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Abstract

It is demonstrated that the known for a long time transition between the gap and the
gapless states in the Abrikosov-Gor’kov theory of a superconductor with paramagnetic
impurities is of the Lifshitz type, i.e. of the 2

1
2 order phase transition. We reveal the

emergence of a cuspidal edge at the density of states surface N(ω,∆0) (∆0 is the value
of the superconducting order parameter in the absence of magnetic impurities) and the
occurrence of the catastrophe phenomenon at the transition point. We study the stability
of such a transition with respect to the spatial fluctuations of the magnetic impurities
critical concentration ns and show that the requirement for validity of its mean field
description is unobtrusive: ∇ (ln ns) � ξ−1 (here ξ is the superconducting coherence
length). Finally, we show that, similarly to the Lifshitz transition, the transition between
gap and gapless states should be accompanied by the corresponding singularities. For in-
stance, the superconducting thermoelectric effect has a giant peak exceeding the normal
value of the Seebeck coefficient by the ratio of the Fermi energy and the superconducting
gap. The concept of the experiment for the confirmation of 2

1
2 order transition nature is

proposed. The obtained theoretical results can be applied for the explanation of recent
experiments with lightwave-driven gapless superconductivity, for the new interpretation
of the disorder induced transition s±-s++ states via gapless state in multi-band super-
conductors, for better understanding of the gapless color superconductivity in quantum
chromodynamics, the string theory.
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1 Introduction

In 1960, two seminal papers were published almost simultaneously, which gave rise to new
directions in the research fields of superconductivity and fermiology [1,2].

In the first paper, Abrikosov and Gor’kov (AG), extending the Bardeen-Cooper-Schrieffer
(BCS) theory to the case of a superconducting alloy containing paramagnetic impurities,
demonstrated that the original BCS identification of the phenomenon of superconductivity
with the presence of the gap in the quasiparticle spectrum is too restrictive, and, under some
conditions, gapless superconductivity can exist. According to the AG theory [1, 3], the tran-
sition between gap and gapless regimes was governed by the concentration of paramagnetic
impurities and the properties of such superconducting system were studied in the mean-field
approximation. Gapless superconductivity occurs in the very narrow interval of paramagnetic
impurity concentrations 0.912 nc < n < nc , where nc is the concentration that completely
suppresses the supercurrent flow. Later, it was recognized that the gapless regime in a su-
perconductor can be induced by different mechanisms breaking the time-reversal symmetry:
magnetic field [4], current [4], proximity effect [5] and the light [6]. However, the order of
this transition, to the best of our knowledge, was never discussed.

In the second of mentioned above papers I.M. Lifshitz [2] introduced the notion of phase
transition of fractional, 21

2 , order. Also, it was pointed out that by varying some external
parameter (pressure or concentration of the isovalent impurities) one can change the number
of components of topological connectivity of the Fermi surface (FS), which is accompanied,
according to the Ehrenfest terminology [7], by the 21

2 order phase transition. Further studies of
these, named today as Lifshitz, transitions revealed that they are supplemented by singularities
in various properties of the system [8,9].

The ideas proposed 60 years ago remain still requested in modern studies on the stability of
current-biased superconducting wires (see [10] and references therein), transformations of the
complex heavy fermion Fermi surfaces due to magnetic field effects [11,12], etc. Moreover, the
concept of a connection between the topological properties of the different materials exhibiting
gapless states and the occurrence of the exotic Lifshitz transitions was recently discussed in
literature based on very general topological arguments. Examples are given by Dirac and Weyl
materials, and even more exotic systems (see the reviews [13,14]).

In this article we aim at framing these concepts into a unified description and show that
the known for a long time transition between gap and gapless superconducting states is the
phase transition of the Lifshitz type, i.e. of the 21

2 order. This will be proved by a very simple
approach, in spirit of the fundamental paper [2], just analyzing the properties of the free
energy in a superconductor containing paramagnetic impurities.

Further, we study the requirements on the homogeneity of the paramagnetic impurities
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concentration, which is necessary for the validity of the standard mean field approximation
in the description of the “gap-gapless” transition used in [1], and prove the stability of the
transition with respect to these fluctuations.

Finally, we argue that such a transition would be accompanied by the appearance of sin-
gularities in several properties, in particular an anomalous growth of the thermoelectric effect
(see [15–18]) close to the critical concentration, which is valuable for the experimental veri-
fication of the proposed connection.

It is important to note that we confine our study to the case of a s-wave isotropic super-
conductor and do not consider unconventional and exotic pairing symmetries.

2 Free energy and phase transition

We start from the expression for the free energy close to the transition between gapless and
gap regimes at T = 0 (see [4,19]), that is

Fs−n=−
N (0)∆2
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∆ = ∆(τs) is the order parameter in the presence of impurities (∆ ∈ R) and N(0) = mpF

π2ħh3 is
the density of states (DOS) at the Fermi level. The parameter

ζ= (τs∆)
−1 , (2)

with τs as the electron spin-flip scattering time due to the presence of paramagnetic impurities,
governs the phase transition between the gap and gapless states. Namely, when ζ < 1 the
energy gap∆g in the quasiparticle spectrum of a superconductor has a nonzero value, while for
ζ≥ 1 the energy gap remains identically equal to zero and the gapless state is realized. At the
same time the order parameter ∆ is different from zero and the phenomenon of supercurrent
flow occurs. The critical point ζ= 1 separates the gap and the gapless states. We remark that
the authors of [1] were the first who pointed out at the importance of making a distinction
between the order parameter∆ and the energy gap∆g existing in the quasiparticles spectrum.

To elucidate what is the order of the phase transition, we first studied the behavior of
the free energy (Eq. 1) and its derivatives over the parameter ζ that drives the transition. It
turns out that the free energy together with its first and second derivatives remain continuous
function at the transition point ζ = 1. However, the plot of the second derivative ∂ 2Fs−n/∂ ζ

2

unambiguously shows the kink at ζ = 1 (Fig. 1). Moreover, from the expression of the third
derivative

∂ 3Fs−n

∂ ζ3
= N (0)∆2







0 , ζ¶ 1
1

ζ4
p

ζ2 − 1
, ζ > 1 ,

(3)

one can see the occurrence of the characteristic discontinuity in it with the square root sin-
gularity from the gapless side. I.e., the situation is completely analogous to the Lifshitz 21

2
order phase transitions in metals. The analogy is also confirmed by the DOS dependence on
the parameter ζ driving the transition. It was shown [3, 4, 19] that the quasiparticle DOS of
the superconductor Ns (ω) remains finite at ω = 0 and has a typical cusp for 21

2 order phase
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Figure 1: The second derivative of Eq. (1). The kink is clearly observed at ζ = 1.
Purple and cyan colors in the background of the plot illustrate separation between
gap and gapless states respectively. Weak blur near ζ= 1 represents smearing of the
transition due to spacial fluctuations of the magnetic impurities concentration (see
the corresponding section of the paper).

transition at ζ= 1

Ns (0) = N (0)

p

ζ+ 1
ζ

p

ζ− 1 . (4)

The appropriate interpretation of the gap-gapless transition can be given studying the
transformation of the surface N (ω,∆0) in the phase space ω-∆0, where ∆0 is the value of
the superconducting order parameter in the absence of magnetic impurities. For this purpose
we start with the general expression [1,3]

N (ω,ζ) = N (0)ζ−1 Im u , (5)

where u is given by
ω

∆
= u

�

1−
ζ

p
1− u2

�

, (6)

and the expression which determines the order parameter ∆ at T = 0 [1,4]

ln
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, ζ > 1 .
(7)
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Figure 2: Evolution of the DOS in theω-∆0 space from the gap state with ζ= 0.1 (a),
through the collapse of the energy gap ζ = 1 (b), to the gapless state with ζ = 1.75
(c). Arbitrary units for ω and ∆0 are used in the legends.

Based on Eqs. (5) and (7) one can track the evolution of the function N(ω,∆0) in the
ω-∆0 phase space via three stages that are characterized by dissimilar surfaces for ζ < 1,
ζ= 1 and ζ > 1 (see Fig. 2). The first stage corresponds to the gap state with ζ < 1 and with
the characteristic narrowing hollow between two glued sheets of the DOS surfaces at ∆g = 0
(Fig. 2a). The collapse of the energy gap when ζ = 1, and the subsequent emergence of a
topological feature in the form of the pleat known as a cuspidal edge at ω = 0, is shown in
Fig. 2b. This feature allows to speculate about the occurrence of the catastrophe phenomenon
in the ω-∆0 space over the gap-gapless phase transition [22–25]. Finally, the last stage with
ζ > 1 corresponds to the gapless state with the gradual degradation of the DOS curved surface
to a plane for ζ→∞ (Fig. 2c).

In this representation one can freely “travel” over the each surface N(ω,∆0) by changing
the variables ω and ∆0 while keeping ζ= ζ(∆0,τs) = const and adjusting the value of τs for
each ∆0 to satisfy the constancy of the given value of ζ. One should not be surprised by the
manipulating of τs for each∆0 in order to carry ζ= const at whole considered surface. In some
sense during the study the Lifshitz transition the experimentalists do the same, for example,
investigation of the anomalous behavior of thermopower in Li1 - xMgx alloy in a dependence
of x close to transition at x = 0.19 (see Ref. [26]).

Therefore, one can conclude that while the Lifshitz transition is governed by the parameter
z = µ−µc (µ is the chemical potential) [9,13,14,20,21], the driving parameter of the transition
under consideration is ζ− 1.
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3 Smearing of the transition due to spacial fluctuations of the
magnetic impurities concentration

In the case of the order parameter varying in space, Eq. (1) for the free energy can be gener-
alized by adding heuristically the corresponding gradient term, like in the Ginzburg-Landau
theory, that is

F = −
N(0)

2

§

a∆2 +
1

4m
(∇∆)2

ª

(8)

= −
N(0)

2

�
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�2� dζ
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�2
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�

,

where a = 1− π
2ζ+

2
3ζ

2 and we recall that ns is the concentration of magnetic impurities.
Here we already attributed the variation of the value of order parameter to the spacial in-

homogeneity of the paramagnetic impurities distribution, elucidating the corresponding gradi-
ent in the last term of Eq. (8). One can neglect the impurities concentration fluctuations until
the contribution of the “kinetic energy” remains small in comparison to the superconducting
condensation energy.

Correspondingly, comparing the second term in Eq. (8) with the first one and using the
expression determing the order parameter ∆ at T = 0 given by Eq. (7) we find1 that the
fluctuations of the impurities concentration remain insignificant until

∇ns

ns
�

1
ξ

�

1−
π

2
ζ+

2
3
ζ2
��

4
πζ
− 1

�

. (9)

Here ξ is the superconducting coherence length. This evaluation is valid close to the transition
point ζ= 1 (indeed, the limit of superconductor without paramagnetic impurities ζ→ 0 does
not make sense in such consideration), i.e.

d [ln ns(r)]
dr

�
1
ξ

. (10)

4 Thermoelectric effect

It is well known that the Lifshitz transition in normal metals is accompanied by a giant asym-
metric peak in the Seebeck coefficient [26–28]. Despite the opinion prevailing in the early
period of the study of superconductivity concerning the vanishing of all conventional thermo-
electric properties, today we know that a wide variety of interesting thermoelectric effects can
exist in superconductors [29]. Among them is the quantization of the magnetic flux passing
through the loop consisting of two different superconductors whose junctions are at different
temperatures. As demonstrated in [16] the correction to the integer number of flux quanta
appears to depend on the temperature difference and thermoelectric coefficients of the super-
conductors in their normal state. Hence, one could expect the giant growth of this effect when
one of the ring legs is close to the gap-gapless transition.

In order to demonstrate this we will calculate the corresponding quasiparticle contribution
to the thermoelectric coefficient following the scheme proposed by Ambegaokar and Griffin to
calculate the corresponding thermal conductivity (see Ref. [3]). We perform our calculation in

1See the Supplemental Material for the detailed derivation of Eqs. (9), (10) and (14) and the low-temperature
behavior of the order parameter.
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the assumption of validity of the weak enough scattering and applicability of the Born approx-
imation. The thermoelectric coefficient α relating the quasiparticle current to the temperature
gradient, can be expressed in the form

α= −
eN (0) v2

F

4T2

+∞
∫

−∞

ωdω

cosh2
�

βω
2

�

h (ω,∆,ζ)

Im
¦

Ω (ω,∆,ζ) + i
2τt r
+ i
τs
[1− h (ω,∆,ζ)]

© , (11)

where τt r is the transport collision time [1] that enters in the conductivity of a normal metal,
vF is the Fermi velocity and β = 1

kB T is the inverse temperature. The functions h (ω,∆,ζ) and
Ω (ω,∆,ζ) are given by

Ω (ω,∆,ζ)
∆

=
p

u2 − 1− iζ , (12)

h (ω,∆,ζ) =
1
2

�

1+
|u|2 − 1
|u2 − 1|

�

, (13)

where we recall that parameter u is defined by Eq. (6).
At temperatures close to zero (large values of β) the main contribution to the integral in

Eq. (11) comes from the low frequencies domain ω ® β−1. The numerical analysis of the
Eq. (11) shows the dramatic enhancement of the thermoelectric coefficient approaching the
transition from the gap side (see Fig. 3). The absolute value of the peak linearly decreases
with the temperature, still remaining εF/∆ times larger than the background value.

In the immediate vicinity of the transition one can expand the parameter u and conse-
quently the functions Ω (ω, |∆| ,ζ) and h (ω, |∆| ,ζ) for small values of ω. In result one can
obtain the asymptotic behavior of the thermoelectric coefficient close to the phase transition
for both the gap and the gapless states.

From the gap side (ζ→ 1−) one finds2 that the thermoelectric coefficient takes the form

α=
4
p

2π2

3e
T
∆

σnτs

τs + 2τt r

Ç

1− ζ
1
3 , (14)

where σn =
2
3 N(0)v2

F e2τt r . Eq. (14) determines the magnitude of the Seebeck coefficient in

the gap state. Recalling that the value of Seebeck coefficient in the normal metal is Sn =
π2kB

3e
T
EF

one can find that Sg is giant with respect to the latter by the parameter EF/∆:

Sg =
α

σn
=

25/2τs

τs + 2τt r

Ç

1− ζ
1
3

�

EF

∆

�

Sn . (15)

When performing the same procedure from the gapless side of the transition it can be dis-
appointing to find α ≡ 0. Formally this is related to the oddness of the integrand function
over ω2 in this region. Yet, the obtained result does not mean that the thermoelectric co-
efficient here turns identically zero: in our expansions we did not retain terms of the order
ω/EF , hence the thermoelectric effect from the right of transition point can be comparable to
its normal background.

The results of the numerical calculations of the thermoelectric coefficient based on Eq. (11)
are shown in Fig. 3. For the evaluation of α we used the dependence of the order parameter
modulus as a function of ζ at zero temperature given by Eq. (7). For large values of β (i.e.
in the vicinity of T = 0), we assumed the temperature variation of ∆ to be very weak and
approximated by Eq. (21)2.

2See the Supplemental Material for the detailed derivation of Eqs. (9), (10) and (14) and the low-temperature
behavior of the order parameter.
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Figure 3: Thermoelectric coefficient as a function of ζ for different values of τs∆0 for
the given dimensionless inverse temperature β∆0 = 50 (up) and for different β∆0
for the fixed τs∆0 = 2.25 (bottom). For both plots τt r∆0 = 1.

There are several remarkable hallmarks of the found effect. First of all, the thermoelectric
coefficient has a giant magnitude in the gap region. Second, the peak is asymmetric, and,
third, the peak is shifted from the transition point into the gap domain (ζ < 1) when the
temperature increases (β decreases). All these features are characteristic also for the Seebeck
signal behaviour close to the 21

2 phase transitions [8] and can be considered as the smoking
gun for the experimental verification of the proposed phenomenon.

We should note that a similar strong enhancement of the thermoelectric coefficient in the
presence of magnetic impurities was theoretically predicted in Ref. [30, 31]. However, the
authors of Refs. [30, 31] did not relate the revealed giant thermoeffect to the manifestation
of the 21

2 phase transition. They specified that this phenomenon is caused by violation of the
symmetry between electron-like and hole-like excitations due to formation of the subgap An-
dreev bound states in the vicinity of magnetic impurities [31]. Although different assumptions
have been used in Refs. [30] and [31] for the calculation of the thermoelectric coefficient the
effect of its enhancement remain the same on the qualitative level.

From the experimental point of view the detection of such a phase transition can be per-
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formed by means of placing in magnetic field a ring, one half of which is a gap superconductor
with the concentration of magnetic impurities close to the transition value and the other half
is an arbitrary superconductor. In this case, provided superconducting contacts are kept at
different but low temperatures, anomaly strong thermoelectric current is induced inside the
ring and the measured magnetic flux should considerably deviate from the integer values of
the magnetic flux quantum Φ0 [17]. An alternative method for detecting the discussed transi-
tion can be a jump in the derivative of the specific heat capacity with respect to the impurity
concentration.

The effect of impurity scattering of the DOS dependence on energy and the anisotropy
degree has been investigated in Ref. [32] for the case of superconductors with the anisotropic
gap. It was shown that presence of a relatively small concentration of impurities leads to the
isotropisation of the DOS and decrease of its smearing over energy. With the further increase
of the concentration of impurities the region of smearing shrinks to zero. This means that the
superconductor becomes effectively isotropic. A full analysis of this problem is outside of the
scope of the present paper and therefore left for future studies.

5 Conclusions

We have demonstrated that the known for a long time transition between the gap and the
gapless states of a superconducting alloy with paramagnetic impurities is the phase transition
of the 21

2 order. We have shown that the mean-field approximation used in the Abrikosov-
Gor’kov theory [1] is very stable: fluctuations of the impurities concentration remain irrelevant
in the logarithmic scale. Finally, such a phase transition can be detected by the giant (by
the parameter EF/∆) thermoelectric effect possessing the characteristic features which would
clearly distinguish it from others. We have proposed experiments for detection of such an
effect and the subsequent confirmation of the 21

2 phase transition nature.
Our theoretical results may help to take a fresh look at recent experiments with light-wave-

driven gapless superconductivity [6], for the new interpretation of the theoretically predicted
disorder induced transition s±-s++ states via gapless phase in multi-band superconductors [33,
34] and can be useful for the understanding of gapless color superconductivity in quantum
chromodynamics and the string theory [35]. In the case of a dirty multi-band superconductor
with increasing of the nonmagnetic impurities concentration, one of the gaps is seen to close,
leading to a finite residual DOS, followed by a reopening of the gap. Such a behavior allows
to speculate about the Lifshitz origin of s±-s++ transition. For a color superconductor it was
shown that, at zero temperature and small values of the strange quark mass, the ground state
of neutral quark matter corresponds to the so-called color-flavor-locked phase. At some critical
value of the strange quark mass, there is a transition to the gapless color-flavor-locked phase,
where the energy gap in the quasiparticle spectrum is not mandatory [35,36]. As in the case
of multi-band superconductivity one can again speculate about the emergence of the Lifshitz
nature of the transition in the phase diagram of the neutral quark matter.
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6 Supplemental material for “The Lifshitz nature of the transition
between the gap and gapless states of a superconductor”

6.1 Spacial fluctuations of the magnetic impurities concentration

Let us perform its evaluation, for simplicity, from the “gap side” of the phase transition. The
first derivative in the “kinetic energy” term of Eq. (9) can be easily obtained by direct differ-
entiation of Eq. (10) in the main paper:

�

d∆
dζ

�

= −
π

4
∆ . (16)

What concerns the derivative dζ/dns its calculation is more delicate since ζ = (τs∆)−1. The
scattering lifetime τs is determined by the integral over the solid angle Ω

1
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(2S + 1)2
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2 dΩ

�

ns = Ans , (17)

where ns is the concentration of the magnetic impurities and f+ and f− are the scattering
amplitudes of an electron with a total angular momentum S + 1/2 and S − 1/2.

Based on Eq. (17) and the fact that the order parameter ∆ depends on ns we obtain
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Taking into account Eq. (16) one finds
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4

. (19)

Relating the Cooper pair mass to the coherence length as ξ2 = 1/(4ma) and returning to Eq.
(9) in the main paper one finds that the kinetic energy term in the gap domain (ζ < 1) is
expressed as
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. (20)

6.2 Low temperature behavior of the order parameter

When the temperature is slightly above T = 0 the temperature dependence of order parameter
∆ is given by expressions
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where we recall∆g is the energy gap, ∆ (0) is the value of the parameter at T = 0, Γ (x) is the
gamma function and Z(x) is the Riemann zeta function defined by means the capital letter Z
to avoid a confusion with the driving parameter ζ.
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6.3 Asymptotic expressions for the thermoelectric coefficient

In the vicinity of the zero temperature or for the large values of β the contribution to the Eq.
(13) in the main paper gives the low order frequencies. Such a restriction allows to obtain
several useful asymptotics for the thermoelectric coefficients from the gap and the gapless side
of the phase transition. The starting point is the approximated expression for the parameter u
in the case of the small ω.

6.3.1 Gap state

For the gap regime, where ζ < 1 we have

ω−∆g

∆
= −

3
2
ζ−

2
3

�

1− ζ
2
3

�
1
2 (u− u0)

2 , (22)

where
∆g

∆
=
�

1− ζ
2
3

�
3
2 , (23)

and

u0 =
�

1− ζ
2
3

�
1
2 . (24)

Substitution of Eqs. (23)-(24) into Eq. (22) yields an equation for u with the solution for
∆g = 0, i.e. when ζ→ 1

u=
Ç

1− ζ
2
3 ±

1
3

√

√

6ζ
2
3

�

�

1− ζ
2
3

�
3
2 − ω

∆

�

�

1− ζ
2
3

�
1
4

≈
r

2
�

1− ζ
1
3

�

±
1
3

i

√

√

6
�

ω
∆ − 2

p
2
�

1− ζ
1
3

�
3
2
�

2
1
4

�

1− ζ
1
3

�
1
4

.

(25)
Based on Eqs. (25) for the parameter u one can write the expression for functions

Ω (ω,∆,ζ) and h (ω,∆,ζ) that are entered in Eq. (13) in the main paper for the thermo-

electric coefficient in the main text. Introducing a new parameter z =
q

1− ζ
1
3 near the the

phase transition we have

Ω (ω,∆,ζ)
∆

=

√

√

2z2 +
p

2w
3z
− 1+ i

2
3

2
1
4

p

6zw− i , (26)

and

h (ω,∆,ζ) =
1
2






1+

2z2 +
p

2w
3z − 1

È

�

2z2 +
p

2w
3z − 1

�2
+ 8
p

2
3 zw






, (27)

where w = ω
∆ − 2

p
2z3 and for the extraction of the square root of a complex number in Eq.

(26) the well-known formula is applied

p

a+ ib = ±

√

√

p
a2 + b2 + a

2
± i sgn b

√

√

p
a2 + b2 − a

2
. (28)

Using Eq. (26) and (27) one can expand in series for small ω the part of the integrand in
Eq. (13) in the main paper

h (ω,∆,ζ)

Im
¦

Ω (ω,∆,ζ) + i
2τt r
+ i
τs
(1− h (ω,∆,ζ))

© ≈ Υ0 (ζ,τt r ,τs) + Υ1 (ζ,τt r ,τs)
ω

∆
, (29)
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where Υ0 (ζ,τt r ,τs) and Υ1 (ζ,τt r ,τs) are some function that we do not present explicitly due
to their very cumbersome expressions. However, one can also perform the expansion in series
of this function for z = 0 or (ζ= 1) to simplify further analytical calculations

Υ1 (ζ,τt r ,τs)≈
4
p

2
3

τsτt r

τs + 2τt r
z . (30)

Therefore, combining Eqs. (29) and (30) finally we obtain asymptotic expression for the
thermoelectric coefficient close to the phase transition from the gap side

α=
8
p

2
3

eN (0) T v2
F

∆

τsτt r

τs + 2τt r
z

+∞
∫

−∞

ω2dω

cosh2
�

ω
2T

�

=
4
p

2π2

9

eN (0) T v2
F

∆

τsτt r

τs + 2τt r
z

=
4
p

2π2

9

eN (0) T v2
F

∆

τsτt r

τs + 2τt r

Ç

1− ζ
1
3 .

(31)

6.3.2 Gapless state

In the case of the gapless regime, where ζ > 1 the expansion of u is given by

u= i
Æ

ζ2 − 1+ ζ2
�

ζ2 − 1
�−1ω

∆
+ ... . (32)

This allows to obtain in the same way the expression for functions Ω (ω,∆,ζ) and
h (ω,∆,ζ) that are entered in Eq. (13) in the main paper for the thermoelectric coefficient in
the main text. As in the previous case introducing a new parameter z =

p

ζ− 1 near the the
phase transition one can write

Ω (ω,∆,ζ)
∆

=

√

√

√

2z +
1
4

1
z2

ω2

∆2
− 1+ i

p
2
p

z
ω

∆
− i , (33)

and

h (ω,∆,ζ) =
1
2






1+

2z + 1
4z2

ω2

∆2 − 1
s

È

�

2z + 1
4

1
z2
ω2

∆2 − 1
�2
+ 2

z
ω2

∆2






. (34)

Based on Eq. (33) and (34) we expand in series for small ω the part of the integrand in
Eq. (13) in the main paper

h (ω,∆,ζ)

Im
¦

Ω (ω,∆,ζ) + i
2τt r
+ i
τs
(1− h (ω, |ψ| ,ζ))

© ≈ Θ0 (ζ,τt r ,τs) +Θ1 (ζ,τt r ,τs)
ω2

∆2
. (35)

Due to long expressions for functions Θ0 (ζ,τt r ,τs) and Θ1 (ζ,τt r ,τs) we do not provide
them in the explicit form. Nevertheless, since the expansion in series given by Eq. (35) contains
only the even degree of ω it is easy to understand that the integrand in Eq. (11) in the main
paper is the odd function of ω and, hence, the integral is equal to zero.
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