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Abstract

Circuit Complexity, a well known computational technique has recently become the
backbone of the physics community to probe the chaotic behaviour and random quantum
fluctuations of quantum fields. This paper is devoted to the study of out-of-equilibrium
aspects and quantum chaos appearing in the universe from the paradigm of two well
known bouncing cosmological solutions viz. Cosine hyperbolic and Exponential models
of scale factors. Besides circuit complexity, we use the Out-of-Time Ordered correlation
(OTOC) functions for probing the random behaviour of the universe both at early and
the late times. In particular, we use the techniques of well known two-mode squeezed
state formalism in cosmological perturbation theory as a key ingredient for the purpose
of our computation. To give an appropriate theoretical interpretation that is consistent
with the observational perspective we use the scale factor and the number of e-foldings
as a dynamical variable instead of conformal time for this computation. From this study,
we found that the period of post bounce is the most interesting one. Though it may not
be immediately visible but an exponential rise can be seen in the complexity once the
post bounce feature is extrapolated to the present time scales. We also find within the
very small acceptable error range a universal connecting relation between Complexity
computed from two different kinds of cost functionals-linearly weighted and geodesic
weighted with the OTOC. Furthermore, from the complexity computation obtained from
both the cosmological models under consideration and also using the well known Mal-
dacena (M) Shenker (S) Stanford (S) bound on quantum Lyapunov exponent, λ ≤ 2π/β
for the saturation of chaos, we estimate the lower bound on the equilibrium tempera-
ture of our universe at the late time scale. Finally, we provide a rough estimation of the
scrambling time scale in terms of the conformal time.
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1 Introduction

The idea of circuit complexity [1–18] has recently gained huge attraction of the theoretical
physics community and is recently used as a diagnostic for Quantum chaos [19–29]. The
absence of a proper tool to develop a wholesome understanding about the AdS/CFT corre-
spondence [30] in certain black hole settings is what motivated the high energy theoretical
physics community to apply this computational concept in the context of Quantum Field The-
ory (QFT). The information about the bulk geometry that can be extracted from the boundary
Conformal Field Theory (CFT) remains very much incomplete and is one of the toughest chal-
lenges that one faces when probing black hole physics beyond the horizon. One of the main
difficulties in boundary field theories is that it reaches thermal equilibrium very quickly while
the Einstein-Rosen bridge continues to grow. These challenges motivated Leonard Susskind
and collaborators to propose the Complexity=Volume and Compexity=Action conjectures to
probe gravity beyond the horizon of black holes and have led to the development of enormous
new ideas about the application of complexity and other information theoretic measures in the
gravity sector [1, 31–35]. The CV conjecture suggests that the holographic complexity of the
boundary field theory is equal to the volume of an extremal codimension one surface extending
the boundary time slice into the bulk whereas the CA conjecture suggests that the complexity
of a boundary state is dual to the gravitational action evaluated on the Wheeler-DeWitt patch.
However the traditional way of computing complexity has certain shortcomings when applied
to holography and QFT states. Generally in these contexts, one considers a continuum of states
and a proper way to define complexity in this continuum of states faces several questions that
need to be addressed. To name some of them, selecting the initial reference state, a set of
infinitesimal unitary generators or quantum gates, a proper measure for understanding the
role of these gates in minimizing the distance function and the procedure it follows. One of
the proposals for facing these issues is to compute quantum complexity using the path length
obtained by integrating the Fubini study line element joining the reference and the target state.
The reference state is mainly chosen to be Gaussian because the ground states of free field
theories are in general Gaussian. For Gaussian quantum states, a geometric way of computing
the complexity was given in [36–38]. It includes two different methods commonly known as
the wave-function approach [2] or the covariance matrix approach [39, 40]. The wave func-
tion approach has been found to be the most insightful one to probe the underlying physics,
especially in the context of time evolution.

Sharing an intimate relation with the Out-Of-Time-Ordered-Correlation functions [41–43],
abbreviated as OTOC, these two measures has been the recent tools to probe quantum ran-
domness and chaos in various quantum mechanical systems. OTOC’s which first appeared
in literature in the context of superconductivity [41] soon became popular as a theoretical
probe to explore the out of equilibrium phenomenon in finite temperature field theories, bulk
gravitational theories and many-body quantum systems. A lot of investigation has followed
since then to conclude that whether OTOC’s can be considered as a good measure to study
stochastic randomness and chaos of quantum systems at out of equilibrium phase. Together
with OTOCs, complexity is now considered to be an integral part of the machinery used in
the diagnosis of quantum randomness and chaos. Both of these measures have been found to
provide information like Lyapunov exponent, scrambling time etc., which are by far the most
essential quantities required to comment on the chaoticity of any quantum mechanical system.

In this work, our attempt will be to apply this quantum information theoretic measure
to the framework of bouncing cosmological paradigm. Bouncing cosmology is gaining trac-
tion to resolve the problem of Big Bang Singularity in recent years [44–70]. A solid model in
bouncing cosmology can resolve the Horizon problem, Flatness problem, the CMB Inhomgeneity
and other problems that are prevalent in the current model of Big Bang and Inflationary cos-
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mology [71–110]. One way of getting a non-singular ghost free bouncing models is through
non-local infinite derivative gravity theories with an addition of appropriate non-local func-
tion in the Einstein-Hilbert action in the ultraviolet regime that captures all the derivative
terms [111–115]. Moreover non singular bouncing solutions of a positive cosmological con-
stant can make inflation geodesically complete [116]. The primary motivation to apply the
formalism of cosmological complexity in bouncing background is that the study of complexity
can give great insight about a given model in bouncing cosmology and the explicit calcula-
tion of the Lyapunov exponent and the corresponding lower bound on equilibrium tempera-
ture [19] during the bouncing period can be very useful in our understanding of primordial
cosmology. In this paper, we intend to apply this concept of cosmological complexity under
a squeezed state formalism with scalar cosmological perturbations to two well known bounc-
ing solutions - the cosine hyperbolic bounce [116, 117] and the exponential bounce [113],
which we have derived from usual Einstein gravity with two different models of dynamical
scalar matter field embedded in spatially flat (k = 0) Friedmann-Lemaitre-Robertson-Walker
(FLRW) cosmological background in 3 + 1 dimensions. However, the exact same solutions
can also be derived from higher derivative non-local gravity theory admitting isotropic and
homogeneous bouncing universes in the absence of matter [116,117].

We have developed a framework for bouncing cosmology from potentials derived from
String theory descriptions at very high energy scale, that can be treated with the squeezed
state formalism [118–124], and using that result the cosmological complexity can be further
analyzed. We write a generalized scalar perturbation in the framework of bouncing cosmol-
ogy and expressed the action, and its parameters including the dispersion relation without
truncating higher order terms initially and then give the limiting solutions in the sub-Hubble,
Horizon crossing and the super-Hubble regions. The Hamiltonian is also written in its most
general form, as compared to [118] before fixing the initial conditions at the horizon cross-
ing scale at kτ = −1 and formulating the squeezed states with a next-to-leading order time
dependent slowly varying term in the dispersion relation that we found after the quantiza-
tion of the Hamiltonian to be more relevant in the context of bouncing cosmology.1 Other
works in cosmological complexity [11,12], have only considered the leading constants in the
dispersion relation and squeezed state formalism under the assumptions of stationary back-
ground space time. We have then focused our further analysis with bounce in the sub-Hubble
region (−kτ � 1) to get a better analysis of the quantum fluctuations as compared to the
super-Hubble region which falls under the classical domain. This is where the necessary ap-
proximations to the dispersion relation is made and the complexity cost functions based on an
early general description of family of cost functions is derived. A universality relation between
the OTOC and the complexity has also been given under certain conditions. We make certain
key observations from our numerical analysis including:

• Observation I:
Behaviour of squeeze parameters in and around the bounce and at late times.

• Observation II:
Initially fluctuating complexity that grows at later times and achieves a saturation at
very large time.

1Note: In refs. [11, 12, 118] the authors have not considered the slowly varying contribution in the evolution
in the sub-Hubble region (−kτ� 1) in their computation. During describing the inflationary paradigm all of them
have considered the exact de Sitter solution, which is in realistic cosmological analysis is not very useful and also
appropriate. The prime reason is using exact de Sitter solution one cannot able to stop the inflation at all in the
evolutionary time scale or equivalently in the field space. To stop inflation in an appropriate field space one needs
to include slow-roll parameters, which basically considering the small but significant deviation from exact de Sitter
solution. When the slow roll parameter reaches the unity the end of inflation is ensured.
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Figure 1: Flowchart showing the plan of the entire work.

• Observation III:
There exists a smooth transition between the non-equilibrium growing phase and the
equilibrium saturating phase.

• Observation IV:
The saturation at late times indicates a bound on chaos, which makes it possible to
describe the Lyapunov exponent and the lower bound of the equilibrium temperature
using the well known, Maldacena(M) Shenker(S) Stanford(S) saturation bound on quan-
tum Lyapunov exponent [19],2

MSS Bound : λ≤
2π
β

, where β =
1
T

with kB = 1,ħh= 1, (1)

2It is important to note that, some other extension of this bound have been studied in the refs. [125].
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where T is the equilibrium temperature corresponding to saturation of quantum chaos
at the late time scale.

• Observation V:
The two different measures used for complexity point to Lyapunov exponent whose frac-
tional deviation is under ten percent, and hence it is safe to assume that our universality
relation holds perfectly, in the context of our study.

• Observation VI:
We have also very roughly estimated the scrambling time [126, 127] for both models
and found them to be decent indicator of the time that the OTOC may take to attain
equilibrium in both cases.

We expect the bound on quantum chaos and hence the resulting Lyapunov exponent from the
two measures of complexity to be much more closer in value by doing the analysis with a full
dispersion relation given in the paper. We had initially done the numerical analysis against
scale factor for simplicity, but to connect with the observational constraints we have extended
the analysis of the complexity in the bouncing background with respect to the co-moving Hub-
ble radius as well, which can be further expressed in terms of the number of e-foldings. It
is expected from the present study that this theoretical formulation and the corresponding
analysis of cosmological complexity and, its connection with quantum chaos through OTOC
could act as a very strong theoretical indicator for future observational probes for studying
non-equilibrium physics within the framework of bouncing cosmology.

Organization of the Paper:

• In Sec. 2 a brief review of the concept of circuit complexity has been given and how it
can be used to probe new areas of physics in the context of Cosmology.

• Sec. 3 introduces the reader to the framework of Bouncing cosmology and the models
that we have considered for the computation of complexity.

• In Sec. 4 a detailed computation of the cosmological scalar perturbations in the bouncing
cosmology framework has been provided along with the origin of the squeezed quantum
states and its various solutions.

• In Sec. 5 a discussion on the complexity for the squeezed quantum states has been given.

• Finally in Sec. 6 the computational details of the considered models has been provided
with all the relevant discussions. We conclude with all our major observations and future
prospects in this direction.

2 Circuit Complexity for dummies

The concept of circuit complexity was primarily used in the field of Computer Science to know
the depth of different circuits. It is basically defined as the effort required to carry out a
given task or the difficulty in implementing a given task. The task at hand is essentially to
prepare a desired quantum field theoretic target state from a reference state. It is generally an
optimization technique. Technically, it refers to the minimum number of unitary operations
required to implement a given task. The process of carrying out the task involves constructing
a unitary transformation that takes a given reference state to the desired final state. The
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unitary operator being referred to here usually represents the sequences of quantum gates
{gi1 , gi2 , ....gin} required to achieve the desired the target state.

|ψT 〉= U |ψR〉= gi1 , gi2 , ....gin |ψR〉 . (2)

Of course, there exist infinite such sequences that produce the desired target state from the
given reference state, but the complexity of a quantum circuit provides the sequence which
requires the minimum number of gates to do so. This optimal number will depend on the
choice of the reference state, |ψR〉 and the gate set {g1, g2, ....gn}. The construction of the
unitary operator involves finding a time-dependent Hamiltonian that produces the desired U .
The unitary operator is then constructed from a continuous sequence of parametrized path-
ordered exponential of the chosen Hamiltonian,

U(s) =
←−P exp

�

−i

∫ s

0

ds′ H(s′)

�

. (3)

The variable s parametrizes a path in the space of unitaries. The Hamiltonian H(s) can be
expanded in terms of generalized Pauli matrices i.e.

H(s) =
∑

I

Y I(s)MI , (4)

where MI are the basis in which the Hamiltonian is expanded and the coefficients Y I(s) are the
control functions that decide the gate acting at certain values of the parameters. The control
function basically represents a tangent in the space of unitaries and acts as the Hamiltonian
in the Schrödinger equation satisfied by the unitarity operator U ,

dU(s)
ds

= −iY (s)I MI U(s). (5)

The idea then is to define a cost for the various possible paths, minimizing which leads to the
identification of the optimal circuit. The cost functional is defined as follows:

D(U(s)) =
∫ 1

0

d t F(U(s), U̇(s)), (6)

where F is a local cost function depending on the position U(s) and the tangent vector Y I(s).
Once the concept of cost function is introduced, the problem is identical to finding the tra-
jectory of a particle by minimizing the action from the Lagrangian F(U(s), Y I(s)). There are
certain desirable features for F to be a cost functional [2] viz. smoothness, positivity, triangle
inequality and positive homogenity. Some of the simplest cost functionals which satisfy the
above properties and the ones which we have considered in this paper are the linear and the
quadratic cost functionals defined as [2]:

Linear cost functional : F1 :=
∑

I

|Y I(s)|, (7)

Quadratic cost functional : F2 :=
√

√

∑

I

(Y I(s))2, (8)

where the degree of homogeneity is 1 for both of them.
To be precise the cost function F1 comes closest to counting the number of gates required

to make the optimal circuit. The measure F2 however brings in a notion of proper distance in
Riemannian geometry and converts the problem of constructing the optimal circuit to finding
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the shortest curve connecting the initial and the final states in that geometry. Some other types
of cost functionals are also discussed in [2,9].

On the other hand, a general class of inhomogeneous and homogeneous family of func-
tionals are represented by the following expression [9]:

Fκ family cost functional : Fκ :=
∑

I

|Y I(s)|κ, (9)

[Fκ]
1
κ family cost functional : [Fκ]

1
κ =

�

∑

I

|Y I(s)|κ
�

1
κ

, (10)

where for all family members, the degree of homogeneity is represented by the superscript,
κ > 1. Here the inhomogeneous family of functionals, Fκ was introduced to match the results
obtained from both the leading order UV divergences appearing from the well known, “com-
plexity= action” [34,35] and “complexity=volume” [34,35] conjectures proposed within the
framework of holography. Though the results agreed with with the holographic complexity
results, these cost functions do not satisfy the homogeneity property i.e Eq. (6) is not invariant
under the reparametrizations of s for these κ family cost functions. Apart from these previ-
ously mentioned measures, one can further introduce the following sets of basis independent
and state independent cost functionals, which are given by [9]:

Trace norm cost functional : F|Tr H(s)| := |Tr H(s)|, (11)

Schatten norm cost functional : FSch :=
�

Tr
�

(H2(s))
p
2

��
1
p . (12)

The Schatten norm cost functional helps to express the circuit complexity in a basis inde-
pendent way, a problem which occurs with the general κ family of cost functions including
the linear and the quadratic ones. Further, one can construct few more state dependent cost
functionals which are given by the following expressions [9]:

F〈H2〉 =
Æ

〈ψ(s)|H2(s)|ψ(s)〉, (13)

F|〈H〉| = |〈ψ(s)|H(s)|ψ(s)〉| , (14)

FFS =
r

F〈H2〉 − F2
|〈H〉| ≡ Fσ2 . (15)

In the context of cosmology, using the quantum squeezed state formalism in the pertur-
bation picture enables one to compute the expression for the cosmological complexity. Scalar
perturbations on an expanding background can naturally be described with the formalism of
squeezed quantum states. The ground state is chosen as the reference state while the mode is
inside the horizon, and a target state consisting of the time-evolved cosmological perturbation
on the expanding background. Thus squeezed state formalism gives an elegant way of defin-
ing the reference and the target state between which the circuit complexity can be computed.
The squeezed state formalism also enables to translate the entire problem in terms of just two
quantities known as the squeezed state parameter and the squeezed angle. The whole idea
of squeezed state formalism can be easily understood using the well known model of inverted
harmonic oscillator. In this formalism, the wave function is squeezed with a large uncertainty
in one direction and with a small uncertainty in another direction. Similar observations can
be found if one looks into the phase space trajectories of an inverted harmonic oscillator. The
presence of one growing and one decaying solution produces a squeezing effect even in the
classical level. The main idea behind the squeezed states is to re-parametrize the unitary op-
erator as the product of a squeezed and a rotation operator. The squeezed and the rotation
operator can further be expressed entirely in terms of the creation and annihilation operators.
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The significance of the rotation operator is less as it mainly produces a phase factor. However,
the squeezing operator is of prime significance as the entire problem and all the important
observables can eventually be expressed in terms of two quantities, the squeezing parame-
ter and the squeezing angle. Thus, the squeezed state formalism not only gives an elegant
way of finding the target and the reference state but also helps to express all the important
observables in terms of only two quantities as will be seen in the upcoming sections.

Here, the complexity can be defined in terms of all the previously mentioned different types
of cost functionals and one can test as to which ones do give out the best features in terms of
the study of quantum chaos for a given cosmological model of our universe. However, in this
paper we have restricted our computation by considering only the cost functionals, F1 and F2
from which we compute the expression for cosmological complexity. Using the universality
relation, we have further computed the expression for OTOC, Quantum Lyapunov exponent
and the lower bound on the equilibrium temperature of a system within the framework of
bouncing cosmological paradigm.

3 A simple framework for Bouncing Cosmology

In this section, our prime objective is to construct a bouncing cosmological framework that
can further participate in the computation of cosmological complexity. In the present context,
we start with the following representative action, given by:

S =
1
2

∫

d4 x
p

−g
�

R− (∂ φ)2 − 2V (φ)
�

, (16)

where we have fixed the reduced Planck mass Mp = 1 for the simplification of the computation.
We have introduced a single scalar field with a kinetic term that is minimally coupled with the
classical gravitational background. Here V (φ) is the effective potential for the scalar field φ in
3+1 dimensions from which we will describe pre-bounce, bounce, and post bounce scenario.
We consider here two models which can serve our purpose:

Model I : Cosine Hyperbolic model

V (φ) =



























48V0

(1+ r1)2
exp

�

−
Æ

3(1+ r1) φ
�

Pre-Bounce (t < −tB)

3r1V0

2

�

1− cosh2

�

2
3
p

r1
φ

��

Bounce (−tB < t < tB)

48V0

(1+ r1)2
exp

�
Æ

3(1+ r1) φ
�

Post-Bounce (t > tB) ,

(17)

Model II : Exponential model

V (φ) =























4V0

3(1+ r1)2
exp

�

−
Æ

3(1+ r1) φ
�

Pre-Bounce (t < −tB)

1
2

m2
φφ

2 with m2
φ = 9

p
3r1V0 Bounce (−tB < t < tB)

4V0

3(1+ r1)2
exp

�
Æ

3(1+ r1) φ
�

Post-Bounce (t > tB) ,

(18)

where r1 is the dimensionless parameter in the Planckian units for both of the bouncing models
and V0 represents the overall energy scale of the potential which mimics the role of Cosmo-
logical Constant at a very high energy scale.
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Figure 2: Behaviour of the potentials of the considered models with respect to the
field variable φ.

In Fig. 2, the potentials of the two bouncing cosmology models considered in this paper
have been studied with respect to the field variableφ. For both the models, the potential for the
pre-bounce region decreases exponentially to negligible values as the value of the field variable
increases. An exponential increase in the potential is seen in both the cases as φ is increased.
However, for the bouncing region, the behaviour of the potentials is widely different. For the
Cosine hyperbolic model, the potential of the bouncing region is negative and goes to large
negative values for a slight change in the field variable φ. For the Exponential model, the
potential of the bouncing region does also vary even though it is not apparent in Fig. 2.

The aforementioned potentials used to describe the pre-bounce region, bouncing region
and post-bounce region can be derived from String Theory descriptions at a very high scale.
On the other hand, one can think of another equivalent situation where without introducing
a scalar field in the classical gravitational background, one can also study the cosmological
bouncing framework. Originally, the concept of cosmological bounce was proposed to resolve
the coordinate intrinsic singularity of space-time at the time scale of the Big Bang, which is
t = 0. This is because the inflationary paradigm cannot resolve this issue. Not only that,
the well known Swampland Criteria and Trans-Planckian Censorship Criteria [128–213] which
are very useful to construct a physically consistent Effective Field Theory framework at a rel-
atively lower scale than the very high UV cut-off scale of quantum gravity, commonly fixed
at the Planck scale, can be described by bouncing paradigm more consistently than the in-
flation. Additionally, the bouncing cosmological paradigm can be done in presence of higher
derivative quantum gravity corrections to the Einstein-Hilbert action. If such corrections are
only a function of Ricci scalar then it is known as, f (R) gravity, and within this class R+αR2,
which is known as the Starobinsky model is the most famous one.3 One can show that using

3In the Jordan frame one can actually compute the corresponding mathematical form of the f (R) gravity by
making use of the following equations in Mp = 1 unit:

f (R) = exp

�

2
p

2
p

3
φ

�

�

p

6
dV (φ)

dφ
+ 2V (φ)

�

with R= exp

�

2
p

2
p

3
φ

�

�

p

6
dV (φ)

dφ
+ 4V (φ)

�

. (19)

10

https://scipost.org
https://scipost.org/SciPostPhysCore.4.4.026


SciPost Phys. Core 4, 026 (2021)

this model, along with infinite derivative non-local correction to the gravity sector of the form,
R + RF(2)R , [116, 214–216] and a Cosmological Constant term Λ, can produce the same
type of bouncing solution in the spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric in 3+ 1 dimensional space-time, which is described by the following line element:

ds2 = −d t2 + a2(t)dx2 = a2(τ)(−dτ2 + dx2), (20)

where τ is the conformal time coordinate which is related to the physical time coordinate t
through the following replacement relation in the line element:

dτ=
d t

a(t)
. (21)

The prime objective to include such non-local correction was to produce a ghost-free renor-
malizable theory of gravity whose classical limit will be consistent with the local Einstein-
Hilbert gravity contribution. Apart from this, the bouncing framework is very important in
the context of primordial cosmology because the Big Bang singularity can be removed from
the theory by imposing the bouncing condition on the related scale factors in the spatially flat
FLRW background, which can be explicitly computed by making use of the Friedmann equation
and the Klein-Gordon equation for the scalar field φ. At the cosmological bounce scale t = tB
one has to satisfy the following constraint conditions to find out the appropriate dynamical
solutions of the field equations:

Bouncing condition I :

ȧB = ȧ(tB) =
�

da(t)
d t

�

t=tB

= 0 =⇒ HB = H(tB) = 0, (22)

Bouncing condition II :

äB = ä(tB) =

�

d2a(t)
d t2

�

t=tB

> 0 =⇒ ḢB = Ḣ(tB)> 0. (23)

This same condition for the bounce at the conformal time scale τ= τB can be further translated
in the following simplified form:

Bouncing condition I :

a′B = a′(τB) =
�

da(τ)
dτ

�

τ=τB

= 0 =⇒ HB =H(τB) = 0, (24)

Bouncing condition II :

a′′B = a′′(τB) =

�

d2a(τ)
dτ2

�

τ=τB

> 0 =⇒ H′B =H′(τB)> 0. (25)

This implies that the mathematical structure of the bouncing conditions remains the same in
physical time and the conformal time coordinates, though they are not exactly the same as we
have pointed earlier. One can also write constraint conditions on the potential function at the
point of bounce, which is given by the following expressions:

VB = V (φB) = 0, V,φ,B =
�

dV (φ)
dφ

�

φ=φB

= 0, V,φφ,B =

�

d2V (φ)
dφ2

�

φ=φB

< 0. (26)

For an example, for the potential V (φ) = 1
2 m2

φ
φ2, withφ� 1 we get, f (R) = R2 and withφ� 1 we get, f (R) = R.

So by considering both the limiting contribution one can construct a f (R) function which is basically made up of
both R and R2 contributions and they are appearing with appropriate coefficients i.e., f (R) = αR+βR2. For φ� 1,
we have α� β and for φ� 1 we have α� β .
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Consequently, around the point of bounce if we expand the potential function in Taylor series
in the field space, we get:

V (φ) =
V,φφ,B

2
(φ −φB)

2 +
V,φφφ,B

6
(φ −φB)

3 +
V,φφφφ,B

24
(φ −φB)

4 + · · · , (27)

where the first three terms are the renormalizable contributions and other · · · represent non-
renormalizable terms.

From the previously mentioned models the scale factors can be computed in terms of the
physical time coordinate as:

Model I :

a(t) =































aPre cosh

�
s

r1

2
tB

�

�

−
t
tB

�
2

3(1+r1)

Pre-Bounce (t < −tB)

aB cosh

�
s

r1

2
t

�

Bounce (−tB < t < tB)

aPost cosh

�
s

r1

2
tB

�

�

t
tB

�
2

3(1+r1)

Post-Bounce (t > tB) ,

(28)

(29)

Model II :

a(t) =



























aPre exp
�

9
2

r1 t2
B

� �

−
t
tB

�
2

3(1+r1)

Pre-Bounce (t < −tB)

aB exp
�

9
2

r1 t2
�

Bounce (−tB < t < tB)

aPost exp
�

9
2

r1 t2
B

� �

t
tB

�
2

3(1+r1)

Post-Bounce (t > tB) .

(30)
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Figure 3: Variation of derivative of scale factor wrt the conformal time showing three
different regions viz. Pre-bounce, Bouncing and the Post-bounce regions.

In terms of conformal time coordinate one can further compute the expression for the scale
factors, which are given by:
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Figure 4: Variation of derivative of scale factor wrt the conformal time showing three
different regions viz. Pre-bounce, Bouncing and the Post-bounce regions.
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Figure 5: Variation of Hubble paramter wrt the conformal time showing three differ-
ent regions viz. Pre-bounce, Bouncing and the Post-bounce regions.
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Figure 6: Variation of the derivative of the Hubble parameter wrt the conformal
time showing three different regions viz. Pre-bounce, Bouncing and the Post-bounce
regions.

Model I :

a(τ) =























































aPre cosh

�
s

r1

2
tB

�

×
�

− (1+3r1)
3tB(1+r1)

cosh
�q

r1
2 tB

�

(τ−τb)
�

2
(1+r1) Pre-Bounce

aB sec

�
s

r1

2
(τ−τb)

�

Bounce

aPost cosh

�
s

r1

2
tB

�

×
�

(1+3r1)
3tB(1+r1)

cosh
�q

r1
2 tB

�

(τ−τb)
�

2
(1+r1) Post-Bounce ,

(31)

Model II :

a(τ) =























































aPre exp
�

9
2

r1 t2
B

�

×
�

−(τ−τb) exp( 9
2 r1 t2

B)
tB

1+3r1
3(1+r1)

�
4

1+3r1
Pre-Bounce

aB exp
�

InverseErf
�

2(τ−τb)3
p

r1p
2π

�2�

Bounce

aPost exp
�

9
2

r1 t2
B

�

×
�

(τ−τb) exp( 9
2 r1 t2

B)
tB

1+3r1
3(1+r1)

�
4

1+3r1
Post-Bounce .

(32)

The scale factors have been plotted in the Logarithmic scale to show the rising values near
the boundary of the bouncing region as can be seen in Fig. 3. We also expect the models
to satisfy the bouncing conditions given before, in Fig. 5 and Fig. 6, and for both the models
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HB = 0 and H′B > 0 can be verified. As we will see later, the behaviour of H and the difference
in signs on either side of the point of bounce will require two different squeezing parameters
that describe the bouncing region, one before the point of bounce and one after it, which will
result in differing behaviour of the complexity.

In the next section using these solutions our prime objective is to perform the cosmological
perturbation and find the explicit role of these class of solutions to construct the squeezed
vacuum sates.

4 Perturbation with squeezed quantum states in Bouncing Cos-
mology

4.1 Scalar perturbation in Bouncing Cosmology

In this section we will study squeezed state formalism within the framework of cosmological
perturbation theory [217–222] for FLRW spatially flat background specifically for post-bounce,
bounce and pre bounce region. In this context one needs to consider the following perturbation
in the scalar field in the De Sitter background:

φ(x,τ) = φ(τ) +δφ(x,τ) (33)

and to express the whole dynamics in terms of a gauge invariant description through a variable:

ζ(x,τ) = −
H(τ)

�

dφ(τ)
dτ

�δφ(x, t). (34)

At the level of first order perturbation theory in a spatially flat FLRW background metric, we
fix the following gauge constraints:

δφ(x,τ) = 0, gi j(x,τ) = a2(τ)
�

(1+ 2ζ(x,τ))δi j + hi j(x,τ)
�

,

∂ihi j(x,τ) = 0= hi
i(x,τ), (35)

which fix the space-time re-parametrization. In this gauge, the spatial curvature of constant
hyper-surface vanishes, which implies curvature perturbation variable is conserved outside the
horizon.

Applying the ADM formalism one can further compute the second-order perturbed action
for scalar modes. The action, after gauge fixing, can then be expressed by the following:

δ(2)S =
1
2

∫

dτ d3x
a2(τ)
H2

�

dφ(τ)
dτ

�2
�

(∂τζ(x,τ))2 − (∂iζ(x,τ))2
�

. (36)

Now, to re-parametrize the above mentioned second-order perturbed action expressed for pri-
mordial scalar perturbation, we introduce the following space-time dependent variable:

v(x,τ) = z(τ) ζ(x,τ), where z(τ) = a(τ)
Æ

ε(τ), (37)

which helps transform the perturbed action to that of the familiar mathematical form of canon-
ical scalar field. In the cosmology literature, this is known as the Mukhanov variable, in terms
of which we will perform the rest of the computation. Additionally, it is important to note that
the newly defined quantity, ε(τ) is the conformal time dependent slowly varying parameter,
which is defined as:

ε(τ) := −
Ḣ
H2
= −

a(τ)
H2

d
dτ

� H
a(τ)

�

= 1−
H′
H2

. (38)
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Consequently, the new version of the second order perturbed action for the scalar perturbation
after re-parametrization in terms of the Mukhanov variable can be written as:

δ(2)S =
1
2

∫

dτ d3x
�

v′2(x,τ)− (∂i v(x,τ))2 +
�

z′(τ)
z(τ)

�2

v2(x,τ)− 2
�

z′(τ)
z(τ)

�

v′(x,τ)v(x,τ)
�

.

(39)
Now, we explicitly compute the following crucial conformal time dependent contribution,
which plays a significant role to explore various unknown physical facts of the primordial
universe:

z′(τ)
z(τ)

=
a′(τ)
a(τ)

+
1
2
ε′(τ)
ε(τ)

= H+ 1
2

1
�

1−
H′
H2

�

�

−
H′′
H2
+ 2

H′2
H3

�

= H
�

1+
1
2

1
ε(τ)

�

2(1− ε(τ))2 −
H′′
H3

��

= H
�

1
ε(τ)

− 1+ ε(τ)−
1
2

1
ε(τ)

H′′
H3

�

. (40)

Our job is now to further convert the second-order perturbed action for the scalar degrees
of freedom in terms of the Fourier modes, by implementing the following ansatz for the Fourier
transformation:

v(x,τ) :=

∫

d3k
(2π)3

vk(τ) exp(−ik.x), (41)

using which one can compute the following contributions from the time and space derivative
of the perturbed field variable appearing in the second-order action :

v′(x,τ) :=

∫

d3k
(2π)3

v′k(τ) exp(−ik.x), (42)

∂ j v(x,τ) := i

∫

d3k
(2π)3

vk(τ) k j exp(−ik.x). (43)

After the substitution of all the aforementioned expressions, the simplified version of the
second-order perturbation for the scalar modes in Fourier space can be further recast as:

δ(2)S =
1
2

∫

dτ d3k
�

|v′k(τ)|
2 +

�

k2 +
�

z′(τ)
z(τ)

�2
�

|vk(τ)|2 − 2
�

z′(τ)
z(τ)

�

v′k(τ)v−k(τ)
�

︸ ︷︷ ︸

Lagrangian density L(2)(vk(τ),v′k(τ),τ)

, (44)

where it is important to note that:

|v′k(τ)|
2 = v

′∗
−k(τ)v

′

k(τ), |vk(τ)|2 = v∗−k(τ)vk(τ). (45)

Now after varying the second-order perturbed action with respect to the perturbed field vari-
able expressed in the Fourier space, we get the following equation of motion:

v′′k (τ) +ω
2(k,τ)vk(τ) = 0. (46)

This is commonly known as the Mukhanov-Sasaki equation and actually represents the classical
equation of motion of a parametric oscillator where the frequency of the oscillator is conformal
time dependent and in the present context of discussion, be explicitly given by :

ω2(k,τ) := k2 +m2
eff(τ), (47)
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where we have introduced a conformal time dependent effective mass in the present compu-
tation, which is quantified by the following expression:

m2
eff(τ) = −

z′′(τ)
z(τ)

= H2

�

−
2

ε2(τ)
+

5
ε(τ)

− 2(1− ε(τ)) + ε2(τ)−
�

1−
1

ε2(τ)

�H′′
H3

+
�

1
ε(τ)

− 1+ ε(τ)−
1
2

1
ε(τ)

H′′
H3

�2�

−
1

2ε(τ)H2

�

H′′′ − 2
H′H′′
H −

H′′
ε(τ)

�

2(1− ε(τ))2 −
H′′
H3

�

�

=
1
τ2

�

ν2
B(τ)−

1
4

�

, (48)

where for the purpose of simplification of computation we have introduced a conformal time
dependent mass parameter, νB(τ), which is defined as:

νB(τ) : =

�

τ2H2

�

−
2

ε2(τ)
+

5
ε(τ)

− 2(1− ε(τ)) + ε2(τ)−
�

1−
1

ε2(τ)

�H′′
H3

+
�

1
ε(τ)

− 1+ ε(τ)−
1
2

1
ε(τ)

H′′
H3

�2�

−
1

2ε(τ)H2

�

H′′′ − 2
H′H′′
H −

H′′
ε(τ)

�

2(1− ε(τ))2 −
H′′
H3

�

�

+
1
4

�

1
2

=
1
2
+
�

1−
1
ε(τ)

�H′′
H2
+ · · · , (49)

where · · · is the contribution which is varying very slowly in the context of our present discus-
sion.

4.2 Scalar mode function

As a result, the Mukhanov-Sasaki equation can be translated into the following simplified form:

v′′k (τ) +

�

k2 −
1
τ2

�

ν2
B(τ)−

1
4

�

�

vk(τ) = 0. (50)

The most general analytical solution of the above equation can be expressed as:

vk(τ) :=
p
−τ

�

C1 H(1)νB
(−kτ) + C2 H(2)νB

(−kτ)
�

, (51)

where H(1)νB
(−kτ) and H(2)νB

(−kτ) are Hankel functions of the first and second kind,respectively,
with argument −kτ and order νB. During this computation, we have also used the fact that
the conformal time-dependent quantity νB is varying very slowly with respect to the evolution-
ary time scale of our universe. Additionally it is important to note that, the two integration
constants, C1 and C2 can be fixed by the choice of the initial quantum vacuum state in the
present context. In this work, we choose the most popular and the simplest initial quantum
vacuum state, which is known as Bunch Davies vacuum or Hartle Hawking vacuum or Chernkov
vacuum, and can be fixed by choosing C1 = 1 and C2 = 0.

Consequently, we get the following solution:

vk(τ) =
p
−τ H(1)νB

(−kτ). (52)
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Upon further considering −kτ → 0 and −kτ →∞ asymptotic limits, one can write the fol-
lowing simplified form of the Hankel functions of the first kind:

lim
−kτ→∞

H(1)νB
(−kτ) =

√

√ 2
π

1
p
−kτ

exp
�

−i
§

kτ+
π

2

�

νB +
1
2

�ª�

. (53)

Using these asymptotic results of the Hankel functions of the first kind the most general solu-
tion for the perturbed field can be expressed as:

vk(τ) =
2νB−

3
2 (−kτ)

3
2−νB

p
2k

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

�

1−
i

kτ

�

exp
�

−i
§

kτ+
π

2

�

νB −
3
2

�ª�

. (54)

In the present solution, the slowly varying time-dependent mass parameter νB(τ) is a com-
pletely model-dependent one. For this reason, to fix the value and the behaviour of the slowly-
varying function with respect to the underlying conformal time scale we need to explicitly
compute this expression for different models which are describing the pre-bounce, bounce,
post-bounce, and the away from the bounce region.4

One can further consider two asymptotic cases, super-Hubble and the sub-Hubble which
might be extremely useful to study the physical impact of the mode function obtained for
the scalar fluctuations in the two different physical regions as mentioned before. In terms of
the representative dynamical scale, the super-Hubble and the sub-Hubble limit is described
by −kτ � 1 and −kτ � 1, respectively. Additionally, it is important to note that in this
context of the discussion, the cosmological horizon crossing is described by −kτ= 1. Now we
shall implement all the discussed limits to get simplified results from the scalar mode function
obtained previously within the framework of bouncing cosmological paradigm. These limiting
results are appended below:

Sub−Hubble limiting solution :

vk(−kτ� 1) =
2νB−

3
2 (−kτ)

3
2−νB

p
2k

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

exp
�

−i
§

kτ+
π

2

�

νB −
3
2

�ª�

. (55)

Horizon crossing solution :

vk(−kτ= 1) =
2νB−1

p
2k

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

exp
�

−i
nπ

2
(νB − 2)− 1

o�

. (56)

4Note: Here it is important to note that during inflation the mass parameter νB =
3
2 , if we exactly follow the

De Sitter expansion in the spatially flat FLRW background. But in order to stop inflation, one needs to consider a
slight deviation from exact De Sitter expansion during inflation, and technically this slight amount of deviation has
been taken by considering the slowly varying time dependent slow-roll parameters. So it is expected that for exact
De Sitter expansion, the factor νB −

3
2 will exactly vanish, and for the quasi-De Sitter expansion, this difference

will be proportional to the amount of deviation from the exact De Sitter expansion. But in the present context
we are interested in the pre-bounce, bounce, post-bounce, and away from bounce, where it appears to us that
the analytical solution of the scalar mode function appearing from the cosmological perturbation in the spatially
flat FLRW background is identical to the structure that one may compute by solving the equation of motion of
the scalar mode fluctuation, which is the Mukhanov-Sasaki equation in the context of inflation. The significant
difference can be observed clearly if we look into the mathematical structure and the leading , sub-leading order
contribution appearing in the expression of the mass parameter in both of the cases separately. For inflation, this
value is slightly larger than 3

2 , which as we told can demonstrate the quasi-De Sitter expansion. On the other hand,
for the alternative to the inflationary paradigm - which is described by pre-bounce, bounce, post-bounce, etc., it
is expected that the value of the mass parameter will be completely different from 3

2 and the amount of deviation
from the exact De Sitter is very large. This is because the slowly varying parameter ε and its derivatives are
significantly large compared to the value obtained for this parameter, which is smaller than unity during inflation
and approximately unity at the end of inflation. Apart from this underlying significant difference, for the sake of
consistency with the previous works and their findings, we have expressed the solution of the scalar mode function
for the pre-bounce, bounce, post-bounce, and away from the bounce phases like the result obtained from inflation.
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Super−Hubble limiting solution :

vk(−kτ� 1) =
2νB−

3
2 (−kτ)

1
2−νB

p
2k

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

exp
�

−i
§

π

2

�

νB −
5
2

�ª�

. (57)

4.3 Quantization of Hamiltonian for scalar modes

Using these solutions, one can further compute the expression for the derivatives of these
field variables with respect to the conformal time scale, which will be helpful for the further
computation in the present context:

v′k(τ) = i

√

√k
2

2νB−
3
2 (−kτ)

3
2−νB

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

§

1−
�

νB −
1
2

�

i
kτ

�

1−
i

kτ

�ª

×exp
�

−i
§

kτ+
π

2

�

νB −
1
2

�ª�

. (58)

As mentioned in the previous subsection, one needs to further consider two asymptotic
cases, the super-Hubble and the sub-Hubble limiting situation which might be extremely use-
ful to study the physical impact of the obtained mode function for the scalar fluctuations in the
present context. In terms of the representative dynamical scale, the super-Hubble and the sub-
Hubble limit is described by −kτ� 1 and −kτ� 1, respectively. Additionally, it is important
to note that in this context of the discussion, the cosmological horizon crossing is described by
−kτ = 1. By following the same logical reasoning one can write down the following expres-
sions for the conformal time derivative of the mode functions from scalar fluctuations which
will explicitly contribute further in the expression for the canonically conjugate momenta as-
sociated with these scalar modes:

Sub−Hubble limiting solution :

v′k(−kτ� 1) = i

√

√k
2

2νB−
3
2 (−kτ)

3
2−νB

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

×exp
�

−i
§

kτ+
π

2

�

νB −
1
2

�ª�

. (59)

Horizon crossing solution :

v′k(−kτ= 1) = i

√

√k
2

2νB−
3
2

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

§

1−
p

2
�

νB −
1
2

�

exp
�

−
iπ
4

�ª

×exp
�

−i
§

π

2

�

νB −
1
2

�

− 1
ª�

. (60)

Super−Hubble limiting solution :

v′k(−kτ� 1) = i

√

√k
2

2νB−
3
2 (−kτ)−(νB+

1
2)

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

�

νB −
1
2

�

×exp
�

−i
§

π

2

�

νB −
5
2

�ª�

. (61)

Now, our next objective is to construct the classical Hamiltonian function studied for the
present parametric oscillator problem. For this purpose, we need to find out the expression
for the canonically conjugate momentum for the classical cosmologically perturbed scalar field
variable appearing previously in the second order action perturbed action of the system that
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Figure 7: The real part of vk for the Cosine hyperbolic and the exponential bounce
has been plotted. We can see the behaviour of vk in the sub-horizon region |kτ| � 1.
Around the Horizon crossing, the Re(vk) is slightly negative for the Cosine hyperbolic
bounce whereas it is almost zero for the exponential bounce. Far from the horizon
crossing, the behaviour of both the models is almost identical. It slowly starts rising
before becoming highly oscillatory with increasing amplitude and frequency as they
approach the point of bounce kτb ≈ 30. The field variables in all regions behave
almost similarly. However, a noticeable difference between the two models lies in
the fact that the amplitude of the field variable for a particular region is in contrast
for both the models. If the amplitude is maximum for a particular region for model-I
then it is minimum for model-II.

we have mentioned earlier in this section, and it is given by the following expression:

πk(τ) :=
∂L(2)(vk(τ), v′k(τ),τ)

∂ v′k(τ)
= v

′∗
k (τ)−

�

z′(τ)
z(τ)

�

vk(τ). (62)

Further, using the above mentioned results one can construct the expression for the classical
Hamiltonian function from the present problem set up, which is given by:

H(τ) =

∫

d3k

�

1
2

�

�

�

�

πk(τ) +
z′(τ)
z(τ)

vk(τ)

�

�

�

�

2

+
1
2
µ2(k,τ)|vk(τ)|2

�

, (63)

where the time dependent mass µ2(k,τ) of the parametric oscillator is given by the following
expression:

µ2(k,τ) :=

�

k2 −
�

z′(τ)
z(τ)

�2�

. (64)

Next, using the previously mentioned solution of classical mode function we can further con-
struct the quantum mechanical operators in the Heisenberg picture:

v̂(x,τ) = U†(τ,τ0)v̂(x,τ0)U(τ,τ0)

=

∫

d3k
(2π)3

�

v∗−k(τ) âk + vk(τ) â†
−k

�

exp(ik.x), (65)
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Figure 8: The imaginary part of vk for the Cosine hyperbolic and the exponential
bounce has been plotted. We can see the behaviour of vk in the sub-horizon region
|kτ| � 1. Around the Horizon crossing, the Im(vk) starts off positive for the Cosine
hyperbolic bounce, whereas it starts off negative for the exponential bounce. Far
from the horizon crossing, the behaviour of both the models are almost identical. It
slowly starts rising before becoming highly oscillatory with increasing amplitude and
frequency as they approach the point of bounce kτb ≈ 30. The field variables in all
regions behave almost similarly. However a noticeable difference between the two
models lies in the fact that the amplitude of the field variable for a particular region is
in contrast for both the models. If the amplitude is maximum for a particular region
for model-I, then it is minimum for model-II.

π̂(x,τ) = U†(τ,τ0)π̂(x,τ0)U(τ,τ0)

=

∫

d3k
(2π)3

�

π∗−k(τ) âk +πk(τ) â†
−k

�

exp(ik.x). (66)

Now using the above mentioned quantum operator one can finally express the canonical
Hamiltonian for the parametric oscillator in the following quantized form (See Appendix A):

ÒH(τ) =

∫

d3k

�

1
2

�

�

�

�

�

v∗
′

−k(τ) âk + v
′

k(τ) â†
−k

�

+
z′(τ)
z(τ)

�

v∗−k(τ) âk + vk(τ) â†
−k

�

�

�

�

�

2

+
1
2
µ2(k,τ)|

�

v∗−k(τ) âk + vk(τ) â†
−k

�

|2
�

=
1
2

∫

d3k

�

Ωk(τ)
�

â†
kâk + â†

−kâ−k + 1
�

︸ ︷︷ ︸

Contribution from the free term

+iλk(τ)

�

exp(−2iφk(τ))âkâ−k − exp(2iφk(τ))â
†
kâ†
−k

�

︸ ︷︷ ︸

Contribution from the Interaction term

�

, (67)

where we define Ωk(τ) and λk(τ) by the following expressions:

Ωk(τ) : =

�

�

�

�v
′

k(τ)
�

�

�

2
+µ2(k,τ) |vk(τ)|

2

�

, λk(τ) :=

�

z′(τ)
z(τ)

�

. (68)
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Here Ωk(τ) represents the conformal time dependent dispersion relation in the present bounc-
ing cosmological set-up, and λk(τ) basically captures the slowly conformal time varying func-
tion ln z(τ), where z(τ) = a

p
2ε, is the Mukhanov variable, which appears during the compu-

tation of cosmological perturbation for scalar modes in the bouncing set-up. For the details of
the computation, please refer to Appendix B.

4.4 Time evolution of quantized scalar modes

4.4.1 Fixing the initial condition at horizon crossing

Here it is important to note that one can fix the initial condition in such a way that, at the time
scale τ= τ0, we get the following normalization:

vk(τ0) =
1
p

2k
2νB−1

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

exp
�

−i
nπ

2
(νB − 2)− 1

o�

, (69)

πk(τ0) = i

√

√k
2

2νB−
3
2

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

exp
�

−i
nπ

2
(νB − 2)− 1

o�






1−
p

2

�

νB −
1
2

��

νB +
1
2
+ i
�

�

νB +
1
2

� exp
�

−
iπ
4

�






, (70)

provided we have imposed a constraint that, kτ0 = −1, which basically represents the horizon
crossing scale. Following this fact it is further expected that at any arbitrary later time scale
τ in the Heisenberg picture one can write the associated quantum operators for the present
problem as:

v̂k(τ) = vk(τ0)

�

ak(τ) + a†
−k(τ)

�

, (71)

π̂k(τ) = −πk(τ0)

�

ak(τ)− a†
−k(τ)

�

, (72)

where both the creation and the annihilation operators at time τ can be expressed in terms of
the results obtained from the initial time scale τ = τ0 using the following unitary similarity
transformation in the Heisenberg picture:

ak(τ) := U†(τ,τ0)akU(τ,τ0), (73)

a†
−k(τ) := U†(τ,τ0)a

†
−kU(τ,τ0). (74)

Our next job is to determine the expression for the above mentioned unitary operator in the
context of cosmological primordial perturbations of the scalar modes and to determine this
expression, the well known squeezed state formalism used in the context of quantum mechanics
will play a significant role.

4.4.2 Squeezed state formalism in Cosmology

The unitary evolution operator U , produced by the previously mentioned full quadratic quan-
tized Hamiltonian function, can be factorized by following the proposal given in refs. [118,
119] and can be written as:

U(τ,τ0) = Ŝ(rk(τ,τ0),φk(τ))R̂(θk(τ)), (75)
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where R is the two mode rotation operator, which is defined as:

R̂(θk(τ)) = exp

�

−iθk(τ)
�

âkâ†
k + â†

−kâ−k

�

�

, (76)

and Ŝ is the two-mode squeezing operator, defined as:

Ŝ(rk(τ),φk(τ)) = exp

�

rk(τ)
2

�

exp(−2iφk(τ))âkâ−k − exp(2iφk(τ))â
†
−kâ†

k

�

�

. (77)

Here the squeezing amplitude is represented by the time-dependent parameter, rk(τ) ,and the
squeezing angle or the phase is represented by the time-dependent parameter φk(τ). Addi-
tionally, it is important to note that, the two-mode rotation operator, R̂ produces an irrelevant
phase contribution exp(iθk(τ)) while acted upon the initial quantum vacuum state and can be
ignored from our current analysis to avoid the appearance of unnecessary junks. By recogniz-
ing that the interaction of the cosmological perturbation with the conformal time-dependent
scale factor in the spatially flat FLRW background leads to a conformal time-dependent fre-
quency for the canonically normalized parametric oscillator, the appearance of a squeezed
quantum mechanical state for cosmological primordial perturbations is quite natural. The
quantization of the conformal time dependent parametric oscillator is then described in terms
of two-mode squeezed state formalism as introduced in ref. [118].

For our further computation we choose the ground state of the free Hamiltonian as the
initial quantum mechanical state:

âk |0〉k,−k = 0 ∀ k, (78)

which is basically a Poincare invariant vacuum state in the present context of discussion.
Now we are going to use the squeezed quantum operator Ŝ which acts on the above men-

tioned initial vacuum state and produce a two-mode squeezed quantum vacuum state, as:

|Ψsq〉k,−k = Ŝ(rk(τ),φk(τ)) |0〉k,−k

=
1

cosh rk(τ)

∞
∑

n=0

(−1)n exp(−2in φk(τ) tanhn rk(τ) |nk, n−k〉 , (79)

with the following two-mode excited or usually known as the occupation number state given
by the following expression:

|nk, n−k〉=
1
n!

�

â†
k

�n�
â†
−k

�n |0〉k,−k . (80)

Consequently, in the present context of discussion the full quantum wave function can be
expressed in terms of the product of the wave function for each two-mode pair as k,−k given
by the following expression:

|Ψsq〉 =
⊗

k

|Ψsq〉k,−k

=
⊗

k

1
cosh rk(τ)

�∞
∑

n=0

(−1)n

n!
exp(−2in φk(τ) tanhn rk(τ)

�

â†
k

�n�
â†
−k

�n
�

|0〉k,−k .

(81)
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4.4.3 Time evolution in squeezed state formalism

Now we go back to the previous discussion where we have written the creation and the anni-
hilation operators of the conformal time dependent parametric oscillator in the cosmological
perturbation theory at any arbitrary time using the Heisenberg picture. This will help us to
explicitly identify the time evolution of the perturbation field variable operator corresponding
to the scalar modes and its associated canonically conjugate momentum operator. In terms
of the above mentioned squeezed quantum state description one can further express the cre-
ation and annihilation operators in the present context as the unitary operator for the time
evolution in the Heisenberg picture. The unitary operator can in turn be factorized in terms of
the two-mode rotation operator and two-mode squeezed quantum state operator as we have
discussed earlier. After performing the unitary similarity transformation in terms of the two-
mode rotation and squeezed operator, one can write down the following expressions for the
creation and the annihilation quantum operators at any arbitrary time scale τ as:

âk(τ) = Û†(τ,τ0) âk Û(τ,τ0)

= R̂†(θk(τ))Ŝ†(rk(τ),φk(τ)) âk R̂(θk(τ))Ŝ(rk(τ),φk(τ))

= cosh rk(τ) exp(−iθk(τ)) âk − sinh rk(τ) exp(i(θk(τ) + 2φk(τ))) â†
−k, (82)

â†
−k(τ) = Û†(τ,τ0) â†

−k Û(τ,τ0)

= R̂†(θk(τ))Ŝ†(rk(τ),φk(τ)) â†
−k R̂(θk(τ))Ŝ(rk(τ),φk(τ))

= cosh rk(τ) exp(iθk(τ)) â†
−k − sinh rk(τ) exp(−i(θk(τ) + 2φk(τ))) âk. (83)

Consequently, the quantum operator associated with the cosmological perturbation field vari-
able for the scalar fluctuation and the its canonically conjugate momenta can be expressed
as:

v̂k(τ) = vk(τ0)

�

âk(τ) + â†
−k(τ)

�

= vk(τ0)

�

âk

�

cosh rk(τ) exp(−iθk(τ))− sinh rk(τ) exp(−i(θk(τ) + 2φk(τ)))

�

+â†
−k

�

cosh rk(τ) exp(iθk(τ))− sinh rk(τ) exp(i(θk(τ) + 2φk(τ)))

��

,

=
�

v∗−k(τ) âk + vk(τ) â†
−k

�

, (84)

π̂k(τ) = −πk(τ0)

�

ak(τ)− a†
−k(τ)

�

= −πk(τ0)

�

âk

�

cosh rk(τ) exp(−iθk(τ)) + sinh rk(τ) exp(−i(θk(τ) + 2φk(τ)))

�

−â†
−k

�

cosh rk(τ) exp(iθk(τ)) + sinh rk(τ) exp(i(θk(τ) + 2φk(τ)))

��

,

=
�

π∗−k(τ) âk +πk(τ) â†
−k

�

. (85)

Here we identify the classical mode function and the associated canonically conjugate momen-
tum in terms of the squeezed parameters as:

vk(τ) = vk(τ0)

�

cosh rk(τ) exp(iθk(τ))− sinh rk(τ) exp(i(θk(τ) + 2φk(τ)))

�

, (86)

πk(τ) = πk(τ0)

�

cosh rk(τ) exp(iθk(τ)) + sinh rk(τ) exp(i(θk(τ) + 2φk(τ)))

�

. (87)
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Further, the time evolution of the conformal time dependent quantum operators R̂ and Ŝ are
described by the Schrödinger equation, which gives the following set of differential equations
for the squeezing parameters in the present context:

drk(τ)
dτ

= −λk(τ) cos(2φk(τ)), (88)

dφk(τ)
dτ

= Ωk(τ) +λk(τ) coth(2rk(τ)) sin(2φk(τ)), (89)

where the time dependent factors, λk(τ) and Ωk(τ) in the squeezed state picture in the sub-
Hubble region (−kτ� 1) can be recast as:

λk(τ) : =

�

z′(τ)
z(τ)

�

=H
�

1
ε(τ)

− 1+ ε(τ)−
1
2

1
ε(τ)

H′′
H3

�

, (90)

Ωk(τ) : =

�

|πk(τ) +λk(τ)vk(τ)|
2 +

�

k2 −λ2
k(τ)

�

|vk(τ)|
2

�

≈ 3k 22(νB−2)

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

2

. (91)

Here it is important to note that in the sub-Hubble region the factor Ωk(τ) is mainly controlled
by the momentum scale of the scalar mode of the perturbation, k, and the slowly varying time
dependence is taken care of by the conformal time dependent mass parameter νB, which can
be approximately written by considering the contribution upto the next-to-leading order as:

νB ≈
�

1
2
+
H′′
H2

�

, (92)

where we have neglected the contributions of all higher order small correction terms for the
computational simplicity. Now after substituting the above mentioned expression for the mass
parameter νB one can further write the following simplified form of the factor, Ωk(τ) in the
sub-Hubble region, as:

Ωk(τ) ≈
3
2

k 2

�

2H′′
H2

�

�

�

�

�

�

�

�

�

Γ

�

1
2
+
H′′
H2

�

Γ

�

1
2

�

�

�

�

�

�

�

�

�

2

=
3

2π
k 2

�

2H′′
H2

�

�

�

�

�

Γ

�

1
2
+
H′′
H2

�

�

�

�

�

2

≈
3
π

k

�

�

1−
1
2
γE

�

+ 2
§�

1−
1
2
γE

�

ln2− 1
ª�H′′

H2

�

− 4 ln 2
�H′′
H2

�2

+ · · ·
�

, (93)

where γE is the Euler-Mascheroni constant, which is γE = 0.577. For a more detailed discussion
on dispersion relation please refer to Appendix C.

5 Quantum complexity from squeezed quantum states in Bounc-
ing cosmology

In this section, we compute the complexity from the squeezed cosmological perturbations stud-
ied in the previous section for the bouncing framework. We use the wave function formalism
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of computing circuit complexity developed by [2,3] and used extensively in [10–12]. Comput-
ing the circuit complexity involves choosing a certain reference state and a target state. In the
case of cosmological perturbations, a commonly chosen reference state is the two-mode quan-
tum initial vacuum state |0〉k,−k, as mentioned in the previous section. The target quantum
state is the squeezed two-mode vacuum state |Ψsq〉k,−k. In ref. [2,3] the authors expressed the
reference and the target states as Gaussian wave-functions. We follow an identical approach
in this paper for further computation. We use the following field operator and its associated
canonically conjugate momentum operator as:

v̂k(τ) = vk(τ0)
�

â†
k(τ) + âk(τ)

�

, (94)

π̂~k(τ) = πk(τ0)
�

â†
k(τ)− âk(τ)

�

, (95)

where vk(τ0) andπk(τ0) fix the initial condition on the classical scalar mode and its associated
canonically conjugate momentum at the horizon crossing scale, −kτ0 = 1. We have computed
their explicit expressions in the previous section. Additionally, we have also computed the
expressions for the associated quantum operators at any arbitrary time scale τ in terms of the
squeezed conformal time dependent parameters rk(τ) and θk(τ) in the Heisenberg picture
of quantum mechanics. At any arbitrary time scale τ, these cosmological quantum operators
satisfy the following well known equal time commutation relation (ETCR), given by:

[v̂k(τ), π̂k′(τ)] = iδ3
�

k− k′
�

. (96)

The two-mode vacuum state wave function, which we choose as our reference state is
defined as:

âk |0〉k,−k = 0 ∀ k, (97)

which has the following usual Gaussian structure:

ΨRef(vk, v−k) :=
�

Ωk

π

�1/4

exp
�

−
Ωk

2
(v2

k + v2
−k)
�

, (98)

where we have used the expression for Ωk in the sub-Hubble region, the approximated ana-
lytical expression of which we have already derived explicitly in the previous section.

The wave function of the target or the squeezed quantum state for the cosmological pertur-
bation can be calculated by noting that a particular combination of the squeezing parameters
along with the creation and annihilation operator annihilates the two mode squeezed vacuum
state, constructed in the previous section. That particular combination is written as:

�

cosh rk(τ) âk + exp(−2iφk(τ)) sinh rk(τ) â†
−k

�

|Ψsq〉k,−k = 0. (99)

The cosmological perturbed field space representation of the wave function is given by the
following expression:

Ψsq(vk, v−k) = 〈vk, v−k|Ψsq〉k,−k

=
exp

�

A(τ) (v2
k + v2

−k)−B(τ) vk v−k

�

cosh rk(τ)
Æ

π(1− exp(−4iφk(τ)) tanh2 rk(τ)− 1)
, (100)

where the coefficients A(τ) and B(τ) are the functions of the squeezing parameter rk(τ) and
the squeezing angle φk(τ), and are explicitly given by the following expression:

A(τ) :=
Ωk

2

�

exp(−4iφk(τ)) tanh2 rk(τ) + 1

exp(−4iφk(τ)) tanh2 rk(τ)− 1

�

, (101)
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B(τ) := 2Ωk

�

exp(−2iφk(τ)) tanh2 rk(τ)

exp(−4iφk(τ)) tanh2 rk(τ)− 1

�

. (102)

The vacuum reference and the target squeezed state written in 98 and 100 is eventually used
to calculate the complexity from two types of cost functions namely the "linear weighting"
(C1) and the "geodesic weighting" (C2) respectively within the framework of Cosmology and
represented by the following expressions:

C1(k) =
1
2

�

ln

�

�

�

�

Σk

ωk

�

�

�

�

+ ln

�

�

�

�

Σ−k

ω−k

�

�

�

�

+ tan−1 Im Σk

Re ωk
+ tan−1 Im Σ−k

Re ω−k

�

=
1
2

�

ln

�

�

�

�

Σk

ωk

�

�

�

�

+ ln

�

�

�

�

Σ−k

ω−k

�

�

�

�

+ tan−1

Im Σk

Re ωk
+

Im Σ−k

Re ω−k

1−
Im Σ−k

Re ω−k

Im Σ−k

Re ω−k

�

, (103)

C2(k) =

1
2

√

√

√

�

ln

�

�

�

�

Σk(τ)
ωk(τ)

�

�

�

�

�2

+
�

ln

�

�

�

�

Σ−k(τ)
ω−k(τ)

�

�

�

�

�2

+
�

tan−1
Im Σk(τ)
Re ωk(τ)

+
�2

+
�

tan−1
Im Σ−k(τ)
Re ω−k(τ)

�2

.

(104)

A trivial generalisation of the complexity measure of the homogeneous and inhomogeneous
family of cost functionals can be also be done in the present context. The expression of the
complexity for the homogeneous family is given by:

Cκ(k) =
1
2

��

ln

�

�

�

�

Σk(τ)
ωk(τ)

�

�

�

�

�κ

+
�

ln

�

�

�

�

Σ−k(τ)
ω−k(τ)

�

�

�

�

�κ

+
�

tan−1 Im Σk(τ)
Re ωk(τ)

+
�κ

+
�

tan−1 Im Σ−k(τ)
Re ω−k(τ)

�κ�

.

(105)

Similarly the expression of the complexity for the inhomogeneous family can be written as:

C 1
κ
(k) =

�

1
2

��

ln

�

�

�

�

Σk(τ)
ωk(τ)

�

�

�

�

�κ

+
�

ln

�

�

�

�

Σ−k(τ)
ω−k(τ)

�

�

�

�

�κ

+
�

tan−1 Im Σk(τ)
Re ωk(τ)

+
�κ

+
�

tan−1 Im Σ−k(τ)
Re ω−k(τ)

�κ�� 1
κ

, (106)

where we define the following functions:

Σk(τ) = B(τ)− 2A(τ), (107)

Σ−k(τ) = −B(τ)− 2A(τ), (108)

ωk(τ) =
1
2
Ωk =ω−k(τ). (109)

It might happen that in some particular context, the measures C1 and C2 are not good enough
to probe the underlying chaos and randomness of the system. Complexity calculated from the
homogeneous and the non homogeneous family might come in handy in that scenario and may
bring out some essential features which remains unidentified by C1 and C2. In this paper, we
have mainly focused on the complexity measure calculated from the linear and the geodesic
weighted cost functionals to comment on the chaoticity of the universe from the bouncing
cosmological framework. We can express the complexity measures in terms of the squeezed
state parameters. Substituting 101 in 103, 104, 105 and 106 the complexity measures for the
bouncing set up for two mode squeezed vacuum state can be written as:

C1(k,τ) =

�

�

�

�

ln

�

�

�

�

1+ exp(−2iφk(τ)) tanh rk(τ)
1− exp(−2iφk(τ)) tanh rk(τ)

�

�

�

�

�

�

�

�

+ | tanh−1(sin(2φk(τ)) sinh(2rk(τ)))|, (110)
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C2(k,τ) =
1
p

2
√

√

√

�

ln

�

�

�

�

1+ exp(−2iφk(τ)) tanh rk(τ)
1− exp(−2iφk(τ)) tanh rk(τ)

�

�

�

�

�2

+ (tanh−1(sin(2φk(τ)) sinh(2rk(τ))))2,

(111)

Cκ(k,τ) =

�

�

�

�

ln

�

�

�

�

1+ exp(−2iφk(τ)) tanh rk(τ)
1− exp(−2iφk(τ)) tanh rk(τ)

�

�

�

�

�

�

�

�

κ

+ | tanh−1(sin(2φk(τ)) sinh(2rk(τ)))|κ,

(112)

C 1
κ
(k,τ) =

�

�

�

�

�

ln

�

�

�

�

1+ exp(−2iφk(τ)) tanh rk(τ)
1− exp(−2iφk(τ)) tanh rk(τ)

�

�

�

�

�

�

�

�

κ

+ | tanh−1(sin(2φk(τ)) sinh(2rk(τ)))|κ
�

1
κ

.

(113)

One can further derive some approximate analytical expressions for the cosmological com-
plexity in different limiting situations, which are discussed below:

1. Small rk(τ) & Small φk(τ):
For small rk(τ) and φk(τ) one can write:

exp(−2iφk(τ))≈ 1, sin(2φk(τ))≈ 2φk(τ),

tanh rk(τ)≈ rk(τ), sinh(2rk(τ))≈ 2rk(τ).
(114)

In this limit, we have the following simplified formulae of cosmological complexity for
the bouncing set up for two mode squeezed vacuum state:

C1(k,τ)≈ 2|rk(τ)| (1+ 2|φk(τ)|) , (115)

C2(k,τ)≈
p

2|rk(τ)|
Æ

1+ 4(φk(τ))2, (116)

Cκ(k,τ)≈ (C1(k,τ))κ, (117)

C 1
κ
(k,τ)≈ C1(k,τ)≈ (Cκ(k,τ))

1
κ . (118)

2. Large rk(τ) & Large φk(τ):
For large rk(τ) and φk(τ) one can write:

exp(−2iφk(τ))≈ 0. (119)

Consequently, the cosmological complexity for the bouncing set up for two mode squeezed
vacuum state reduces to the following simplified expressions:

C1(k,τ)≈ | tanh−1(sin(2φk(τ)) sinh(2rk(τ)))|, (120)

C2(k,τ)≈
1
p

2
tanh−1(sin(2φk(τ)) sinh(2rk(τ))), (121)

Cκ(k,τ)≈ (C1(k,τ))κ, (122)

C 1
κ
(k,τ)≈ C1(k,τ)≈ (Cκ(k,τ))

1
κ , (123)

which will finally lead to the following approximated connecting relationship between
the two cosmological complexities computed from different cost functions:

|C2(k,τ)| ≈
1
p

2
C1(k,τ)≈

1
p

2
C 1
κ
(k,τ)≈

1
p

2
(Cκ(k,τ))

1
κ . (124)
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3. Small rk(τ) & Large φk(τ):
For small rk(τ) and large φk(τ) one can write:

exp(−2iφk(τ))≈ 0, tanh rk(τ)≈ rk(τ), sinh(2rk(τ))≈ 2rk(τ). (125)

Consequently, we have the following simplified formulae of cosmological complexity for
the bouncing set up for two mode squeezed vacuum state:

C1(k,τ)≈ 2|rk(τ) sin(2φk(τ))|, (126)

C2(k,τ) =
p

2rk(τ) sin(2φk(τ)), (127)

Cκ(k,τ)≈ (C1(k,τ))κ, (128)

C 1
κ
(k,τ)≈ C1(k,τ)≈ (Cκ(k,τ))

1
κ , (129)

which will finally lead to the following approximated relationship between the two cos-
mological complexities computed from different cost functions:

|C2(k,τ)| ≈
1
p

2
C1(k,τ)≈

1
p

2
C 1
κ
(k,τ)≈

1
p

2
(Cκ(k,τ))

1
κ . (130)

4. Large rk(τ) & Small φk(τ):
For large rk(τ) and small φk(τ) one can write:

exp(−2iφk(τ))≈ 1, sin(2φk(τ))≈ 2φk(τ). (131)

Consequently, we have the following simplified formulae of cosmological complexity for
the bouncing set up for two mode squeezed vacuum state:

C1(k,τ) =

�

�

�

�

ln

�

�

�

�

1+ tanh rk(τ)
1− tanh rk(τ)

�

�

�

�

�

�

�

�

+ | tanh−1(2φk(τ) sinh(2rk(τ)))|, (132)

C2(k,τ) =
1
p
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√
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√
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ln
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�

1+ tanh rk(τ)
1− tanh rk(τ)

�

�

�

�

�2

+ (tanh−1(2φk(τ) sinh(2rk(τ))))2, (133)

Cκ(k,τ) =

�

�

�

�

ln

�

�

�

�

1+ tanh rk(τ)
1− tanh rk(τ)

�

�

�

�

�

�

�

�

κ

+ | tanh−1(2φk(τ) sinh(2rk(τ)))|κ, (134)

C 1
κ
(k,τ) =

�

�

�

�

�

ln

�

�

�

�

1+ tanh rk(τ)
1− tanh rk(τ)

�

�

�

�

�

�

�

�

κ

+ | tanh−1(2φk(τ) sinh(2rk(τ)))|κ
�

1
κ

= [Cκ(k,τ)]
1
κ .

(135)

In the next section, we have done a detailed numerical analysis with the already introduced
models of bounce to study their physical impacts on cosmological complexity from two types
of cost functions and interpret the physical outcomes from those models.

6 Numerical results and interpretation: Connection with quan-
tum chaos

In this section our prime objective is to numerically solve the time evolution equations of the
conformal time dependent squeezed state parameter rk(τ) and squeezed angle θk(τ), given
in Eq. (88) and Eq. (89). However, instead of using the conformal time τ as the dynamical
variable, we have chosen the scale factor a(τ) to make the computation simpler and physically
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justifiable. To perform the change in variable from τ to a(τ) we have to replace the following
differential operator in the above mentioned evolution equations using the chain rule, as:

τ −→ a(τ) :
d

dτ
=

d
da(τ)

da(τ)
dτ

= a′(τ)
d

da(τ)
. (136)

In general quantum field theory literature we usually identify such type of variable transforma-
tion as field redefinition. One can treat the scale factor a(τ) as a classical field and the same
interpretation is valid in this context. Consequently, the evolution of the squeezed state pa-
rameter rk(a) and squeezed angle θk(a), can be recast in terms of the newly defined dynamical
variable a(τ) as:

drk(a)
da

= −
λk(a)

a′
cos 2φk(a), (137)

dφk(a)
da

=
Ωk

a′
−
λk(a)

a′
coth2rk(a) sin2φk(a). (138)

In the above set of evolution equations, since we do not need to care about the explicit con-
formal time dependence we have written the scale factor a(τ) as a, where a itself is treated
as a new dynamical variable. Once we numerically solve the evolution of the squeezed state
parameter rk(a) and squeezed angle θk(a) in terms of the scale factor a, we can construct
the target quantum state out of a Gaussian initial state. This will further help us to numeri-
cally compute and understand the quantum complexities in Eq (103) and Eq (104) within the
framework of primordial cosmological perturbation theory, where the effects of the quantum
fluctuations is treated in terms of the squeezed state parameter rk(a) and squeezed angle θk(a)
in the squeezed state formalism. For the explicit computational details, we suggest the readers
to look into the previous two sections very carefully where we have explicitly shown why and
how these interesting connections can be established. Now since we have a good understand-
ing of both the complexities, C1(a) and C2(a), we will compute them from the two previously
mentioned cost functions and analyze the behaviour, from C1(a) and C2(a), vs scale factor a
plots, specifically in the exponentially rising region. Now, by studying the exponential rise in
the complexities, C1(a) and C2(a), one can write the following approximated expression for
the complexities:

Ci(a)≈ ci exp(λia) ∀ i = 1,2, (139)

which are valid only in the domain of exponential rising with respect to the scale factor a.
Additionally, it is important to note that, though the exponential growth feature is common
in both the complexities, we have written the expressions for the two complexities separately
because the overall amplitudes, which are represented by c1 and c2, and the slope of the
previously mentioned plots, quantified by two factors, λ1 and λ2, are different which can be
confirmed by comparing the features of both the plots. This can be demonstrated as:

λi =
�

d lnCi(a)
da

�

a=agrow

∀ i = 1, 2, (140)

where agrow is the specified value of the scale factor from the region where exponential growth
feature can be explicitly visible from the complexities vs scale factor plots.

Most importantly, Eq (139) is a conjectured relationship which we have proposed by see-
ing and comparing the numerical behaviour of the obtained plots from this analysis. For this
reason, we have written ≈ symbol instead of using =. To know the complete evolution one
needs to solve the system numerically which will give us an exact result, valid in all evolution-
ary regions of the scale factor a, and not only in the exponentially rising region. On the other
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hand, by doing the explicit computation of out-of time-ordered correlation (OTOC) functions
obtained from the classical field a and its canonically conjugate momenta πa one can find the
following relationship:

OTOC≈ exp(−c exp(λa)) =⇒ c exp(λa) = − ln (OTOC) , (141)

which is again valid in the specific region of interest. Here λ is identified to be the Quantum
Lyapunov Exponent which captures the effect of chaos in the quantum regime, and in ref. [19],
the authors, Juan Maldacena (M), Stephen Shenker (S) and Douglus Stanford (S) have found
that for a generic quantum chaotic system Quantum Lyapunov Exponent has to be bounded by
the following saturation upper bound, as given by:

MSS bound : λ≤
2π
β

, where β =
1
T

, (142)

where β is the inverse equilibrium temperature of the chaotic system during saturation of
the OTOC at large evolutionary scale. The equality symbol in the MSS bound represents the
maximal saturation of chaotic OTOC.

Now further using Eq (139) and Eq (141) together we get the following simplified results:

∆1(a) :=
c1

c
exp ((λ1 −λ)a) = −

C1(a)
ln (OTOC)

, (143)

∆2(a) :=
c2

c
exp ((λ2 −λ)a) = −

C2(a)
ln (OTOC)

. (144)

Now after studying the above mentioned equations we can arrive at the following conclusion:

Ci(a) = − ln (OTOC)∆i(a) where ∆i(a) :=
ci

c
exp ((λi −λ)a) ∀ i = 1,2, (145)

which implies that the connection between OTOC and the two different measure of complex-
ities are not strictly same.

Additionally, in the present context we have the following restriction:

∆1(a) 6=∆2(a) because C1(a) 6= C2(a). (146)

However, to have an universal feature it is expected that the following fact is also true in
the present context:

∆1(a)∼O(1) and ∆2(a)∼O(1) even when ∆1(a) 6=∆2(a), (147)

which is only true in the limit, λi → λ, ci → c ∀ i = 1,2. In this limit, precisely we have:

∆i(a)∼ 1
︸︷︷︸

Leading order effect

+
ci

c
(λi −λ)a+ · · ·

︸ ︷︷ ︸

Negligibly small sub−leading effects

(148)

This further implies that if we neglect all the extremely small sub-leading contributions, and
restrict our attention to only the leading order term then it is possible to write down the
following universal highlighting relationship between all possible measures of complexities
and the OTOC, as:

Universal relation : C = − ln (OTOC)≈ Ci ∀ i = 1, 2. (149)

Here it is important to note that, the above mentioned universal relation is perfectly consistent
with the ref. [11]. The only difference is that, here we have achieved the universality using the
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dynamical variable, scale factor a and in ref. [11], the authors have pointed such universality
using the physical time variable t. Though, both the discussions hold good in their preferred
choice of dynamical variables, ultimately both of them support the same chaotic behaviour
during the exponential rise.

Also it is observed that, when the universality is achieved we expect to get a saturation
in the behaviour of complexities as well as in the OTOC with respect to the dynamical scale
a. Now to have a precise agreement with consistency condition, which is described by the
well known MSS bound, one needs to satisfy the following constraint, which will provide a
cost function model dependent lower bound on the Lyapunov exponent appearing from the
definition of the complexities:

λi ­ λ≤
2π
β
∀ i = 1, 2. (150)

If the maximal saturation is achieved, then from this relation one can further get a lower
bound on the equilibrium temperature of the quantum system of our universe under study
during bouncing scenario, and this is given by:

T ¥
λi

2π
∀ i = 1, 2 =⇒ T ¥

1
2π

�

d lnCi(a)
da

�

a=agrow

∀ i = 1,2. (151)

Finally, when the universality as well the maximal saturation both have been achieved simul-
taneously in the above mentioned expression, the equality gives the exact estimation of the
equilibrium temperature of the quantum system of the universe studied during bounce, which
is valid at very large values of the evolutionary scale represented by a. Now from the above
bound since λi ∼ λ and that λi 6= λ, it is also expected that the lower bound on the equilibrium
temperature can have two predictions in terms of the two possibilities of the complexities orig-
inated from two possible cost functions in the present context. However, the numerical order
of both of the predictions computed from the plots will be same and somewhat in a broader
sense support the universality criteria, which tells us that both of the predicted temperature
will not be much different. From the above obtained lower bound on the equilibrium temper-
ature one more important aspect we want to point here is that, this result does not depend
on any particular particle content or a specific model available during bounce and gives us a
generic estimation of the equilibrium temperature.

Now if we are thinking about the more realistic cosmological observation then it is not very
good to study the evolution with respect to the scale factor, because in the context of realistic
cosmology the scale factor is not the direct physical observable which one can probe in the
observation for various cosmological missions running (or supposed to run in the near future)
to test the signatures of the primordial cosmological paradigm. In that case instead of using
the scale factor a one can consider a more physically realistic variable, which is the rescaled
number of e-foldings, N , which one can use as a direct probe in various cosmological obser-
vations. In this specific situation one needs to use the following transformation for which the
linear differential operator appearing in the evolutionary equations of the squeezed parameter
and the squeezed angle will be modified as:

a→N :
d

d ln a(τ)
= (1− ε(τ))

d
d ln |aH|

= (1− ε(τ))
d

dN =
d

dN
, (152)

where we have used the following couple of facts for the above mentioned transformation:

dN = d ln a(τ), (153)

dN = d ln |aH|= d ln |H|, (154)

32

https://scipost.org
https://scipost.org/SciPostPhysCore.4.4.026


SciPost Phys. Core 4, 026 (2021)

dN
dN
= (1− ε(τ)) , (155)

ε(τ) = −
Ḣ
H2
= 1−

H′
H2

. (156)

Here, N is the actual number of e-foldings, N is the number of e-foldings in terms of the
re-defined variables, and ε(τ) is the slowly varying conformal time dependent parameter.

Consequently, the evolution of the squeezed state parameter rk(N ) and squeezed angle
θk(N ), can be recast in terms of the newly defined dynamical preferred choice of suitable
variable N as:

drk(N )
dN = −

λk(N )
(1− ε(τ))H cos2φk(N ), (157)

dφk(N )
dN =

1
(1− ε(τ))H [Ωk −λk(N ) coth2rk(N ) sin2φk(N )] . (158)

In this context, rco = (aH)−1 or rco = H−1 represents the co-moving Hubble radius, which
is extremely important quantity in terms of which the newly re-defined number of e-foldings
have been expressed in terms of the good old definition of the number of e-foldings. So instead
of solving these sets of first order coupled differential equations in terms of the dynamical
variable a here our further objective is to study the evolution numerically with respect to the
re-defined dynamical variable, N . Here, we additionally want to point out that by replacing
the dynamical variable a in terms of the re-defined expression for the number of e-foldings N ,
we can write down similar type of conclusion which we have written earlier to interpret the
exponential growth and then the saturation in the large scale. Here one can write:

Ci(N )≈ cN ,i exp(λN ,iN ) =⇒ λN ,i =
�

d lnCi(N )
dN

�

N=Ngrow

=⇒ T ¥
1

2π

�

d lnCi(N )
dN

�

N=Ngrow

∀ i = 1,2.
(159)

Similarly one can derive the universality relation which will be same as the previous one.
In the next two subsections, we will explicitly numerically solve the previously mentioned
dynamical equations of the squeezed parameter and squeezing angle with respect both the
dynamical variables, scale factor a and the re-defined number of e-foldings N for cosine hy-
perbolic and exponential bouncing models that we have introduced in the first section of the
paper. The explicit details of the analysis and the corresponding physical interpretation of the
numerical results and the plots are discussed in the following two subsections. Discussion of
the differential equations with respect to different dynamical variables is given in Appendix D.

Another important aspect that one can estimate numerically from our present set up, is the
well known scrambling time scale. Within the framework of quantum chaos this time scale plays
very significant role to understand the underlying behaviour of the physical systems. There
are several definitions associated with this quantity, in the theoretical physics community in
different contexts for physical interpretation of various unknown phenomena. We will now
quote the most frequently used definitions, and follow one of them in the present context
to numerically estimate the order of scrambling time scale from the bouncing cosmological
scenario:

1. Definition I:
According to this definition this is the time which the OTOC takes to equilibriate. This
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is a very modern definition and directly associated with the phenomena of quantum
mechanical chaos.5

2. Definition II:
According to this definition this is the time which a system takes starting in an arbitrary
tensor product state to become nearly maximally entangled.

Now according to Leonard Susskind [126] and later pointed in many other refs. [223] for
the first scrambler the scrambling time scale can be computed as:

tsc ∼
β

2π
ln N , (160)

where β is the inverse of the equilibrium temperature of the physical system which corresponds
to the saturation of quantum chaos and N represents the very large number of configurations.
Now making use of the MSS bound one can further simplify the above mentioned expression
and obtain a lower bound on the scrambling time scale in terms of the quantum Lyapunov
exponent:

tsc ≥
1
λ

ln N . (161)

Here the equality holds good for the maximal saturation of chaos.
Now, within the present framework we have used the conformal time dependent scale fac-

tor a and/or the number of e-foldings N as dynamical variable using which we have studied
all the evolution of cosmological complexity and the OTOC in this paper (for the details see
the next two subsections.). One can then ask a very justifiable question in this case that how
we then define the scrambling time scale within the framework of cosmology? Following the
previous logical discussions and interpretations of the universality relation between the cos-
mological complexity and cosmological OTOC by replacing the time with the scale factor one
can define the scale factor at scrambling time scale or scarmbling scale factor, which is given by:

ai(τsc)¥
1
λi

ln N ∀ i = 1,2. (162)

Here the index i = 1, 2 is used to differentiate between the value of the scale factors obtained
from the two definitions of complexities used in this paper. To hold the universality between
the cosmological complexities and the OTOC we have previously shown the deviation from
the results obtained from both of the definition has to lie within a very small numerical error
range. It is expected that the same argument also holds here perfectly and in the next two
subsections we are going to investigate this very carefully from the numerical plots to ensure
the justifiability of this statement. Now, we have already computed the expression for the
scale factor in terms of the conformal time for both the models and also most of the quantum
chaotic predictions are appearing ( for the details see the next two subsections.) from the
bouncing solutions. For this reason using those definitions one can extract the information
of the associated scrambling time scale in the conformal coordinates within the framework of
bouncing cosmological paradigm. Additionally, since we also know the connecting relationship
between the physical time scale and the conformal time scale, then using this it is further
possible to determine the scrambling time scale in terms of the physical time coordinate in
cosmology. In the next two subsections, for two different bouncing models we are going to
estimate this time scale from the numerical plots. Finally, there is a confusion regarding the

5In ref. [127], the authors have explicitly shown that this definition is sufficient enough for the Heyden Preskill
protocol.
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fact that in the present cosmological set up how can one give a numerical estimation of the
factor N which represents number of physical configurations. We are now going to give an
estimate of this factor in the present context in terms of the known parameters. To obtain this
estimate we start with the following relationship:

Ci ≈ − ln(OTOC) = ci exp(λia) ∀ i = 1, 2. (163)

Using this relation and truncating the expression for OTOC in the second term we get:

OTOC≈ 1− ci exp(λia) + · · · , (164)

where in the usual quantum chaos literature one can identify:

ci ∼
1

N2
=⇒ N ∼

1
p

ci
. (165)

The one can further write the expression for the scrambling scale factor in terms of the known
parameters as:

ai(τsc)¥
1

2λi
ln
�

1
ci

�

∀ i = 1,2. (166)

From the numerical plots given in the next two subsections one can estimate both λi and ci (for
i = 1, 2) from both the bouncing models and from this relation it is possible to give a numerical
estimation of the scrambling time scale from the models of bouncing cosmology discussed in
this paper. Additionally it is important to note that, in this connection the equivalent result
can be obtained by considering the number of e-foldings as the dynamical variable instead of
the scale factor within the framework of cosmology.

6.1 Cosine Hyperbolic bounce

We have numerically plotted the squeezing parameters and the derived complexity measures
for cosine hyperbolic in four different regions - pre bounce boundary, pre point of bounce,
post point of bounce and post bounce boundary against the scale factor 6. From Sec. 3 we
can see that at present time and at a time much before the boundary (τ→−∞) the value of
scale factor a = 1. We have taken the value of pre-boundary and post-boundary parameters
rk(a = 1) = 1,φk(a = 1) = 1 to set our initial conditions, and ensured continuity at aboundar y
as initial conditions for the bouncing region parameters for numerically solving differential
equations with respect to scale factor (Eqs. D.15 and D.16). For the analysis of Cosine hy-
perbolic bounce we have taken −kτb = 30 and the range of −kτ goes from 0 to 60. The
parameter r1, appearing in the expression of the scale factor is related to the cosmological
constant by the relation r1 = 2Λ/9. We have fixed the value of Λ to 10−4 for our numerical
analysis.

For the squeezing paramater plotted in Fig. 9

• the pre-boundary and the post-boundary behaviour is oscillatory with decreasing ampli-
tude as it approaches a = 1(very early times in case of pre bounce boundary and present
time in case of post bounce boundary),

6Reading graphs vs scale factor: Proper way to read the graph is going from right to left starting from much
early times for pre-bounce boundary line graph, and crossing the pre-bounce boundary and again reading right
to left for the pre-point of bounce line graph till the point of bounce. Now one goes from left to right with the
Post bounce region line till the boundary, followed by a post-bounce boundary line till the present time to the
right
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Figure 9: Squeezing parameter at different regions plotted against scale factor.
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Figure 10: Squeezing angle plotted at different regions against scale factor.

• while inside the bouncing region we see highly oscillatory behaviour near the point
of bounce(with very high amplitudes) that saturates into a given value as it nears the
boundary. This saturation behaviour of squeezing parameter near the boundary might
point to saturation behaviour of the Complexities as we will see in further analysis.

The squeezing angle and the sine of twice its value are also important to understand the
Squeezing operator. See Fig. 10 and Fig. 11.

• The has an exponential increase even against a logarithmic scale, with the rate of in-
crease falling down while approaching the bounce boundary from earlier times in the
pre-boundary region. The frequency of the sin 2φk corresponds to the rapid rate at which
it increases, initially oscillating really fast to slow spaced oscillations at the boundary.
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Figure 11: Sine of twice of squeezing angle at different regions plotted against scale
factor.

• Upon entering the bouncing region the angle just has a sturdy exponential rise till the
point of bounce after which it exponentially increases with a slow rate till the boundary
after crossing the point of bounce. The sine again behaves similarly with slowed down
oscillation at the boundary, where we see saturated rate of change in the angle.

• Outside the boundary the angle exponentially decreases at a rapid rate and the sine
value correspondingly increases in oscillations as we approach present time.
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Figure 12: Linearly weighted Complexity value at different regions plotted against
scale factor.

The complexity of the two mode vacuum state from Eq. (110) is used to analyze and plot
C1,C2 along with their log values, and predicted OTOC. Though both C1 and C2 are extremely
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Figure 13: Geodesically weighted Complexity value at different regions plotted
against scale factor.
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Figure 14: Logarithm of Linearly weighted Complexity value at different regions
plotted against scale factor.

Table 1: Complexity values at different points of interest with respect to scale factor.

Very early
times

Entering
bouncing

region

Around
point of
bounce

Exiting
bouncing

region

Late or
Present

time
C1 1.704 2.229 14.187 1.938 2.47
C2 0.951 1.115 8.99 1.021 1.25

38

https://scipost.org
https://scipost.org/SciPostPhysCore.4.4.026


SciPost Phys. Core 4, 026 (2021)

0.005 0.010 0.050 0.100 0.500 1

-0.4

-0.2

0.0

0.2

0.4

0.6

Figure 15: Logarithm of Geodesically weighted Complexity value at different regions
plotted against scale factor.

good measures of the circuit complexity, the linearly weighted complexity C1 shows similarity
to the calculations from holographic side.

Both the complexity measures have very similar behaviour Fig. 12 and Fig. 13,

• The value of complexity outside the bouncing boundary based on the respective squeez-
ing parameters defined there for very early times and nearing present times is oscillatory
with smaller frequency at the boundary.

• Inside the bouncing region prior to the bounce both the complexities cross the boundary
with a sturdy rise and then go on to become highly oscillatory and spike up. The post
point of bounce values are of greater interest as they show a sturdy rise and a nice
saturation when extrapolated to present time.

• Even though the post bounce boundary behaviour looks oscillatory it is important to
note that the growing behaviour of complexity at post point of bounce. We see a sudden
exponential rise near the boundary. The analysis of growing complexity observed by
extrapolating the post point of bounce values at late times shows saturation after an
initial rise across the boundary. We have written down the values in Table 1.

We can see extremely high complexity values at the point of bounce. This points to highly
complex transformations taking place between the reference and target quantum state during
the bounce.

The slope of logarithm of complexity at the point of rise directly corresponds to the value
of the quantum Lyapunov exponent as mentioned in Eq (140). To predict the slope of the
logarithmic value of complexities we consider the change of y-axis value over the range of the
x-axis value i.e. between point of rise and point of saturation. Mathematically it is represented
by

λi =
ln Ci (point of saturation)− ln Ci (point of rise)

a (point of saturation)− a (point of rise)
. (167)

For this we have plotted the logarithm of complexity values in Fig. 14 and Fig. 15. We observe
the qualitative features to be same as that of the complexity graphs, showing corresponding
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oscillatory, rising and saturation at the respective regions. We calculate the Lyapunov exponent
from the post point of bounce case as it shows exponential and saturation at late times and
this gives an estimation on the lower bound of temperature.

Table 2: Log of complexity values at point of rise and point of saturation. The point
of saturation is considered to be that initial point from which the value upto second
decimal place is constant. Point of rise C1 is a = 0.01037 and for C2 it is a = 0.01002
and the point of saturation for C1 is a = 1 and for C2 it is a = 0.495.

ln Ci point of rise point of saturation
ln C1 0.29579 0.90557
ln C2 -0.05055 0.217005

The Lyapunov exponent can be calculated from these values given in Table 2:

λ1 = 0.616166 λ2 = 0.551685.

The estimated lower bound on the temperature from the calculated values of the Lyapunov
exponents are

TC1
¥ 0.09806 TC2

¥ 0.08780.

Using Eq(166), we have numerically calculated the lower bound of scrambling time scale
in terms of scale factor and conformal time. We have considered the region of saturation and
taken the values of complexity at what we have perceived as the starting point and the ending
point of the region of saturation. We have then calculated ∆ai(τsc), which will give us the
lower bound of the scrambling interval in terms of the scale factor. We have converted this
in terms of conformal time for easy physical interpretation. In our numerical analysis we have
extensively used the conformal time and we have normalized all other numerical measures
with respect to conformal time in both models whereas the physical time is not normalized with
respect to our numerical analysis. Hence calculating scrambling time scale in terms of physical
time will not make much sense quantitatively in our case without appropriate normalization
(and redoing complete analysis). In our cosine hyperbolic case we have normalized conformal
time in such a way bounce occurs at τb = −3000, and present day time is 0, and hence we
can interpret the values given in Table 3, qualitatively in terms of physical time too. We get
conformal scrambling time scales around one-tenth of the time period since bounce till present.
This roughly points to the time taken for OTOC to attain equilibrium as can be seen from the
graph. A quicker scrambling time scale points to smoother saturation of complexity. A
sense of time period in terms of physical time can then be qualitatively understood using this
argument.

Table 3: Estimated lower bound values of scrambling time scales for the region of
saturation in cosine hyperbolic case from the two different complexities.

ci at start of saturation ci at end of saturation ∆ai(τsc) |∆τsc|
From C1 2.466 2.4746 0.002825 291.642
From C2 1.2404 1.2471 0.00517 377.35

The OTOC values plots calculated from the universality relation mentioned in Eq (149).
The behaviour observed is very similar to the complexity behaviour at different regions - from
being random oscillations outside the bouncing region to settling at the boundary to again
oscillating and spiking at the point of bounce. The OTOC values at different points have been
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Figure 16: Predicted OTOC values from geodesically weighted Complexity at differ-
ent regions against scale factor.
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Figure 17: Predicted OTOC values from geodesically weighted Complexity at differ-
ent regions against scale factor.

Table 4: Predicted OTOC values at different points of interest with respect to scale
factor.

Very early
times

Entering
bouncing

region

Around
point of
bounce

Exiting
bouncing

region

Late or
Present

time
OTOC1 0.182 0.107 6.9× 10−7 0.144 0.084
OTOC2 0.386 0.327 1.2× 10−4 0.356 0.286
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Figure 18: Variation of linearly weighted complexity inside bouncing region with
respect to number of e-foldings.
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Figure 19: Variation of linearly weighted complexity outside bouncing region with
respect to number of e-foldings.

written in Table 4. One noticeable observation is the really small value of the OTOC at the
point of bounce from both the complexity measures.

We know that more than the scale factor the Number of e-foldings(N = log aH) is a mea-
surable and interesting value. Using the simple relation we have also plotted Complexity and
the OTOC against N . One can see from the behaviour of a,H from Sec. 3 and Sec. 3, that
the direction of log aH will be different inside the bouncing region and outside the bouncing
region. For this reason the plots have been made separately to ensure readability.7

7Reading graphs vs N : Inside the bouncing region the value of N at bounce and boundary can be obtained
and it is seen that Nbounce <Nboundar y and extrapolating the same one can get value at present time which is greater
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Figure 20: Variation of geodesically weighted complexity inside bouncing region with
respect to number of e-foldings.
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Figure 21: Variation of geodesically weighted complexity outside bouncing region
with respect to number of e-foldings.

For both linearly weighted complexity C1 and geodesically weighted complexity C2:

• the outside bouncing region behaviour is oscillatory and random. The oscillations de-
crease near the boundary. We have extrapolated their graphs inside the boundary to
show that their oscillatory behaviour drops to a certain/very low complexity. But this

than both. Hence the should be read left to right(bounce to present) for Post point of bounce graph and boundary
to bounce for pre point of bounce line. For outside the bouncing region the values evolve in reverse and through
extrapolation value at bounce is found. The graph should be read from left to right(very early times to entering
boundary) for pre boundary line whereas it should be read boundary to present times for post boundary line.
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is not what is actually expected from complexity measures previously done inside the
bouncing region. See Fig. 19 and Fig. 21.

• Inside the bouncing region we see that the pre point of bounce graph starts at a high
value at boundary and oscillates randomly till bounce. From Fig. 18 we observe conti-
nuity at point of bounce(at a higher value than whatever the extrapolated outside region
lines pointed at) and see the post point of bounce graph follow random oscillations till
nearing the boundary from which it starts rising and slowly goes on to saturates at late
times when extrapolated.

• From Fig. 20 the C2 behaviour is seen to be similar although the oscillations have a single
defined smoother trough and peak. We do not see continuity at point of bounce, but we
see the similar rising behaviour of post point of bounce line as it approaches boundary
and saturates upon extrapolation.
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Figure 22: Predicted OTOC from linearly weighted complexity outside bouncing re-
gion with respect to number of e-foldings.

We can also observe the behaviour of the predicted OTOC values from the complexities.
The behaviour is very similar to that of the one we saw with scale factor.

• outside the bouncing region the values are highly oscillating and produce random fluc-
tuations upon extrapolation. The oscillations are smoother(smooth peaks and troughs)
in the case of OTOC from C2. See Fig. 23 and Fig. 25.

• Inside the bouncing region as before we have extrapolated the post point of bounce line
that decreases steadily from near the boundary to the extrapolated value of Npresent
where it saturates as seen in Fig. 22 and Fig. 24 This is the signature of a chaotic system.
The pre point of bounce line shows random fluctuations and an increasing value of OTOC
if extrapolated.

6.2 Exponential bounce

We have numerically plotted the squeezing parameters and the derived Complexity measures
for Exponential bounce model in four different regions - pre bounce boundary, pre point of
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Figure 23: Predicted OTOC from linearly weighted complexity outside bouncing re-
gion with respect to number of e-foldings.
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Figure 24: Predicted OTOC from geodesically weighted complexity inside bouncing
region with respect to number of e-foldings.

bounce, post point of bounce and post bounce boundary against the scale factor. In Sec. 3, the
scale factor of the exponential model has been plotted with respect to the conformal time. It
can be seen that at present time and at a time much before the boundary (τ→−∞) the value
of scale factor a = 1. We have taken the value of pre-boundary and post-boundary parameters
rk(a = 1) = 1,φk(a = 1) = 1 to set our initial conditions, and ensured continuity at aboundar y
as initial conditions for the bouncing region parameters for numerically solving differential
equations with respect to scale factor (Eqs. D.15 and D.16). For the analysis of exponential
bounce we have taken −kτb = 30 and the range of −kτ goes from 0 to 60. We have fixed the
value of Λ to 10−4 for our numerical analysis in this case as well.
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Figure 25: Predicted OTOC from geodesically weighted complexity outside bouncing
region with respect to number of e-foldings.
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Figure 26: Squeezing parameter at different regions plotted against scale factor.

• In Fig. 26 the behaviour of the squeezing parameter rk has been plotted with respect to
the scale factor of the model for four different regions of interest. We have taken the
value of pre-boundary and post-boundary parameters rk(a = 1) = 1 to set our initial
conditions, and ensured continuity at aboundar y as initial conditions for the bouncing
region parameters for numerically solving Eq(D.15), and Eq(D.16).

• The pre-boundary and the post-boundary behaviour of rk is oscillatory with decreasing
amplitude as it approaches a = 1.

• The behaviour of rk for the post bounce region can be seen to be highly oscillatory
near the point of bounce and the amplitude of oscillations reduces significantly near the

46

https://scipost.org
https://scipost.org/SciPostPhysCore.4.4.026


SciPost Phys. Core 4, 026 (2021)

0.05 0.10 0.50 1

0

10

20

30

40

50

Figure 27: Squeezing angle at different regions plotted against scale factor.

Figure 28: Sine of twice of squeezing angle at different regions plotted against scale
factor.

boundary. However the behaviour of the squeezed parameter rk is almost constant with
minor fluctuations in the region between pre bounce boundary and the point of bounce.

In Fig. 27 and Fig. 28, the squeezing angle and the sine of twice its value has been plotted
with respect to the scale factor.

• The squeezed angle parameter φk slows an exponential increase starting from almost
zero, for the pre-bounce boundary region, with the rate of rise decreasing as the param-
eter approaches the boundary of the bouncing region from very early times. The sine
of twice the angle of the squeezed parameter in this region is a periodic function with
the frequency of oscillation decreasing as it approaches the boundary of the bouncing
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region.

• φk shows a asymptotic rise for the pre point of bounce region and the sine of twice the
angle of φk shows wild oscillation in this region.

• The squeezed angle parameter φk slows an exponential increase for the post point of
bounce region and the sine of twice the angle of φk shows oscillatory behaviour with
the frequency of oscillation larger near the point of bounce than near the boundary.

• An exponential decay of the squeezed angle parameter can be seen for the post bounce
boundary region with the value approaching zero for the present day. The sine of twice
the angle shows regular oscillatory behaviour with the frequency of oscillations increas-
ing as one approaches the present day.

0.05 0.10 0.50 1

0

1

2

3

Figure 29: Linearly weighted complexity in different regions against scale factor.

In Fig. 29 and Fig. 30 the complexity measures C1 and C2 have been plotted with respect
to the scale factor. The behaviour of both the complexity measures are almost identical.

• The value of complexity outside the bouncing boundary based on the respective squeez-
ing parameters defined there for very early times and nearing present times is oscillatory
with smaller frequency at the boundary. The amplitude of oscillation however remains
almost identical for the early and nearing present times to that at the boundary.

• Inside the bouncing region the complexity before the pre-bounce shows wild oscillations.

• The behaviour of the post point of bounce shows interesting features on extrapolation
to the present day. Although within its domain i.e inside the bouncing boundary region
the behaviour is oscillatory as the pre-point of bounce behaviour but extrapolation to the
present day shows exponential increase in the complexity after a certain time. This is
different to what we observed in the cosine hyperbolic model where the rising behaviour
of complexities was seen inside the bouncing region before the post bounce boundary
itself.

In Table 5 we have presented the values of complexity at various time scales as observed
in this exponential bouncing cosmology model.
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Figure 30: Geodesically weighted complexity in different regions against scale factor.
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Figure 31: Logarithm of linearly weighted complexity in different regions against
scale factor.

Table 5: Complexity values at different points of interest with respect to scale factor.

Very early
times

Entering
bouncing

region

Around
point of
bounce

Exiting
bouncing

region

Extrapolated
Present time

C1 1.701 2.357 12.696 1.402 3.698
C2 0.0951 1.208 7.944 0.944 1.877

From the complexity values shown in Table 5, one can interpret that the system tends
towards a highly chaotic behaviour near the point of bounce, which is understood from the
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Figure 32: Logarithm of geodesically weighted complexity in different regions
against scale factor.

maximum complexity value at that point. In the language of squeezed quantum states, the
rapid oscillation of the squeezing parameters near the point of bounce may be an indirect way
of signifying chaos.

Since we observe most interesting features from the post point of bounce plots(on extrap-
olating to the present time), the prediction of Lyapunov exponent from that case is extremely
useful as it gives an estimation on the lower bound of temperature. The slope of logarithm of
complexity at the point of rise directly corresponds to the value of the quantum Lyapunov ex-
ponent as mentioned in Eq (140). To predict the slope of the logarithmic value of complexities
we consider the change of y-axis value over the range of the x-axis value i.e. between point of
rise and point of saturation. Mathematically it is represented by

λi =
ln Ci (present time)− ln Ci (point of rise)

a (present time)− a (point of rise)
. (168)

For this we have plotted the logarithm of complexity values in Fig. 31 and Fig. 32. We observe
the qualitative features to be same as that of the complexity graphs, showing corresponding
oscillatory, rising and saturation at the respective regions. We calculate the Lyapunov exponent
from the post point of bounce case as it shows exponential feature and this gives an estimation
on the lower bound of temperature.

Table 6: Log of complexity values at point of rise and present time. In this case we do
not observe any saturation as such, hence we compute the slope between the point
of rise and the present time. Point of rise for both C1 and C2 is a = 0.245 and scale
factor corresponding to the present time is a = 1.

ln Ci point of rise present time
ln C1 1.0180 1.3079
ln C2 0.32469 0.62969

In Table 6 we have written the numerical values of the logarithm of the complexity val-
ues at the region of a where complexity shows an exponential rise. The Lyapunov exponent
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calculated from these values are:

λ1 = 0.3839, λ2 = 0.4039.

The estimated lower bound on the temperature from the calculated values of the Lyapunov
exponents are

TC1
¥ 0.06109, TC2

¥ 0.06428.

Using Eq(166), similar to the cosine hyperbolic case we have also computed lower bound
of scrambling time intervals for the exponential case. The main difference is that as we have
seen for the exponential case the complexity values do not actually saturate even at much later
times. Hence we have calculated the scrambling time in the region of rise (the same region
that we have numerically considered for calculating the Lyapunov exponent in exponential
case). It is unclear whether the physical interpretation of the scrambling time will remain
same as there is no given region of saturation in the exponential case as we had for the cosine
hyperbolic case. Nevertheless an estimated value for the same in the region of rise is given
in Table 7. Since our normalization for conformal time at the exponential case is different with
bounce at τb = −150 and present time at 0, we can see that the scrambling period is more
than one-half of time from bounce to present day. Such a high scrambling time (more time for
OTOC to attain equilibrium) can be due to the lack of saturation and late and perpetually rising
complexity values, and a never hence a never saturating OTOC. Hence the interpretation of
scrambling time in rising region might point to fact that it takes really long (almost never) for
OTOC to attain equilibrium hence hinting at the lack of saturation in the chaotic behaviour
that we have seen in complexity in the case of cosine hyperbolic model.

Table 7: Estimated lower bound scrambling time scales for the region of rise due to
lack of saturation region for the exponential model from the two different complex-
ities.

ci at a = 0.75 ci at a = 1 ∆ai(τsc) |∆τsc|
From C1 3.427 3.698 0.09937 82.5063
From C2 1.724 1.87704 0.1052 82.9205

• In Fig. 33 the predicted OTOC from complexity measure C1 has been plotted with respect
to the scale factor. We observe that the outer bouncing boundary curves shows similar
features and is oscillatory with the amplitude of post bounce boundary region always
lying above the pre-bounce boundary region. Inside the boundary region OTOC shows
rapid oscillations for both the pre and the post point of bounce. However interesting
features is observed from the post point of bounce curve. The frequency of oscillations
starts decreasing near the boundary of the bouncing region. On extrapolation to the
present time the OTOC predicted from C1 actually shows an exponential decay.

• In Fig. 34 the predicted OTOC from complexity measure C2 has been plotted with respect
to the scale factor. We observe that the outer bouncing boundary curves shows similar
features and is oscillatory but unlike the OTOC predicted from C1. The amplitude of
post bounce boundary region is almost identical to the pre-bounce boundary region.
Inside the boundary region OTOC shows rapid oscillations for both the pre and the post
point of bounce. The frequency of oscillations for the post point of bounce curve starts
decreasing near the boundary of the bouncing region. On extrapolation it to the present
time the OTOC predicted from C2 actually shows a similar exponential decay as OTOC
predicted from C1 .
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Figure 33: Predicted OTOC from linearly weighted complexity in different regions
against scale factor.
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Figure 34: Predicted OTOC from geodesically weighted complexity in different re-
gions against scale factor.

In Table 8 the numerical values of the predicted OTOC’s from both the complexity measures
from our present analysis is written. Again at the point of bounce the OTOC shows a drastic
reduction in the values.

As discussed in the previous section it is better to relate the complexity with some quantity
which is observable. The number of e-foldings is one such observable quantity. Again we plot
the complexity corresponding to within the bouncing region and the outside boundary region
separately as done for Model-I.

• In Fig. 35 the linearly weighted complexity measure C1 has been plotted with respect
to the number of e-foldings inside the bouncing region. We observe that the behaviour
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Table 8: Predicted OTOC values at different points of interest with respect to scale
factor.

Very early
times

Entering
bouncing

region

Around
point of
bounce

Exiting
bouncing

region

Extrapolated
present

OTOC1 0.018 0.094 3.06× 10−6 0.246 0.024
OTOC2 0.386 0.298 3.54× 10−4 0.389 0.153
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Figure 35: Variation of linearly weighted complexity inside bouncing region with
respect to number of e-foldings.
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Figure 36: Variation of linearly weighted complexity outside bouncing region with
respect to number of e-foldings.
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near the boundary is some random fluctuations of negligible amplitudes, however as it
approaches the point of bounce it fluctuates wildly. Similarly the behaviour post point
of bounce is arbitrary and random near the point of bounce whereas it takes a regular
periodic shape on approaching the boundary. However the interesting part can be re-
alised on extrapolating the post bounce behaviour to the present times. We see a sudden
exponential rise as it approaches the present times.

• In Fig. 36 we have plotted the complexity measure C1 as a function of the number of e-
foldings for outside the bouncing region. For both the pre and the post boundary region
we see a smooth, regular and periodic behaviour of the complexity even on extrapo-
lating it inside the boundary region. However an important feature to notice is that
the frequency of oscillation for the pre boundary region decreases when it approaches
the boundary whereas the post boundary behaviour shows a contrasting behaviour as
the complexity approaches the present time. Also the value of the complexity for the
prebounce boundary region is always greater than the post bounce boundary region.

-6 -4 -2 0

0.75

1.00

1.25

1.50

1.75

Figure 37: Variation of geodesically weighted complexity inside bouncing region with
respect to number of e-foldings.

• In Fig. 37 we have plotted the geodesically weighted measure of complexity with respect
to the number of e-folds for inside the bouncing region. We observe that the behaviour
of C2 in this region is almost identical to the behaviour of the linearly weighted measure
of complexity. Even the extrapolated behaviour of the post point of bounce is identical
to that of C1.

• We observe similar periodic behaviour in the complexity measure C2 as C1. However an
important observation is that unlike C1, C2 has equal values for all regions even when
extrapolated inside the bouncing region.

Table 9 contains all the key features of the complexity measures C1 and C2 and the Out
of time ordered correlation functions predicted from them for both of the Bouncing cosmo-
logical models.
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Figure 38: Variation of geodesically weighted complexity outside bouncing region
with respect to number of e-foldings.
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Figure 39: Predicted OTOC from linearly weighted complexity inside bouncing re-
gion with respect to number of e-foldings.

7 Conclusions

From our study of the complexity measures computed from the linearly weighted and geodesi-
cally weighted cost functionals within the framework of bouncing cosmology we have the
following final remarks:

• Remark I:
The complexity measure calculated from two different types of cost functionals has an
overall identical behaviour for both the models of bouncing cosmology under consider-
ation with some noticeable differences. Though their behaviour is identical, it is evident
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Figure 40: Predicted OTOC from linearly weighted complexity outside bouncing re-
gion with respect to number of e-foldings.
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Figure 41: Predicted OTOC from geodesically weighted complexity inside bouncing
region with respect to number of e-foldings.

from the plots that for a particular value of the scale factor, the linearly weighted com-
plexity measure (C1), is always greater than the geodesically weighted one (C2). We see
this feature in both the models.

• Remark II:
We observe that the complexity measure calculated for the post-point of bounce for
both the models is the most interesting one. Though we observe random quantum fluc-
tuations inside the bouncing region, once extrapolated to the present day we observe
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Figure 42: Predicted OTOC from geodesically weighted complexity outside bouncing
region with respect to number of e-foldings.

an exponential rise in the complexity measures followed by its saturation. An important
point worth noting is that for the Cosine Hyperbolic bounce model, the starting point of
the exponential rise in the two complexity measures is observed inside the bouncing re-
gion itself and the saturation is well observed on extrapolation. However, the rise in the
two complexities for the Exponential bounce model is observed only after extrapolating
it outside the bouncing region. We do not observe saturation as such in the complexity
measures even on extrapolating it to the present day for the Exponential bounce model.
We observe similar behaviour of the complexities when the analysis is done concerning
the observationally important quantity known as the number of e-folds.

• Remark III:
The behaviour of the complexity measure outside the bouncing region is not of prime
significance as we observe smooth, well behaved and periodic nature in those regions.
Though the periodicity may not be equal near the boundary of the bouncing region and
the present time, it does not give us any random or chaotic behaviour in those regions.
However, the behaviour of complexity measure in the pre-point of bounce region is
of some significance because we observe random oscillations of the complexity in this
region. For the exponential case, these oscillations are extremely wild and it can be
attributed to quantum mechanical fluctuations.

• Remark IV:
We observe an exponential decay in the predicted OTOC’s computed from the complex-
ity measures C1 and C2, which is in accordance with the recently established predictions
of OTOC’s in the context of Cosmology [43]. This behaviour of the OTOC’s is observed
not only with respect to the theoretical measure of scale factor but also with the respect
to the observational measure of the number of e-folds.

• Remark V:
The Lyapunov exponent calculated from both complexities at the region of rising only
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Table 9: Behaviour of the cosmological complexity measures and cosmological OTOC
in different region of interest for the two models of bouncing paradigm.

Chaos and
Complexity
measure

Pre-bounce
boundary

Pre-point of
bounce

Point point of
bounce

Post bounce
boundary

Model-
I

Complexity
measures C1

and C2

Periodic oscil-
lations with
decreased
frequency near
the boundary

Random
oscillations
near the
point of
bounce

Random oscil-
lations near the
point of bounce,
rises near bound-
ary, saturates
at extrapolated
present times

Periodic oscil-
lations with
decreased
frequency near
the boundary

OTOC from
C1 and C2

Periodic oscil-
lations with
decreased
frequency near
the boundary

Random
oscillations
near the
point of
bounce

Random oscil-
lations near the
point of bounce
starts to fall near
boundary till ex-
trapolated present
times

Periodic oscil-
lations with
decreased
frequency near
the boundary

Model-
II

Complexity
measures C1

and C2

Well behaved,
periodic os-
cillations
with slight
decrease in
frequency near
the boundary

Wild and
random fluc-
tuations near
the point of
bounce

Random fluctu-
ations near the
point of bounce,
rises outside the
boundary, till
the extrapolated
present times,
no saturation
observed

Periodic oscil-
lations with
decreased
frequency near
the boundary

OTOC from
C1 and C2

Periodic os-
cillations
with slightly
decrease in
frequency near
the boundary

Wild and
random fluc-
tuations near
the point of
bounce

Random fluctu-
ations near the
point of bounce
starts to falls af-
ter the boundary
till extrapolated
present times

Periodic oscil-
lations with
decreased
frequency near
the boundary

differ in the second decimal place for both models. The fractional variation between the
Lyapunov exponents is observed to be less than ten percent. We expect the variation
to be much lesser if we consider higher-order terms in the dispersion relation for the
numerical analysis.

• Remark VI:
Since we have solved the same dynamical equations with respect to the Number of e-
foldings, another calculation of Lyapunov exponent with respect to the number of e-
foldings, is expected to have the same order and hence a separate calculation is redun-
dant.

• Remark VII:
We get a theoretical prediction for the lower bound of temperature for both models
in the region of rising which falls from before the boundary till late times for the hyper-
bolic cosine case and completely outside the boundary and at much late times for the
exponential case.
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• Remark VIII:
The choice of initial conditions at the horizon crossing that we have chosen for eval-
uating the perturbed action can have significant changes to the obtained results in the
form of complexity, OTOC, and the Lyapunov exponent.

• Remark IX:
The scrambling time scale for both cases has been estimated. For the cosine hyperbolic
case (estimated in the region of saturation) it turns out to be one-tenth of the conformal
time period from bounce to present day, whereas for the exponential case the estimated
scrambling time (in the region of rise), turns out to be more than one-half of the con-
formal bounce-to-present day time period, which might signify the lesser time required
for OTOC to attain equilibrium in the cosine hyperbolic case (also pointing towards sat-
uration of complexity), whereas a long time required for exponential OTOC to attain
equilibrium hence hinting at a never saturating complexity value at late times.

The future prospects of the present work are appended below:

• Prospect I:
The framework for bouncing cosmology that we have mentioned along with the gener-
alized perturbed action, dispersion relations, and the Hamiltonian can be used in a more
general way without any truncation of higher-order terms for investigating cosmological
complexity in any models. Though we have focused on the sub-Hubble region due to
its quantum fluctuations, numerically one can use the full solution, rather approximat-
ing it in the sub-Hubble region. One can also apply the same analysis for the generic
inflationary paradigm, which has not been considered in any work yet in an appropriate
way.

• Prospect II:
We are working currently on applying the same framework to certain models in Island
Cosmology as discussed in [224,225]. We will be planning to work out on this framework
with different quantum initial conditions which will appear very soon in an upcoming
paper.

• Prospect III:
An interesting study would be to see how this complexity can be used to study the non
equilibrium phenomenon and chaoticity in various entangled systems [226–232]. This
measure might be used to see if the long-range correlation between systems induces
chaoticity and quantum randomness or not.

• Prospect IV:
It is naturally expected that chaos and randomness might be an inherent property of
Open quantum systems [233–235] depending on the properties of the quantum dissi-
pation and its impact. Complexity finds another use in this direction of research where
one might be inclined to study chaos in nature from a more realistic point of view.

• Prospect V:
It is also possible to find a general representation of squeezed state formalism for the
multi-field interacting scenario in the context of cosmological perturbation theory writ-
ten in a spatially flat FLRW background. But till now there are no concrete results avail-
able on this in the cosmology literature because the result is completely dependent on
the type and strength of the interaction and extremely model dependent. For this reason,
it is extremely difficult to deal with such types of computations within the framework
of the quantum field theory of cosmological perturbation theory. But apart from having
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these mentioned difficulties, if one can write a general structure of the squeezed state
formalism at least for two interacting fields in the spatially flat FLRW cosmological back-
ground by considering all possible general renormalizable coupling and interactions in
the perturbative regime of the quantum field theory then it is possible to compute many
physical observables out of those results. Using the interacting two field squeezed state
formalism it is also good to understand the role of quantum mechanical chaos and com-
plexity within the framework of cosmological perturbation theory. The future aim should
be to carry forward such computations and explore some of the important unknown im-
portant underlying physical features of cosmological perturbation theory in presence of
interacting quantum mechanical fluctuations.

• Prospect VI:
In this paper, we have restricted our analysis only for scalar mode quantum fluctua-
tions generated from a cosmological perturbation in the spatially flat FLRW cosmolog-
ical background. However, a similar analysis can be extended for the primordial grav-
itational waves appearing from the tensor mode fluctuations in the same cosmological
background set up. It would be really nice and also important to check how the primor-
dial gravitation waves and related tensor mode fluctuations get affected by two modes
squeezed state formalism and also important to study how that will further put a strin-
gent constraint on the phenomena of quantum mechanical chaos and complexity.

• Prospect VII:
Generally, people try to explain this concept of chaos and complexity through various
models. However a completely model-independent notion of complexity can be given
from the perspective of effective field theory [236,237]. It is in general possible to start
from the single EFT action and derive all the models under various constraints satisfied
by the parameters of the action. Squeezed state formalism for such a universal action
can be developed to generalize an give a model-independent prescription of complexity.

Note:

The background Gaussian image in the table of contents is inspired from [238].
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A Quantization of Hamiltonian for scalar modes in terms of
squeezed parameters in cosmological perturbation theory

In this appendix, we present the details of the quantization of the Hamiltonian for scalar modes
obtained from the cosmological perturbation theory within the framework of bouncing cos-
mology. To serve this purpose, let us start with the expression for the classical Hamiltonian
function already derived earlier in the paper and it is represented by:

H(τ) =

∫

d3k

�

1
2

�

�v′k(τ)
�

�

2
+

1
2
µ2(k,τ)|vk(τ)|2

�

, (A.1)

where the conformal time dependent mass µ2(k,τ) of the parametric oscillator is given by the
following expression:

µ2(k,τ) :=

�

k2 −λ2
k(τ)

�

where we define λk(τ) :=

�

z′(τ)
z(τ)

�

. (A.2)

Also one can express the field velocity with respect to the canonically conjugate momentum
density in the Fourier space as:

v′k(τ) := πk(τ) +λk(τ)vk(τ). (A.3)

Next, using the classical mode function we can further construct the quantum mechanical
operators:

v̂k(τ) =
�

v∗−k(τ) âk + vk(τ) â†
−k

�

, (A.4)

π̂k(τ) =
�

π∗−k(τ) âk +πk(τ) â†
−k

�

. (A.5)

Now we evaluate the following quantities:
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−k
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+λk(τ)
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π∗−k(τ) âk +πk(τ) â†
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(A.6)

+λk(τ)
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Now using the above mentioned quantum operator one can finally express the canonical
Hamiltonian for the parametric oscillator in the following quantized form:

ÒH(τ) =
1
2

∫

d3k

�

Ωk(τ)
�

â†
kâk + â†

−kâ−k + 1
�

︸ ︷︷ ︸

Contribution from the free term

+iλk(τ)

�

exp(−2iφk(τ))âkâ−k − exp(2iφk(τ))â
†
kâ†
−k

�

︸ ︷︷ ︸

Contribution from the Interaction term

�

, (A.8)

where we define Ωk(τ) and φk(τ) by the following expressions:

Ωk(τ) : =

�

�

�

�v
′

k(τ)
�

�

�

2
+µ2(k,τ) |vk(τ)|

2

�

, (A.9)

i exp(−2iφk(τ)) : = π∗k(τ)v
∗
−k(τ). (A.10)

Here Ωk(τ) represents the conformal time dependent dispersion relation in the present bounc-
ing cosmological set-up and φk(τ) is squeezing angle appearing in the squeezed state formal-
ism as discussed earlier in the text.

B Hamilton’s equations in the Heisenberg picture in cosmological
perturbation for scalar modes

Next, using the previously mentioned solution of classical mode function we can further con-
struct the quantum mechanical operators in the Heisenberg picture:

v̂(x,τ) = U†(τ,τ0)v̂(x,τ0)U(τ,τ0)

=

∫

d3k
(2π)3

�

v∗−k(τ) âk + vk(τ) â†
−k

�

exp(ik.x), (B.1)

π̂(x,τ) = U†(τ,τ0)π̂(x,τ0)U(τ,τ0)

=

∫

d3k
(2π)3

�

π∗−k(τ) âk +πk(τ) â†
−k

�

exp(ik.x). (B.2)

Now, our objective is to find out the fact that whether the mode functions for both the field
variables and their associated momenta in Fourier space satisfy the well known, Hamilton
equations or not. In the Heisenberg picture one can write down the following equations 8

v̂
′

k(τ) = −i
�

v̂k(τ), Ĥk(τ)
�

, (B.4)

π̂
′

k(τ) = −i
�

π̂k(τ), Ĥk(τ)
�

, (B.5)

where the field operator and the corresponding canonically conjugate momentum operator can
be expressed in terms of the creation and annihilation operators of conformal time dependent
parametric oscillator as:

v̂k(τ) =
�

v∗−k(τ) âk + vk(τ) â†
−k

�

, (B.6)

8Here we have explicitly used the following operator identity which is valid in the Heisenberg quantum me-
chanical picture:

∂ Â(τ)
∂ τ

= Â
′
(τ) = −i

�

Â(τ), Ĥ(τ)
�

. (B.3)
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π̂k(τ) =
�

π∗−k(τ) âk +πk(τ) â†
−k

�

. (B.7)

Also the Hamiltonian operator in Fourier space can be expressed explicitly in terms of
creation and annihilation operators as:
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−kâ−k + 1
�

︸ ︷︷ ︸

Contribution from the free term

+iλk(τ)

�
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where we define the dispersion relation Ωk(τ) and λk(τ) by the following expressions:

Ωk(τ) : =

�

�

�

�v
′

k(τ)
�

�

�

2
+µ2(k,τ) |vk(τ)|

2

�
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λk(τ) : =
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z′(τ)
z(τ)

�

, where z(τ) = a
Æ

2ε(τ) with ε(τ) =
�

1−
H′
H2

�

. (B.10)

Further substituting all of the above mentioned expressions in Eq (B.11) and Eq (B.12),
we get the following result:

v∗
′

−k(τ) âk + v
′

k(τ) â†
−k = −i
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v∗−k(τ) âk + vk(τ) â†
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, (B.11)
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′
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π∗−k(τ) âk +πk(τ) â†
−k, Ĥk(τ)

�

. (B.12)

After doing considerable amount of algebraic manipulations we finally get the following sim-
plified form of the Hamilton equations associated with the cosmological perturbation theory of
scalar mode fluctuation:

�

d
dτ
−λk(τ)

�

vk(τ) = πk(τ), (B.13)
�

d
dτ
+λk(τ)

�

πk(τ) = −Ω2
k(τ)vk(τ). (B.14)

Further using Eq (B.13) in Eq (B.14), we get:
�

d
dτ
+λk(τ)

��

d
dτ
−λk(τ)

�

vk(τ) = −Ω2
k(τ)vk(τ),

=⇒
d2vk(τ)

dτ2
+
�

Ω2
k(τ)−λ

2
k(τ)

�

vk(τ) = 0. (B.15)

Now we can write:

λ2
k(τ) =

�

z′′(τ)
z(τ)

�

−λ′k(τ)≈
�

z′′(τ)
z(τ)

�

, (B.16)

and finally we define:

µ2(k,τ) =
�

Ω2
k(τ)−λ

2
k(τ)

�

=

�

Ω2
k(τ)−

�

z′′(τ)
z(τ)

��

. (B.17)
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As a result we get the following simplified form of the equation of motion:

d2vk(τ)
dτ2

+µ2(k,τ)vk(τ) = 0, (B.18)

which is the generalized version of the well known Mukhanov Sasaki equation. In the sub-
Hubble region (−kτ� 1) one can simplify the expression for the dispersion relation, Ωk(τ),
which is explicitly discussed in the next section. Now considering the leading order contribu-
tion we get the following expression for the conformal time dependent frequency parameter:

µ2(k,τ)≈
�

k2 −
�

z′′(τ)
z(τ)

��

, (B.19)

which is exactly appearing in the Mukhanov Sasaki equation.

C Dispersion relation in terms of squeezed parameters

In this appendix, our prime objective is to derive the expression for the dispersion relation in
terms of the squeezed parameter rk(τ) and the squeezed angle φk(τ), where the dispersion
relation appears in the Hamiltonian after quantization that we studied in the paper explicitly.

Let us first write down the expression for the conformal time dependent dispersion relation
Ωk in terms of the canonical field variable and its associated canonically conjugate momentum
that appears after performing the cosmological perturbation theory for a single scalar field:

Ωk(τ) : =

�

�

�

�v
′

k(τ)
�

�

�

2
+µ2(k,τ) |vk(τ)|

2

�

=

�

|πk(τ) +λk(τ)vk(τ)|
2 +

�

k2 −λ2
k(τ)

�

|vk(τ)|
2

�

(C.1)

=

�

|πk(τ)|
2 + k2 |vk(τ)|

2 +λk(τ)

�

π∗k(τ)vk(τ) + v∗k(τ)πk(τ)

��

.

Now, we plug in the expressions for πk(τ) and vk(τ), which are reproduced here for con-
venience :

vk(τ) = vk(τ0)

�

cosh rk(τ) exp(iθk(τ))− sinh rk(τ) exp(i(θk(τ) + 2φk(τ)))

�

, (C.2)

πk(τ) = πk(τ0)

�

cosh rk(τ) exp(iθk(τ)) + sinh rk(τ) exp(i(θk(τ) + 2φk(τ)))

�

, (C.3)

and after doing a bit of algebraic manipulation we finally get:

Ωk(τ) =

�

|πk(τ0)|
2 + k2 |vk(τ0)|

2

��

cosh2 rk(τ) + sinh2 rk(τ)

�

+ sinh rk(τ) · cos2φk(τ)

�

|πk(τ0)|
2 − k2 |vk(τ0)|

2

�

+λk(τ)

��

π∗k(τ0)vk(τ0) + v∗k(τ0)πk(τ0)

�

+ i sinh2rk(τ) sin2φk(τ)

�

π∗k(τ0)vk(τ0)− v∗k(τ0)πk(τ0)

��

.

(C.4)
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Here we have chosen the initial condition at the time scale τ = τ0 by considering the
horizon crossing scale, −kτ0 = 1. We impose this condition on the perturbation field variable
and on the canonically conjugate momentum obtained for scalar fluctuation. We finally get:

vk(τ0) =
1
p

2k
2νB−1

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

exp
�

−i
nπ

2
(νB − 2)− 1

o�

, (C.5)

πk(τ0) = i

√

√k
2

2νB−
3
2

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

exp
�

−i
nπ

2
(νB − 2)− 1

o�






1−
p

2

�

νB −
1
2

��

νB +
1
2
+ i
�

�

νB +
1
2

� exp
�

−
iπ
4

�






. (C.6)

Neglecting the phase factors in the above equation and also noting that νB ≈
1
2 + · · · , we

get a pretty simplified expression for Ωk(τ), i.e.

Ωk(τ) = 22νB−2

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

2 �
3k
4

�

cosh2 rk(τ) + sinh2 rk(τ)

�

−
k
4

sinh rk(τ) cos2φk(τ)

−
1
p

2
λk(τ) sinh2rk(τ) sin 2φk(τ)

�

.

(C.7)

C.1 Sub-Hubble limiting result

In the sub-Hubble limit, −kτ � 1, it is expected to have very small contribution from the
squeezed parameter, rk(τ) for which one can use the following approximations:

cosh rk(τ)≈ 1, sinh rk(τ)≈ rk(τ). (C.8)

Consequently, in the limit rk(τ)→ 0, we get the following result for the dispersion relation in
the sub-Hubble region:

ΩSub
k (τ) =

3k
4

22νB−2

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

2

= 3k 22(νB−2)

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

2

, (C.9)

which is basically dependent on the co-moving wave number and a very slowly varying time
dependent quantity νB at the sub-Hubble scale. In the previous ref. [11,12] the authors have
not considered this additional slowly varying time dependence appearing from the parameter
νB, which is not appropriate if we want to extract the information regarding quantum correla-
tion in the out-of-equilibrium phase where random fluctuations play significant role. Now we
will explicitly show how the slow time dependence is appearing in the parameter νB. In the
sub-Hubble region the conformal time dependent mass parameter νB can be approximately
written by considering the contribution upto the next-to-leading order as:

νB ≈
�

1
2
+
H′′
H2
+ · · ·

�

, (C.10)

where we have neglected the contributions of all higher order small correction terms appearing
as · · · for the computational simplicity. But out of all the terms in the correction part, H′′/H2

term gives the most significant contribution. Due to slowly varying feature with respect to the
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conformal time, neglecting this term is not physically justifiable.9 It needs to be incorporated
to stop the bouncing phase and go either to the post-bounce or to the pre-bounce region in the
field space. So for the bouncing cosmological paradigm the contribution H′′/H2 is explicitly
needed to stop bounce and go to the next phase in the evolution. Now after substituting the
above mentioned expression for the mass parameter νB one can further write the following
simplified form of the factor, Ωk(τ) in the sub-Hubble region, which is given by:

ΩSub
k (τ) ≈

3
2

k 2

�

2H′′
H2

�

�

�

�

�

�

�

�

�

Γ

�

1
2
+
H′′
H2

�

Γ

�

1
2

�

�

�

�

�

�

�

�

�

2

=
3

2π
k 2

�

2H′′
H2

�

�

�

�

�

Γ

�

1
2
+
H′′
H2

�

�

�

�

�

2

≈
3
π

k
�

1+ 2 ln 2
�H′′
H2

�

+ · · ·
���

1− 2
�H′′
H2

��

−
1
2
γE + · · ·

�

=
3
π

k

�

�

1−
1
2
γE

�

+ 2
§�

1−
1
2
γE

�

ln2− 1
ª�H′′

H2

�

− 4 ln 2
�H′′
H2

�2

+ · · ·
�

,(C.12)

where γE is the Euler-Mascheroni constant, which is γE = 0.577.
Here for the above computation we have used the following important results for the series

expansion:

2

�

2H′′
H2

�

=
�

1+ 2 ln2
�H′′
H2

�

+ · · ·
�

, (C.13)
�

�

�

�

Γ

�

1
2
+
H′′
H2

�

�

�

�

�

2

=
��

1− 2
�H′′
H2

��

−
1
2
γE + · · ·

�

. (C.14)

C.2 Super-Hubble limiting result

Though, we have not explicitly performed any numerical computation using the super-Hubble
limiting solution, described by −kτ� 1, but for completeness we provide the expression for
the dispersion relation in this region. Previously we have only provided the solution of the
mode function and its conformal time derivative in the super-Hubble region.

In the super-Hubble limit, −kτ � 1, it is expected to have very small contribution from
the squeezed angle φk(τ), and consequently we have the following conditions:

cosh2φk(τ)≈ 1, sinh 2φk(τ)≈ 2φk(τ). (C.15)

Consequently, in the limit φk(τ)→ 0, we get the following result for the dispersion relation

9In the previous works, where people did the analysis for inflation, this contribution was dropped as they have
taken exact de Sitter solution, which is for inflation represented by the mass parameter, νB = 3/2. But as we know
if we do that then one cannot stop inflation, to stop inflation at a specific point in the field space one need to
include the contribution of slow-roll correction terms which serves the purpose. One can explicitly show that this
contribution for inflation is given by,

νB =
3
2
+ ε+ · · ·=

3
2
+
�

1−
H′

H2

�

+ · · ·=
5
2
−

H′

H2
+ · · · , (C.11)

where the first term represent the exact de Sitter solution and the second term represents the amount of deviation
from that which is required to stop the inflation.
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in the super-Hubble region:

Ω
Sup
k (τ) =

3k
4

22νB−2

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

2 ��

cosh2 rk(τ) + sinh2 rk(τ)

�

−
1
3

sinh rk(τ)

�

= 3k 22(νB−2)

�

�

�

�

�

Γ (νB)

Γ
�3

2

�

�

�

�

�

�

2 ��

cosh2 rk(τ) + sinh2 rk(τ)

�

−
1
3

sinh rk(τ)

�

= ΩSub
k (τ)

�

1+ 2 sinh rk(τ)
�

sinh rk(τ)−
1
6

�

�

, (C.16)

where ΩSub
k (τ) is the dispersion relation derived in the previous sub section in the sub-Hubble

region. In the super-Hubble region one needs to consider the contributions appearing in the
bracketed terms in the above derived expression during the study of the evolution with respect
to any dynamical parameters involved in the system.

One can further consider a more simpler situation in the super-Hubble region, which is
described by very small value of the squeezed parameter, rk(τ) which is fixed by the following
contribution:

sinh rk(τ)≈ rk(τ). (C.17)

Here we consider rk(τ) to be small but not approaching zero and also we neglect the quadratic
contribution in rk(τ) due to smallness approximation. As a result, finally we get the following
simplified answer for the dispersion relation in this specific situation:

Ω
Sup
k (τ) ≈ ΩSub

k (τ)
�

1−
1
3

rk(τ)
�

, (C.18)

where one need to consider the contribution from the second term in the evolution equations
and this ensures the fact that, ΩSup

k (τ) 6= ΩSub
k (τ) in this limiting situation.

C.3 Matching condition at the horizon

Finally, in this section we have to present the matching condition at the horizon crossing, which
is represented by −kτ0 = 1 at the time scale τ = τ0 = −k−1 and this implies at this point the
dispersion relation obtained in the sub-Hubble and super-Hubble region has to match. This is
given by:

Ω
Sup
k (τ0) = Ω

Sub
k (τ0), (C.19)

which further implies the following crucial fact:

sinh rk(τ0)
�

sinh rk(τ0)−
1
6

�

= 0. (C.20)

The above condition satisfy iff we have:

sinh rk(τ0) = 0 −→ rk(τ0) = nπ, ∀ n ∈ Z, (C.21)

or we have:
�

sinh rk(τ0)−
1
6

�

= 0 −→ rk(τ0) = sinh−1
�

1
6

�

. (C.22)

In the above mentioned discussion it is clearly evident that to match the dispersion relation
obtained from the sub-Hubble and super-Hubble region at the horizon crossing the squeezed
parameter has to be either, rk(τ0) = nπ, ∀n ∈ Z, or rk(τ0) = sinh−1

�1
6

�

.
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D Equivalent representations of the evolution equations in two-
mode squeezed state formalism

In this section, we will discuss about three equivalent representations of the evolution equation
of the squeezed parameter and squeezed angle using which one can study the impact of the
two mode squeezed state formalism in the present bouncing cosmological set up which is
described in the spatially flat cosmological FLRW background. The details of each of the three
representation has been discussed in the following three consecutive subsections respectively.

D.1 Representation I: In terms of conformal time

The time evolution equations of the conformal time dependent squeezed state parameter rk(τ)
and squeezed angle θk(τ) are given by:

drk(τ)
dτ

= −λk(τ) cos 2φk(τ), (D.1)

dφk(τ)
dτ

= Ωk(τ)−λk(τ) coth 2rk(τ) sin2φk(τ). (D.2)

The above set of evolution equations, are coupled differential equations of squeezed state
parameter rk(τ) and squeezed angle θk(τ) where in both conformal time derivatives are in-
volved. We choose the initial condition is at the horizon crossing scale, −kτ0 = 1 at τ = τ0
and also consider the sub-Hubble (−kτ� 1) region for the computational purpose, where the
scalar modes for two momenta k and −k having all possible values becomes quantum in na-
ture. Using these information one can numerically solve these equations to construct the target
quantum state out of a Gaussian initial state. This will further help us to numerically compute
and understand the quantum complexities in Eq (103) and Eq (104) within the framework
of primordial cosmological perturbation theory, where the effects of the quantum fluctuations
is treated in terms of the squeezed state parameter rk(τ) and squeezed angle θk(τ) in the
squeezed state formalism.

Now we will discuss about the strong and the weak coupling region and the behaviour and
the physical outcome of these evolution equation:

1. Strong coupling region and freeze-out phenomena :
In the strong coupling region the effect of squeezing phenomena become maximum
because:

λk(τ)� Ωk(τ),

φk(τ)→ Stable fixed point (freeze out),

rk(τ)→Monotonical growth in time. (D.3)

As a result we get following simplified form of the evolution equations:

drk(τ)
dτ

= −λk(τ) cos 2φk(τ), (D.4)

dφk(τ)
dτ

= 0. (D.5)

Consequently, we get the following analytical solution:

φk(τ∗) = Constant≡ D, (D.6)

rk(τ) = − cos D

∫

dτ′ λk(τ
′),
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≈ − cos D

∫

dτ′
Ç

λ2
k(τ

′)−Ω2
k(τ). (D.7)

2. Weak coupling region and oscillation phenomena :
In the weak coupling region the effect of oscillation phenomena become maximum be-
cause:

λk(τ)� Ωk(τ),

λk(τ),Ωk(τ),φk(τ)→ Constant. (D.8)

As a result we approximate:

tanφk(τ)≈ cosβk tan [−Ωk (τ−τ0) + βk]− tanβk,

where βk = sin−1
�

λk

Ωk

�

� 1.
(D.9)

As a result we get following simplified form of the evolution equations:

drk(τ)
dτ

= −λk(τ) cos 2φk(τ), (D.10)

dφk(τ)
dτ

= Ωk. (D.11)

Consequently, we get the following analytical solution:

φk(τ) = φk(τ0) +Ωk(τ−τ0), (D.12)

rk(τ) = rk(τ0)−
1
2

sinβk sin 2Ωk(τ−τ0)

= rk(τ0)−
1
2
λk

Ωk
sin 2 (φk(τ)−φk(τ0)) . (D.13)

For the cosmological models when the modes appearing from the cosmological pertur-
bation lies within the horizon, the above mentioned solutions works perfectly well. On
average, the squeezing parameter rk(τ) during this time is almost constant and the per-
turbation do not grow at all.

D.2 Representation II: In terms of scale factor

In this section instead of using the conformal time τ as the dynamical variable, we have chosen
the scale factor a(τ) to make the computation simpler and physically justifiable. To perform
the change in variable from τ to a(τ) we have to replace the following differential operator
in the above mentioned evolution equations using the chain rule, as:

τ −→ a(τ) :
d

dτ
=

d
da(τ)

da(τ)
dτ

= a′(τ)
d

da(τ)
. (D.14)

Consequently, the evolution of the squeezed state parameter rk(a) and squeezed angle θk(a),
can be recast in terms of the newly defined dynamical variable a(τ) as:

drk(a)
da

= −
λk(a)

a′
cos 2φk(a), (D.15)

dφk(a)
da

=
Ωk

a′
−
λk(a)

a′
coth2rk(a) sin2φk(a). (D.16)

Once we numerically solve the evolution of the squeezed state parameter rk(a) and squeezed
angle θk(a) in terms of the scale factor a, we can construct the target quantum state out of
a Gaussian initial state. This will further help us to numerically compute and understand the
quantum complexities in Eq (103) and Eq (104) within the framework of primordial cosmo-
logical perturbation theory.
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D.3 Representation III: In terms of co-moving Hubble radius/ number of e-
foldings

Now if we think about the more realistic cosmological observation then it is not very good to
study the evolution with respect to the scale factor, because in the context of realistic cosmology
the scale factor is not the direct physical observable that can be probed in the observation for
various cosmological missions running (or supposed to run in the near future) to test the
signatures of the primordial cosmological paradigm. In this specific situation one needs to
use the following transformation for which the linear differential operator appearing in the
evolutionary equations of the squeezed parameter and the squeezed angle will be modified
as:

a→N :
d

d ln a(τ)
= (1− ε(τ))

d
d ln |aH|

= (1− ε(τ))
d

dN =
d

dN
, (D.17)

where we have used the following couple of facts for the above mentioned transformation:

dN = d ln a(τ), (D.18)

dN = d ln |aH|= d ln |H|, (D.19)
dN
dN
= (1− ε(τ)) , (D.20)

ε(τ) = −
Ḣ
H2
= 1−

H′
H2

. (D.21)

Here, N is the actual number of e-foldings, N is the number of e-foldings in terms of the
re-defined variables, and ε(τ) is the slowly varying conformal time dependent parameter.

Consequently, the evolution of the squeezed state parameter rk(N ) and squeezed angle
θk(N ), can be recast in terms of the newly defined dynamical preferred choice of suitable
variable N as:

drk(N )
dN = −

λk(N )
(1− ε(τ))H cos2φk(N ), (D.22)

dφk(N )
dN =

1
(1− ε(τ))H [Ωk −λk(N ) coth2rk(N ) sin2φk(N )] . (D.23)

In this context, rco = (aH)−1 or rco = H−1 represents the co-moving Hubble radius, which
is extremely important quantity in terms of which the newly re-defined number of e-foldings
have been expressed in terms of the good old definition of the number of e-foldings.
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