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Abstract

We continue the constructive program about tensor field theory through the next natural
model, namely the rank five tensor theory with quartic melonic interactions and propa-
gator inverse of the Laplacian on U(1)5. We make a first step towards its construction
by establishing its power counting, identifying the divergent graphs and performing a
careful study of (a slight modification of) its RG flow. Thus we give strong evidence that
this just renormalizable tensor field theory is non perturbatively asymptotically free.
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1 Introduction

Recently Hairer [1] solved a series of stochastic differential equations such as the KPZ equation
or the φ4

3 equation. An advantage of such equations is that they are better suited to Monte
Carlo computations than functional integrals. Since then, in a systematic series of impres-
sive articles, Hairer and his collaborators [2–4] extended their initial programme to cover the
BPHZ renormalization [5–7]. In contrast to dimensional renormalization, BPHZ renormal-
ization is adapted to the program of constructive field theory. It incorporates the multiscale
expansion, a main constructive tool [8], and a more up-to-date mathematical formulation of
renormalization based on Hopf algebras [9].

To the attentive observer, constructive field theory, namely the point of view which Hairer
called static, is rapidly merging into the regularity structures and corresponding models of Hairer,
which he called the dynamic point of view. In the language of quantum field theory, it happens
that the equations which Hairer solved were all Bosonic super-renormalizable. Now is time
for advancing the next step: the Bosonic just-renomalizable quantum field theories. The BPHZ
renormalization was initially designed to cover theories such as QED in dimension four, the
main theory at the time. But a profound objection were raised, initially by Landau. Now
we have a name for that obstacle: QED is not asymptotically free. Fortunately for the future of
quantum field theory, the discovery that electroweak and strong interactions are asymptotically
free were instrumental in its “rehabilitation” as a fundamental theory.

A famous theorem due to Coleman states that any local Bosonic asymptotically free field the-
ory must include non-Abelian gauge theories. Non-Abelian gauge theories lead to an additional
severe problem: the presence of Gribov ambiguities [10] due to gauge fixing. The way out
of these difficulties is a main reason for considering the stochastic quantization [11], since in
this method there are no need to fix the gauge, so no need to solve Gribov ambiguities. But it
remains still a tough programme.

On the road to this lofty goal, we propose an intermediate step which might be worth the
effort in itself. It escapes Coleman’s theorem by being a non-local theory. We have in mind
the tensor field theory. Born in the quantum gravity craddle [12–14], random tensor models
extend random matrix models and therefore were introduced as promising candidates for an
ab initio quantization of gravity in rank/dimension higher than 2. However their study is less
advanced since they lacked for a long time an analog of the famous ’t Hooft 1/N expansion
for random matrix models. Their modern reformulation [15–17] considers unsymmetrized

2

https://scipost.org
https://scipost.org/SciPostPhysCore.4.4.029


SciPost Phys. Core 4, 029 (2021)

random tensors,1 a crucial improvement which let the large N limit appear [18–20]. The limit
of large matrix models is made of planar graphs. Surprisingly perhaps, the key to the 1/N
tensors is made of a new and simpler class of Feynman graphs that we called melonic. They
form the dominant graphs in this limit [21,22].2

Random tensor models can be further divided into fully invariant models, in which both
propagator and interaction are left invariant by the symmetry (such as U(N)⊗d), and non-local
field theories where the propagator is for example the ordinary Laplacien on the torus U(1)⊗d

(which breaks the symmetry) but in which the interaction is left invariant by the symmetry. To
our own surprise, such just-renormalizable models turn out to be asymptotically free [23,24].
In particular the simplest such model in this category, nicknamed T4

5 theory is asymptotically
free! It made them an ideal playground for advancing the mathematics both in the static sense
of constructive theory and in the sense of Hairer’s stochastic quantization. This fact now many
years old was perhaps overlooked by the theoretical and mathematical physics community.

Also the tensor methods and models in quantum gravity that one of us baptized the tensor
track [25–30] was given a big boost from an unexpected corner. Since the advent of the SYK
model [31–33] it appears that 1-dimensional quantum random tensor is even richer than the
0-dimensional ordinary random tensor theory [34–37]. It is approximately reparametrization
invariant (i.e. conformal), includes holography and it saturates the MSS bound [38].

In fact the real applications, as it often happens, might be elsewhere. Today we probe
reality by multiples sensors. That is, we represent that reality by multidimensional big arrays
which are, in the mathematical sense, nothing but big tensors. Hence we need to develop
better and more versatile algorithms to probe tensors in this limit. Such algorithms could
benefit of the modern formulation of random tensors. This is especially true for those sep-
arating signal to noise. One example is tensor PCA [39–42], which extends classical matrix
PCA to tensors. Such algorithms could be applied in a variety of domains, high energy physics
(detection of particule trajectories), spectral imaging or videos, neuroimaging, chemometrics,
pharmaceutics, biometrics, social networks and many more. In fact the analysis of big tensors
form a bottleneck in such a dazzling kaleidoscope that it is no exaggeration to say that any
main progress in this field may create a revolution in artificial intelligence.

Now let us come down to earth. The tensor theory new constructive program [43] is well
advanced in the super-renormalizable case [44, 45]. In [46] the U(1) rank-three model with
inverse Laplacian propagator and quartic melonic interactions, which we nickname T4

3 , was
solved. In [47] the U(1) rank-four model T4

4 was solved. This model looks comparable in
renormalization difficulty to the ordinary φ4

3 theory, but non-locality and the graphs are more
complex hence requires several additional non-trivial arguments. The next goal is to treat just-
renormalizable asymptotically free Bosonic T4

5 . In 1979, G. ’t Hooft gave a series of lectures
entitled Can we make sense out of “Quantum Chromodynamics”? [48].3 He presented there
arguments and strategies to control QCD via the study of its singularities in the Borel plane.
To this aim, he had to control the flow of the coupling constant in the complex plane. The
tensor field theory T4

5 is a perfect playground for constructive purposes as its flows can be
controled precisely thanks to its simple and exponentially bounded divergent sector. In the
present paper we make a further step by connecting it, modulo certain hypotheses, to an
autonomous non-linear flow of the theory of dynamical systems.

The T4
5 tensor field theory is precisely defined in Section 2. In particular, we present the

cut-offs we use and an alternative representation of the model in terms of an intermediate

1Symmetrized random tensors are more difficult but melons still dominate again [49,50], at least in rank 3.
2In quantum field theory an early reference at those Feymnam graphs appear in [51]
3The title of our article refers obviously to this seminal work.
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matrix field. Section 3 is devoted to the three different representations of Feynman graphs
we need (tensor graphs, coloured graphs and intermediate field maps) as well as related con-
cepts thereof. In Section 4 we derive the power-counting, identify the families of divergent
graphs and give the recursive definitions of the melonic correlation functions. For constructive
purposes, we will employ none of the bare, renormalized or even fully effective perturbative
expansions. In fact, it will be preferable to fully mass renormalize the correlation functions
but use effective wave-functions and coupling constants. We define all these objects in Sec-
tion 5. We also prove there that effective wave-functions and coupling constants are analytic
functions of the bare coupling. The main result of Section 5 is Theorem 5.1 which consists in
a non perturbative definition of the RG flow for the coupling constant. A careful study of an
approximation of this flow is carried out in Section 6 using tools and concepts from discrete
and continuous holomorphic local dynamical systems. We identify in particular “cardioid-like”
domains of the complex plane invariant under this modified RG flow, see Theorems 6.1 and
6.3 and Corollary 6.4.

Solving this T4
5 model means defining its correlation functions non perturbatively in the

coupling constant g. More precisely it requires to prove the existence of holomorphic functions
of g in a (probably cardioid-like, with a cut on the negative real axis) domain of the complex
g-plane such that their Taylor expansions coincide with the perturbative expansions of the
(formal) correlation functions of the model. Moreover these functions should very probably
be proven Borel summable.

To achieve that goal, one expresses the regularized and renormalized correlation functions
as series of analytic functions, normally convergent in a domain the size of which is uniformly
bounded in the ultraviolet cutoff. The infinite cutoff limit is then well-defined and analytic.
These expansions consist in partial resummations of the perturbative series, either expressed in
an intermediate field representation (this is the so-called Loop Vertex Expansion [46,47,52])
or obtained from a specific change of the initial tensor field variables (in which case it is
called Loop Vertex Representation [53–55]). Both approaches have pros and cons but none of
them appears totally suited for the new challenges brought by the T4

5 theory. An update of all
currently known approaches to constructive tensor field theory seems necessary [56].

2 The model

2.1 Rank 5 tensors and free Gaussian measure

In this section we follow as closely as possible the notations of [47]. Consider a pair of conju-
gate rank-5 tensor fields

Tn , Tn , with n = (n1, n2, n3, n4, n5) ∈ Z5, n = (n1, n2, n3, n4, n5) ∈ Z5.

They belong respectively to the tensor product H⊗ := H1 ⊗H2 ⊗H3 ⊗H4 ⊗H5 and to its
dual, where each Hi is an independent copy of `2(Z) = L2(U(1)), and the colour or strand
index i takes values in {1, 2,3, 4,5}. By Fourier transform, the field T can be considered
also as an ordinary scalar field T (θ1,θ2,θ3,θ4,θ5) on the five-dimensional torus T5 = U(1)5

and T (θ1,θ2,θ3,θ4,θ5) is simply its complex conjugate [46, 57]. The tensor index n can be
thought as the momenta associated to the positions θ .

Throughout this paper, we always use bold characters to denote tuples of at least two vari-
ables.
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We introduce the normalized Gaussian measure

dµC(T, T ) :=





∏

n,n

dTndTn

2iπ



det(C−1) e−
∑

n,n Tn C−1
n,n

Tn ,

where the covariance C is

Cn,n = δn,n C(n), C(n) =
1

n2 +m2
, n2 := n2

1 + n2
2 + n2

3 + n2
4 + n2

5. (2.1)

This defines the free tensor fields as random distributions on Z5, namely on the dual of rapidly
decreasing sequences on Z5. But as we are interested in interacting tensor fields, we need to
regularise the free measure.

2.2 Ultraviolet cutoff

In practice we want to restrict the index n to lie in a finite set rather than Z5 in order to have a
well-defined proper (finite dimensional) tensor model. This restriction is an ultraviolet cutoff
in quantum field theory language.

A colour-factorized ultraviolet cutoff would restrict all previous sums over tensor indices to
lie in [−N , N]. However it is not well adapted to the rotation invariant propagator of eq. (2.1)
below, nor very convenient for multi-slice analysis as in [58]. Therefore we introduce a rotation
invariant cutoff but in contrast with [47] it will be smooth.

Let a,ε be two positive numbers such that ε < a. Let χε be a smooth positive function with
support [−ε,ε]. We denote by 1[−a,a] the indicator function of [−a, a]. In order to prepare
for multiscale analysis (see Section 5.3), we fix an integer M > 1 (as ratio of a geometric
progression M j) and choose a large integer jmax. Our ultraviolet cutoff is defined as

κ jmax
(n2) := κ(M−2 jmaxn2), κ(n2) := 1[−a,a] ? χε(n

2).

It is smooth, positive, compactly supported, and satisfies

κ jmax
(n2) =

(

0 if n2 > (a+ ε)M2 jmax ,

1 if 06 n2 6 (a− ε)M2 jmax .

It is convenient to choose a = 5/2 and ε = 3/2 so that the UV cutoff κ effectively restricts
each colour index to lie in [−N , N] with

N := b(a+ ε)1/2M jmaxc= 2M jmax .

The normalized bare Gaussian measure with cutoff jmax is

dµCb
(T, T ) :=

�

∏

n,n

dTndTn

2iπ

�

det(C−1
b ) e−

∑

n,n Tn C−1
b;n,n

Tn ,

where the bare covariance Cb is, up to a bare field strength parameter Zb, the inverse of the
Laplacian on T5 with momentum cutoff jmax plus a bare mass term

Cb;n,n = δnn κ jmax
(n2)Cb(n), Cb(n) =

1
Zb

1

n2 +m2
b

, n2 := n2
1 + n2

2 + n2
3 + n2

4 + n2
5.

A random tensor T distributed according to the measure µCb
is almost surely a smooth function

on U(1)5.
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2.3 The bare model

The generating function for the moments of the model is

Z (N)

b (gb, J , J) =N−1

∫

eT ·J+J ·T e−
gb Z2

b
2

∑

c Vc(T,T ) dµCb
(T, T ), (2.2)

where the scalar product of two tensors A·B means
∑

n AnBn , gb is the bare coupling constant
(which depends on the cutoff N), the source tensors J and J are dual respectively to T and T
and N is a normalization factor. To compute correlation functions it is common to choose

N =
∫

exp
�

− gb Z2
b

2

∑

c

Vc(T, T )
�

dµCb
(T, T ),

which is the sum of all vacuum bare amplitudes. However following the constructive tradition,
we shall limit N to be the exponential of the (infinite) sum of the divergent connected vacuum
amplitudes. Remark the Z2

b scaling factor multiplying gb in eq. (2.2).

To make the interaction
∑

c Vc(T, T ) in eq. (2.2) explicit, we recall first some notation. Tr,
I and 〈 , 〉 mean respectively the trace, the identity and the scalar product on H⊗. Ic is the
identity on Hc , Trc is the trace on Hc and 〈 , 〉c the scalar product restricted to Hc . The notation
ĉ means “every colour except c”. For instance, Hĉ means

⊗

c′ 6=c Hc′ , Iĉ is the identity on the
tensor product Hĉ , Trĉ is the partial trace over Hĉ and 〈 , 〉ĉ the scalar product restricted to
Hĉ .

T and T can be considered both as vectors in H⊗ or as diagonal (in the momentum basis)
operators acting on H⊗, with eigenvalues Tn and Tn . An important quantity in melonic tensor
models is the partial trace Trĉ [T T], which we can also identify with the partial product 〈T, T 〉ĉ .
It is a (in general non-diagonal) operator in Hc with matrix elements in the momentum basis

〈T, T 〉ĉ(nc , nc) = Trĉ

�

T T
�

(nc , nc) =
h
∏

c′ 6=c

�
∑

nc′ ,nc′

δnc′nc′

�i

Tn Tn .

The main new feature of tensor models compared to ordinary field theories is the non-local
form of their interaction, which is chosen invariant under independent unitary transformations
on each colour index. In this paper we consider only the quartic melonic interaction [44],
which is a sum over colours

∑5
c=1 Vc(T, T ) where

Vc(T, T ) = Trc

�

(Trĉ [T T])2
�

=
∑

nc ,nc ,
mc ,mc

�
∑

n ĉ ,n ĉ

Tn Tn δn ĉn ĉ

�

δnc mc
δmc nc

�
∑

m ĉ ,m ĉ

Tm T m δm ĉ m ĉ

�

.

This model is globally symmetric under colour permutations. It is just renormalizable like
ordinary φ4

4 but unlike ordinary φ4
4 it is asymptotically free and using this crucial difference,

we aim, in a future work, at making rigorous sense of it.

Mainly in order to prepare for the constructive study of the T4
5 model, we present here its

intermediate field representation [45]. We put gb =: λ2
b and decompose the five interactions

Vc in eq. (2.2) by introducing five intermediate Hermitian N × N matrix4 fields σt
c acting on

Hc (here the superscript t refers to transposition) and dual to Trĉ [T T], in the following way

e−
(λb Zb)

2

2 Vc(T,T ) =

∫

e
iλb Zb Trc

��

Trĉ

�

T T
�
�

σt
c

�

dν(σt
c),

4The indices of σ cannot be bigger than the maximal value N of each tensor index.
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where dν is the usual GUE measure, that is dν(σt
c) = dν(σc) is the normalized Gaussian inde-

pendently identically distributed measure of covariance 1 on each coefficient of the Hermitian
matrix σc . It is convenient to consider Cb as a (diagonal) operator acting on H⊗, and to define
in this space the operator

σ :=
∑

c

σc ⊗ Iĉ = σ1 ⊗ I2⊗ I3⊗ I4⊗ I5+ · · ·+ I1⊗ I2⊗ I3⊗ I4⊗σ5.

Performing the now Gaussian integration over T and T yields

Z (N)

b (g, J , J) =N−1

∫∫

eT ·J+J ·T e
iλb Zb Trc

��

Trĉ

�

T T
�
�

σt
c

�

dµCb
(T, T )

∏

c

dν(σc)

=N−1

∫

e〈J ,R(σ)CbJ〉−Tr log(I−iλb ZbCbσ) dν(σ) , (2.3)

where dν(σ) :=
∏

c dν(σc), and R is the resolvent operator on H⊗

R(σ) :=
1

I−iλbZbCbσ
.

3 Feynman graphs

Perturbative expansions in quantum field theory are indexed by graphs called Feynman graphs.
Their properties reflect analytical aspects of the action functional. Here we will deal with three
different graphical notions.

3.1 Tensor graphs

The first one corresponds to the Feynman graphs of action (2.2) in which the fields are tensors
of rank five. As for random matrix models, Feynman graphs are stranded graphs (so-called
ribbon graphs in the matrix case) where each strand represents the conservation of one ten-
sor index. The corresponding Feynman rules are recalled in Fig. 1 where an example of such
a Feynman graph is also given. Such graphs will be called tensor graphs in the sequel and
denoted by emphasized letters such as G. A tensor graph is open if it has a positive number of
external edges5 and closed otherwise. An open graph with n external edges is often called an
n-point graph.

edge , vertex c

(a) Feynman rules in the tensor representa-
tion.

(b) An open tensor graph with 2 vertices, 2 internal
and 4 external edges. One face is drawn in red, one
external path in green.

Figure 1: Tensor graphs.

5What we call external edges are actually half-edges and open graphs are in fact pre-graphs. But we do not
insist on being so precise with our terminology.
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The power-counting, i.e. the behaviour at large N of the amplitude, of a tensor graph G
depends on the number F(G) of its cycles, also called faces. Open tensor graphs also have
non cyclic strands which we call external paths, see Fig. 1b. It will be convenient to express
the number of faces in terms of the (reduced) Gurau degree [59] of the coloured extension
of G. We now explain these notions.

3.2 Coloured graphs

Strands of a tensor graph correspond to indices of the original tensor fields T and T . Each such
index is labelled by an integer from 1 to 5 recalling that T is an element of H1⊗H2⊗· · ·⊗H5.
We can then associate bijectively to any tensor graph G a bipartite 6-regular properly edge-
coloured graph G called its coloured extension. See Fig. 2 for a pictorial explanation of the
bijection as well as an example. Such edge-coloured graphs, with or without the constraint of
being 6-regular, will be called coloured graphs for simplicity and their symbols will be written
in normal font. A (D+1)-regular coloured graph will simply be called (D+1)-coloured graph.

0 , c

(a) Feynman rules in the coloured representa-
tion.

c c

(b) The 6-coloured graph which is in bijection with
the tensor graph of Fig. 1b.

Figure 2: Coloured graphs.

We will need several different notions associated to coloured graphs. The coloured exten-
sion of a closed (resp. open) tensor graph will also be considered closed (resp. open). In this
work, edges of coloured graphs will bear a “colour” in [5] := {0,1, . . . , 5}. We will also write
[5]∗ for the set {1, 2, . . . , 5}. Let G be a coloured graph. We let col(G) be the set of colours
labelling at least one edge of G. Let c be an element of [5]. We will often write ĉ for [5] \ {c}.
We denote by Ec(G) the set of edges of G of colour c. The elements of Ec(G) are the c-edges
of G. If C is a subset of [5], we denote

⋃

c∈C Ec(G) by EC(G). Let E′ be any subset of the edges
of G, we let G[E′] be the spanning subgraph of G induced by the edges in E′: the vertex-set
of G[E′] is the same as the one of G, and the edge-set of G[E′] is E′.

Certain (coloured) subgraphs of coloured graphs play a particularly important role. We let
again C be a subset of [5]. A C-bubble is a connected component of G[EC]. Let n be an element
of {0,1, . . . , 6}. An n-bubble B is a bubble such that col(B) has cardinality n. A 2-bubble of
a closed coloured graph is therefore a cycle whose edges bear two alternating colours. Cyclic
2-bubbles of G whose colour set belong to

�

{0, i} , i ∈ [5]∗
	

correspond to the faces of the
corresponding tensor graph G. By extension, cyclic 2-bubbles are often also called faces and
their number denoted F(G). The number of {0, c}-bubbles will be written F0c and we define
F0(G) :=

∑

c∈[5]∗ F0c so that F0(G) = F(G). Similarly, we denote by F;(G) the total number
of faces of G, both colours of which are different from 0. Non cyclic 2-bubbles of G represent
the external paths of G. The interaction vertices of a tensor graph G are in bijection with the
0̂-bubbles of its coloured extension G.

The (reduced) Gurau degree δ(G) of a closed (D + 1)-coloured graph6 G is defined as

6In this case, by convention, the set of colours of G is [D].
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follows [59]:
δ(G) := 1

4 D(D− 1)V (G) + D C(G)− F(G) ,

where V (G) is the number of vertices of G and C(G) its number of connected components.
It is a non negative integer. One can indeed show that it is the sum of the genera of some
maps associated to G [20]. Let S(c)

[D] be the set of cyclic permutations of [D] and τ be such a
permutation. Let Jτ(G) (Jτ if the context is clear) be the map whose underlying graph is G
and whose cyclic ordering of the edges around vertices is given by τ. Such maps are called
jackets in the tensor field literature [60], see Fig. 3 for an example. Then, we have

δ(G) =
1

(D− 1)!

∑

τ∈S(c)
[D]

gJτ .

1 2

0

0

1

1

5 4 23 542 3

2

2

5 4 31 543 1

Figure 3: The jacket J(023145) (bottom) of the top coloured graph.

In order to classify the divergent graphs of tensor models, one needs an extension of the
Gurau degree to open coloured graphs and the notion of boundary graph of a coloured graph.
To start with, we need a slightly generalised version of jacket.7

Definition 3.1 (Jacket of a possibly open coloured graph) Let G be a (D+1)-coloured graph,
open or closed. Let τ be a cyclic permutation of [D]. The jacket Jτ of G, with respect to τ, is the
map built in the following way:

1. consider G as a graph,

2. fix the cyclic ordering of its edges around its vertices according to τ,

3. delete the half- (or external) edges of this map.

Before defining a natural version of the Gurau degree for possibly open coloured graphs, we
need to remind the reader of the notion of a boundary graph. It is well-known that open (resp.
closed) (D+1)-coloured graphs encode (triangulated) D-dimensional piecewise linear normal
pseudo-manifolds with (resp. without) boundary [61, 62]. Let G be such an open coloured
graph. The boundary of its dual pseudo-manifold is triangulated by a complex dual to the
boundary graph ∂ G of G. ∂ G is a D-coloured graph defined as follows: its vertex-set is the
set of external edges of G. Its edge-set is the set of non cyclic 2-bubbles of G. Fig. 4 provides
examples of boundary graphs. From the bijection between coloured graphs and tensor graphs,
∂ G defines the boundary (tensor) graph ∂G of G.

7Such a map is called a pinched jacket in [57].
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c c c

1 2

∂

∂

Figure 4: Boundary graphs.

Definition 3.2 (Gurau degree of a possibly open coloured graph) The Gurau degree of a
possibly open (D+ 1)-coloured graph is defined as

δ(G) :=
1

(D− 1)!

�
∑

τ∈S(c)
[D]

gJτ(G) −
∑

τ∈S(c)
[D]∗

gJτ(∂ G)

�

.

If G is closed, ∂ G is empty and this equation reduces to the usual Gurau degree for closed
graphs. This definition essentially originates from [57]. The point of interest for us is that, in
the case where all the external edges of G bear the same colour, it can be shown that δ(G) is
a measure of the number of faces of G:

Lemma 3.1 Let G be a possibly open (D+1)-coloured graph. Its Gurau degree, given by Definition
3.2, follows

δ(G) = 1
4 D(D− 1)V (G) + D C(G)− F(G)− C(∂ G)− 1

2(D− 1)E(G) ,

where E(G) is the number of external edges of G.

Proof. — Let τ be a cyclic permutation of [D] and Jτ(G) be the corresponding jacket of G.
By Euler relation,

gJτ(G) =
1
2

�

2C(G)− F(Jτ) + e(G)− V (G)
�

,

where e(G) denotes the number of internal edges of G. Faces of Jτ can be divided into two
parts: the ones which are faces of G, the other ones which are not. The latter will be called
external and their number will be denoted by Fext(Jτ). What are these external faces exactly?
Let us look at the upper left graph of Fig. 4, considered as a map. Recall that in the definition
of a jacket, we removed external edges. If one does so for this map, it will contain an external
face which goes all around it. This face is not a face of G because it is bordered by edges of
three different colours, 0, i and j with i, j 6= 0. It will be convenient to define external faces of
G. Non-cyclic 2-bubbles b of G are bordered by two external vertices, namely its two vertices
incident with external edges. If the edges of b bear colours 0 and i, we call b an external path
of G of colour i. An external face of G of colour i j is then defined as a cyclic and alternating
sequence of adjacent external paths of colour i and j respectively. The important point to
notice is that the external faces of G are in bijection with the faces of ∂ G.

External faces of G of colour i j are faces of Jτ if and only if τ contains the sequence i0 j
or j0i. Then, a given external face of G belongs to exactly 2(D − 2)! jackets. Each face of G
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belongs to exactly 2(D− 1)! jackets so that

1
(D− 1)!

∑

τ∈S(c)
[D]

gJτ(G) =
1

2(D−1)!

�

2(D!)C(G)− 2(D− 1)!F(G)− 2(D− 2)!Fext(G)

+ D!
�

e(G)− V (G)
� �

= D C(G)− F(G)− 1
D−1 Fext(G) +

D(D−1)
4 V (G)− D

4 E(G),

where we used that the total number of jackets of G is D! and 2e(G) + E(G) = (D + 1)V (G).
Similarly, using that the total number of jackets of ∂ G is (D−1)!, that 2e(∂ G) = DV (∂ G) and
that V (∂ G) = E(G), we have

1
(D− 1)!

∑

τ∈S(c)
[D]∗

gJτ(∂ G) =
1

2(D−1)!

�

2(D− 1)!C(∂ G)− 2(D− 2)!Fext(G)

+ (D− 1)!
�

e(∂ G)− V (∂ G)
� �

= C(∂ G)− 1
D−1 Fext(G) +

D−2
4 E(G).

This concludes the proof. �

Coloured graphs of vanishing degree are said to be melonic. They form the dominant family
of the 1/N -expansion of coloured tensor models [20].

3.3 Intermediate field maps

The third graphical notion we will deal with corresponds to the Feynman graphs of action (2.3)
viz., Feynman graphs of the intermediate field representation of our model. As the intermediate
field representation is a multi-matrix model, its Feynman graphs are ribbon graphs or maps.
As each field σc bears a colour index c (and the covariance is diagonal in this colour space),
the edges of these maps bear a colour too. The Tr log interaction term implies that there is no
constraint on the degrees of the vertices of these maps nor on the properness of their edge-
colouring. Such maps will be called coloured maps. As for coloured graphs, we let col(G) be
the set of colours labelling at least one edge of G.

There is a bijection between the Feynman maps of the intermediate field representation
and the Feynman graphs of the original tensorial action (2.2). A precise description of this
bijection can be found in [63]. Let us remind the reader of its most salient features. Firstly,
note that we will in fact explain a bijection between coloured graphs and coloured maps. Let
G be a 6-coloured graph of the T4

5 model and let G be the corresponding coloured map. In
each 0̂-bubble of G, there are two sets of four parallel edges. Each set will be called a partner
link.

Edges of G are in bijection with the 0̂-bubbles (or interaction vertices) of G. Each such
bubble has a distinguished colour, namely the colour common to the two edges which do not
belong to a partner link. We label the corresponding edge of G with it. Partner links of G
are in bijection with half-edges of G. Let us now describe the vertices of G. They form cycles
of half-edges. But there is a subtlety due to external edges of G. Each maximal alternating
sequence of adjacent 0-edges and partner links in G form either a cycle or a (non cyclic) path
in case of external (0-)edges. In any case, we represent such a sequence as a vertex in G. If
a sequence is not cyclic, we add a cilium, i.e. a mark, to the corresponding vertex of G. See
Fig. 5 for an illustration of this bijection.

In the sequel, we will use (at least) two features of this bijection between coloured graphs
of our model and coloured maps:
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c

c

c2

c3

c1

c2

c3
c1

c3

c2

c4

c1

c3

c1
c4

c2

Figure 5: Bijection between coloured graphs and coloured maps – Feynman rules.

1. 0-edges correspond to corners of the coloured map [63],

2. melonic coloured graphs are in bijection with coloured plane trees [63,64].

4 The divergent melonic sector

4.1 Divergent graphs

In order to exploit the divergence degree

ω(G) = −2L(G) + F(G)

of a graph G, where L(G) and F(G) are respectively the number of edges and faces of G, we
need to compute the number of its faces. This quantity is given by

F(G) = 4(V (G) + 1)− 2E(G)−
�

C(∂G)− 1
�

−δ(G), (4.1)

where V (G) and E(G) are respectively the number of vertices and the number of external
legs of G. Indeed, as F(G) = F0(G) = F(G)− F;(G), we can use Lemma 3.1 and the specific
form of the quartic melonic interaction vertices (to compute F;(G) = (D − 1)2V (G)). To get
eq. (4.1) we also used V (G) = 4V (G) and set D = 5. The original proof of eq. (4.1) can be
found in [65].

After substituting the combinatorial relation 2L+ E = 4V , the divergence degree of G can
be written as

ω(G) = 4− E(G)−
�

C(∂G)− 1
�

−δ(G). (4.2)

Lemma 4.1 (Superficially divergent graphs) The superficially divergent graphs, i.e. the
graphs G such that ω(G) > 0, all belong to one of the cases listed in Table 1. Moreover, in
the intermediate field representation,
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• divergent four-point graphs are trees such that the unique path between their two cilia is
monochrome,

• the closed superficially divergent graphs are

– plane trees if ω= 5,

– unicyclic maps if ω= 0 or ω= 2

Finally, in the latter case, ω(G) = 2 if and only if the unique cycle of G is monochrome.

Table 1: Characteristics of superficially divergent graphs.

E(G) C(∂G) δ(G) ω(G)
4

1 0
0

2 2

0 0
0 5
3 2
5 0

Proof. — [59] defined two very convenient coloured graphs we will need. The first one is
a chain. Chains can be broken or unbroken. In our case, chains of an intermediate field map
G are paths of the form (e1, v1, e2, v2, . . . , en−1, vn−1, en) where the ei ’s are edges of G, the vi ’s
are vertices of G such that for all i between 1 and n− 1, the degree of vi in G is two. Such
a chain is unbroken if all its edges bear the same colour. It is broken otherwise. The second
simple but very useful object is that of trivial coloured graphs or ring graphs. They consist in a
single loop and no vertex. This loop bears a colour. In our case, this will always be the colour
0. Ring graphs are melonic by convention and are represented by an isolated vertex in the
intermediate field representation.

According to eq. (4.2), the divergence degree of a 4-point graph G is bounded above by
zero. It vanishes if and only if C(∂G) = 1 and δ(G) = 0. Divergent four-point graphs are
thus trees with two cilia in the intermediate field representation. Now, recursively remove all
degree one vertices of this tree which do not bear a cilium. One gets a non trivial path P

with a cilium at each end. This path has the same power counting as the initial tree G. It
is melonic and its boundary graph is connected if P is monochrome, disconnected otherwise.
Thus, according to eq. (4.2), G is superficially divergent if and only if the unique path between
its two cilia is monochrome.

Let us now consider a Feynman graph G such that E(G) = 2. The divergence degree of
such a graph is bounded above by two. The coloured extension of its boundary graph is the
unique 6-coloured graph with two vertices. It is thus connected i.e. C(∂G) = 1. Then
ω(G) = 2 if and only ifδ(G) = 0. Moreover, as proven in [66], if δ(G)> 0 then δ(G)> D−2
where D+1 is the number of colours of G. In our case, D equals five and the smallest possible
positive degree is three. Consequently the only superficially divergent 2-point graphs have
vanishing degree.

Let us finally treat the case of a closed (E = 0) superficially divergent Feynman graph and
work in the intermediate field representation. Note that the divergence degree of such a graph
is bounded above by five. As a consequence, it has excess at most one. Indeed, adding an edge
to a connected graph G increases the number of its corners by two (hence the number of edges
of G increases by two) while the number of faces of G can at most increase by one. Thus the
divergence degree decreases by at least three. A connected closed graph G with maximal
divergence degree (five) is melonic and corresponds, in the intermediate field representation,
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to a tree. According to the argument above, a superficially divergent closed graph has an
excess smaller or equal to one.

Let us focus on divergent graphs G of excess one. They are maps with exactly two faces i.e.
maps with a unique cycle and trees attached to the vertices of this cycle. In order to further
classify such divergent graphs, as in [59], we first remove recursively all vertices of degree
one. This does not change the degree of the graph. The result is a cycle C i.e. a ring graph
into which a maximal proper chain Ch has been inserted. According to [59, p. 288] the Gurau
degree of the coloured graph C is 3 if C is monochrome (the chain Ch is then non-separating
and unbroken with a single resulting face). It is 5 otherwise (Ch is then a non-separating bro-
ken chain). �

The T4
5 model (2.2) has the power counting of a just renormalizable theory (and can be

proven indeed perturbatively renormalizable by standard methods). However the structure of
divergent subgraphs is simpler both than in ordinary φ4

4 or in the Grosse-Wulkenhaar model
[72] and its translation-invariant renormalizable version.

Melonic graphs with zero, two and four external legs are divergent, respectively as N5,
N2 and log N . In the sequel we will only consider 1PI (i.e. one particle-irreducible or 2-edge
connected) graphs as they represent the only necessary renormalizations. Melonic graphs
are trees in the intermediate field representation. The condition that they are 1PI exactly
corresponds to the ciliated vertices being of degree one in the tree (cilia do not count). Melonic
vacuum graphs are always 1PI.

The divergent melonic graphs of the theory are obtained respectively from the fundamental
melonic graphs of Fig. 6, by recursively inserting the fundamental 2-point melon on any bold
line, or, in the case of the four-point function, also replacing any interaction vertex by the
fundamental 4-point melon so as to create a “melonic chain” of arbitrary length (see Fig. 7 for
a chain of length two), in which all vertices must be of the same colour (otherwise the graph
won’t be divergent).

c c

Figure 6: From left to right, the fundamental melons for the 0-, 2- and 4-point func-
tion.

c c c

Figure 7: The length-two melonic four-point chain.

Beyond melonic approximation there is only one simple infinite family of non melonic
graphs who are divergent. They are vacuum graphs diverging either as N2 or as log N . They
are made of a “necklace chain” of arbitrary length p > 1, decorated with arbitrary 2-point
melonic insertions. Two such necklace chains, of length one and four, are pictured in Fig. 8.
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If all couplings along the chains have same colour, the divergence is quadratic, in N2. If some
couplings are different, the divergence is logarithmic, in log N .

c

c c′

c

Figure 8: A length-one and a length-four non-melonic divergent vacuum connected
necklaces. Remark that the left necklace diverges a N2, whereas the right one di-
verges as log N if c′ 6= c.

4.2 Melonic correlation functions

Let us call Gmel
E,b and Γmel

E,b respectively the connected and one-particle irreducible melonic func-
tions (i.e. sum over the melonic Feynman amplitudes) of the theory with E external fields.
With a slight abuse of notation, the bare melonic two-point function Gmel

2,b (n,n) = δn,nGmel
2,b (n)

is related to the bare melonic self-energy Σmel
b (n,n) = δn,nΣ

mel
b (n) by the usual equation

Gmel
2,b (n) =

Cb(n)

1− Cb(n)Σmel
b (n)

.

Σmel
b (n) is the sum over colours c of a unique (monochrome) functionΣ

mel
b of the single integer

nc:

Σmel
b (n) =

∑

c

Σ
mel
b (nc).

Σmel
b is uniquely defined by the last two equations and the following one (see Fig. 9)

Σ
mel
b (nc) = −gbZ2

b

∑

p∈Z5

δpc ,nc
Gmel

2,b (p) = −gbZ2
b

∑

p∈Z5

δpc ,nc

C−1
b (p)−Σ

mel
b (p)

. (4.3)

=
c

Figure 9: Pictorial representation of the relationship between Gmel
2,b and Σ

mel
b . A circle

stands for a connected function, two concentric ones for a 1PI monochrome function.
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Similarly the bare melonic four-point vertex function Γmel
4,b (n,n, m, m) is the sum over

colours c of contributions defined through a unique matrix Γ
mel
4,b (nc , nc) which corresponds

to the melonic invariant Vc:

Γmel
4,b (n,n, m, m) =

5
∑

c=1

δn ĉ ,n ĉ
δm ĉ ,m ĉ

δnc ,mc
δmc ,nc

Γ
mel
4,b (nc , nc).

Γmel
4,b is uniquely defined by the previous equation and the following one (see Fig. 10)

Γ
mel
4,b (nc , nc) = −gbZ2

b

�

1+
∑

p,q∈Z5

δp ĉ ,q ĉ
δpc ,nc

δqc ,nc
Gmel

2,b (p)G
mel
2,b (q)Γ

mel
4,b (nc , nc)

�

,

which solves to

Γ
mel
4,b (nc , nc) =

−gbZ2
b

1+ gbZ2
b

∑

p,q δp ĉ ,q ĉ
δpc ,nc

δqc ,nc
Gmel

2,b (p)G
mel
2,b (q)

. (4.4)

=
c

+
c

Figure 10: Pictorial representation of the relationship between Γ
mel
4,b and Gmel

2,b .

At fixed cutoff N = 2M jmax , these equations define Σmel
b , Gmel

2,b and Γmel
4,b (hence also Gmel

4,b )

at least as analytic functions for gbZ2
b sufficiently small, because the species of melonic graphs

is exponentially bounded as the number of vertices increases, see Section 5.4. However this
does not allow to take the limit N →∞ since the radius of convergence shrinks to zero in this
limit. In short we need to now renormalize.

5 Perturbative renormalization

5.1 Renormalized 1PI functions

The renormalization consists in a melonic BPHZ scheme which is given by BPHZ-like normal-
ization conditions at zero external momenta, but restricted to the divergent sector, namely
melonic graphs.8

The standard renormalization procedure expresses the 1PI correlation functions in terms
of renormalized quantities through a Taylor expansion:

Γmel
2,b := C−1

b −Σ
mel
b ,

Γmel
2,b (n) = Γ

mel
2,b (0) + Γ

mel
2,mr(n) = Γ

mel
2,b (0) + n2

∂ Γmel
2,b

∂ n2
(0) + Γmel

2,r (n),

Γ
mel
4,b (nc , nc) = Γ

mel
4,b (0,0) + Γ

mel
4,r (nc , nc) ,

8The true BPHZ prescription in standard field theory imposes conditions on the full 1PI functions of the theory,
not just their melonic part. This is because all 1PI graphs diverge in standard field theory. In this tensorial theory
since non-melonic graphs are convergent the full BPHZ prescription is not minimal, and differs from the melonic
BPHZ prescription only by unnecessary finite renormalizations.

16

https://scipost.org
https://scipost.org/SciPostPhysCore.4.4.029


SciPost Phys. Core 4, 029 (2021)

where the subscript mr means mass-renormalized, and r means full renormalization, with

m2
r = Zbm2

b −Σ
mel
b (0), 1= Zr = Zb −

∂Σ
mel
b

∂ n2
c
(0), Γ

mel
4,b (0,0) = −gr Z2

r = −gr .

Consequently we have the usual renormalization conditions

Γmel
2,mr(0) = Γ

mel
2,r (0) = 0,

∂ Γmel
2,r

∂ n2
(0) = 0, Γ

mel
4,r (0,0) = 0.

The full melonic two-point function is therefore

Gmel
2,b (n) =

κ jmax
(n)

Γmel
2,b (n)

=
κ jmax

(n)

m2
r + Γ

mel
2,mr(n)

=
κ jmax

(n)

n2 +m2
r + Γ

mel
2,r (n)

,

so that in particular Gmel
2,b (0) = m−2

r .

5.2 Mass renormalizations

Let us start by performing the mass renormalization, and postpone the wave-function and four-
point coupling constant renormalization to the next section. Indeed mass renormalization is
simpler as it does not involve renormalons [67]. So throughout this section we keep the bare
coupling constant gb, and the bare wave-function normalization Zb.

The mass renormalization subtracts recursively the value of all subinsertions at 0 exter-
nal momentum. Hence, recalling eq. (4.3), the monochrome melonic mass-renormalized self-

energy Σ
mel
mr obeys the closed equation

Σ
mel
mr (nc) = Σ

mel
b (nc)−Σ

mel
b (0) = −gbZ2

b

∑

p∈Z5

κ jmax
(p)

δpc ,nc
−δpc ,0

Zbp2 +m2
r −

∑

c′ Σ
mel
mr (pc′)

.

The sum over p in the equation above diverges only logarithmically as jmax →∞. The total
mass counterterm is

δm = m2
r − Zbm2

b = gbZ2
b

∑

c

δc
m,

δc
m =

∑

p∈Z5

κ jmax
(p)δpc ,0

Zbp2 +m2
r −

∑

c′ Σ
mel
mr (pc′)

=
∑

p∈Z4

κ jmax
(0, p)

Zbp2 +m2
r −

∑

c′ 6=c Σ
mel
mr (pc′)

,

where we used that Σ
mel
mr (0) = 0. Remark that δc

m is independent of c, so that in fact

δm = 5gbZ2
b

∑

p∈Z4

κ jmax
(0, p)

Zbp2 +m2
r −

∑4
c=1Σ

mel
mr (pc)

.

5.3 Effective renormalization

We want to perform only the effective (or “useful”) part of the coupling constant and wave-
function renormalizations, that is when the inner loop slice is higher than the external one.
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5.3.1 Multiscale decomposition

After full mass renormalization, all correlation functions, as formal power series in gb, are
expressed as sums over Feynman graphs with mass-renormalized amplitudes containing mass-
renormalized propagators, i.e.

Cmr(n) :=
κ jmax

(n2)

Zbn2 +m2
r
.

Multiscale analysis amounts to decompose the (mass-renormalized here) propagator into a
sum of sclice propagators C [ j]mr(n) where for each j ∈

�

0,1, . . . , jmax

	

, C [ j]mr(n) ensures that n2

is of order M2 j . Similarly to Section 2.2 we define

κ j(n
2) := 1[− 5

2 , 5
2 ]
? χ 3

2
(M−2 jn2) = κ(M−2 jn2), 06 j 6 jmax,

and decompose κ jmax
as follows

κ jmax
=

jmax
∑

j=0

η j , η j = κ j −κ j−1 for 16 j 6 jmax, η0 = κ0.

Provided M2 > 2, η j ( j > 0) is positive, smooth, and satisfies

η j(n
2) =

(

0 if n2 < M−2M2 j or n2 > 2M2 j ,

1 if 2
M2 M2 j 6 n2 6 M2 j .

As a consequence, we define C [ j]mr(n) as η j(n2)
�

Zbn2 +m2
r

�−1
so that Cmr(n) =

∑ jmax
j=0 C [ j]mr(n).

The decomposition of each propagator in the amplitude Amr(G) of any Feynman graph G
allows to write

Amr(G) =
∑

µ∈[ jmax]e(G)
Aµmr(G).

e(G) is the number of internal edges of G. µ is called a scale attribution and corresponds
to choosing one index j` in [ jmax] for each internal edge ` of G so that the corresponding
propagator is C [ j`]mr .

5.3.2 Effective constants

It will be convenient to define some more cutoff functions: for j ∈ [ jmax]

η> j :=
jmax
∑

l= j

ηl = κ jmax
− κ j−1.

Definition 5.1 (Effective wave-function) The effective wave-function constant Z j is

Z j := Zb −
∂Σ

mel
mr;> j+1

∂ n2
c
(0) ,

where Σmel
mr;> j(n) =

∑

c Σ
mel
mr;> j(nc) is the sum of mass-renormalized amplitudes of all 1PI melonic

2-point graphs, all internal scales of which are greater than or equal to j, namely

Σ
mel
mr;> j(nc) := −gbZ2

b

∑

p∈Z5

η> j(p
2)

δpc ,nc
−δpc ,0

Zbp2 +m2
r −

∑

c′ Σ
mel
mr (pc′)

.
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Note that with these notations, Z jmax
= Zb and Z−1 = Zr = 1.

Definition 5.2 (Effective coupling constant) The effective coupling constant g j Z
2
j is

−g j Z
2
j := Γ

mel
4,b;> j+1(0,0)

where

Γ
mel
4,b;> j(nc , nc) :=

−gbZ2
b

1+ gbZ2
b

∑

p,q δp ĉ ,q ĉ
δpc ,nc

δqc ,nc
Gmel

2,mr;> j(p)G
mel
2,mr;> j(q)

and

Gmel
2,mr;> j(n) :=

η> j(n2)

Zbn2 +m2
r −Σ

mel
mr;> j(n)

.

With these conventions, g jmax
= gb and g−1 = gr .

5.4 Analyticity

This section is devoted to proving that the effective wave-functions and coupling constants are
analytic functions of the bare coupling gb (in a disk of radius going to 0 as jmax→∞).

According to Fig. 9, the generating function for the number of 1PI divergent 2-point graphs
is

Σ
mel
(x) =

∞
∑

n=1

5n−1Cn−1 xn, Cn =
1

n+ 1

�

2n
n

�

.

This can be proven either by solving the associated equation for Σ
mel

,

Σ
mel
=

x

1− 5Σ
mel
⇐⇒ 5

�

Σ
mel�2 −Σmel

+ x = 0, (5.1)

or by noticing that divergent melonic 2-point graphs of order n (the root-vertex of which has
a fixed colour) are in bijection with rooted plane trees with n− 1 edges with a choice of one
colour among five per edge. As such trees are counted by the Catalan number Cn−1, we get
the result.

According to eq. (4.4), the monochrome 1PI generating function Γ
mel
4 of divergent 4-point

graphs is given by

Γ
mel
4 = x

�

1− 5Σ
mel�2

�

1− 5Σ
mel�2 − x

,

which, from eq. (5.1), gives

Γ
mel
4 = x

1− 5x − 5Σ
mel

1− 6x − 5Σ
mel

.

By a very simple application of the transfer theorems of Flajolet and Sedgewick [68, chapter

VI], the coefficients of Γ
mel
4 are asymptotically equal to 20n

64
p
πn3

.
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Remembering the definitions of Z j and g j Z
2
j (see Section 5.3.2), we have

Z j := Zb −
∂

∂ n2
c
Σ

mel
mr;> j+1(0) = Zb +

∞
∑

n=1

(gbZ2
b )

nAn(m
2
r , Zb, jmax, j), (5.2)

g j Z
2
j := −Γmel

4,b;> j+1(0, 0) =
∞
∑

n=1

(gbZ2
b )

nBn(m
2
r , Zb, jmax, j). (5.3)

An is the sum of the derivatives of the mass-renormalized amplitudes of the 1PI divergent
melonic 2-point graphs of order n. Bn is the sum of the mass-renormalized amplitudes of the
1PI divergent melonic 4-point graphs of order n. According to their generating functions, the
number of such graphs is bounded by a constant to the power n. Moreover there certainly
exist p, q ∈ N such that the amplitudes of these graphs are bounded by ( jmax)pnM2qn jmax .

Recall that

Zb = 1+
∂Σ

mel
b

∂ n2
c
(0) = 1+

∂Σ
mel
mr

∂ n2
c
(0).

Then, by the implicit function theorem, Zb is an analytic function of gb in a neighbourhood of
0 (which shrinks to {0} as jmax→∞). Let us now define F and G on Ω1×Ω2 where Ω1 (resp.
Ω2) is a complex neigbourhood of 0 (resp. of 1) such that

Z j = F(gb, Zb) and g j Z
2
j = G(gb, Zb).

The amplitude of any divergent graph is a finite sum (because our UV cutoff is compactly
supported) of analytic functions of Zb in Ω2. An and Bn are thus analytic functions of Zb.
Series in eqs. (5.2) and (5.3) converge normally so that F and G are analytic on Ω1 × Ω2.
Finally Z j and g j Z

2
j are holomorphic functions of gb around 0, by composition of F and G

respectively with Zb(gb). This proves that, at fixed UV cut-off jmax, both g j Z
2
j and Z j are

analytic functions of gb in a neighbourhood of 0.
Note also that g j is an invertible function of gb in a neighbourhood of 0.

5.5 Asymptotic freedom

Our aim is to prove

Theorem 5.1 For all j ∈
�

−1, 0, . . . , jmax − 1
	

,

g j+1 − g j = β j g
2
j +O(g3

j ) ,

where β j = β2+O(M− j), β2 is a negative real number and O(g3
j ) = g3

j f (g j) where f is analytic
around the origin (in a domain which shrinks to {0} as jmax→∞).

Proof. — Let us define α( j)
1 ,α( j)

2 and γ( j)
1 as coefficients of the Taylor expansions of g j Z

2
j and

Z j:
g j Z

2
j =: α( j)

1 gb +α
( j)
2 g2

b +O(g3
b), Z j =: 1+ γ( j)

1 gb +O(g2
b).

We thus have

g j = α
( j)
1 gb+(α

( j)
2 −2α( j)

1 γ
( j)
1 )g

2
b +O(g3

b) ⇐⇒ gb =
1

α
( j)
1

g j −
1

�

α
( j)
1

�3 (α
( j)
2 −2α( j)

1 γ
( j)
1 )g

2
j +O(g3

j ).

Inserting the previous equation into the Taylor expansion of g j+1 at order 2, we get

g j+1 =
α

( j + 1)
1

α
( j)
1

g j −
1

�

α
( j)
1

�2

hα
( j + 1)
1

α
( j)
1

(α( j)
2 − 2α( j)

1 γ
( j)
1 )−α

( j + 1)

2 + 2α( j + 1)

1 γ
( j + 1)

1

i

g2
j +O(g3

j ).
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Let us now compute the coefficients α( j)
1 ,α( j)

2 and γ( j)
1 :

−g j Z
2
j = Γ

mel
4,b;> j+1(0, 0) = −gbZ2

b + (gbZ2
b )

2A( j)
4,2(0,0) +O(g3

b),

A( j)
4,2(nc , nc) =

∑

p∈Z4

C> j+1(p, nc)C> j+1(p, nc) ,

where C> j+1(p) := η> j+1(p2)/(Zbp2 +m2
r ) and A( j)

4,2(nc , nc) is the mass-renormalized ampli-

tude, “down to scale j”, of the rightmost graph of Fig. 6. To get α( j)
1 and α( j)

2 , we need the
Taylor expansion of Zb at first order:

Zb =: 1+ γ(−1)

1 gb +O(g2
b) =⇒ −g j Z

2
j = −gb + (A

( j)
4,2(0,0)− 2γ(−1)

1 )g2
b +O(g3

b) ,

where A( j)
4,2 equals A( j)

4,2 evaluated at Zb = 1. We have thus

α
( j)
1 = 1, α

( j)
2 = 2γ(−1)

1 − A( j)
4,2(0,0).

Before computing the flow equation for g j , we need the first order Taylor coefficient γ( j)
1 of Z j:

Z j = Zb −
∂Σ

mel
mr;> j+1

∂ n2
c
(0) = Zb + gbZ2

b
∂

∂ n2
c

∑

p∈Z4

η> j+1(p2 + n2
c )

Zb(p2 + n2
c ) +m2

r

�

�

�

n2
c=0
+O(g2

b)

= Zb − gbZ3
b

∑

p∈Z4

η> j+1(p2)

(Zbp2 +m2
r )2
+ gbZ2

b

∑

p∈Z4

η′> j+1(p
2)

Zbp2 +m2
r
+O(g2

b)

=: Zb − gbZ3
bÃ

(j)

4,2(0,0) + gbZ2
bK j +O(g2

b)

= 1+
�

γ
(-1)

1 − Ã(j)

4,2(0, 0) + K j

�

gb +O(g2
b)

=⇒ γ(j)

1 = γ
(-1)

1 − Ã(j)

4,2(0,0) + K j ,

where, once again, Ã(j)
4,2 (resp. K j) equals Ã(j)

4,2 (resp. K j) evaluated at Zb = 1. Finally, we get

g j+1 − g j = −
�

−
�

A( j)
4,2(0, 0)− A( j + 1)

4,2 (0,0)
�

+ 2
�

Ã( j)
4,2(0,0)− Ã( j + 1)

4,2 (0, 0)
�

− 2K j + 2K j+1

�

g2
j +O(g3

j ).

We now prove that K j (like K j+1) is of order M−2 j and that the sum of the other terms in
β j equals a positive constant plus O(M− j). First, we note that η j(p2) = h(M−2 j p2) where
h(p2) = κ(p2)−κ(M2p2). Remark also that the support of h is [M−2, 2].

K j =
∑

p∈Z4

η′j+1(p
2)

p2 +m2
r
= M−2( j+1)

∑

p∈Z4

h′(M−2( j+1)p2)
p2 +m2

r

= O(M−2 j) +
∑

p∈(M− j−1Z)4
M−4( j+1)h

′(p2)
p2

.

The above sum is a Riemann sum of the compactly supported C1 function h(p2)/p2. Its dif-
ference with the corresponding integral (which vanishes) is of order of the mesh, that is M− j .
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Thus K j = O(M− j).

Ã := Ã( j)
4,2(0,0)− Ã( j + 1)

4,2 (0, 0) =
∑

p∈Z4

η j+1(p2)

(p2 +m2
r )2
= O(M−2 j) +M−4( j+1)

∑

p∈(M− j−1Z)4

h(p2)
p4

= O(M− j) +

∫

R4

h(p2)
p4

d4p,

A := A( j)
4,2(0,0)− A( j + 1)

4,2 (0, 0) =
∑

p∈Z4

η2
> j+1(p

2)−η2
> j+2(p

2)

(p2 +m2
r )2

=
∑

p∈Z4

η2
j+1(p

2) + 2η j+1(p2)η j+2(p2)

(p2 +m2
r )2

= O(M− j) +

∫

R4

h2(p2) + 2h(p2)h(M−2p2)
p4

d4p,

where we used η> j+1 = η j+1 +η> j+2 and ηiη j = 0 if |i − j|> 1. We get

β j = β2 +O(M− j), β2 := −
∫

R4

d4p
p4

�

2h(p2)− h2(p2)− 2h(p2)h(M−2p2)
�

= −
∫

R4

d4p
p4

h(p2)
�

2
�

1−κ(M−2p2)
�

+ κ(p2) + κ(M2p2)
�

< 0.

The analyticity of g j+1− g j −β j g
2
j as a function of g j follows from the analyticity of g j and Z j

as functions of gb (see Section 5.4). �

We have proven that for all j, g j is a holomorphic function of gb in a neighbourhood of
0 which goes to {0} as jmax → ∞. This defines g j+1 as a holomorphic function of g j , in a
neighbourhood of 0 which goes to {0} as jmax→∞. Moreover the first two coefficients of the
expansion g j+1 in powers of g j have a finite limite as jmax→∞.

6 Holomorphic RG flow

In Section 5.5 we proved that

g j+1 = g j + β j g
2
j + g3

j f (g j) =: h jmax, j(g j) ,

where f is holomorphic on a neighbourhood Ω jmax
of the origin and β j = β2+O(M− j), β2 < 0.

Note that a priori Ω jmax
→ {0} as jmax→∞. But the first two Taylor coefficients of h jmax, j have

in fact finite limits as the ultraviolet cutoff is removed. In order to know if such a result holds
true at all orders, which would prove that h jmax, j is holomorphic in a domain uniform in jmax,
we need a better understanding of the series g j+1(g j). In the sequel, we assume it.

Assumptions 1 The series g j+1(g j) is holomorphic in a domain uniform in jmax.

The dynamics defined by h jmax, j is not autonomous, its Taylor coefficients depend on j. Never-
theless, far from the infrared cutoff (here m2

r ), the behaviour of β j suggests that the dynamics
becomes autonomous. In the sequel, we assume it.

Assumptions 2 The discrete RG flow g j+1 = h(g j) is defined by the iteration of a (unique)
holomorphic map h, tangent to the identity, and such that

h(z) = z + β2z2 +O(z3), β2 < 0. (6.1)

22

https://scipost.org
https://scipost.org/SciPostPhysCore.4.4.029


SciPost Phys. Core 4, 029 (2021)

Throughout this section, we will be interested in Cauchy problems with complex initial
data. In particular, we will prove appropriate uniform boundedness of their solutions with
respect to their initial data. In other words, we would like to approach results such as “for all
ε > 0, there exists a complex neighbourhood Ωε of 0 such that gr = g−1 ∈ Ωε implies for all
j > 0, |g j|< ε”.

6.1 Parabolic holomorphic local dynamics

Our first objective is to understand the qualitative behaviour of the approximate RG flow (6.1)
by invoking the theory of holomorphic dynamical systems. To this aim, we need to recall some
classical definitions and theorems, see [69] for example.

Definition 6.1 (Holomorphic dynamical system) Let M be a complex manifold, and p ∈ M.
A (discrete) holomorphic local dynamical system at p is a holomorphic map f : U → M such
that f (p) = p, where U ⊆ M is an open neighbourhood of p; we shall assume that f 6= idU . We
shall denote by End(M , p) the set of holomorphic local dynamical systems at p.

We will only consider the case M = C and p = 0.

Definition 6.2 (Stable set) Let f ∈ End(M , p) be a holomorphic local dynamical system defined
on an open set U ⊆ M. Then the stable set K f of f is

K f :=
∞
⋂

k=0

f ◦(−k)(U).

In other words, the stable set of f is the set of all points z ∈ U such that the orbit { f ◦k(z) : k∈ N}
is well-defined. If z ∈ U\{K f } , we shall say that z (or its orbit) escapes from U . Clearly, p ∈ K f

and so the stable set is never empty (but it can happen that K f =
�

p
	

).

Definition 6.3 (Conjugation) We say that f , g ∈ End(C, 0) are holomorphically conjugated if
there exists a holomorphic map h such that h ◦ f = g ◦ h.

Definition 6.4 (Classification) Let f ∈ End(C, 0) be given by f (z) = λz +
∑

j>2 a jz
j . We say

that f is

1. hyperbolic if |λ| 6= 1,

2. parabolic if λq = 1 for some q ∈ N \ {0},

3. elliptic if |λ|= 1 and λq 6= 1 for all q ∈ N \ {0}.

The RG flow we consider here is thus a parabolic dynamical system (λ= 1).

Definition 6.5 (Multiplicity) Let f ∈ End(C, 0) be a holomorphic local dynamical system with
a parabolic fixed point at the origin. Then we can write:

f (z) = e2iπp/qz + ar+1zr+1 +O(zr+2),

with ar+1 6= 0. r + 1 is called the multiplicity of f .

Definition 6.6 (Directions) Let f ∈ End(C, 0) be tangent to the identity of multiplicity r+1>2.
Then a unit vector v ∈ S1 is an attracting (resp. repelling) direction for f at the origin if ar+1vr

is real negative (resp. real positive).
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Clearly, there are r equally spaced attracting directions, separated by r equally spaced repelling
directions: if ar+1 = |ar+1|eiα, then v = eiθ is attracting (resp. repelling) if and only if

θ =
2k+ 1

r
π−

α

r

�

resp. θ =
2k
r
π−

α

r

�

.

It turns out that to every attracting direction is associated a connected component of K f \ {0}.

Definition 6.7 (Basins) Let v ∈ S1 be an attracting direction for an f ∈ End(C, 0) tangent to
the identity. The basin centerd at v is the set of points z ∈ K f \ {0} such that limk→∞ f ◦k(z) = 0
and limk→∞ f ◦k(z)/| f ◦k(z)| = v. If z belongs to the basin centered at v, we shall say that the
orbit of z tends to 0 tangent to v.

Definition 6.8 (Petals) An attracting petal centered at an attracting direction v of an
f ∈ End(C, 0) tangent to the identity is an open simply connected f -invariant set P ⊆ K f \ {0}
such that a point z ∈ K f \{0} belongs to the basin centered at v if and only if its orbit intersects P.
In other words, the orbit of a point tends to 0 tangent to v if and only if it is eventually contained
in P. A repelling petal (centered at a repelling direction) is an attracting petal for the inverse of
f .

Theorem 6.1 (Leau-Fatou flower) Let f ∈ End(C, 0) be a holomorphic local dynamical system
tangent to the identity with multiplicity r + 1 > 2 at the fixed point. Let v±1 , . . . , v±r ∈ S

1 be the
attracting (resp. repelling) directions of f at the origin. Then,

1. for each attracting (resp. repelling) direction v±j there exists an attracting (resp. repelling
petal) P±j , so that the union of these 2r petals together with the origin forms a neighbour-
hood of the origin. Furthemore, the 2r petals are arranged cyclically so that two petals
intersects if and only if the angle between their central directions is π/r.

2. K f \ {0} is the (disjoint) union of the basins centered at the r attracting directions.

3. If B is a basin centered at one of the attracting directions, then there is a function ϕ : B→ C
such thatϕ◦ f (z) = ϕ(z)+1 for all z ∈ B. Furthermore if P is the corresponding petal, then
ϕ|P is a biholomorphism with an open subset of the complex plane containing a right-half
plane – and so f |P is holomorphically conjugated to the translation z 7→ z + 1.

As a consequence of Theorem 6.1, if z belongs to an attracting petal P of a holomorphic local
dynamical system tangent to the identity, then its entire orbit is contained in P and moreover
f ◦n(z) goes to 0 (as n→∞), tangentially to the corresponding attracting direction. A typical
trajectory can be seen on Fig. 11. Note that Theorem 6.1 asserts the existence of attracting
and repelling petals whose union with the origin forms a neighbourhood of the origin. The
intersection properties of these petals implies that their asymptotic opening angle (i.e. their
opening angle close to 0) is strictly bigger than π/r for a system of multiplicity r. But in
fact, with a bit more work, one can construct petals whose asymptotic opening angle is 2π/r,
see [70]. Such attracting petals are tangent at 0 to their two neighbouring repelling directions.

In case of the system (6.1), we have a parabolic dynamical system of multiplicity 2 so
that there is only one attracting (resp. repelling) petal corresponding to the attractive (resp.
repelling) direction (1, 0) (resp. (−1, 0)). The asymptotic opening angle of the attracting petal
is 2π which makes it very similar to cardioid-like domains obtained by Loop Vertex Expansion
[46,47], see Fig. 12.

In the next sections, we get more quantitative results on the RG trajectories in case gr
is real, on the shapes of attracting petals, and on the size of the Nevanlinna-Sokal disk they
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Re g

Im g

v+
1

v+
2

v+
3 v−

1

v−
2

v−
3

Figure 11: Attracting (green) and repelling (red) petals of a dynamics of multiplicity
4, and a typical trajectory.

Re g

Im g

v+
v−

Figure 12: A unique attracting petal of a multiplicity 2 parabolic dynamics.
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contain. To this aim, we will study continuous dynamical systems, more precisely first-order
ODEs, rather than iterations of holomorphic maps. This is justified by the following argument.
As we saw in Section 5.5, there is evidence that the discrete RG flow of the T4

5 tensor field
is well approximated by the dynamical system (6.1), at least in the deep ultraviolet. From
Theorem 6.1 a trajectory starting in the unique attracting petal P+ remains forever in this petal.
Moreover, in P+, the dynamics is conjugated to the translation z 7→ z+1. But this translation is
the time 1 flow of the constant vector field Y = ∂z . Thus there exists a holomorphic vector field
X such that h in eq. (6.1) is the time 1 flow of X . The Taylor coefficients of X can be computed
recursively via the equation eX (z) = h(z). One finds X =

�

β2z2 + (β3 − 2β2
2 )z

3 +O(z4)
�

∂z if
h(z) = z+β2z2+β3z3+O(z4). As a consequence we will consider, in the next sections, ODEs
of the form

g ′ = β2 g2 + β3 g3 +O(g4), β2 ∈ R−,

keeping in mind that the above β3 corresponds in fact to β3−2β2
2 in the notation of eq. (6.1).

6.2 Quadratic flow

Let us first consider f : R×C→ C such that f (t, z) = β2z2, β2 real negative, and the following
Cauchy problem:

g ′ = f (t, g), (6.2a)

g(0) = gr ∈ C. (6.2b)

The solution is obviously given by

1
g(t)

=
1
gr
− β2 t.

In polar coordinates (g = ρeiθ , θ ∈ [−π,π]), we have

1
g(t)

=
e−iθ

ρ
=

cosθr

ρr
− β2 t − i

sinθr

ρr
. (6.3)

If θr ∈ (−π,π) \ {0}, g is well-defined on R. If θr = 0, g is well-defined on R+ (but explodes
at a finite negative time). If θr = π, g explodes at a finite (positive) time.

We now prove a uniform bound on
�

�g
�

� for gr in the following compact domain Ωε of the
complex plane.

Definition 6.9 (Domain of uniform boundedness of a quadratic flow) Let ε be a positive
real number. In polar coordinates (z = ρeiθ , ρ ∈ R+, θ ∈ [−π,π]),

Ωε :=

(

�

z ∈ C : ρ 6 ε
	

if θ ∈ [−π2 , π2 ],
�

z ∈ C : ρ 6 ε| sinθ |
	

if |θ | ∈ (π2 ,π].

The set Ωε is made of three parts. On {Re z > 0}, Ωε is a closed half-disk of radius ε, centered
at 0. On {Re z 6 0} ∩ {Im z > 0}, Ωε is a closed half-disk of radius ε

2 centered at i ε2 . On
{Re z 6 0} ∩ {Im z 6 0}, Ωε is a closed half-disk of radius ε2 centered at −i ε2 . See Fig. 13 for a
picture of Ωε.

Remark. — Ωε contains the cardioid domain Cε :=
¦

ρ 6 ε cos2(θ2 )
©

which is the typical
domain of analyticity of correlation functions predicted by Loop Vertex Expansion.

Theorem 6.2 If gr ∈ Ωε, then for all t ∈ R+,
�

�g(t)
�

�6 ε.
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Re z

Im z

ε

ε

−ε

− ε2

ε
2

Figure 13: In gray, the domain Ωε of Definition 6.9. In red, the cardioid
ρ = ε cos2(θ2 ).

Proof. — From eq. (6.3),

1
ρ2(t)

=
�cosθr

ρr
− β2 t

�2
+

sin2 θr

ρ2
r

. (6.4)

If θr ∈ [−
π
2 , π2 ], cosθr > 0 and ρ attains its maximum at t = 0 (recall that β2 < 0) so that

ρ(t)6 ρr . If
�

�θr

�

� ∈ (π2 ,π), cosθr < 0 and ρ(t)6 ρr

|sinθr | . This proves the desired bound. �

Remark. — In fact, by the holomorphic (on C∗) change of coordinate z 7→ 1/z, one can even
prove that gr ∈ Ωε implies g(t) ∈ Ωε for all t > 0.

6.3 Cubic flow

We now consider the following complex cubic differential flow:

g ′ = β2 g2 + β3 g3 = β2(x
2 − y2) + β3(x

3 − 3x y2) + 2iβ2 x y + iβ3(3x2 y − y3), (6.5a)

g(0) = gr ∈ C, (6.5b)

where x = Re(g) and y = Im(g), β2,β3 real with β2 < 0. We have

Theorem 6.3 For ε small enough, if gr ∈ Ωε then there exists a function

φ : R+ ×Ωε→ C
(t, gr) 7→ φ(t, gr)

holomorphic in gr , uniformly bounded, namely

|φ(t, gr)|< 2π, for all t ∈ R+ and gr ∈ Ωε,

such that the unique maximal solution of the Cauchy problem eq. (6.5) defined on R+ is

g(t) =
gr

1− β2 gr t + β3
β2

gr log(1− β2 gr t) + β3
β2

grφ(t)
.

27

https://scipost.org
https://scipost.org/SciPostPhysCore.4.4.029


SciPost Phys. Core 4, 029 (2021)

Proof. — The partial derivatives of the right-hand side of eq. (6.5a) with respect to x and
y are continuous so that the Cauchy-Lipschitz theorem applies. As a consequence, for any
complex initial data gr , there exists a unique maximal continuously differentiable solution g
defined on [0, T ) for some T > 0. Moreover if Im gr is positive (resp. negative), then for all
t ∈ [0, T ), Im g(t) is positive (resp. negative). In particular g(t) 6= 0.

Let g2 and g3 be the two following complex functions on R+:

g2(t) = gr

�

1− β2 gr t
�−1

,

g3(t) = gr

�

1− β2 gr t +
β3

β2
gr log(1− β2 gr t)

�−1
.

g2 is a solution of g ′ = β2 g2 and g3 a solution of g ′ = β2 g2 + β3 g2 g2. Let us define the
following new variables:

u :=
gr

g
, u3 :=

gr

g3
, α := |β2|gr , β :=

β3

β2
gr .

In these new variables, eq. (6.5a) rewrites as

u′ = α

�

1+
β

u

�

. (6.6)

Let us insert the ansatz g−1 = g−1
3 +

β3
β2
φ (or u= u3+βφ) into eq. (6.6) to get the ODE satisfied

by φ:

φ′ = −
α

1+αt
β log(1+αt) + βφ

u3 + βφ
. (6.7)

The function g of Theorem 6.3 is a solution of the Cauchy problem (6.5) if and only if φ sat-
isfies (6.7) with initial condition φ(0) = 0.

Let D be the following open subset of R×C:

D :=
¦

(t, z) ∈ (− 1
α ,+∞)×C : u3(t) + βz 6= 0

©

.

Let h be the function defined by:

h : D→ C

(t, z) 7→ −
α

1+αt
β log(1+αt) + βz

u3 + βz
.

It is easy to check that the partial derivatives of h are continuous on D so that h is continuously
differentiable on D. Then, as (0,0) ∈ D, by the Cauchy-Lipschitz theorem, there exists a unique
(continuously differentiable) solution φ to φ′ = h(t,φ) such that φ(0) = 0. In particular, φ
is defined on [0, T ) for some T > 0.

Let us now show thatφ is bounded (and thus defined in fact onR+). We integrate eq. (6.6)
out: for t ∈ [0, T ),

∫ t

0

uu′

u+ β
d t =

∫

u

z
z + β

dz = u− 1− β log

�

u+ β
1+ β

�

= αt ,
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where we used u(0) = 1. This implicit equation for u can be turned into an implicit equation
for φ under the ansatz u= u3 + βφ:

φ = log

�

u3 + βφ + β
(1+ β)(1+αt)

�

. (6.8)

If there exists τ ∈ [0, T ) such that |φ(τ)| > 2π, we define t0 as the smallest t ∈ [0, T ) such
that |φ(t)| = 2π. Thus on [0, t0], the continuous function |φ| is smaller than 2π and must
take all values between 0 and 2π. But,

φ = − log(1+ β) + log

�

1+ β
log(1+αt) +φ + 1

1+αt

�

,

|φ|6 | log(1+ β)|+
�

�

�

�

log

��

�

�

�

1+ β
log(1+αt) +φ + 1

1+αt

�

�

�

�

��

�

�

�

+π

6 | log(1+ β)|+
�

�

�

�

log

�

1+ |β |
| log(1+αt)|+ |φ + 1|

|1+αt|

��

�

�

�

+π.

If |gr | is small enough, |1 + β | is close to 1 and arg(1 + β) is small so that | log(1 + β)| can
be made smaller than 1

2 (say). Let us recall that in polar coordinates, gr = ρr eiθr . A simple
inspection of |1+αt| as a function of t ∈ R+ shows that

|1+αt|>

(

1 if |θr | ∈ [0, π2 ],
| sinθr | if |θr | ∈ (

π
2 ,π).

(6.9)

As a consequence, for gr ∈ Ωε and ε small enough,

|β |
|φ + 1|
|1+αt|

6
�

�

�

β3

β2

�

�

�

|gr |
| sinθr |

(|φ|+ 1)6
�

�

�

β3

β2

�

�

� (2π+ 1)ε6
1
3

.

There remains to bound

|β |
| log(1+αt)|
|1+αt|

6 |β |
1
2 | log |1+αt|2|+π

|1+αt|
.

Firstly,

|β |
π

|1+αt|
6 π

�

�

�

β3

β2

�

�

�

|gr |
| sinθr |

6
1
3

.

Secondly, let us define the functions f , g : [0, T )→ R by f (t) = |1+ αt|2 and g(t) = log f (t)p
f (t)

.

From

f ′(t) = 2ρr |β2| cosθr + 2tρ2
r |β2|2 and g ′(t) =

f ′(t)
2 f (t)3/2

�

2− log f (t)
�

,

we deduce that 06 g(t)6 2
e so that

|β |
2
| log |1+αt|2|
|1+αt|

6
�

�

�

β3

β2

�

�

�

|gr |
e
6

1
3

.

Thirdly,

|φ|6
1
2
+π+ log 2< 2π ,
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which is a contradiction and proves that




φ






∞ < 2π. Finally, to prove thatφ is a holomorphic
function of gr , we note that it is a solution of the implicit equation

Ft(gr , z) =
u3 + βz + β

1+ β
− (1+αt)ez = 0

(see eq. (6.8)). But Ft is holomorphic on
�

C \ {−β2
β3
}
�

× C so that for gr ∈ Ωε and ε small
enough, φ is holomorphic in gr by the implicit function theorem. �

Let ε be a positive real number. Denoting the ratio β3/β2 by β3,2, we define Hε as the
following compact subset of C:

Hε :=







n

z ∈ C : |z|6 ε
1+3π|β3,2|ε

o

if |arg z| ∈ [0, π2 ],
�

z ∈ C : |z|6 ε| sin arg z|
1+ε|β3,2|

�

|log | sin arg z||+3π
�

	

if |arg z| ∈ (π2 ,π).

Re z

Im z

εε̃

Figure 14: In gray, the domain Hε (ε̃ := ε
1+3π|β3,2|ε

, here 3π|β3,2|=
1
2). The red (resp.

dashed) line is the boundary of the cardioid Cε̃ (resp. of Ωε).

Corollary 6.1 Let ε be smaller or equal to 1/|β3,2|. If gr ∈ Hε then the solution of the Cauchy
problem eq. (6.5) given in Theorem 6.3 is bounded above (in modulus) by ε.

Proof. — Let us denote by f the function from R+ to R+ defined by f (t) = |1+αt|. By
Theorem 6.3,

|g(t)|=
|gr |

|1+αt + β3,2 gr log(1+αt) + β3,2 grφ(t)|
,

where β3,2 = β3/β2. But

�

�1+αt + β3,2 gr log(1+αt) + β3,2 grφ(t)
�

�> |1+αt| − |β3,2 gr |
�

| log(1+αt)|+ |φ(t)|
�

> |1+αt| − |β3,2 gr |
��

�log |1+αt|
�

�+ 3π
�

. (6.10)
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Let us assume for a moment that this last lower bound is non-negative. Then,

|g(t)|6
|gr |

|1+αt| − |β3,2 gr |
��

�log |1+αt|
�

�+ 3π
� 6 ε (6.11)

if and only if

|gr |6
ε|1+αt|

1+ ε|β3,2|
��

�log |1+αt|
�

�+ 3π
� . (6.12)

Now, the right-hand side of eq. (6.10) is non-negative if and only if

|gr |6
|1+αt|

|β3,2|
��

�log |1+αt|
�

�+ 3π
� . (6.13)

Consequently, if we impose eq. (6.12), eq. (6.13) is satisfied and this justifies a posteriori the
first inequality of eq. (6.11).

Finally, let g be the function from R+ into itself defined by g(x) = εx
1+ε|β3,2|(| log x |+3π) . It is

easy to check that if ε6 1/|β3,2|, g is increasing. As a consequence, from eq. (6.9),

|gr |6







ε
1+3π|β3,2|ε

if θr ∈ [0, π2 ],
ε| sinθ0|

1+ε|β3,2|
�

|log | sinθr ||+3π
� if θr ∈ [

π
2 ,π),

implies eq. (6.12) and |g(t)|6 ε. �

6.4 Differential flow of higher degree

Let us now consider more general complex differential equations and prove that for sufficiently
small initial conditions, their solutions are uniformly bounded as well. Let U be a complex
neighbourhood of 0. Let f be the following function:

f : R+ × U → C

(t, z) 7→ β2z2 + β3z3 + z4h(z) ,
(6.14)

where h is holomorphic on U . We are interested in the following Cauchy problem:

g ′ = f (t, g), (6.15a)

g(0) = gr ∈ C. (6.15b)

Definition 6.10 (Disks) Let r be real and positive. We will denote by Dr the open disk of radius
r centered at 0. An open disk Sr of radius r centered at r will be called a Nevanlinna-Sokal disk.
Sr is the set of complex numbers z such that Re

�

1
z

�

> 1
2r or equivalently |z|< 2r cos(arg z).

Theorem 6.4 Let ε be a sufficiently small positive real number. There exists a simply connected
domain Dε of C such that Dε ⊂ U, 0 ∈ ∂ Dε, and Dε contains a Nevanlinna-Sokal disk Sδ,
δ = 1

6
ε

1+ 3π
2 |β3,2|ε

, such that if gr ∈ Dε then, for all t > 0, the unique maximal solution of the

Cauchy problem eq. (6.15) defined on R+ belongs to Dε.
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Proof. — By the Leau-Fatou flower theorem, there exists an attracting petal directed along
the positive real axis, see Fig. 12. Consequently we know that there exists an open connected
and simply connected complex subset as claimed in Theorem 6.4. But we have no control on
the size of the Nevanlinna-Sokal disk it contains. Thus we follow a more pedestrian road.

By a biholomorphic change of variable y = ϕ(g), eq. (6.15a) rewrites as

y ′ = −y2 +
β3

β2
2

y3.

This comes from a theorem of G. Szekeres, the proof of which can be found in [71]. Let us
briefly repeat the arguments here. Let U be a complex neighbourhood of 0 and f a holomor-
phic function on U . The corresponding ODE writes

z′ = f (z) ⇐⇒
dz

f (z)
= d t.

The meromorphic differential form ω= dz
f (z) is the dual form of the vector field f (z)∂z . Let us

assume that 0 is a pole of ω of order p+1, p > 1, and note the corresponding residue a−1. In
the case of the vector field eq. (6.14), p = 1 and a−1 = −

β3

β2
2
.

Let us explain how to prove that

ω=
d y

−y p+1 − a−1 y2p+1

after a biholomorphic change of coordinates y = ϕ(z). Firstly, as 1/ f has a pole of order p+1
at 0, there exists a holomorphic function v (near 0) such that

ω=
a−1 dz

z
+ d

�

v
zp

�

, v(0) 6= 0.

Secondly, by integrating the equality

a−1 dz
z

+ d
�

v
zp

�

=
d y

−y p+1 − a−1 y2p+1
,

one obtains an implicit equation for y:

a−1 log z +
v(z)
zp
=

1
p y p

+ a−1 log y −
a−1

p
log(1+ a−1 y p). (6.16)

Thirdly, defining y = ϕ(z) =: zu(z), eq. (6.16) becomes

1
pup
+ a−1zp log u−

a−1

p
zp log

�

1+ a−1(zu)p
�

− v(z) = 0,

and by the implicit function theorem, there exists a neighbourhood V of 0 on which u (then
ϕ) is holomorphic (ϕ is even biholomorphic because ϕ′(0) = u(0) 6= 0).

From Theorem 6.3, there exists a unique maximal solution y(t) of the Cauchy problem

y ′ = −y2 +
β3

β2
2

y3, y(0) = y0 ,

which is defined onR+. Moreover, from Corollary 6.1, if r ′ is smaller than
β2

2
|β3|

, then if y0 ∈Hr ′ ,

y(t) ∈ Dr ′ for all t > 0. If r ′ is small enough then Dr ′ and thus Hr ′ are subsets of V . As a
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consequence, if gr ∈ ϕ−1(Hr ′) =: Ω then g(t) = ϕ−1
�

y(t)
�

is the unique maximal solution of
eq. (6.15) defined on R+ and for all t > 0, g(t) ∈ ϕ−1(Dr ′).

Note that ϕ−1(Dr ′) is bounded, open and connected as the image of a bounded, open
and (arc-)connected subset by a (non-constant) holomorphic function. So let us prove that
ϕ−1(Hr ′) contains a Nevanlinna-Sokal disk by showing that there exists δ > 0 such that
ϕ(Sδ) ⊂ Hr ′ . We proceed in two steps. We first prove that if z ∈ Sδ then Reϕ(z) > 0.
Indeed, there exists a holomorphic function χ on V such that ϕ(z) = −β2z+ z2χ(z). Let θ be
an argument of z.

Reϕ(z)> 0 ⇐⇒ |β2||z| cos(θ )> |z|2 cos(2θ )Reχ(z)− |z|2 sin(2θ ) Imχ(z).

If |z|= 0 then Reϕ(z) = 0. Otherwise,

Reϕ(z)> 0 ⇐⇒ |β2| cos(θ )> |z| cos(2θ )Reχ(z)− |z| sin(2θ ) Imχ(z).

But

|z| cos(2θ )Reχ(z)− |z| sin(2θ ) Imχ(z)6 2δKδ cos(θ )
�

| cos(2θ )|+ | sin(2θ )|
�

6 4δKδ cos(θ ) ,

where Kδ = supz∈Sδ |χ(z)| and limδ→0 Kδ = 0. Thus, for δ small enough, 4δKδ < |β2| and
Reϕ(z)> 0.

We then show that |ϕ(z)|6 r ′

1+3π
|β3 |
β2

2
r ′

:

|ϕ(z)|6 |β2||z|+ Kδ|z|2 6 2|β2|δ
�

1+ 2
δKδ
|β2|

�

6 3|β2|δ.

As a consequence, fixing

3|β2|δ =
r ′

1+ 3π |β3|
β2

2
r ′

, ε=
2
|β2|

r ′,

the theorem is proved. �

If the initial value gr is real and h real-valued, we can be more precise:

Theorem 6.5 There exists gc ∈ R∗+ such that for all gr real in (0, gc), the Cauchy problem
eq. (6.15) has a unique decreasing solution g defined on R+. Moreover let ε be a positive real
number smaller than 1. Then there exists a positive real number α(ε) (smaller than 1) such that
if gr ∈ (0,αgc), g satisfies

gr

1− β2 gr t +
β−3
β2

gr log(1− β2 gr t) +
β−3
β2

grφ−(t)
< g(t)

<
gr

1− β2 gr t +
β+3
β2

gr log(1− β2 gr t) +
β+3
β2

grφ+(t)
, (6.17)

with β−3 := (1 − sgn(β3)ε)β3, β+3 := (1 + sgn(β3)ε)β3 and φ−,φ+ two bounded functions on
R+.
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Proof. — By the Cauchy-Lipschitz theorem, for all gr ∈ U ∩R, there exists a unique solution
of the Cauchy problem eq. (6.15) defined on [0, T ) for some T > 0. Let a : U ∩ R → R be
defined as

f (t, x) := β2 x2a(x),

so that a(x) = 1 + β3,2 x + 1
β2

x2h(x). Let gc be the smallest positive zero of a in U ∩ R if it
exists and sup U ∩R otherwise. As f (t, x) is negative if x ∈ (0, gc), by unicity of the solutions
of the Cauchy problem eq. (6.15), for all t ∈ [0, T ), f (t, g(t)) is negative. As a consequence,
0< g(t)< gr and g is in fact defined on R+ (and decreasing).

Moreover if gr is small enough (say smaller than αgc),

β2 g2 + (1− sgn(β3)ε)β3 g3 < β2 g2 + β3 g3 + g4h(g)< β2 g2 + (1+ sgn(β3)ε)β3 g3

for all t > 0 and by Theorem 6.3, g satisfies eq. (6.17). �
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