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Abstract

We study the dissipative dynamics of one-dimensional fermions, described in terms of
the sine-Gordon model in its free massive boson or semi-classical limit, while keeping
track of forward scattering processes. The system is prepared in the gapped ground state,
and then coupled to environment through local currents within the Lindblad formalism.
The heating dynamics of the system is followed using bosonization. The single particle
density matrix exhibits correlations between the left and right moving particles. While
the density matrix of right movers and left movers is translationally invariant, the left-
right sector is not, corresponding to a translational symmetry breaking charge density
wave state. Asymptotically, the single particle density matrix decays exponentially with
exponent proportional to —yt|x|A2 where y and A are the dissipative coupling and the
gap, respectively. The charge density wave order parameter decays exponentially in time
with an interaction independent decay rate. The second Rényi entropy grows linearly
with time and is essentially insensitive to the presence of the gap.
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1 Introduction

Interacting quantum particles in one dimension typically either retain some low energy exci-
tations and form a Luttinger liquid, or become gapped due to strong interactions and realize,
e.g., an insulator. The latter phase is often described by the famous sine-Gordon model [1,2]
or by its close relative, the simpler free massive boson model. The behavior of these systems
is well documented in closed quantum systems [3-6] in and out of equilibrium [7, 8], and
faithfully realized in condensed matter, cold atom or other complex systems. In spite of its
relevance, the response of these models to dissipative coupling to environment is much less
studied and understood.

The interplay of dissipation and strong correlations, combined with reduced dimensional-
ity [9-18], promises to provide a plethora of interesting phenomena [ 19-26]. This includes al-
gebraic or exponential decay of correlation function in dissipative many-particle systems [10],
universal features in the vaporization dynamics of Luttinger liquids [27] or targeted cooling
into topological states from arbitrary initial states [19,26]. In addition, propagators and corre-
lation spreading also reveal unexpected features [14]. A recent experiment [28] on Josephson-
coupled one-dimensional bosons as well as related theoretical analysis [29] also hint to the
importance of incorporating dissipation into sine-Gordon theory, though other explanations
are also available [30, 31].

This motivates us to take a closer look at the dissipative dynamics of the sine-Gordon (sG)
model. The sG model is Bethe ansatz solvable as a closed quantum system [8,32], its solution
simplifies, however, significantly at the so-called Luther-Emery line [8,32] and also in the semi-
classical [33-36] or free massive boson limit, when solitons are neglected, and the interaction
potential is expanded around one of its minima, reducing the model to the massive boson or
Klein-Gordon model [33]. This 'free massive boson’ limit captures the basic correlations, and
we focus on this limit to understand dissipative dynamics.

We consider spinless interacting fermions in the presence of a gap in their spectrum, arising
due to backscattering or umklapp processes [8], or simply due to a staggered dimerizing defor-
mation or potential of a one-dimensional half-filled lattice. We assume a dissipation coupled
to the current operator, and turn on dissipation at time t = 0, as a certain kind of dissipative
quantum quench. We use bosonization to investigate the spatial and temporal decay of the
fermionic single particle density matrix

Gap(; ) = (P (x1pp(0)),  a,B=L,R, (1)

with v ; and 1 referring to the left- and right moving fermionic fields (see Eq. (11)), re-
spectively and the expectation value defined as (...) = Tr{p(t)...}, with p(t) the time evolved
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density operator. We write the single particle density matrix as

Gp (35 1) = Ggp (33 0) eFar (o) 2

and determine the functions Fgrp(x,t) and F;z(x,t). In contrast to the dissipative Luttinger
liquid case [27], the correlator between right and left moving fermions becomes finite due to
the presence of the gap.

We find that in the long distance and long time limit, the single particle density matrices
of both Ggg and G, decay exponentially with an exponent proportional to —y t |x| A? where
y and A are the dissipative coupling and the gap, respectively. The von Neumann entropy of
the system also grows similarly to the Luttinger liquid as —t In(t), and is largely insensitive to
the presence of the gap. These results are also relevant for dissipative interacting relativistic
field theories, such as the massless Thirring model [1,2].

2 Free massive boson limit of the sine-Gordon model

The one-dimensional sine-Gordon (sG) model [1, 6, 8, 32] describes interacting fermions,
bosons or spins [8]. The sG model is constructed in terms of the Bose field, ¢ (x) [8],

$(x)=— Z\T;'I‘f e (b +b,), 3)

q70

with by denoting canonical bosonic operators of momentum q. It consists of the conventional
quadratic Luttinger liquid Hamiltonian, H;;, incorporating forward scattering processes, and
an additional —J f dx cos(2¢ (x)) perturbation. If the cosine term is relevant, it opens up a
gap in the spectrum, and the field ¢ (x) gets locked into its minima.

This cosine term can arise due to strong umklapp scattering [8] or backscattering [2], or
simply due to a staggered potential or dimerization ', which can all open up a gap in the
spectrum. For the sake of concreteness, we can consider a one-dimensional tight binding, half
filled lattice of spinless fermions, interacting via nearest neighbour interaction, in the presence
of a staggered potential [8]. This maps onto the anisotropic XXZ Heisenberg chain in the pres-
ence of a staggered magnetic field in the z direction [5]. Strong repulsive interaction without
the staggered potential, or weak interactions in the presence of the staggered potential yield
the sine-Gordon type low energy physics. Alternatively, one can consider a one-dimensional p-
wave superconductor in the presence of electron-electron interaction [37], though the cosine
term would contain the dual field of ¢ (x).

Deep in the massive phase, one can approximate the cosine term as ~ f dx2J¢?(x) [33].
This represents the so-called semi-classical limit of the model, which is described by massive
bosonic excitations [33]. In this limit, the Hamiltonian can be written in terms of the bosonic
annihilation operators b, as

H= [w(@)(biby+b%b ) +8(a)(b5b7, +beb )] @

q>0

Here, w(q) = (vo + g4)q + A%/(2voq) and g(q) = g2q + A?/(2v,q) with v, the bare sound
velocity of the non-interacting and non-gapped system, g, and g4 are the conventional forward
scattering interactions [8,38] and the energy scale A ~ 2J is proportional to the gap or mass
of the elementary excitations. Note that in the absence of A, the model is identical to the
interacting Luttinger model [27].

n this case, the factor of 2 would be absent from the cosine term as cos(¢(x)).
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Since the Hamiltonian is quadratic in the bosonic operators, it can be diagonalized by
Bogoliubov transformation leading to

H=Egs+ Y &(q)(BIBy+BBy), (5)
q>0

where @&(q) = +w2(q)—g2(@) = +/(Flg))2+A2 is the gapped spectrum, and

Egs = Zq>0(c7)(q) — w(q)) is the ground state energy. Due to the interaction, the sound

velocity and the gap are renormalized as 7 = 4/(vy + g4)% — g% and A = A+/K¥/v,, where

K = v/(vo+ 84— 82)/(vo + g4+ g2) is the Luttinger parameter. For attractive or repulsive
interactions, K > 1 or K < 1, respectively.

The gap A and the renormalized sound velocity, 7, define a natural length scale, the co-
herence length,

E=7/A. (6)
As we shall see later, the coherence length & represents a characteristic length scale that sep-
arates the short and the long distance regimes for the spatial dependence of the fermionic
Green’s functions G(x; t).

We note that this semi-classical limit is expected to be valid as long as the Luttinger liquid
parameter is small, K < 1. In this case, expanding the cosine potential around one of its
minima is a rather good approximation [8,33-36]. In this limit, the mass of the soliton is
pushed up [1] to very high energies with 1/+/K and thus is expected to decouple from the
dynamics. Its effect can still be taken into account perturbatively using a form factor expansion,
which is beyond the scope of the current investigation.

The goal of the present investigation is to study the non-equilibrium dynamics of the semi-
classical limit of the sine-Gordon model following a sudden quench at t = 0 when the coupling
to the environment is switched on. For the dynamics, the initial state is the ground state of Eq.
(5), i.e., no bosonic excitations are present. After the quench, t > 0, the time evolution of the
system is governed by the quantum master equation of Lindblad type for the density operator

op Z—i[H,P]'i‘}’fdx([j(x),Pf(X)]+h-C-), (7)

where p is the density operator. In Eq. (7) j(x) is the current operator, which is a natural
choice of jump operator when the environment is a fluctuating vector potential or gauge field
[12,27,39-42]. These naturally couple to local currents. We mention that another natural
choice for the jump operator would be the local particle density [43-45]. Our theory would
in principle apply also for that case with minor modifications, e.g. by replacing K with 1/K.
In the bosonization language, the current operator is expressed with the help of the bosonic
annihilation operators [8] as

j(x) = Z \ % sgn(q) e 9% (b_q - b;) , (8)
q#0

and the integral in Eq. (7) yields

_ Y
oo ——z[H,p]+gq;([Lq,pL;Hh.c.), ©)

where L, = +/Iq[ (b, — b*,) = v/Ial (B, — B, ) / v/K(q) with K(q) = K¥lq|/&(q).
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The Lindblad equation allows us to calculate the expectation value of the occupation num-
ber of Bogoliubov bosons B;Bq and the anomalous operator, which are obtained analytically
as

Y .
nB(t)=Tr{p(t)BB,} = — B, (10a)
Briy — 4o+l _ T 2i6(q)t _

mP(6)="Tr {p()B}B,} = s (e 1). (10b)
The linear growth of the boson number implies that in the long time limit the system is
heated up to infinite temperature. This feature is the same as found in the gapless Luttinger

model [27,45], and follows from the fact that the jump operator is hermitian.
Having discussed the properties of the bosonic operators, we return now to the original
fermionic fields, which are probed experimentally. The physical fermions are decomposed into

right and left going particles as

P(x) = ek app(x) + e K xap (x), (11)

where kj is the Fermi wavenumber and 1k ; (x) is the field operator for the right (R) and left
(L) moving fermionic quasiparticles. These can be expressed in terms of the bosons as

1 i0)=4(x)
= e 5 (12)
Ve = oa
with 6(x) the dual field of ¢(x) [8]. The relevance of the cosine term therefore implies the
locking of the phase ¢, corresponding to a finite expectation value of 1) ¢, and a spatially
modulated particle density.
The equal-time single particle density matrix is defined as

Glx,y; )= (WP () = e T (hF G, (1)) +c.c. (13)
+ekr 0= (G (1) + e R (P )y, (1))

Here, the expressions within the expectation values are translational invariant, i.e. depend
only on x —y, while the exponential prefactors exp(ikz(x + y)) are not. In a Luttinger liquid
without the sine-Gordon term, only the RR and LL correlators are finite, the RL and LR terms
vanish identically. However, with the sine-Gordon term, these become also finite and need to
be considered on equal footing.

The diagonal of the density matrix, G(x,x;t), is just the particle density,. As
stated earlier, for any finite (¢} (x)y(x)) # O it contains spatially inhomogeneous part
~ el 2kr x (Y7 (x)yr(x)) + c.c, and describes a charge density wave pattern.

3 Equal-time single particle density matrix of the right movers

To have a deeper understanding about the heat up process of the fermions, it is worth studying
the time evolution of the correlations. We investigate first the time dependence of the equal-
time single particle density matrix of the right movers

Grr(x; t) = Tr {p(£) Y3 (x)hR (0}, (14)

with 1 defined in Eq. (12). Later, we will also study the correlation between right and left
moving particles.
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After a long algebraic derivation, for details, see the Appendix, the single particle density
matrix is calculated as

G ot 8 .
IH(M)=—Z—nnb(t)sm2 (@) R (15)
Go(x) = Llgf 2
where Gy(x) = m is the single particle density matrix of the gapless, non-interacting

system, and ng(t) = (b;r bq) is the occupation number of the b bosons. The short length scale

a, appearing in G, and (12), is introduced to regularize the momentum integral by e~ The
asymptotic behavior of the non-interacting gapless correlation function obeys the well-known
~ 1/x power-law for x > a. In our model, the single particle density matrix deviates from
Go(x) due to the presence of both interaction and dissipation. The expectation value of the
number of b-bosons is calculated as

w(q) 8@y w(q)
0= S - Sgrenio) + 3 (35 -1). ae

in which the time dependence only occurs through the functions ng(t) and mg(t), defined in
gs. (10). Here, the first two terms arise from dissipation, while the last one follows from
quantum fluctuations due to interactions.
At t =0, i.e., when the system is in the vacuum of B-bosons, both ng and mg vanish, and
the initial single particle density matrix is written as

i 41 w(q) gx
Grr(x;0) = Tae p( L|q| w(q)sn (7)> (17)

We use again the exponential cut-off with a to regularize the momentum integrals. For a
small gap, A < ¥/a, i.e. a < &, the t = 0 single particle density matrix can be calculated
analytically as

i 1 1 x2 K+K™t a ix
GRR(X,O):%CXP(§ (1+—G ( gZ))-i_ 5 (ln(g)—EREYO( g ))), (18)

3/2

1 1/2
function of the second kind. It is meaningful to extract the short and long distance behaviors,
obtained as

where Gy (y) = G23 (y‘ 0 ) is a Meijer G-function [46] and Y, is the Bessel

{g|(K+K‘1)/2, a<x<E,

i x
GRR(X; 0) = 2_ a (K+K—1)/2 _4£ x (]—9)
(%) e

ma el E<x.

For short distances, x < &, the gap has no effect on the spatial decay and the power-law
function with the exponent (K + K~1)/2 is characteristic of the interacting, gapless Luttinger
model. At long distances, x > &, however, the gap becomes relevant and the correlation
function decays exponentially with x.

After switching on the coupling to the environment, the single particle density matrix is
expected to decrease with time according to the intuition that the system is heated up to infinite
temperature. The time-dependent part of the equal-time correlation function is obtained by
substituting the time-dependent terms of Egs. (16) into (15),

Gaali ) @ @
P, )= 1n( ) = qZOSN[Z(Z) 0 Sare(mi)sn(5). @

6
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Figure 1: Normalized effective decay rate of correlations in the RR sector as a function
of time at various distances for K = 0.3 and a/€ = 0.01. The curves are obtained by
evaluating Eq. (20) numerically. They start from —2 in our dimensionless units for
short times and reach the x dependent asymptotic values (thin black dashed lines)
from Eq. (22). In between, the crossover is described by Eq. (24).

The integral over q can be calculated analytically only for the term containing ng(t). Using

the exponential cut-off and taking the scaling limit, when a < {x, £}, the integral yields the
first term of Eq. (21), whose magnitude increases linearly with time.

The term containing mg (t) cannot be calculated analytically. Numerical investigation
shows that this term features temporal oscillations for late times. These oscillations are cap-
tured analytically by approximating @(q) ~ A. Together with the contribution of the ng(t)

term, we get in the A™! < t long time limit

t 1 in(2At
Fag(, ) m— XL (20Xl g L) v sin@AD)
na \ 262K2 K2) Ek2 2A

x
2¢
For long times, the first term displaying the linear time dependence dominates in Eq.(21), and
yields an exponential decay of the density matrix, the exponent of which decreases linearly
with increasing separation x (see Fig. 1). For times A™! < t the second term yields oscilla-

tions of the exponent, but these oscillations fade away at longer times, and an exponential
suppression with exponent

+ i(1—K2)) . @D

e’

ot ma|x| 1
Frr(x, t) ~ p (2£2K2 +1+ ) (22)

is found asymptotically for t > A™L.
In the opposite limit of extremely short times, t < a/7, i.e., for times shorter than the high
energy time scale, however, we obtain an x independent decay with an exponent

2yt
Frn(x, t)N—TC—Ya, t<ali. (23)

The richest behavior is found in the intermediate temporal region, a/7 < t < 1/A, where
the first term in Eq. (20) gives results identical to those in Eq. (22). The second term in Eq.
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(20) with mg(t) gives, however, a correction for 27t < |x|

G(x;t)
G(x;0)

_ X
e zng &

e_ nak?2 vtIxI_l) (24)
K27K)  opr < |x],

re(1+x2) 1, 20t > |x|,
% 4vK(K -2

exhibiting very mild light cone behavior at 2Vt = x, compared to the one found in closed
quantum systems [33].

In the gapless case, A = 0, Eq. (24) renders the results obtained for dissipative Luttinger
liquids [27]. Notice, however, that the intricate spatial and temporal behavior of Eq. (24)
is valid only for a/¥ < t < 1/A, and the late time, large distance behavior of the correla-
tion function is dominated by the gap, giving rise to the unusual exp(—const - |x|t) decay of
Ggrr(x;t), one of the key findings of the present paper. This latter behavior starts to become
dominant for x = £2/a. This strong suppression of the correlation function at late times is in
accord with what is expected from a very high temperature state, where the correlations are
suppressed by the time and length scale associated to temperature [8].

We compare the analytical estimates above with the numerical evaluation of Eq. (20) in Fig.
1, where we show the effective decay rate, ~ %ln [GRR(X ; £)/ Grr(x; t):| as a function of time.
The spatial and temporal dependence of the single particle density matrix Ggg(x; t) agrees well
with the analytical results, confirming the exp(—const - |x|t) asymptotics (horizontal dashed
lines), while the early time decay rate remains largely insensitive to the spatial separation.
The temporal and spatial decay is partially confirmed by exact diagonalization simulation of
the XX Z Heisenberg model. Since exact diagonalization has high computational costs, only
system sizes of up to 14 sites are accessible which is less conclusive for long distances.

4 Correlation between left and right moving particles

While in the Luttinger liquid phase, left- and rightmovers are independent, they become cor-
related in the presence of a gap [47,48], and the corresponding off-diagonal density operator

Grr(x; ) =Tr{p() ¥} ()Yr(0)} , (25)

becomes finite. The trace is evaluated by using the bosonic representation, Eq. (12), similarly
to the previous section. The decay factor of the single particle density matrix is obtained as

oy (GrG )Y o 4n (g, w(g) —g(g) cos(gx)
ruts0 =i (G2 ) = D (O 5 20

+Re( B(t))w(q)cozgtg)) g(q) Im(mg(t))sin(qx)),

which, interestingly, depends on time again only through the functions ng(t) and mg(t). De-
tails of the derivation can be found in the Appendix. The initial correlation function now
reads

Gun(c:0) = 51T O S 0crte] o
and is evaluated as
~ 7K2
Lo [T aee<
Grr(x;0)= o % (28)
e ®El, g &<x.
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Note that if the gap is zero, then & is infinitely large, and the correlation function vanishes.
Without forward scattering, K = 1, G;z(x;0) stays constant within the coherence length,
and vanishes exponentially outside it. The local density operator, G;(0; t), characterizes the
amplitude of the 2k oscillating charge density profile. At the start of the dissipation quench
and in the aA < ¥ limit we have

~\K
1 ae’EA
Gr(0;0) = oma ( 77 ) , (29)

with yr = 0.5772... denoting Euler’s constant. In the absence of forward scattering interac-
tions, K = 1, the charge density wave amplitude (v; (x)1)(0)) is directly proportional to the
gap, G;r(0;0) ~ A, while this gets significantly renormalized due to interactions, K # 1, as
A — AK, The exponent K is inherited from the scaling dimension of operator responsible for
2ky density fluctuations [8]. In particular, repulsive interactions with K < 1 favor ordering by
enhancing the value of the gap and also the amplitude of charge oscillations, while attractive
interactions with K > 1 reduce the gap, and suppress charge oscillations.

At long distances, the time-dependent part exhibits the same limiting behavior as the den-
sity matrix of the right movers,

—V—t(”“"" +1+%), £>1/A,

FLR(x,t)N{ ma \ 2£2K2 s < afp (30)
a/v.

vt
_zﬁ 5
For long times and large distances, the gap thus dominates and leads to a G,z ~ e~constlxt
behavior, as also confirmed by the numerical evaluation of Eq. (27) (see Fig. 2).

At intermediate times, a/7 < t < 1/A, the decay is slightly different than the one ob-
tained in the RR and LL sectors. We obtain, in particular

sgn(x)
Gr(x;t)  —x|s| _r(xx?) ezy_“( * _1), 20t > |x|,
—LRATD 7 oy e 2k%E|&|e nak2 X v (1-k2 | ex (31)
Grr(x;0) eﬁ(zx—ﬁ@), 20t < |x|,
0 —
—2z/£=0.1
—x/E: 1
5t x/€=20 |
= — /€ =40
S-10 —a/E=60 |
&
E
= -15 ¢
~
-20
-25 ‘
10 102

Figure 2: Time dependence of the decay rate of the anomalous LR single particle den-
sity matrix, governing the amplitude of 2ky charge density wave correlations. The
curves are obtained by evaluating Eq. (27) numerically with K = 0.3 and a/& = 0.01.
Short and long time asymptotics are very similar to those of the RR sector (see in Fig.
1). The crossover is described by Eq. (31).
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Frr(0,t)ma/~t
V)
o

¢
(6)]
T
|

-4 ‘ ‘ ,
107 102 10° 10%
At
Figure 3: Time dependence of the decay rate of charge density wave order parameter
for a&/ ¥ = 0.01, (see Eq. (32)). Apart from the renormalization of its equilibrium

value A — AK| the time dependence is completely independent of the forward scat-
tering interaction.

which again features rather mild light cone effects.
We can also follow the dissipation-induced temporal destruction of the 2k charge density
wave. The amplitude (17 (0)z(0)) decays exponentially in time as

4yt
e t<L a/v,
G1r(0;t) ey N %
=~ e H, a/iKt<K1/A, (32)
G1r(0;0) oyt .
e Ta, 1/ ALt

with the decay rate reduced by a factor of 2 in course of the dissipative time evolution, as
shown in Fig. 3.

5 Entanglement entropy generation

The information loss in an open system is expressively demonstrated by the growth of the von
Neumann entropy, defined as S(t) = —Tr{p(t)In p(t)}. This latter can be regarded as the ther-
modynamical entropy, or as the measure of entanglement with the dissipative environment.
Following the derivation of Ref. [27], the entropy is obtained as

S(t) =2 [(Ny(t) + DIn(Ny(£) + 1) — No(t) InN,(1)] , (33)

q>0

2
where Ny(t) = \/(ng(t) + %) — Img(t)l2 — %, with ng(t) and mg(t) the functions displayed
in Eq. (10). For weak dissipation, i.e., when y < VK, we get Ny(t) ~ y&(q)t/(VKn) and the
entropy is obtained as

—f(a/E) Liin 2o
S(t)m%{ f(a/g)Kananaﬁ; rt <L Karm, 31

In L=, vyt > Karm,

where f(z) = 5 (—Y1(2) + Hy(2)) with Y; the Bessel fu~nction of the second kind, and H; is
Struve function. In the scaling limit, we have f(a < &) = 1, and the entropy exhibits the
same time dependence as in the gapless case [27]. This behavior is explained by the fact that
the entropy is mostly determined by high energy modes, and is not influenced by the presence
or absence of the gap at low energies. We mention that for fermionic models with finite local

10
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Hilbert space, the entropy cannot be larger than ~ L/a. Therefore, the second line in Eq. (34)
could possibly show up in bosonic realization of the sine-Gordon models [7], where the local
Hilbert space is much bigger.

Beside the von Neumann entropy, it is worth investigating the second Rényi entropy,
which is more relevant experimentally [49-51]. The second Rényi entropy is defined as
Sy(t) =—InTr{p(t)*}, and is computed as

So(t)=2>"In(2Ny(t)+1). (35)

q>0

Details of the derivation can be found in the Appendix. In the weak dissipation limit, the early
and long time dependence is calculated as

t
5,(0) = L {Zf(%)ﬁ, yt<Kam, 36)
2 - yt
a lnm, '}’t>>K(17'C,

which is again dominated by high energy modes and the gap does not affect the asymptotic
temporal variations. Similar time dependencies are found in other systems as well [12].

We mention that the monotonic temporal increase of these entropies agrees with the physi-
cal picture that the system heats up to infinite temperatures upon coupling it to a bath through
a hermitian jump operator. However, the late time In(t) entropy growth is connected to the
infinite dimensional local Hilbert space of the b, bosons, and is absent in lattice models with a
finite dimensional local Hilbert space (i.e. for fermions or hard core bosons). In this limit, the
sine-Gordon description will eventually break down and the entropies are expected to saturate
to their maximal values, determined by the size of the Hilbert space.

6 Conclusions

We investigated the dissipative dynamics of the sine-Gordon model in its ’semi-classical’ limit,
where forward scattering interactions are still incorporated, but solitons are neglected, and
the low energy Hamiltonian is described in terms of massive bosons. We considered the case
of a current operator induced dissipation within the Lindblad formalism, where the dissipative
dynamics remains still exactly solvable. We have focused, in particular, on the time evolution
of the density operator of the underlying fermionic theory.

The interplay of forward scattering interaction, gap, and dissipation produces interesting
features in the single particle density matrix. The density matrix of the right movers features
Luttinger liquid type power law correlations within the coherence length, associated with the
gap, |x| < &, but decays exponentially in space and time as ~ exp(—const - |x|t) in the long
distance, late time limit.

More importantly, the anomalous density matrix between right and left moving fermions
reveals a very similar spatio-temporal pattern. In the initial non-dissipative state, the bare gap
A gets strongly renormalized by interactions, A — AK with K the Luttinger liquid parameter,
and gets exponentially destroyed in time with a decay rate that gradually decreases by a factor
of 2.

While correlations and the single particle density matrix are very sensitive to the presence
of the gap A, the entropy is not. The von-Neumann and second Rényi entropies are extensive
and grow initially as —t In(t) and t, respectively due to the presence of interaction with the
dissipative environment. This originates from the large number of high energy modes, which
become populated fast due to heating from dissipation.
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A Derivation of the equal-time single particle density matrix

In this section, details of the derivation of the single particle density matrix are provided in
both the RR and the LR channel. In both cases, the time-dependence of the density matrix is
necessary. The Lindbladian dynamics does not couple the different ¢ > 0 modes and, hence,
the density matrix matrix can be written in the form of

vy(1)? t)|? .
p(t) = l_[( (v) (t)tqi ) oCa(K,_ e—2ln(vq(t)+1)KqOecq(t)*Kq+) 7 (37)
q>0

where K,_ = byb_g = K(;r and Kyp = (b; by + biq b_,)/2 obey su(1,1) algebra. By substituting
(37) into the Lindblad equation (9), first order, non-linear differential equations are derived
for v4(t) and c,(t). As shown in Refs. [52], the differential equations are solved by

ng(t) mg(t)

- iR R iR 39

v(t) =

where né’(t) =Tr [p(t)b;!r bq] and mfl’(t) =Tr [p(t)b;r bfq]. These expectation values are
expressed in terms of B-bosons as given in Eq. (16) of the main text and

mo(6) = 2D ge mB(0) + itmmb(0) + £L ( nB(t)) . (39)
I a(q) a(q) K
The equal-time single particle density matrix of the RR channel is defined as
Gra(t; £) = Tr {p() YR (X)) (0)} , (40)

where 1z(x) is the field operator of right moving fermions. By substituting its bosonized form
and following standard steps [8, 53], we obtain

In(2raGrg(x;t)) = Z Il (l sin(gx) — (1 —cos(gx)) (1 + 274(1) )) . 4D

>0 vg(£)2 — ey (1)

Using the relations of (38) and recognizing the non-interacting single particle density matrix
in the time-independent terms, the expression is rewritten as

In Ggr(x; t) =InGy(x) — Z ﬁng(t)(l —cos(gx)), (42)
q>0

which is identical to Eq. (15) of the main text.
In the LR sector, the equal-time single particle density matrix is defined as

Grr(x; ) =Tr{p() Y] ()Y (0)}, (43)
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where ; (x) is the field operator of left-movers. By substituting the bosonized forms and
following similar steps, the correlation function is calculated as

In(27aGp(x; ) = — L2| | (1+2nb(c) + 2Re (mP(0)ei®)) (44)
q>0

Substituting (16) and (39) leads to Eq. (27) in the main text.

B Derivation of the entropy

The second Rényi entropy is defined as S,(t) = —InTr {p(t)z} where the density ma-
trix is given in the form of (37). For each wavenumber channel, the density opera-
tor can be expressed as a single exponential and the exponent may be diagonalized as
pq(t) =(1— e‘Qq(t))Ze_ﬂq(t)(ﬁ;(t)ﬁq(t)”ﬁq(t)ﬁ*‘l(t)) with some bosonic operator f3,(t), see the
Supplementary Material of Ref. [27], and

vy () =g (D)
acosh( Z(Vq(t)-l-l) +1). (45)

Qq(t)=

The function Q,(t) is also related to the instantaneous expectation value N,(t) = (ﬁ;(t)ﬁq(t))
by

N()= —L = (nb(t) ; 1)2 Cmb(e)2— 2. 46)
q () _q q 2 q 2

Interestingly, the latter formula does not change if we use n® and m® instead of n® and m®.
By substituting (16) and (39), we obtain

1)? 1
N0 = J (a0 +3 ) ~ImaoR—3. @7
The trace of the entropy is evaluated as
1+e %O
S,(t)=2>"In ( = m)zZZln(1+2Nq(t)), (48)
q>0 q>0

which is identical to Eq. (35) of the main text.
In the weak dissipation limit, i.e. when y < 9K, the approximation of N,(t) ~ ng(t) can
be used.
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