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interaction strength.
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1 Introduction

Starting from the mid-noughties, the physics community witnessed an incredibly large theo-
retical and experimental activity aimed to understand the non-equilibrium dynamics of iso-
lated many-body quantum systems. The most studied protocol is certainly that of a quantum
quench [1,2] in which an extended quantum system evolves with a Hamiltonian H after having
being prepared at time t = 0 in a non-equilibrium state |¥;), i.e. [H, |[¥)(¥y|] # 0] (|¥,) can
also be thought as the ground state of another Hamiltonian H, and hence the name quench).
At time t, the time evolved state is simply

[ (6)) = e H ), (1)

where we work in units of 4 = 1. A main question is whether for large times these many-body
quantum systems can attain a stationary state and how this is compatible with the unitary
time evolution of quantum mechanics. If a steady state is eventually reached (in some sense
to be specified later), it is then natural to ask under what conditions the stationary properties
are the same as in a statistical ensemble. This is the problem of thermalisation of an isolated
quantum system, a research subject that has been initiated in 1929 by one of the fathers of
quantum mechanics, John von Neumann, [3]. However, only in the last fifteen years the topic
came to a new and active life, partially because of the pioneering experimental works with
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cold atoms and ions which can probe closed quantum systems for time scales large enough to
access the relaxation and thermalisation, see, e.g., the experiments in Refs. [4-13]. Nowadays,
there are countless theoretical and experimental studies showing that for large times and in
the thermodynamic limit, many observables relax to stationary values, as reported in some
of the excellent reviews on the subject [14-19]. In some cases (to be better discussed in
the following), these stationary values coincide with those in a thermal ensemble or suitable
generalisations, despite the fact that the dynamics governing the evolution is unitary and the
initial state is pure. Such relaxation is, at first, surprising because it creates a tension between
the reversibility of the unitary dynamics and irreversibility of statistical mechanics.

In these lecture notes, I focus (in an introductory and elementary fashion) on the entan-
glement spreading after a quench. The interested reader can find excellent presentations of
many other aspects of the problem in the aforementioned reviews [14-19]. Furthermore, I
will not make any introduction to integrability techniques in and out of equilibrium because
they are the subject of other lectures in the 2018 Les Housches school [20-23].

These lecture notes are organised as follows. In Sec. 2 it is shown how the reduced density
matrix naturally encodes the concept of local relaxation to a stationary state. In Sec. 3 the
entanglement entropy is defined and its role for the non-equilibrium dynamics is highlighted.
In Sec. 4 we introduce the quasiparticle picture for the spreading of entanglement which is
after applied to free fermionic systems (Sec. 5) and interacting integrable models (Sec. 6); in
particular in Sec. 7 we briefly discuss some recent results within the entanglement dynamics
of integrable systems.

2 Stationary state and reduced density matrix

The reduced density matrix is the main conceptual tool to understand how and in which sense
for large times after the quench an isolated quantum system can be described by a mixed state
such as the thermal one. Let us consider a non-equilibrium many-body quantum system (in
arbitrary dimension). Since the time evolution is unitary, the entire system is in a pure state
at any time (cf. |¥(¢t)) in Eq. (1)). Let us consider a spatial bipartition of the system into
two complementary parts denoted as A and A. Denoting with p(t) = |¥(t))(¥(t)| the density
matrix of the entire system, the reduced density matrix is defined by tracing out the degrees
of freedom in A as

pa(t) = Tral p(0)]- 2)

The reduced density matrix p,(t) generically corresponds to a mixed state with non-zero en-
tropy, even if p(t) is a projector on a pure state. Its time dependent von Neumann entropy

Sa(t) = =Tr[pa(t)log pa(t)], 3

is called entanglement entropy and it is the main quantity of interest of these lectures. Some
of its features will be discussed in the following section.

A crucial observation is that the physics of the subsystem A is fully encoded in the reduced
density matrix p4(t), in the sense that p,(t) is enough to determine all the correlation func-
tions local within A. In fact, the expectation value of a product of local operators [ [, O(x;)
with x; € A (which are the ones accessible in an experiment) is given by

(w0l r[O(Xi)l‘P(t)) =Tr[pa()O(x;)]. (4

This line of thoughts naturally leads to the conclusion that the question “Can a close quantum
system reach a stationary states?” should be reformulated as “Do local observables attain
stationary values?”.
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Hence, the equilibration of a closed quantum system to a statistical ensemble starts from
the concept of reduced density matrix. Indeed, we will say that, following a quantum quench,
an isolated infinite system relaxes to a stationary state, if for all finite subsystems A, the limit
of the reduced density matrix p4(t) for infinite time exists, i.e. if it exists

Jm pa(t) = pa(00). (5)

It is very important to stress that Eq. (5) implies a very precise order of limits; since the
infinite time limit is taken for an infinite system, it means that the thermodynamic limit must
be taken before the infinite time one; the two limits do not commute and phenomena like
quantum recurrences and revivals prevent relaxation for finite systems (anyhow time-averaged
quantities could still attain values described by a statistical ensemble). Another important
observation is that although Eq. (5) is apparently written only for a subsystem 4, it is actually
a statement for the entire system. In fact, the subsystem A is finite, but it is placed in an
arbitrary position and it has an arbitrary (finite) dimension. Furthermore, the limit of a very
large subsystem A can also be taken, but only after the infinite time limit. Once again the two
limits do not commute and their order is important. Summarising, there are three possible
limits involved in the definition of the stationary state after a quantum quench; these limits
do not commute and only one precise order leads to a consistent definition of equilibration of
an isolated quantum system.

We are now ready to understand in which sense p,(©0) may correspond to a statistical en-
semble. A first guess would be that p,(00) is itself an ensemble density matrix (e.g. thermal).
However, this definition would not be satisfactory because we should first properly consider
boundary effects; moreover it would be valid only for thermodynamically large subsystems.
We take here a different route following Refs. [24-28]. Let us consider a statistical ensemble
with density matrix pj for the entire system. We can construct the reduced density matrix of
a subsystem A as

Par =Tri(pg). (6)

We say that the stationary state is described by the statistical ensemble pj if, for any finite
subsystem A, it holds

pPa(o0) =pag. (7)

This implies that arbitrary local multi-point correlation functions within subsystem A, like those
in Eq. (4), may be evaluated as averages with the density matrix py. This definition should not
suggest that py is the density matrix of the whole system that would be a nonsense because
the former is a mixed state and the latter a pure one.

In these lectures, we are interested only into two statistical ensembles, namely the thermal
(Gibbs) ensemble and the generalised Gibbs one. We say that a non-equilibrium quantum
system thermalises after a quantum quench when py, is the Gibbs distribution

—BH

Z

PE = ) (8)
with Z = Tre P¥. The inverse temperature 8 = 1/T is not a free parameter: it is fixed by the
conservation of energy. In fact, the initial and the stationary values of the Hamiltonian are
equal, i.e.

Tr{Hpg] = (¥o|H[¥). )

This equation can be solved for f, fixing the temperature in the stationary state. Once again,
thermalisation leads to the remarkable consequence that all local observables will attain ther-
mal expectations, but some non-local quantities will remain non-thermal for arbitrary large
times. Generically, all non-integrable systems should relax to a thermal state, as supported
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by theoretical arguments such as the eigenstate thermalisation hypothesis [29-32], by a large
number of simulations (see, e.g., [33-48]), and by some cold atom experiments [4,5,9,11].
However, there are some exceptional cases in which chaotic systems fail to thermalise like
many-body localised ones [49, 50], or those in the presence of quantum scars [51-54], or
when elementary excitations are confined [55-61].

The dynamics and the relaxation of integrable models are very different from chaotic ones
because of the constraints imposed by the conservation laws. Integrable models have, by
definition, an infinite number of integrals of motion in involution, i.e. [I,,I,,] = 0 (usually
one of the I, is the Hamiltonian). Consequently, rather than a thermal ensemble, the system
for large time is expected to be described by a generalised Gibbs ensemble (GGE) [62] with
density matrix

e_Zn Anln

PGGE = 7 (10)

Here the operators I,, form a complete set (in some sense to be specified) of integrals of motion
and Z is the normalisation constant Z = Tre™ 2n’uln ensuring Trpggg = 1. As the inverse
temperature for the Gibbs ensemble, the Lagrange multipliers {A,} are not free, but are fixed
by the conservation of {I,,}, i.e. they are determined by the (infinite) set of equations

Tr[1, pogel = (Yol I, %o)- (11)

In the above introduction to the GGE, we did not specify which conserved charges should
enter in the GGE density matrix (10). One could be naively tempted to require that all lin-
early independent operators commuting with the Hamiltonian should be considered in the
GGE, regardless of their structure; this is what one would do in a classical integrable system
to fix the orbit in phase space. In this respect, the situation is rather different between classi-
cal and quantum mechanics. Indeed, any generic quantum model has too many integrals of
motion, independently of its integrability. For example, all the projectors on the eigenstates
O, = |E,)(E,l, are conserved quantities for all Hamiltonians since H = Y. E,|E,)(E,|. For a
model with N degrees of freedom, the number of these charges is exponentially large in N,
instead of being linear, as one would expect from the classical analogue. All these integrals of
motion cannot constrain the local dynamics and enter in the GGE, otherwise no system will
ever thermalise and all quantum models would be, in some weird sense, integrable. The so-
lution of this apparent paradox is that, as long as we are interested in the expectation values
of local observables, only integrals of motion with some locality or extensivity properties must
be included in the GGE [27, 28, 63, 64]. For examples, the energy and a conserved particle
number must enter the GGE, while the projectors on the eigenstates should not. In the spirit
of Noether theorem of quantum field theory, an integral of motion is local if it can be written as
an integral (sum in the case of a lattice model) of a given local density. However, it has been
recently shown that also a more complicated class of integrals of motion, known as quasi-
local [65], have the right physical features to be included in the GGE [66,67]. The discussion
of the structure of these new conserved charges is far beyond the goal of these lectures. Our
main message here is that we nowadays have a very clear picture of which operators form a
complete set to specify a well defined GGE in all integrable models, free and interacting.

We conclude this section by mentioning what happens for finite systems, also, but not only,
to describe cold atomic experiments with only a few hundred constituents. When there is a
maximum velocity of propagation of information vy, (in a sense which will become clearer
later), as long as we consider times such that vyt < L, with L the linear size of the system,
all measurements would provide the same outcome as in an infinite system (away from the
boundaries). Thus, a subsystem of linear size £ can show stationary values as long as L is large
enough to guarantee the existence of the time window £ < vyt S L.
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3 Entanglement entropy in many-body quantum systems

In order to understand the connection between entanglement and the equilibration of isolated
quantum systems, we should first briefly discuss the bipartite entanglement of many-body
systems (see e.g. the reviews [68-71]). As we did in the previous section, let us consider an
extended quantum system in a pure state |¥) and take a bipartition into two complementary
parts Aand A. Such spatial bipartition induces a bipartition of the Hilbert space as H = H,®H,,.
We can understand the amount of entanglement shared between these two parts thanks to
Schmidt decomposition. It states that for an arbitrary pure state |¥) and for an arbitrary
bipartition, there exist two bases |w’) of H, and [w%) of H; such that [¥) can be written as

1) =" Aglwh) @ [wh). (12)

The Schmidt eigenvalues A, quantify the non-separability of the state, i.e. the entanglement.

If there is only one non-vanishing A, = 1, the state is separable, i.e. it is unentangled. Con-

versely, the entanglement gets larger when more A, are non-zero and get similar values.
Schmidt eigenvalues and eigenvectors allow us to write the reduced density matrix

pa= Trz|¥)(¥] as
pa= D A PWA) (WA, (13)

a

and similarly for p; with Iw’i) replacing |W‘3). A proper measure of the entanglement between
A and A is the von Neumann entropy of p, or p4

Sa=—Trpalogpy=— > |A,[*log|A[* = —Trpslog ps = 54, (14)
a

which is known as entanglement entropy (hereafter log is the natural logarithm). Obviously
many other functions of the Schmidt eigenvalues are proper measures of entanglement. For
example, all the Rényi entropies

(n) — 1 n 1 2n
S = logTrp! = lo A , 15
A 1—n 8 1P, 1—n gza:l al (15)

quantify the entanglement for any n > 0. These Rényi entropies have many important physical
properties. First, the limit for n — 1 provides the von Neumann entropy and, for this reason,
they are the core of the replica trick for entanglement [72, 73]. Then, for integer n > 2,
they are the only quantities that are measurable in cold-atom and ion-trap experiments [11-
13, 74-77] (Trpi is usually referred as purity in quantum information literature). Finally
their knowledge for arbitrary integer n provides the entire spectrum of p, [78], known as
entanglement spectrum [79].

Rigorously speaking entanglement and Rényi entropies are good entanglement measures
in the sense that they are entanglement monotones [80]. While these lectures are not the right
forum to explain what an entanglement monotone is (the interested reader can check, e.g., the
aforementioned [80]), we want to grasp some physical intuition about the physical meaning
of the entanglement entropy. To this aim, let us consider the following simple two-spin state

|¥) = cos(a)| + —) —sin(a)| —+), (16)

with a € [0,7/2]. It is a product state for « = 0 and a = 7/2 and we expect that the
entanglement should increase with a up to a maximum at @ = /4 (the singlet state). The
reduced density matrix of one of the two 1/2 spins is

pa= cos* (@) +) {(+ +sin*(a)|=){~], (17)

6
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with entanglement entropy

S, = —sin?(a)log(sin?(a)) — cos?(a) log(cos?(a)), (18)

which has all the expected properties and takes the maximum value log 2 on the singlet state.

Let us now consider a many-body system formed by many spins 1/2 on a lattice and a
state which is a collection of singlets between different pairs of spins at arbitrary distances
(incidentally these states have important physical applications in disordered systems [81]).
All singlets within A or A do not contribute to the entanglement entropy S4. Each shared
singlets instead counts for a log 2 bit of entanglement. Hence, the total entanglement entropy
is S, = ny.;log2 with ny.; being the number of singlets shared between the two parts. As
a consequence, the entanglement entropy measures all these quantum correlations between
spins that can be very far apart.

Let us now move back to non-equilibrium quantum systems and see what entanglement can
teach us. The stationary value of the entanglement entropy S,(00) = —Trp4(00)log ps(o0)
for a thermodynamically large subsystem A is simply deduced from the reasoning in the pre-
vious section. Indeed, we have established that a system relaxes for large times to a statistical
ensemble pp when, for any finite subsystem A, the reduced density matrix p, g (cf. Eq. (6))
equals the infinite time limit p4(o0) (cf. Eq. (5)). This implies that the stationary entangle-
ment entropy must equal S, g = —Trp, glog p, g. For a large subsystem with volume V), S, g
scales like V, because the entropy is an extensive thermodynamic quantity. Hence, S, y equals
the density of thermodynamic entropy Sy = —Trplog py times the volume of A. Given that
Sar = Sa(00), the stationary entanglement entropy has the same density as the thermody-
namic entropy. In conclusion, we have just proved the following chain of identities

S lim S, g lim S,(00)
s= lim £ = jim 22— |jm 22 (19)
Vooo V V,—00 A V,—00 Vu
From the identification of the asymptotic entanglement entropy with the thermodynamic one
we infer that the non-zero thermodynamic entropy of the statistical ensemble is the entanglement
accumulated during the time by any large subsystem. We stress that this equality is true only for
the extensive leading term of the entropies, as in Eq. (19); subleading terms are generically
different. The equality of the extensive parts of the two entropies has been verified analytically
for non-interacting many-body systems [82-86] and numerically for some interacting cases
[87-89].

4 The quasiparticle picture

In this section, we descibe the quasiparticle picture for the entanglement evolution [90] which,
as we shall see, is a very powerful framework leading to analytic predictions for the time
evolution of the entanglement entropy that are valid for an arbitrary integrable model (when
complemented with a solution for the stationary state coming from integrability). This picture
is expected to provide exact results in the space-time scaling limit in which t,{ — oo, with
the ratio t /£ fixed and finite.

Let us describe how the quasiparticle picture works [18,90]. The initial state |¥,) has an
extensive excess of energy compared to the ground state of the Hamiltonian H governing the
time evolution, i.e. it has an energy located in the middle of the many-body spectrum. The
state |¥,) can be written as a superposition of the eigenstates of H; for an integrable system
these eigenstates are multiparticle excitations. Therefore we can interpret the initial state as
a source of quasiparticle excitations. We assume that quasiparticles are produced in pairs of
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time

. A

Figure 1: Quasiparticle picture for the spreading of entanglement. The initial state
(at time t = 0) acts as a source of pairs of quasiparticles produced homogeneously
throughout the system. After being produced, the quasiparticles separate ballistically
moving with constant momentum-dependent velocity and spreading the entangle-
ment.

opposite momenta. We will discuss when and why this assumption is correct for some explicit
cases in the following, see Sec. 7.2 (clearly the distribution of the quasiparticles depends on
the structure of the overlaps between the initial state and the eigenstates of the post-quench
Hamiltonian). The essence of the picture is that particles emitted from different points are
unentangled. Conversely, pairs of particles emitted from the same point are entangled and,
as they move far apart, they are responsible for the spreading entanglement and correlations
throughout the system (see Fig. 1 for an illustration). A particle of momentum p has energy
€, and velocity v, = de,/dp. Once the two particles separate, they move ballistically through
the system; we assume that there is no scattering between them and that they have an infinite
lifetime (assumptions which are fully justified in integrable models [91]). Thus, a quasiparticle
created at the point x with momentum p will be found at position x’ = x + vpt at time ¢ while
its entangled partner will be at x” = x — v, t.

The entanglement between A and A at time t is related to the pairs of quasiparticles that
are shared between A and A after being emitted together from an arbitrary point x. For fixed
momentum p, this is proportional to the length of the interval (or region in more complicated
cases) in x such that x’ = x £ v,t € Aand x” = x Fv,t € A. The proportionality constant
depends on both the rate of production of pairs of quasiparticles of momentum (p,—p) and
their contribution to the entanglement entropy itself. The combined result of these two effects
is a function s(p) which depends on the momentum p of each quasiparticle in the pair. This
function s(p) encodes all information about the initial state for the entanglement evolution.

Putting together the various pieces, the total entanglement entropy is [90]

oo
Su(t) ~ f dx’j dx”f dxf dps(p)8(x’ —x —v,t)5(x" —x +v,t), (20)
x'€A x" €A —00

which is valid for an arbitrary bipartition of the whole system in A and A. We can see in this
formula all elements we have been discussing: (i) particles are emitted from arbitrary points x
(the integral runs over [—00, 00 ]); (ii) they move ballistically as forced by the delta functions
constraints over the linear trajectories; (iii) they are forced to arrive one in A the other in A
(the domain of integration in x’ and x”); (iv) finally, we sum over all allowed momenta p
(whose domain can depend on the model) with weight s(p).

We specialise Eq. (20) to the case where A is a single interval of length ¢. All the integrals
over the positions x, x’, x”" in Eq. (20) are easily performed, leading to the main result of the
quasiparticle picture [90]
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SA(t)’thf dps(p)2vp9(£—2vpt)+2€f dps(p)O(2v,t —1)
p>0 p

>0

=2t J dps(p)2v, +2¢ f dps(p). (21)
2vpt<t 2v,t>1L

Let us discuss the physical properties of this fundamental formula. For large time t — 00, the
domain of the first integral shrinks to zero and so the integral vanishes (unless the integrand
is strongly divergent too, but this is not physical). Consequently, the stationary value of the
entanglement entropy is

Sp(oc0)~ 20 J

P
where in the rhs we used that s(p) = s(—p) by construction. At this point, we assume that a
maximum speed vy, for the propagation of quasiparticles exists. The Lieb-Robinson bound [92]
guarantees the existence of this velocity for lattice models with a finite dimensional local
Hilbert space (such as spin chains). Also in relativistic field theories, the speed of light is
a natural velocity bound. Since |v(p)| < vy, the second integral in Eq. (21) is vanishing
as long as t < t* = £/(2vy) (the domain of integration again shrinks to zero). Hence, for
t < t* ={/(2vy) we have that S,(t) is strictly linear in t. For finite t such that t > t*, both
integrals in Eq. (21) are non zero. The physical interpretation is that while the fastest quasi-
particles (those with velocities close to vy;) reached a saturation value, slower quasiparticles
continue arriving at any time so that the entanglement entropy slowly approaches the asymp-
totic value (22). The typical behaviour of the entanglement entropy resulting from Eq. (21)
is the one reported in Fig. 2 where the various panels and curves correspond to the actual
theoretical results for an interacting integrable spin chain (the anisotropic Heisenberg model,
also known as the XXZ chain) that we will discuss in the forthcoming sections.

The last missing ingredients to make Eq. (21) quantitatively robust are the functions s(p)
and v, which should be fixed in terms of the quench parameters. The idea proposed in Ref.
[93] (see also [94,95]) is that s(p) can be deduced from the thermodynamic entropy in the
stationary state, using the fact that the stationary entanglement entropy has the same density
as the thermodynamic one, cf. Eq. (19). To see how this idea works, we will apply it to free
fermionic models in the next section and then to generic integrable models in the following
one.

dps(p) ={ J dps(p), (22)
>0

5 Quasiparticle picture for free fermionic models

The ab-initio calculation of entanglement entropy is an extremely challenging task. For Gaus-
sian theories (i.e. non-interacting ones) it is possible to relate the entanglement entropy to the
two-point correlation functions within the subsystem A both for fermions and bosons [96-99].
Anyhow, for quench problems, extracting analytic asymptotic results from the correlation ma-
trix technique is a daunting task that has been performed for some quenches in free fermions
[82], but not yet for free bosons. We are going to see here that instead the quasiparticle picture
provides exact analytic predictions in an elementary way, although not derived directly from
first principles.

In this section, we consider an arbitrary model of free fermions. We focus on translational
invariant models that can be diagonalised in momentum space k. It then exists a basis in which
the Hamiltonian, apart from an unimportant additive constant, can be written as

H= ebib, (23)
k

9
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Figure 2: Quasiparticle prediction for the entanglement evolution after a global
quench in the XXZ spin chain. In all panels the entanglement entropy density S/¢ is
plotted against the rescaled time vyt /¢, with £ the size of A and vy; the maximum
velocity. Different panels correspond to different initial states, namely the Néel state
(a), tilted ferromagnet with Delta = 2 (b), tilted Néel (c), and dimer state (d). Dif-
ferent curves correspond to different values of the chain anisotropy A > 1 and tilting
angles ¥ of the initial state. Figure taken from Ref. [94]

in terms of canonical creation b; and annihilation b; operators (satisfying {b, bZ,} = Oyx)-
The variables €, are single-particle energy levels.

We consider the quantum quench in which the system is prepared in an initial state |¥,)
and then is let evolve with the Hamiltonian H. For all these models, the GGE built with local
conservation laws is equivalent to the one built with the mode occupation numbers f; = bz by
since they are linearly related [28]. Thus the local properties of the stationary state are cap-
tured by the GGE density matrix

e Zk Akﬁk

PeGE =~ (24)

where Z = Tre™ 2 Mk (under some some reasonable assumptions on the initial state [26,100,
101)).

The thermodynamic entropy of the GGE is obtained by elementary methods, leading, in
the thermodynamic limit, to

dk
Stp = LJ —H(ny), (25)
2r
where ny = (fix)gor = Tr(pggefix) and the function H is

H(n) =—nlogn—(1—n)log(1—n). (26)

0
The interpretation of Eq. (25) is obvious: pger = Qi pr With pi = ( Tz)k l—n ), ie.
— Ny

the mode k is occupied with probability n; and empty with probability 1 —n,. Given that
f; is an integral of motion, one does not need to compute explicitly the GGE (24), but it is
sufficient to calculate the expectation values of 7i; in the initial state (1|7 |1) which equals,
by construction, ny = (fix)ggg-
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At this point, following the ideas of the previous sections (cf. Eq. (19)), we identify the
stationary thermodynamic entropy with the density of entanglement entropy to be plugged in
Eq. (21), obtaining the general result

Su(t) =2t f %e’kH(nk)+€ f %H(nk), 27)
271 21

2l¢] |e<e 2l¢)|e>

where ef{ = de;/dk is the group velocity of the mode k. This formula is generically valid for
arbitrary models of free fermions with the crucial but rather general assumption that the initial
state can be written in terms of pairs of quasiparticles. More general and peculiar structures
of initial states can be also considered, see Sec. 7.

Following the same logic, it is clear that Eq. (27) is also valid for free bosons (i.e. Hamilto-
nians like (23) with the ladder bosonic operators) with the minor replacement of the function
H(n) (26) with [94,95]

Hyos(n) =—nlogn+ (1 +n)log(1+n). (28)

5.1 The example of the transverse field Ising chain

Eq. (27) can be tested against available exact analytic results for the transverse field Ising
chain with Hamiltonian

L
H= —Z[o;‘oj‘ﬂ +ha§], (29)
=1

where a;’z are Pauli matrices and h is the transverse magnetic field. The Hamiltonian (29)
is diagonalised by a combination of Jordan-Wigner and Bogoliubov transformations [102],
leading to Eq. (23) with the single-particle energies

€x =2V 1+h2—2hcosk. (30)

We focus on a quench of the magnetic field in which the chain is initially prepared in the
ground state of (29) with h, and then, at t = 0, the magnetic field is suddenly switched from
hy to h. As in the general analysis above, the steady-state is determined by the fermionic
occupation numbers n; given by [103]

1
n = 5(1 — COosS Ak), (31)

where A, is the difference of the pre- and post-quench Bogoliubov angles [103]

4(1+ hhg— (h+ hy)cosk)
A= 0 P 0 , (32)

with 62 and €, the pre- and post-quench energy levels, respectively.

The quasiparticle prediction for the entanglement dynamics after the quench is then given
by Eq. (27) with n; in Eq. (31). This result coincides with the ab initio derivation performed
in [82]. The Ising model is only one of the many quenches in non-interacting theories of
bosons and fermions in which the entanglement evolution is quantitatively captured by Eq.
(27), as seen numerically in many cases [90,104-114].
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6 Quasiparticle picture for interacting integrable models

We are finally ready to extend the application of the quasiparticle picture to the entangle-
ment entropy dynamics in interacting integrable models. We exploit the thermodynamic Bethe
ansatz (TBA) solution of these models and remand for all the technicalities to other lectures
in this school [20-22], or to the existing textbooks [115-118] on the subject. Here we just
summarise the main ingredients we need and then move back to the entanglement dynamics.

6.1 Thermodynamic Bethe ansatz

In all Bethe ansatz integrable models, energy eigenstates are in one to one correspondence with
a set of complex quasi momenta A; (known as rapidities) which satisfy model dependent non-
linear quantisation conditions known as Bethe equations. The solutions of the Bethe equations
organise themselves into mutually disjoint patterns in the complex plane called strings [115].
Intuitively, an n-string solution corresponds to a bound state of n elementary particles (i.e.,
those with n = 1). Each bound state (of n particles) has its own quasi momentum lfxn).
The Bethe equations induce effective equations for the quantisation of the quasi momenta of
the bound states known as Bethe-Takahashi equations [115]. In the thermodynamic limit,
the solutions of these equations become dense on the real axis and hence can be described
by smooth distribution functions pﬁf’ )(A). One also needs to introduce the hole distribution
functions pflh)(k): they are a generalisation to the interacting case of the hole distributions
of an ideal Fermi gas at finite temperature [115-118]. Because of the non-trivial (i.e. due to
interactions) quantisation conditions, the hole distribution is not simply related to the particle
one. Finally, it is also useful to introduce the total density p,(f)(k) = p,SP )(A) + pr(lh)(l).

In conclusion, in the thermodynamic limit a macrostate is identified with a set of densities
p = {p,(lp )(A), pﬁh)(l)}. Each macrostate corresponds to an exponentially large number of
microscopic eigenstates. The total number of equivalent microstates is 'Y, with Syy the
thermodynamic Yang-Yang entropy of the macrostate [119]

Syrlp1=L) ] f dA[ P Inp() = pP (W) InpP() - pP (W) In M) 33)
n=1

The Yang-Yang entropy is the thermodynamic entropy of a given macrostate, as it simply fol-
lows from a generalised microcanonical argument [119]. In particular, it has been shown that
for in thermal equilibrium it coincides with the thermal entropy [115].

6.2 The GGE as a TBA macrostate

The generalised Gibbs ensemble describing the asymptotic long time limit of a system after a
quench is one particular TBA macrostate and hence it is fully specified by its rapidities (par-
ticle and hole) distribution functions. There are (at least) three effective ways to calculate
these distributions (see also the lectures by Fabian Essler [20]). The first one is based on the
quench action approach [120,121], a recent framework that led to a very deep understanding
and characterisation of the quench dynamics of interacting integrable models. This technique
is based on the knowledge of the overlaps between the initial state and Bethe eigenstates.
Starting from these, it provides a set of TBA integral equations for the rapidity distributions
in the stationary state that can be easily solved numerically and, in a few instances, also an-
alytically. In turns, the developing of such approach also motivated the determination of the
exact overlaps in many Bethe ansatz solvable models [122-145]. Based on these overlaps, a
lot of exact results for the stationary states have been systematically obtained in integrable
models [122,146-162]. We must mention that only thanks to the quench action solutions of
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some quenches in the XXZ spin chain [150-153], it has been discovered that the GGE built
with known (ultra)local charges [163-165] is insufficient to describe correctly [166,167] the
steady state; this result motivated and boosted the discovery of new families of quasi-local con-
servation laws that must be included in the GGE [66,67,168-170]. This finding is extremely
important because when a complete set of charges is known, the stationary state can be built
circumventing the knowledge of the overlaps required for quench action solution, as e.g. done
in Refs. [171-179]. The direct construction of the GGE based on all the linear independent
quasilocal conserved charges is the second technique to access the asymptotic TBA macrostate.
The third technique is based on the quantum transfer matrix formalism [148,149,180,181],
but will not be further discussed here.

We finally mention that in the quench action formalism, the time evolution of local ob-
servables can be obtained as a sum of contributions coming from excitations over the sta-
tionary state [120]. This sum has been explicitly calculated for some non-interacting sys-
tems [120, 182, 183], but, until now, resisted all attempts for an exact computation in inter-
acting models [146,184] and hence it has only been numerically evaluated [185].

6.3 The entanglement evolution

As we have seen above, in interacting integrable models there are generically different species
of quasiparticles corresponding to the bound states of n elementary ones. According to the
standard wisdom (based, e.g., on the S matrix, see [91]), these bound states must be treated
as independent quasiparticles. It is then natural to generalise Eq. (21), for the entanglement
evolution with only one type of particles, to the independent sum of all of them, resulting in

Sa(t)=> [t f dAvu(M)s,(A) +£ J dAs,(1)], 34)
T o Je<t avilest

where the sum is over the species of quasiparticles n, v,(A) is their velocity, and s, (1) the

entropy density in rapidity space (the generalisation of s(p) in Eq. (21)). To give predictive

power to Eq. (34), we have to device a framework to determine v,(A) and s,(A) in the Bethe

ansatz formalism.

The first ingredient to use is that in the stationary state the density of thermodynamic
entropy (see Eq. (33)) equals that of the entanglement entropy in (34). Since this equality
must hold for arbitrary root densities, we can identify s,(A) with the density of Yang-Yang
entropy for the particle n, i.e.

siA) = pP (W) InpP(2) = pP (W) In pP (1) — pM(A) In pP(A). (35)

Moreover, the entangling quasiparticles in (34) can be identified with the excitations built on
top of the stationary state. Their group velocities v, (1) depend on the stationary state, because
the interactions induce a state-dependent dressing of the excitations. These velocities v,,(A)
can be calculated by Bethe ansatz techniques [186], but we do not discuss this problem here
(see [94,186] for all technical details).

Eq. (34) complemented by Eq. (35) and by the proper group velocities v, (A) is the final
quasiparticle prediction for the time evolution of the entanglement entropy in a generic inte-
grable model. This prediction is not based on an ab-initio calculation and should be thought
as an educated conjecture. It has been explicitly worked out using rapidity distributions of
asymptotic macrostates for several models and initial states [93,94,160,181,187]. Some ex-
amples for the interacting XXZ spin chains, taken from [94], are shown in Fig. 2. The validity
of this conjecture has been tested against numerical simulations (based on tensor network
techniques) for a few interacting models. In particular, in Refs. [93,94], the XXZ spin chain
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for many different initial states and for various values of the interaction parameter A has
been considered. The numerical data (after the extrapolation to the thermodynamic limit) are
found to be in perfect agreement with the conjecture (34), providing a strong support for its
correctness. In Ref. [188], the quasiparticle conjecture (34) has been tested for a spin-1 inte-
grable spin chain, finding again a perfect match. This latter example is particularly relevant
because it shows the correctness of Eq. (34) also for integrable models with a nested Bethe
ansatz solution.

We conclude the section stressing that Eq. (34) represents a deep conceptual breakthrough
because it provides in a single compact formula how the entanglement entropy becomes the
thermodynamic entropy for an arbitrary integrable model.

7 Further developments

In this concluding subsection, we briefly go through several generalisations for the entangle-
ment dynamics based on quasiparticle picture that have been derived starting from Eq. (34).
Here, we do not aim to give an exhaustive treatment, but just to provide to the interested
reader an idea of the new developments and some open problems.

7.1 Rényi entropies

A very interesting issue concerns the time evolution of the Rényi entropies defined in Eq. (15).
These quantities are important for a twofold reason: on the one hand, they represent the core
of the replica approach to the entanglement entropy itself [72, 73], on the other, they are the
quantities that are directly measured in cold atom and ion trap experiments [11-13,74-77].

For non-interacting systems, the generalisation of the formula for the quasiparticle picture
is straightforward. Taking free fermions as example, the density of thermodynamic Rényi
entropy in momentum space in terms of the mode occupation ny is just [82,189]

s“(ny) =

1_OLln[n,‘i‘+(1—nk)°‘]. (36)

Consequently, the time evolution of the Rényi entropy is just given by the same formula for
von Neumann one, i.e. Eq. (27), in which H(n,) is replaced by s®(n;).

One would then naively expect that something similar works also for interacting integrable
models. Unfortunately, this is not the case because it is still not known whether the Rényi
analogue of the Yang-Yang entropy (33) exists. In Ref. [189] an alternative approach based on
quench action has been taken to directly write the stationary Rényi entropy. First, in quench
action approach, the a-moment of p, may be written as the path integral [189]

Trpd = f Dp e ollpl+Syvlp] (37)

where £[p] stands for the thermodynamic limit of the logarithm of the overlaps, Syy[p] is
the Yang-Yang entropy, accounting for the total degeneracy of the macrostate, and the path
integral is over all possible root densities p defining the macrostates. The most important
aspect of Eq. (37) is that the Rényi index a appears in the exponential term and so it shifts
the saddle point of the quench action. There is then a modified quench action

S5 (p) = —4af(p) +Syy(p), (38)
with saddle-point equation for p:
55" (p)

=0. (39)
oP  lp=p;
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Finally, the stationary Rényi entropies are the saddle point expectation of this quench action

55703 S (Pl —asg (p})
l1—-a l—a

(@) _
S, =

) (40)

where in the rhs we used the property that S((zl)(p?) = 0, to rewrite SIE‘O‘) in a form that closely
resembles the replica definition of the entanglement entropy [72,73].

Eq. (39) is a set of coupled equations for the root densities p, that can be solved, at least
numerically, by standard methods. This analysis has been performed for several quenches in
the XXZ spin chain [190,191] and the results have been compared with numerical simulations
finding perfect agreement.

The main drawback of this approach is that the stationary Rényi entropy for a # 1 is not
written in terms of the root distribution of the stationary state p} for local observables. Since
the entangling quasiparticles are the excitations on top of pJ, to apply the quasiparticle picture
we should first rewrite the Rényi entropy in terms of p]. Unfortunately, it is still not know how
to perform this step. We mention that an alternative promising route to bypass this problem
is based on the branch point twist field approach [192,193]. The solution of this problem is
also instrumental for the description of the symmetry resolved entanglement after a quantum
quench [194].

7.2 Beyond the pair structure

A crucial assumption to arrive at Eq. (22) for the entanglement evolution is that quasiparticles
are produced in uncorrelated pairs of opposite momenta. This assumption is justified by the
structure of the overlaps between initial state and Hamiltonian eigenstates found for many
quenches both in free [82,103,196-198] and interacting models [122,129-132, 144, 195].
Indeed, it has been proposed that this pair structure in interacting integrable models is what
makes the initial state compatible with integrability [195] and, in some sense, makes the
quench itself integrable (see [195] for details). This no-go theorem does not apply to non-
interacting theories and indeed, in free fermionic models, it is possible to engineer peculiar
initial states such that quasiparticles are produced in multiplets [161, 162] or in pairs having
non-trivial correlations [199,200]. In all these cases, it is possible to adapt the quasiparticle
picture to write exact formulas for the entanglement evolution, but the final results are rather
cumbersome and so we remand the interested reader to the original references [161,162,199,
200].

7.3 Disjoint intervals: Mutual information and entanglement negativity

Let us now consider a tripartition A; UA, UA of a many-body system (with A; and A, two
intervals of equal length ¢ and at distance d and A the rest of the system). We are interested
in correlations and entanglement between A; and A,. A first measure of the total correlations
is the mutual information

In.a, = Sa, +Sa, — Sa,ua, (41)
with Sy, @ and S 4, being the entanglement entropies of A; () and A; UA,, respectively. Using
the quasiparticle picture and counting the quasiparticles that at time ¢ are shared between A;

and A,, it is straightforward to derive a prediction for the mutual information which reads
[90,93,94]

na, =2 f dAs,(V)] —2max((d +20)/2,v,(1)e)

+max(d/2, v, (A)t) + max((d +40)/2,v,(M)D) ], (42)
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where s, (1) and v,,(1) have been already defined for the entanglement entropy. An interesting
idea put forward in the literature is that one can use this formula to make spectroscopy of the
particle content [94,160]. In fact, since the typical velocities of different quasiparticles n are
rather different, Eq. (42) implies that the mutual information is formed by a train of peaks in
time; these peaks become better and better resolved as d grows compared to £ which is kept
fixed.

The mutual information, however, is not a measure of entanglement between A; and A,.
An appropriate measure of entanglement is instead the logarithmic negativity &,,., [201]
defined as

Enyay =INTrlp,2 |- (43)

Here pZ{z is the partial transpose of the reduced density matrix p,. The time evolution of the
negativity after a quench in an integrable model has been analysed in Refs. [202,203]. To
make a long story short, the quasiparticle prediction is the same as Eq. (42) but with s,,(1)
replaced by another functional (1) of the root densities. This functional is related to the
Rényi-1/2 entropy. Hence, as discussed in Sec. 7.1, we know it only for free theories. Exact
predictions for free bosons and fermions have been explicitly constructed in Ref. [203] and
tested against exact lattice calculations, finding perfect agreement.

7.4 Finite systems and revivals

How the quasiparticle picture generalise to a finite system of total length L? Starting from Eq.
(21), it is clear that the only change is to impose the periodic trajectories of the quasiparticles
which are x; = [(x £ v,t)modL]. Using these trajectories, the final result is easily worked
out as [204-207]

dk 2t dk
Sg(t)=J2 —s(k)L{ ===} +¢ J ) —s(k)
(2K}t 270 { L } {2t} ot 2T

I T}<1_Z

+J 4K oL (1—{%}) (44)
1_%3{@} 2n L

where {x} denotes the fractional part of x, e.g., {7.36} = 0.36. This form has been carefully
tested for free systems [205] in which it is possible to handle very large sizes. For interacting
models, tensor network simulations work well only for relatively small values of L, but still the
agreement is satisfactory [205]. We must mention that Eq. (44) also applies to the dynamics
of the thermofield double [204,208], a state which is of great relevance also for the physics of
black holes [209]. Finally, the structure of the revivals in minimal models of conformal field
theories is also known [210].

7.5 Towards chaotic systems: scrambling and prethermalisation

What happens when integrability is broken? Can we say something about the time evolution
of the entanglement entropy? It has already been found, especially in numerical simulations,
that, in a large number of chaotic systems, the growth of the entanglement entropy is always
linear followed by a saturation, see e.g. [41,211-218]. This behaviour is the same as the
one found in the quasiparticle picture, that, anyhow, cannot be the working principle here
because the quasiparticles are unstable or do not exist at all. Recently, an explanation for this
entanglement dynamics has arisen by studying random unitary circuits [219,220], systems in
which the dynamics is random in space and time with the only constraint being the locality of
interactions. In this picture, the entanglement entropy is given by the surface of the minimal
space-time membrane separating the two subsystems. It has been proposed that this picture
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should describe, at least qualitatively, the entanglement spreading in generic non-integrable
systems [221]. Random unitary circuits have been used to probe the entanglement dynamics
in many different circumstances, providing a large number of new insightful results for chaotic
models. Their discussion is however far beyond the scope of these lecture notes

Although the prediction for the entanglement entropy of a single interval in an infinite sys-
tem is the same for both the quasiparticle and the minimal membrane pictures, the two rely
on very different physical mechanisms and should provide different results for other entangle-
ment related quantities. In fact, it has been found that the behaviour of the entanglement of
disjoint regions [222-225] or that of one interval in finite volume [205,219,220,226] is quali-
tatively different. For maximally chaotic systems, the mutual information and the negativity of
disjoint intervals are constantly zero and do not exhibit the peak from the quasiparticle picture
seen in Eq. (42). The explanation of this behaviour is rather easy: in non-integrable models,
the quasiparticles decay and scatter and they cannot spread the mutual entanglement far away.
It has been then proposed that the decay of the peak of the mutual information and/or nega-
tivity with the separation is a measure of the scrambling of quantum information [222-225],
as carefully tested numerically [225]. Remarkably, such a peak and its decay with the dis-
tance has been also observed in the analysis of the experimental ion-trap data related to the
negativity [227]. Also in the case of a finite size system, the decay and the scattering of the
quasiparticles prevent them to turn around the system; consequently the dip in the revival
of the entanglement of a single interval predicted by Eq. (44) is washed out [226]. In full
analogy with the mutual information, the disappearance of such dip is a quantitive measure
of scrambling [205].

A natural question is now what happens to the entanglement dynamics when the inte-
grability is broken only weakly. In this case, one would expect the two different mechanisms
underlying the above picture to coexist until the metastable quasiparticles decay. This problem
has been addressed in Ref. [228] finding that, for sufficiently small interactions, the entangle-
ment entropy shows the typical prethermalization behaviour [229-234]: it first approaches a
quasi-stationary plateau described by a deformed GGE and then, on a separate timescale, its
starts drifting towards its thermal value. A modified quasiparticle picture provides an effec-
tive quantitative description of this behaviour: the contribution of each pair of quasiparticles
to the entanglement becomes time-dependent and can be obtained by quantum Boltzmann
equations [233,234], see for details [228].

7.6 Open systems

So far, we limited our attention to isolated quantum systems, but it is of great importance to
understand when and how the quasiparticle picture can be generalised to systems that interact
with their surrounding. In this respect, a main step forward has been taken in Ref. [235]
(see also [236]), where it was shown that the quasiparticle picture can be adapted to the
dynamic of some open quantum systems. In these systems, the spreading of entanglement is
still governed by quasiparticles, but the environment introduces incoherent effects on top of it.
For free fermions, this approach provided exact formulas for the evolution of the entanglement
entropy and the mutual information which have been tested against ab-initio simulations.

7.7 Inhomogeneous systems and generalised hydrodynamics

The recently introduced generalised hydrodynamics [237,238] (see in particular the lectures
by Ben Doyon in this volume [239]) is a new framework that empower us to handle spatially
inhomogeneous initial states for arbitrary integrable models (generalising earlier works in the
context of conformal field theory [240,241]). For what concerns the entanglement evolution,
the attention in the literature focused on the case of the sudden junction of two leads [242—

17


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.20

SCIl SciPost Phys. Lect. Notes 20 (2020)

246] (e.g., at different temperatures, chemical potentials, or just two different states on each
side). One of the main results is that while the rate of exchange of entanglement entropy
coincides with the thermodynamic one for free systems [244] (in analogy to homogenous
cases), this is no longer the case for interacting integrable models [245]. Exact formulas, taking
into account the inhomogeneities in space and time (and consequently the curved trajectories
of the quasiparticles) can be explicitly written down both for free [244] and interacting [245]
systems, but they are too cumbersome to be reported here. We finally stress that such an
approach applies to states with locally non-zero Yang-Yang entropy, otherwise the growth of
entanglement is sub-extensive and other techniques should be used [247,248].
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