subsys-
tems, which are the linear entropy, the von Neumann entropy, and the Rényi entropy. The
analytic formulae of these entropies are derived in a rigorous way using wave functions
of the system. In particular, we focus on time behaviors of entanglement entropies in
the case where the optical frequency is modulated by a small oscillating factor. We show
that the entanglement entropies emerge and increase as the coupling strength grows
from zero. The entanglement entropies fluctuate depending on the adiabatic variation
of the parameters and such fluctuations are significant especially in the strong coupling
regime. Our research may deepen the understanding of the optomechanical entangle-
ment, which is crucial in realizing hybrid quantum-information protocols in quantum
computation, quantum networks, and other domains in quantum science.
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1 Introduction

Many novel quantum phenomena and related effects are important in realizing next gener-
ation quantum technologies. Most of such phenomena can be produced by coupling nano-
and micromechanical oscillators with a variety of other systems, such as electrons [1], pho-
tons [2], qubits [3], and magnetic devices [4]. In particular, photonic couplings provide a
powerful platform for state-of-the-art optomechanical techniques applicable to signal routing
and protection [5, 6], control of phononic structures [7], producing slow/fast light [8], and
chiral cooling [9]. Besides, coupled optomechanical systems are promising candidates for
highly sensitive quantum devices required in quantum information processes and quantum
state tomographies.

The entanglement of mechanical modes with cavity fields through the effect of radiation
pressure [10] provides a key paradigm for precision measurements in quantum metrology.
Such entanglement can be employed, for example, to construct information networks which
connect flying bits with solid bits [11,12], and to store quantum information [13]. Hence, the
generation of quantum entanglement and its control are very important in optomechanics.
Fundamental quantum properties associated with nonclassical correlations, quantum coher-
ence, and decoherence can also be understood from entanglement dynamics.

It is possible to generate steady-state entanglement in optomechanical systems incorpo-
rated with mechanical oscillators by adjusting the effective frequency of a movable mirror
[14, 15]. Although optomechanical systems serve as good coupling mediums for entangle-
ment [9, 16], the mechanism related to such entanglement is not fully understood yet. We
should resolve this problem, together with the lack of the knowledge for determining param-
eters for wide range of practical applications of them.

If we think of the fact that maximally entangled states often serve as optimal inputs in
the quantum-information protocols [17], a rigorous quantification of such an entanglement is
highly required. The entanglement can be quantified by several measures, such as entangle-
ment entropies [18–21], the logarithmic negativity [14], the generalized concurrence [22], or
Gaussian-type basis functions [23]. Among those, we are interested in entanglement entropies
in this work, which are deeply related to entanglement properties of a state. Entanglement
entropies provide a bedrock concept of entanglement on the basis of quantum statistical me-
chanics, quantifying how strongly the subsystems are entangled.

The purpose of this work is to quantify the entanglement of an optomechanical system
from a strict mathematical framework of the entanglement entropies. The system that we
consider is a coupling of a nanomechanical resonator and a cavity field, where parameters of
the system vary adiabatically in time. In particular, we see the effects of a small sinusoidal
variation of the frequency of the optical oscillator on the entanglement entropies. The time
behavior of the entanglement entropies in that case will be analyzed from various angles.

Organization of this article is as follows. In Sec. 2, we will show how to describe the op-
tomechanical system that we manage based on Hamiltonian dynamics. The quantum solutions
of the system will be derived in Sec. 3 using the unitary transformation method, which is a
useful mathematical tool for treating time-dependent Hamiltonian systems [24, 25]. Due to
time variation of the parameters, our system is described by a time-dependent Hamiltonian.
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Figure 1: Schematic of the nanomechanical resonator coupled to a cavity field.

Based on such quantum solutions, we will derive a reduced density matrix in Sec. 4. Several
types of entanglement entropies will be evaluated by taking advantage of the reduced density
matrix. The linear entropy will be investigated at first in Sec. 5 separately for mechanical and
optical parts of the system. And then, we will extend our development to the von Neumann
entropy and the Rényi entropy in Sec. 6. As well as the characteristics of such entanglement
entropies, the differences and similarities between them will be analyzed. Concluding remarks
are given in the last section.

2 Preliminary description of the optomechanical system

We consider a nanoresonator coupled to a cavity field via a time-dependent coupling strength
g(t), whereas the cavity field is driven by a laser field of which frequency is ωL (see Fig. 1).
The nanomechanical resonator interacts with the cavity field through the radiation-pressure
force carried by the momentum of light. We assume that, as well as g, the frequency ∆ of
the optical oscillator and the frequency ωm of the mechanical resonator exhibit possible vari-
ations in time. The consideration of such time variations of the parameters is the difference
of our description of the system from that of Ref. [2], which corresponds to the case that all
parameters are independent of time. We further suppose that the time variations of the three
parameters, g(t), ∆(t), and ωm(t), are sufficiently slow so that the evolution of the coupled
system satisfies the adiabatic condition.

If we consider that cavity is driven by a laser field, the relation between the optical fre-
quency ∆ and the cavity frequency ωc is given by ∆ = ωc −ωL − δrp, where δrp is the shift
of the cavity frequency by radiation pressure [2]. On the other hand, the coupling strength is
given by g(t) = G(t)

p

〈nc〉, where G(t) = [ωc(t)/L(t)]
p

ħh/[mωm(t)], m is effective mass of
the resonator, L is the cavity length, and 〈nc〉 is the mean cavity photon number [2].

Strong coupling in optomechanical systems is favorable for preparing entangled states or
squeezed entangled states, because it is difficult to obtain steady-state entanglement if the
interaction between subsystems is too weak [2,15]. Furthermore, the effects of decoherence in
coupled systems can be overcome or at least reduced, if we adopt a strong coupling. Hence, the
strong coupling, fortified by these advantages, enables us to carry out quantum experiments
with proper control of mechanical quantum states. [2].

From standard mean-field expansion of the interaction, we have a coupled harmonic os-
cillator description of the system in terms of the dimensionless mechanical position operator
X̂m and the dimensionless optical quadrature operator X̂c. These two operators are given in
the form

X̂m =
1
p

2
(âm + â†

m) X̂c =
1
p

2
(âc + â†

c), (1)
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where âm (âc) and â†
m (â†

c) are annihilation and creation operators, respectively, for the me-
chanical mode (optical mode). Their canonical conjugate operators are given, respectively, by
P̂m = −i∂ /∂ Xm and P̂c = −i∂ /∂ Xc. These operators can also be represented as

P̂m =
i
p

2
(â†

m − âm) P̂c =
i
p

2
(â†

c − âc). (2)

We confirm that the canonical operators satisfy the commutation relations,
[X̂m, P̂m] = [X̂c, P̂c] = i.

The linearized Hamiltonian for the optomechanical system that we have considered in the
time-dependent regime is now expressed to be

Ĥ =
ħhωm(t)

2
(X̂ 2

m + P̂2
m) +
ħh∆(t)

2
(X̂ 2

c + P̂2
c )−ħhg(t)X̂mX̂c. (3)

For the case in which the parameters, ∆, ωm, and g, are constants, this Hamiltonian reduces
to that of Ref. [2].

Quantum solutions of the system can be derived through diagonalization of the Hamilto-
nian. For a coupled system, we may need to consider the unitary transformation or the canon-
ical transformation approach for its exact diagonalization. However, conventionally, many
authors adopt some approximations in such a case, considering a Hamiltonian in a frame of
simply rotated coordinates. We confirm that such a rotation is described as









X̂m

X̂c

P̂m

P̂c









=







cosθ (t) sinθ (t) 0 0
− sinθ (t) cosθ (t) 0 0

0 0 cosθ (t) sinθ (t)
0 0 − sinθ (t) cosθ (t)















X̂+
X̂−
P̂+
P̂−









, (4)

where X̂± and P̂± are canonical operators in the rotated frame. If we take θ (t) in the above
equation in the form

θ (t) =
1
2

atan(ωm(t)−∆(t), 2g(t)), (5)

where ϑ ≡ atan(z1, z2) is the two-variables inverse function of tanϑ = z2/z1, the Hamiltonian,
Eq. (3), is represented to be

Ĥ = Ĥ+ + Ĥ− + ĥ, (6)

where

Ĥ± =
ħh
2
[ωX ,±(t)X̂

2
± +ωP,±(t)P̂

2
±], (7)

ĥ =
ħh
2
[ωm(t)−∆(t)] sin[2θ (t)]P̂+ P̂−, (8)

with

ωX ,+ = ωm(t) cos2 θ (t) +∆(t) sin2 θ (t) + g(t) sin[2θ (t)], (9)

ωX ,− = ωm(t) sin
2 θ (t) +∆(t) cos2 θ (t)− g(t) sin[2θ (t)], (10)

ωP,+ = ωm(t) cos2 θ (t) +∆(t) sin2 θ (t), (11)

ωP,− = ωm(t) sin
2 θ (t) +∆(t) cos2 θ (t). (12)

From this procedure, we have eliminated the cross term that involves X̂mX̂c in the original
Hamiltonian. However, a new cross term described by P̂+ P̂− has appeared. We can easily
confirm from Eq. (8) that this new term disappears in the case of resonance (ωm(t) =∆(t)).
For this reason, some authors manage the system considering only the resonance case in order
to avoid mathematical complexity (see, for example, Refs. [2,20,21,26,27]).
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3 Unitary transformation and wave functions

For a general treatment of the system including non-resonance cases, a rigorous mathematical
procedure beyond the simple rotation method may be necessary. We use the unitary transfor-
mation method [24,25] in order to meet this demand. The intricate original Hamiltonian can
be transformed to a simple form by means of a unitary transformation. Then the Schrödinger
solutions in the transformed system may be easily obtained due to the simplicity of the trans-
formed Hamiltonian. From the inverse transformation of such solutions using the same unitary
operator, it is also possible to obtain the Schrödinger solutions in the original system without
difficulty. This is the main idea of the unitary transformation method, which is incorporated
to the purpose of deriving complete quantum solutions. The effect of the quantum properties
resulting from entanglement of the wave packets may also be better envisioned by adopting
this alternative approach.

We now introduce a unitary operator as

Û = exp{−iϕ(t)[β(t)P̂mX̂c − β−1(t)P̂cX̂m]}, (13)

where

ϕ =
1
2

atan(βωm(t)− β−1∆(t), 2g(t)), (14)

β =

√

√ωm(t)
∆(t)

. (15)

From the transformation of the original Hamiltonian by means of Û using the relation

Ĥ = Û−1Ĥ Û − iħhÛ−1 ∂ Û
∂ t

, (16)

we can have the Hamiltonian Ĥ associated to the transformed system. A straightforward
evaluation of the above equation gives

Ĥ =
ħh
2
[ωX ,m(t)X̂

2
m +ωm(t)P̂

2
m +ωX ,c(t)X̂

2
c +∆(t)P̂

2
c ]

−ħh[ϕ̇1(t)P̂mX̂c − ϕ̇2(t)P̂cX̂m], (17)

where ϕ1(t) = ϕ(t)β(t), ϕ2(t) = ϕ(t)β−1(t), and

ωX ,m = ωm(t) cos2ϕ(t) +∆(t)β−2(t) sin2ϕ(t) + g(t)β−1(t) sin[2ϕ(t)], (18)

ωX ,c = ωm(t)β
2(t) sin2ϕ(t) +∆(t) cos2ϕ(t)− g(t)β(t) sin[2ϕ(t)]. (19)

Let us assume that the variations of ϕ1(t) and ϕ2(t) over time are sufficiently slow. This
assumption is actually equivalent to the previous assumption that the variations of g(t),∆(t),
and ωm(t) are slow. Then it is possible to neglect the last term that involves ϕ̇1(t) and ϕ̇2(t)
in Eq. (17), leading to a simple diagonalized Hamiltonian:

Ĥ = ħh
2
[ωX ,m(t)X̂

2
m +ωm(t)P̂

2
m +ωX ,c(t)X̂

2
c +∆(t)P̂

2
c ]. (20)

The manage of the system based on this Hamiltonian may be much easier from quantum-
mechanical point of view than the use of the original Hamiltonian. By the way, if we choose
β = 1 instead of Eq. (15), Eq. (14) reduces to θ (t) given in Eq. (5). This means that the
previous simple rotation procedure is available only for the resonance case, as expected.
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The characterization of quantum properties of a (composite) system starts from the ex-
plicit mathematical formulation of the wave functions. The mysterious property of nonlocality
associated with quantum entanglement may also be understandable through the wave func-
tions from the most fundamental level. If we write the Schrödinger equation for the simple
but time-dependent Hamiltonian Ĥ as

iħh
∂Ψn,l(Xm, Xc, t)

∂ t
= ĤΨn,l(Xm, Xc, t), (21)

the overall wave functions in the transformed system are a linear product of the mechanical
and optical parts of the wave functions, such that

Ψn,l(Xm, Xc, t) = Ψn(Xm, t)Ψ̃l(Xc, t). (22)

If we regard Eq. (20), each component in the above equation is of the form (see Appendix A)

Ψn(Xm, t) = Φn(Xm, t)exp[iδn(t)], (23)

Ψ̃l(Xc, t) = Φ̃l(Xc, t)exp[iδ̃l(t)], (24)

where δn(t) and δ̃l(t) are phases. Here, Φn(Xm, t) and δn(t) (Φ̃l(Xc, t) and δ̃l(t)) are given in
terms of ηm(t) and γm(t) (ηc(t) and γc(t)) which are time-dependent factors of the classical
solution given in Eq. (A.13) (Eq. (A.14)) in Appendix A, such that

Φn(Xm, t) = 4

√

√ γ̇m(t)
πωm(t)

1
p

2nn!
Hn

�√

√ γ̇m(t)
ωm(t)

Xm

�

exp
�

−Ym(t)X
2
m

�

, (25)

δn(t) = −(n+ 1/2)γm(t), (26)

Φ̃l(Xc, t) = 4

√

√ γ̇c(t)
π∆(t)

1
p

2l l!
Hl

�√

√ γ̇c(t)
∆(t)

Xc

�

exp
�

−Yc(t)X
2
c

�

, (27)

δ̃l(t) = −(l + 1/2)γc(t), (28)

where Hn are nth order Hermite polynomials, while

Ym(t) =
1

2ωm(t)

�

γ̇m(t)− i
η̇m(t)
ηm(t)

�

, (29)

Yc(t) =
1

2∆(t)

�

γ̇c(t)− i
η̇c(t)
ηc(t)

�

. (30)

The wave functions ψn,l(Xm, Xc, t) in the original system (untransformed system) can be
obtained from the inverse unitary transformation:

ψn,l(Xm, Xc, t) = ÛΨn,l(Xm, Xc, t). (31)

From a minor computation using Eq. (13) and Eq. (22) with subsequent equations, we have

ψn,l(Xm, Xc, t) =ψn(Xm, Xc, t)ψ̃l(Xm, Xc, t), (32)

where

ψn(Xm, Xc, t) = φn(Xm, Xc, t)exp[iδn(t)], (33)

ψ̃l(Xm, Xc, t) = φ̃l(Xm, Xc, t)exp[iδ̃l(t)], (34)
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with

φn(Xm, Xc, t) = 4

√

√ γ̇m(t)
πωm(t)

1
p

2nn!
Hn

�√

√ γ̇m(t)
ωm(t)

Xm

�

exp
�

−Ym(t)X 2
m

�

, (35)

φ̃l(Xm, Xc, t) = 4

√

√ γ̇c(t)
π∆(t)

1
p

2l l!
Hl

�√

√ γ̇c(t)
∆(t)

Xc

�

exp
�

−Yc(t)X 2
c

�

, (36)

while

Xm = Xm cosϕ(t)− β(t)Xc sinϕ(t), (37)

Xc = Xc cosϕ(t) + β−1(t)Xm sinϕ(t). (38)

Thus, using Eq. (32) with Eqs. (33)-(38) and Eqs. (26) and (28), we can represent the full
wave function in the form

ψ(Xm, Xc, t) =
∞
∑

n=0

∞
∑

l=0

cn,lψn,l(Xm, Xc, t), (39)

where cn,l are complex numbers which obey the condition
∑∞

n=0

∑∞
l=0 |cn,l |2 = 1. In the sub-

sequent sections, the wave functions in the original system developed here will be used in
analyzing the entanglement properties of the system through the quantification of the entan-
glement entropies.

4 Reduced density matrix

It is possible to derive the analytical formula of the entanglement entropies by using the re-
duced density matrix. Let us see the reduced density matrix before the main development of
the entanglement structure of the system. The reduced density matrices in the Fock state are
easily calculated from the density matrices which are given by

ρn,l(Xm, Xc, X ′m, X ′c, t) =ψ∗n,l(X
′
m, X ′c, t)ψn,l(Xm, Xc, t). (40)

According to fundamental quantum mechanics, we can quantitatively describe mixed states in
optomechanical systems as well as the pure state through the use of these matrices.

Preparing the ground state for the mechanical resonator using the technique of optical laser
cooling has been a goal of continuing research [11,21,28,29]. Ground-state cooling provides
a new route for exploring the quantum regime of mechanical systems with preparation of
nonclassical states such as squeezed, entangled, and superposition states. If we regard this, it
may be preferable to focus on the reduced density matrix in the ground state.

Reduced ground-state density matrices for mechanical and optical parts of the system are
given respectively by [28,30]

ρR
0,0(Xm, X ′m, t) =

∫ ∞

−∞
ψ∗0,0(X

′
m, Xc, t)ψ0,0(Xm, Xc, t)dXc, (41)

ρ̃R
0,0(Xc, X ′c, t) =

∫ ∞

−∞
ψ∗0,0(Xm, X ′c, t)ψ0,0(Xm, Xc, t)dXm. (42)

Let us first see for the mechanical part. A straightforward evaluation of the integration given
in Eq. (41) using Eq. (32) with n= l = 0 results in

ρR
0,0(Xm, X ′m, t) =

√

√Nm

π
exp{−[AmX 2

m + A∗mX ′2m ] + BmXmX ′m}, (43)
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where

Am =
1

β2Wm
{(Yc + Y ∗c )Ymβ

2 cos4ϕ + Yc(Ym + Y ∗m)β
2 sin4ϕ

+[YmY ∗mβ
4 + Yc(Y

∗
c + 2Ymβ

2)] cos2ϕ sin2ϕ}, (44)

Bm =
1

2Wm
[Ymβ − Yc/β][Y

∗
mβ − Y ∗c /β] sin

2(2ϕ), (45)

Nm = 2Re[Am]− Bm =
γ̇mγ̇c

Wmωm∆
, (46)

Wm = (Yc + Y ∗c ) cos2ϕ + (Ym + Y ∗m)β
2 sin2ϕ

=
γ̇c

∆
cos2ϕ +

γ̇m

ωm
β2 sin2ϕ. (47)

We see that the normalization factor Nm is represented in terms of the real part of Am, which
can be written as Re[Am] =

1
2(Am + A∗m). By the way, the imaginary part of Am is given by

Im[Am] =
1
2i (Am − A∗m). Using Eq. (44), we can easily confirm that

Re[Am] =
1

8β2Wm
{YcY ∗c + YmY ∗mβ

4 + [3(Y ∗c Ym + YcY ∗m) + 4(YcYm + Y ∗c Y ∗m)]β
2

−(Yc − Ymβ
2)(Y ∗c − Y ∗mβ

2) cos(4ϕ)}, (48)

Im[Am] =
1

2iWm
[YcYm − Y ∗c Y ∗m + (Y

∗
c Ym − YcY ∗m) cos(2ϕ)]. (49)

We also derive the ground-state density matrix for the optical part from a similar evalua-
tion, such that

ρ̃R
0,0(Xc, X ′c, t) =

√

√Nc

π
exp{−[AcX 2

c + A∗cX ′2c ] + BcXcX ′c}, (50)

where

Ac =
1

β2Wc
{(Ym + Y ∗m)Ycβ

2 cos4ϕ + Ym(Yc + Y ∗c )β
2 sin4ϕ

+[YmY ∗mβ
4 + Yc(Y

∗
c + 2Ymβ

2)] cos2ϕ sin2ϕ}, (51)

Bc =
1

2Wc
[Ymβ − Yc/β][Y

∗
mβ − Y ∗c /β] sin

2(2ϕ), (52)

Nc = 2Re[Ac]− Bc =
γ̇mγ̇c

Wcωm∆
, (53)

Wc = (Ym + Y ∗m) cos2ϕ + (Yc + Y ∗c )β
−2 sin2ϕ

=
γ̇m

ωm
cos2ϕ +

γ̇c

∆
β−2 sin2ϕ. (54)

The real and imaginary parts of Ac can also be confirmed to be

Re[Ac] =
1

8β2Wc
{YcY ∗c + YmY ∗mβ

4 + [3(Y ∗c Ym + YcY ∗m) + 4(YcYm + Y ∗c Y ∗m)]β
2

−(Yc − Ymβ
2)(Y ∗c − Y ∗mβ

2) cos(4ϕ)}, (55)

Im[Ac] =
1

2iWc
[YcYm − Y ∗c Y ∗m − (Y

∗
c Ym − YcY ∗m) cos(2ϕ)]. (56)

The information of the system embedded in the reduced density matrices, Eqs. (43) and (50),
can be used as a basic tool in estimating the entanglement between the subsystems. The
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entanglement entropies take place in each subsystem as a signal of the entanglement between
subsystems, provided that the associated reduced density matrix is non-zero. In the subsequent
sections, these matrices will be used in dynamical analysis of entanglement on the basis of the
entanglement entropies.

5 Linear entropy

Optical and mechanical subsystems share a non-separable quantum correlation through the
entanglement between them, leading the system being distinctly nonclassical. An entangled
quantum state cannot be represented as a simple product of the states of each subsystem.
In such a case, the degree of entanglement can be estimated by, for example, entanglement
entropies which are the most common entanglement measure [31]. It may be possible to
quantify quantum entanglement contained in a state for many independently or identically
distributed sub-quantum-systems, as well as the mutually coupled two subsystems. When
estimating such entanglement for a subsystem, the information pertaining to the remaining
part in the system is usually ignored.

The most basic entanglement entropy is the linear entropy, which is defined on the basis
of the purity [18]. The linear entropy is zero for the case of pure states, whereas it is unity for
completely mixed states. In general, we can represent the linear entropies of reduced states
of which density matrices are ρR

n,l(X , X ′, t) as [28,29]:

SL;n,l(t) = 1− Tr[ρR
n,l(t)]

2, (57)

where

Tr[ρR
n,l(t)]

2 =

∫ ∞

−∞

∫ ∞

−∞
ρR

n,l(X , X ′, t)ρR
n,l(X

′, X , t)dX ′dX . (58)

Let us first see the linear entropy for the mechanical subsystem in the ground state, whose
density matrix is ρR

0,0(Xm, X ′m, t). By evaluating Eq. (58) using Eq. (43), we have the linear
entropy for this case as

SL;0,0(t) = 1−
Nm

κm
, (59)

where
κm =

q

4[Re[Am]]2 − B2
m. (60)

The linear entropy for the optical subsystem characterized by the reduced density matrix
ρ̃R

0,0(Xc, X ′c, t) can also be derived in a similar way using Eq. (50). This procedure gives

S̃L;0,0(t) = 1−
Nc

κc
, (61)

where
κc =

q

4[Re[Ac]]2 − B2
c . (62)

Thus, we confirm that the mathematical expressions of the two entropies, SL;0,0(t) and S̃L;0,0(t),
are very similar to each other.

We can further investigate the linear entropy for diverse particular cases with a specific
choice of time dependence for parameters, ωc(t), ωm(t), etc. Abundant physical phenom-
ena associated with frequency modulations in optomechanical systems have been reported
so far [32–37]. Quantum effects of optomechanical systems can be practically enhanced by
periodic modulations of the frequencies [34–36]. For instance, arbitrary bosonic squeezing
in coupled optomechanical systems can be achieved by modulating one or both frequencies
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among the two which are associated with optical and mechanical modes respectively. Through
this squeezing, it is possible to improve the measurement accuracy for weak signals [35, 36].
An optimal optomechanical-cooling scheme by suppressing the Stokes heating process via pe-
riodical modulations of the frequencies of cavity and mechanical resonators has also been
proposed [37].

It is known that entanglement can also be improved by modulating optomechanical pa-
rameters, such as the frequencies [36], the coupling parameter [38–40] and the amplitude of
the cavity mode laser [36, 41]. In order to see the influence of the periodical modulation of
the optical frequency on the variation of the entanglement entropy, let us consider the case
that ωc(t) is modulated by a small sinusoidal perturbation, i.e., [28,42]

ωc(t) =ωc,0[1+ ε cos (Ωt)], (63)

where ωc,0, ε, and Ω are constants, while ε� 1. Meanwhile, we suppose, along with it, that
the mechanical frequency does not depend on time:

ωm(t) =ωm,0 (constant). (64)

We can easily confirm that these suppositions make the system satisfy the adiabatic condition
which was mentioned in Sec. 3 (see sentences given immediately after Eq. (19)). Then, from
a minor evaluation, we have

∆(t) = ω̄c,0[1+ ε̄ cos (Ωt)], (65)

g(t) = g0[1+ ε cos (Ωt)], (66)

ϕ(t) ' ϕ0 =
1
2

atan
�

ω
3/2
m,0/ω̄

1/2
c,0 − ω̄

3/2
c,0 /ω

1/2
m,0, 2g0

�

, (67)

where ω̄c,0 = ωc,0 −ωL − δrp, ε̄ = εωc,0/ω̄c,0, and g0 =
Æ

〈nc〉ħh/(mωm,0)ωc,0/L. Using Eqs.
(65)-(67), Eqs. (18) and (19) can be rewritten as

ωX ,m = ωm,0 cos2ϕ0 +
ω̄2

c,0

ωm,0
[1+ 2ε̄ cos(Ωt)] sin2ϕ0

+g0

√

√

√

ω̄c,0

ωm,0
[1+ (ε + ε̄/2) cos(Ωt)] sin[2ϕ0], (68)

ωX ,c =
ω2

m,0

ω̄c,0
[1− ε̄ cos(Ωt)] sin2ϕ0 + ω̄c,0[1+ ε̄ cos(Ωt)] cos2ϕ0

−g0

√

√ωm,0

ω̄c,0
[1+ (ε − ε̄/2) cos(Ωt)] sin[2ϕ0]. (69)

In the above equations, we have considered only up to the first order of ε (and ε̄) for simplicity.
Recall that the wave functions (and, consequently, the linear entropy) are represented in

terms of the time functions, ηm(t), ηc(t), γm(t), and γc(t). Hence, in order to see the behavior
of the linear entropy, it is necessary to derive the formula of them from the corresponding
classical equations of motion. From the substitution of Eqs. (68) and (69) into Eqs. (A.9) and
(A.10) in Appendix A, we have the formulae ofωx andωq. This leads the equations of motion
given in Eqs. (A.11) and (A.12) in the form

ẍ + [c1 + c2 cos(Ωt) +O(ε2)]x = 0, (70)

q̈+ [c̄1 + c̄2 cos(Ωt) +O(ε2)]q = 0, (71)
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where

c1 = ω2
m,0 cos2ϕ0 + ω̄

2
c,0 sin2ϕ0 + g0

Æ

ωm,0ω̄c,0 sin(2ϕ0), (72)

c2 = 2ε̄ω̄2
c,0 sin2ϕ0 + g0(ε + ε̄/2)

Æ

ωm,0ω̄c,0 sin(2ϕ0), (73)

c̄1 = ω2
m,0 sin2ϕ0 + ω̄

2
c,0 cos2ϕ0 − g0

Æ

ωm,0ω̄c,0 sin(2ϕ0), (74)

c̄2 = 2ε̄ω̄2
c,0 cos2ϕ0 − g0(ε + ε̄/2)

Æ

ωm,0ω̄c,0 sin(2ϕ0). (75)

The classical solutions of Eqs. (70) and (71) are given in terms of the Mathieu functions Ceν
and Seν, such that

x(t) = C1Ceν

�

Ωt
2

,−
2c2

Ω2

�

+ C2Seν

�

Ωt
2

,−
2c2

Ω2

�

, (76)

q(t) = C̄1Ceν̄

�

Ωt
2

,−
2c̄2

Ω2

�

+ C̄2Seν̄

�

Ωt
2

,−
2c̄2

Ω2

�

, (77)

where ν = 4c1/Ω
2 and ν̄ = 4c̄1/Ω

2, whereas Ci (i = 1, 2) and C̄i are constants. For the
characteristics of the Mathieu functions including their stability, refer, for example, to Refs.
[42,43].

We can also represent the solutions in another form as given in Eqs. (A.13) and (A.14) in
Appendix A (e.g., see Ref. [42]), with

ηm(t) =
�

Ceν
2
�

Ωt
2

,−
2c2

Ω2

�

+ Seν
2
�

Ωt
2

,−
2c2

Ω2

��1/2

, (78)

ηc(t) =
�

Ceν̄
2
�

Ωt
2

,−
2c̄2

Ω2

�

+ Seν̄
2
�

Ωt
2

,−
2c̄2

Ω2

��1/2

, (79)

γm(t) = atan
�

Ceν

�

Ωt
2

,−
2c2

Ω2

�

, Seν

�

Ωt
2

,−
2c2

Ω2

��

, (80)

γc(t) = atan
�

Ceν̄

�

Ωt
2

,−
2c̄2

Ω2

�

, Seν̄

�

Ωt
2

,−
2c̄2

Ω2

��

. (81)

We have depicted the time behavior of the linear entropies for this case in Fig. 2 using the
formulae of time functions given in Eqs. (78)-(81). From a close inspection of Fig. 2, we
confirm that the linear entropies for the mechanical and the optical parts coincide each other.
Evidently, the entanglement is shared between the two subsystems through their coupling.

Figure 2 shows additional diverse properties of the linear entropy depending on several
different values of parameters. We can see from Fig. 2(A) that the linear entropies emerge
from zero as the coupling strength g0 grows; in addition, their mean values increase according
to the growth of g0. From this, we can conclude that the entanglement is relatively high when
the coupling between the two subsystems is strong. This consequence agrees with the result of
Ref. [14] in which entanglement was analyzed using other means. Besides, the linear entropies
fluctuate in time in a periodic fashion. Such fluctuations also become significant as g0 grows.

The effects of ε on the linear entropies can be seen from Fig. 2(B). While the linear en-
tropies are independent of time when ε = 0, they fluctuate unless ε = 0 and such fluctuations
gradually augment as ε increases. On the other hand, Fig. 2(C) shows that the fluctuations of
the linear entropies do not monotonically increase as Ω grows. The fluctuations of the linear
entropy become greater at first in response to the grow of Ω from 1.5, but they eventually
collapse for a higher value of Ω (see the green curve in Fig. 2(C)).
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Figure 2: Temporal evolution of linear entropies SL;0,0(t) (solid lines) and S̃L;0,0(t)
(circles) for several different values of g0 (A), ε (B), and Ω (C). The legend of (A)
means that g0 = 0.00 for red curves, g0 = 0.15 for blue curves, and g0 = 0.30 for
green curves. The legends of other panels are also interpreted in this way. We used
(ε, Ω)=(0.1, 2) for (A), (g0, Ω)=(0.2, 2) for (B), and (g0, ε)=(0.2, 0.1) for (C). All
other values are common and given by ωm,0 = 1, ω̄c,0 = 3, and ν≡ ε̄/ε = 1.2.
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6 Von Neumann entropy and Rényi entropy

As well as the linear entropy, the von Neumann entropy is also an essential tool for quanti-
fying quantum information contained in states [19]. The von Neumann entropy is a general
entanglement entropy and it is known as the quantum counterpart of the classical Shannon en-
tropy [44]. The von Neumann entropies for the mechanical and the optical parts are defined,
respectively, as [20,30]

SN ;n,l = −Tr[ρR
n,l(Xm, X ′m, t) lnρR

n,l(Xm, X ′m, t)], (82)

S̃N ;n,l = −Tr[ρ̃R
n,l(Xc, X ′c, t) ln ρ̃R

n,l(Xc, X ′c, t)]. (83)

Another useful class of entanglement entropy is the Rényi entropy. This entropy is a gen-
eralization of the von Neumann entropy [19, 30, 45]: in fact, the Rényi entropy is the most
general type of entropy that is used for measuring entanglement. The Reńyi entropies of order
α (Reńyi-α entropies), respectively for the mechanical and the optical parts, are given by

Sα;n,l =
1

1−α
ln[Tr[ρR

n,l(Xm, X ′m, t)]α], (84)

S̃α;n,l =
1

1−α
ln[Tr[ρ̃R

n,l(Xc, X ′c, t)]α], (85)

where α > 0 and α 6= 1. Equations (84) and (85) are defined in a way that the Rényi en-
tropies preserve the additivity for independent events according to the axiom of probability.
In particular, Rényi entropy of order 2 provides a useful measure of quantum information for
multimode Gaussian states, which can be adopted as a privileged tool for addressing related
correlations via entanglement [19].

We also focus on the ground state for both von Neumann and Reńyi entropies. We consider
the spectral decompositions [20,30,46] of the reduced density matrices of the subsystems as
a tackle for obtaining these entropies. Such decompositions for mechanical and optical parts
can be carried out starting from the eigenvalue equations of the form, respectively

∫ ∞

−∞
dX ′mρ

R
0,0(Xm, X ′m, t) f j(X

′
m, t) = p j(t) f j(Xm, t), (86)

∫ ∞

−∞
dX ′cρ̃

R
0,0(Xc, X ′c, t) f̃k(X

′
c, t) = p̃k(t) f̃k(Xc, t). (87)

From a straightforward evaluation for these equations, we have

p j(t) = [1− ξm(t)]ξ
j
m(t), (88)

p̃k(t) = [1− ξc(t)]ξ
k
c (t), (89)

f j(Xm, t) = 4

s

κm

π

1
p

2 j j!
H j[
p
κmXm]exp{−[κm/2+ iIm[Am]]X

2
m}, (90)

f̃k(Xc, t) = 4

s

κc

π

1
p

2kk!
Hk[

p

κcXc]exp{−[κc/2+ iIm[Ac]]X
2
c }, (91)

where

ξm(t) =
Bm

2Re[Am] +κm
, (92)

ξc(t) =
Bc

2Re[Ac] + κc
. (93)
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Figure 3: Temporal evolution of von Neumann entropies SN ;0,0(t) (solid lines) and
S̃N ;0,0(t) (circles) for several different values of Ω as designated in the legend. We
used g0 = 0.2, ε = 0.1, ωm,0 = 1, ω̄c,0 = 3, and ν≡ ε̄/ε = 1.2.

Then, as is well known [30], it is possible to carry out the spectral decompositions of the
reduced density matrices, leading to

ρR
0,0(Xm, X ′m, t) =

∞
∑

j=0

p j(t) f
∗
j (X

′
m, t) f j(Xm, t), (94)

ρ̃R
0,0(Xc, X ′c, t) =

∞
∑

k=0

p̃k(t) f̃
∗
k (X

′
c, t) f̃k(Xc, t). (95)

Using Eqs. (94) and (95), we readily have the formulae of the von Neumann and Rényi
entropies, such that

SN ;0,0 = − ln(1− ξm)−
ξm

1− ξm
lnξm, (96)

S̃N ;0,0 = − ln(1− ξc)−
ξc

1− ξc
lnξc, (97)

Sα;0,0 =
1

1−α
ln
(1− ξm)α

1− ξαm
, (98)

S̃α;0,0 =
1

1−α
ln
(1− ξc)α

1− ξαc
. (99)

If the time dependence ofωm(t),∆(t), and g(t) disappears, the outcome, Eqs. (96) and (97),
reduces to that in Refs. [20, 46]. For an other simple case, the results, Eqs. (96)-(99), are
similar to those of Ref. [30] but not exactly the same.

The time behavior of the von Neumann entropies is shown in Fig. 3 for several different
values of Ω. As you can see, the pattern of this behavior is very much the same as that of Fig.
2(C) which corresponds to the linear entropies. In fact, the linear entropy is an approximation
of the von Neumann entropy [18]. The value of the linear entropy is restricted within the
range from 0 to 1. However, the upper bound of the von Neumann entropy is not so simply
determined (see, e.g., Ref. [47]).

Temporal evolution of the Rényi entropies for several different values of α are given in Fig.
4. We see that Rényi entropies become small as α increases. However, such entropy changes
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Figure 4: Temporal evolution of Rényi entropies Sα;0,0(t) (solid lines) and S̃α;0,0(t)
(circles) for several different values of α. We used Ω = 1.5 for (A) and Ω = 2.5 for
(B). All other values are common and they are g0 = 0.2, ε = 0.1, ωm,0 = 1, ω̄c,0 = 3,
and ν≡ ε̄/ε = 1.2.

per unit increase of α is not so large when the value of α is sufficiently high. Consequently,
the Rényi entropies reduce to their minimum values in the limit α→∞. The Rényi entropies
also exhibit a periodical variation in time. The patterns of such a variation shown in Figs. 4(A)
and 4(B) quite resemble those of Fig. 3 (or Fig. 2(C)) with Ω= 1.5 and Ω= 2.5, respectively.

We see from Fig. 5 that each kind of entanglement entropies grows as the coupling strength
g0 increases. The von Neumann entropy among the three kinds of entropies exhibits the
highest rate of increase in such a growth. The rate of growth of the Rényi entropy with α= 2
is almost the same as that of the linear entropy. However, strictly speaking, the growth of
the Rényi-2 entropy is slightly faster than that of the linear entropy. Rényi-2 entropy is an
alternative form of the linear entropy, whereas Rényi-1/2 entropy implies quantum uncertainty
defined in terms of the skew information [48].

Although we have evaluated entanglement entropies for the case of the ground state of
the optical (and mechanical) oscillators partly for convenience, it may highly be possible to
think of an excited state of the optical oscillator, because it is driven by a laser field. If such a
state is far from the ground state, the entanglement between the optical and the mechanical
modes may be enhanced due the increase of the quadrature uncertainty in the optical mode.
Notice that, if the quantum number in a coupled oscillatory motion is large, the entanglement
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Figure 5: The increment of entanglement entropies SL;0,0(t), SN ;0,0(t), and Sα;0,0(t)
at t = 0 for (A) and at t = 1 for (B) through the increase of coupling strength g0.
We used ε = 0.1, Ω= 1.5, ωm,0 = 1, ω̄c,0 = 3, and ν≡ ε̄/ε = 1.2.

between the associated subsystems is enhanced [49–51].

7 Conclusion

We have investigated entanglement entropies for a nanomechanical resonator coupled to a
cavity field. The effects of the time variation of parameters, such as cavity frequency ωc(t)
and the coupling strength g(t), on the evolution of the entanglement entropies have been
analyzed in detail. The wave functions in Fock state and the corresponding reduced density
matrices of the coupled system have been evaluated under the assumption that the system
evolves adiabatically. Using the reduced density matrices, we have derived analytical formu-
lae of several fundamental entanglement entropies, such as linear entropies, von Neumann
entropies, and Rényi entropies. These entropies emerge and increase as the coupling strength
g0 becomes high, while they disappear for uncoupled systems.

In particular, we have focused our research on the effects of a modulation in the cavity
frequency: The cavity frequency is perturbed by a sinusoidally varying small modulation term
of which frequency isΩ. If g0 and/or the amplitude ε of the modulation term inωc(t) grow, the
fluctuations of the entropies also increase. However, such fluctuations do not monotonically
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increase along the grow of the frequency Ω. Although fluctuations of the entropies increase
as Ω grows provided that Ω is sufficiently low, the fluctuations rather reduce as Ω reaches a
higher value.

From the graphical analyses for the time evolution of the entropies, we have confirmed
that the entanglement entropies of the mechanical part are the same as those of the optical
part. This consequence stems from the fact that the entanglement entropies are state quantities
shared between the nanoresonator and the cavity field. The fluctuation patterns of the three
kinds of entropies resemble one another. However, the entanglement entropies grow as g0
increases with different rates depending on the type of entropies; we confirmed that the von
Neumann entropy exhibits the highest rate of increase.

Our technique for characterizing entanglement entropies can also be applied to other states
beyond the Fock states, such as the coherent states, squeezed states, and thermal states. As well
as theoretical quantification of entanglement, experimental measurement of entanglement or
entanglement entropies may also be a major concern in this context. Recently, protocols for
measuring entanglement entropies through an optimized universal tool have been proposed
[31,45].

As a final remark, we have rigorously analyzed entanglement entropies which are nec-
essary for the understanding of entanglement dynamics related to quantum optical control
of optomechanical nano-devices. We hope that this work can further motivate great ideas
in achieving strong entanglement based on optomechanical coupling, which plays a key role
in the field of quantum information, such as quantum computation protocols [52], quantum
secure communication [53], teleportation [54,55], and neo-cryptographic systems [56].
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A Derivation of wave functions in the transformed system

Let us consider a time-dependent harmonic oscillator of which Hamiltonian is given in terms
of a coordinate operator ŷ by

Ĥ =
1
2
[A(t) ŷ2 +B(t)p̂2

y], (A.1)

where p̂y = −iħh∂ /∂ y , while A(t) and B(t) are time functions that are differentiable with
respect to time. The corresponding classical equation of motion can be written as

ÿ −
Ḃ(t)
B(t)

ẏ +A(t)B(t)y = 0. (A.2)

Without loss of generality, let us express the classical solution of the above equation in the
form

y(t) = η(t)[C+eiγ(t) + C−e−iγ(t)], (A.3)

where η(t) and γ(t) are real time functions and C± are real constants. Then, the quantum
wave functions in the Fock state are given by [57,58]

Ψn(y, t) = Φn(y, t)exp[iδn(t)], (A.4)
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where Φn(y, t) are the eigenstates which are given in terms of η(t) and γ(t), such that

Φn(y, t) = 4

√

√ γ̇(t)
ħhπB(t)

1
p

2nn!
Hn

�√

√ γ̇(t)
ħhB(t)

y

�

exp
�

−
1

2ħhB(t)

�

γ̇(t)− i
η̇(t)
η(t)

�

y2
�

, (A.5)

while the phases are given by δn(t) = −(n+ 1/2)γ(t).
Now, let us turn our attention to the optomechanical system given in the text. For the

mechanical part of the system, the dimensionless position operator of the nanomechanical
resonator and its canonical conjugate operator are given by

X̂m =

√

√mωm(t)
ħh

x̂ P̂m =

√

√ 1
mωm(t)ħh

p̂x , (A.6)

where x̂ and p̂x(= −iħh∂ /∂ x) are ordinary position and momentum operators of the resonator.
Similarly, the operator of the dimensionless quadrature and its canonical conjugate variable
in the optical part are represented as

X̂c =

√

√ε0∆(t)
ħh

q̂ P̂c =

√

√ 1
ε0∆(t)ħh

p̂q, (A.7)

where q̂ and p̂q(= −iħh∂ /∂ q) are the ordinary quadrature operator and its canonical conjugate
variable, respectively. Using these, the Hamiltonian in Eq. (20) can be rewritten in terms of
ordinary coordinates in the form

Ĥ = 1
2

�

mω2
x(t) x̂

2 +
p̂2

x

m
+ ε0ω

2
q(t)q̂

2 +
p̂2

q

ε0

�

, (A.8)

where

ωx(t) =
q

ωX ,m(t)ωm(t), (A.9)

ωq(t) =
q

ωX ,c(t)∆(t). (A.10)

The corresponding equations of motion are given by

ẍ +ω2
x(t)x = 0, (A.11)

q̈+ω2
q(t)q = 0. (A.12)

The classical solutions of these two equations are of the form

x(t) = ηm(t)[C+eiγm(t) + C−e−iγm(t)], (A.13)

q(t) = ηc(t)[C̄+eiγc(t) + C̄−e−iγc(t)]. (A.14)

The wave functions for the transformed Hamiltonian can be divided into x and q parts;
the x part is given in terms of ηm(t) and γm(t) whereas the q part is in terms of ηc(t) and
γc(t). For the x part, the use of the relation B= 1/m leads to

Φn(x , t) =
4

√

√mγ̇m(t)
ħhπ

1
p

2nn!
Hn

�√

√mγ̇m(t)
ħh

x

�

exp
�

−
m
2ħh

�

γ̇m(t)− i
η̇m(t)
ηm(t)

�

x2
�

, (A.15)

while, from B= 1/ε0 for the q part, we have

Φ̃l(q, t) =
4

√

√ε0γ̇c(t)
ħhπ

1
p

2l l!
Hl

�√

√ε0γ̇c(t)
ħh

q

�

exp
�

−
ε0

2ħh

�

γ̇c(t)− i
η̇c(t)
ηc(t)

�

q2
�

. (A.16)
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If we represent the eigenstates, Eqs. (A.15) and (A.16), in terms of dimensionless canonical
variables using Eqs. (A.6) and (A.7), we have Eqs. (25) and (27) in the text. Notice that
the eigenstates described in terms of the dimensionless canonical variable Xm (Eq. (25)) are
dimensionless, while the dimension of Eq. (A.15) is L−1/2 where L is the length dimension.
According to this, we have adjusted the normalization factor of Eq. (25) so that it becomes
dimensionless. Similar adjustment has also been applied in Eq. (27) which corresponds to the
optical part.
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