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Abstract

If the AdS/CFT conjecture holds, every question about bulk physics can be answered by
the boundary CFT. But we still don’t know how to translate all the questions about bulk
physics to questions about the boundary CFT. Completing this bulk-boundary dictionary
is the aim of the bulk reconstruction program, which we review in these lectures. We
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According to the AdS/CFT conjecture, any conformal field theory in a d-dimensional space-
time is equivalent to a theory of quantum gravity in a d+1-dimensional spacetime. Therefore
one should be able to use it to try to learn about bulk physics from the boundary.

If the bulk and boundary theories are indeed equivalent, any question one may ask about
bulk physics can in principle be answered by the boundary CFT. The CFT in the boundary is
the bulk quantum theory of gravity!

In principle, the boundary theory knows the answers to all the outstanding questions like:
1. What happens when an observer crosses the black hole horizon? Do they see a smooth
horizon or a firewall? [1]
2. More generally, how is the black hole information loss paradox [2] resolved?
3. What happens at singularities, where classical general relativity breaks
down.

If we could solve the boundary CFT completely we should have answers to all these ques-
tions about bulk physics.

So why haven’t we solved all of these problems already? The reason is that to answer
questions about bulk physics we would need to know how to translate them to questions
about the boundary conformal field theory. The bulk and boundary theories are formulated in
terms of completely different spaces and operators, and we would need to know how to map
all the observables of one theory to the observables of the other. In other words, we would
need the complete dictionary between the two theories. The original formulation of AdS/CFT
conjecture does give us a dictionary, but it is only a partial dictionary.

The CFT may well have all the answers, but we don’t know how to ask all the right ques-
tions!

The topic of these lectures is the ongoing program of ‘bulk reconstruction’, which aims to
complete the bulk-boundary dictionary. This program is still at an early stage. We can translate
semiclassical observables in the bulk to the boundary CFT. But quantum gravity questions
remain well out of reach. Even in the absence of gravity, observables that lie beyond black
hole horizons are problematic. In these lectures, we will review the progress in these topics.

The plan of the lectures is as follows. First, we will present an overview of the program.
Then we will briefly recall the AdS/CFT dictionary and proceed to make a precise statement
of the program. In section 2 we will show how to obtain a boundary representation of a
free scalar field in pure AdS by solving the equations of motion. Sections 3 and 4 will deal
with interacting scalars. We will cover the case of a self-interacting scalar field as well as
those of scalars interacting with gauge or gravitational fields. We will consider reconstruction
in AdS/Rindler wedges in section 5, which has certain novel features. A different method of
reconstruction via symmetries will be demonstrated in section 6. Section 7 outlines challenges
to bulk reconstruction behind a black hole horizon. In this section, we cover the Papadodimas-
Raju proposal and the Marolf-Wall paradox. The final section presents our conclusions.

A notable omission from these lectures is the concept of entanglement wedge reconstruc-
tion. This is an important topic, but we will only say a few words about it.

An existing review that covers these topics and has influenced our presentation is the TASI
lectures by Harlow [3]. Another review that overlaps with this one is [4].

A note about notation. We will mostly use (r, t,Ω) coordinates for the bulk spacetime. Then
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the boundary coordinates are just (t,Ω). Occasionally when we want to distinguish between
the bulk and boundary co-ordinates clearly we will use y to denote bulk coordinates and X
for boundary coordinates.

1 Overview of the program

In the last section, we spoke about ‘completing the dictionary’ without precisely defining what
it means. Our aim in this section is to make this more precise. To do this, we first review the
original AdS/CFT dictionary and learn what it is already telling us about bulk physics. We
then outline the broad goals of the program.

1.1 The AdS/CFT dictionary

The AdS/CFT correspondence [5–7] is usually stated as the equality of the partition functions
of the bulk and boundary theories.

A different formulation of the correspondence, which is expected to be equivalent to the
statement above, is the extrapolate dictionary [8–10]. We state the extrapolate dictionary for
scalar fields1:

lim
r→∞

rn∆〈φ(r, t1,Ω1)φ(r, t2,Ω2).....φ(r, tn,Ωn)〉Pure AdS

= 〈0|O(t1,Ω1)O(t2,Ω2)....O(tn,Ωn)|0〉. (1)

Here O is the scalar primary dual to the bulk scalar φ. It has dimension∆ which is related
to the mass M of the scalar field as ∆ = d

2 +
1
2

p
d2 + 4M2 where d is the number of space

dimensions. A similar dictionary can be written down for other fields.
This was for pure AdS. More generally, for any semi-classical asymptotically AdS geometry

g we expect that there will be a dual state |ψg〉

g↔|ψg〉 (2)

such that

lim
r→∞

rn∆〈φ(r, t1,Ω1)φ(r, t2,Ω2).....φ(r, tn,Ωn)〉g = 〈ψg |O(t1,Ω1)O(t2,Ω2)....O(tn,Ωn)|ψg〉.
(3)

(1) is a special case of this where the geometry g is pure AdS and the dual state is the CFT
vacuum |0〉:

Pure AdS↔|0〉.

Another example of a semiclassical asymptotically AdS spacetime is the two-sided eternal
black hole. The eternal black hole has two asymptotic boundaries. Consequently, the state
dual to the eternal black hole must belong to the tensor product of the Hilbert Spaces of the
two CFTs on the two boundaries. The correct dual state is the thermofield double state [12]:

Eternal Black Hole↔
1

p

Z(β)

∑

E

e−
βE
2 |E〉|E〉 , (4)

1For interacting scalar fields in pure AdS, this equivalence has been proven [11].
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where the sum is over energy eigenstates, β is the inverse temperature of the black hole, and
Z(β) the partition function at inverse temperature β .

In general, we don’t know the bulk dual of a given boundary state.
The extrapolate dictionary already has some information about bulk physics. We can do

“scattering experiments" where we send in wave-packets from close to the boundary, have
them scatter, and collect them later close to the boundary. The result of such “scattering
experiments"2 will be contained in the CFT correlator 〈O(X1)O(X2)O(X3)O(X4)〉.

x1

x3

x2

x4

〈O(x1)O(x2)O(x3)O(x4)〉

Figure 1: A bulk ‘scattering experiment’.

But this does not cover all bulk information. For instance, if we want to know the correlator
between bulk fields for finite values of r, which may be useful for the description of a local
bulk experiment, that cannot be answered by the extrapolate dictionary directly. One would
need to develop the bulk-boundary dictionary further.

1.2 Statement of the program

After the general discussion in the last section, we are now ready to state the program we will
follow from here on. To do this we first need to specify the regime we will be working in.

As we discussed earlier, we will always work in the regime where bulk geometry is semi-
classical. The condition for semiclassicality is that the gravitational constant G� `d−1 where
` is the AdS radius.

For a CFT to have a semiclassical bulk dual, a set of conditions have to be fulfilled. We refer
the reader to [15, 16] for discussions on this issue. One key condition is that the CFT should
have a parameter N � 1 which controls the factorization of the correlators of the primary
operators which are dual to bulk fields. This means if the two-point function of such a primary
operator is normalized to be of O(1), then higher correlators are suppressed as

〈OiO jOk〉 ∼ 1/N a ,

where a is some O(1) number. In particular, the correlators will follow Wick contraction for
infinite N . N is dual to the perturbative parameter in the bulk field theory, where a similar
factorization takes place in bulk correlators.

2We put scattering experiment in quotes because, unlike in flat space, defining wave packets in the boundary is
problematic in AdS. [13,14]
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In the CFTs known to have a bulk dual, the role of N is played by the central charge of the
CFT. N is the expansion parameter in the CFT and it is related to the gravitational constant as

N2 =
`d−1

G
. (5)

We refer to [17] for the stringy origins of the duality and the role of N .
Note that N is the only expansion parameter so far in the CFT. The most general dual bulk

theory with Einstein gravity and scalar fields will therefore have an action like this (in units
where AdS radius is one)3:

S =
1
G

∫

dd+1 y
p

−gR+

∫

dd+1 y
p

−g
�

∂µφ∂
µφ +M2φ2

�

+λ
p

G

∫

dd+1 y
p

−g

�

φ3

3!
+ all possible cubic couplings

�

+λ′G

∫

dd+1 y
p

−g

�

φ4

4!
+ all possible quartic couplings

�

+ ............. (6)

where λ,λ′ are O(1) numbers. The strengths of the couplings are tightly constrained. A gen-
eral bulk field theory may have couplings of widely different strengths (eg. standard model),
but a theory with a holographic CFT dual can’t unless there are more expansion parameters
present.4

For the class of theories discussed above, the extrapolate dictionary (3) gives us a way to
relate bulk fields near the boundary to boundary CFT operators. But it does not tell us how to
translate the bulk fields deep inside the bulk to boundary operators.

The goal of the bulk reconstruction program is to discover CFT operators that represent
bulk fields at all bulk points. That is, φC F T which satisfy:

〈φ(r1, t1,Ω1)φ(r2, t2,Ω2)〉g = 〈ψg |φC F T (r1, t1,Ω1)φC F T (r2, t2,Ω2)|ψg〉. (7)

In the next chapter, we will see how to find φC F T .

2 Boundary representation of free fields in the bulk

In this section, we will review the techniques for finding CFT representations for free fields in
the bulk. First, we briefly review field theory in AdS.

2.1 Free scalar fields in AdS

The AdS metric is given by:

ds2 = −
�

1+
r2

`2

�

d t2 +
dr2

1+ r2

`2

+ r2dΩ2
d−1 , (8)

where ` is the AdS radius.
Henceforth we will put `= 1.

3If there are higher derivative terms on the gravity side they will be controlled by the ’tHooft parameter. [17]
4We thank Daniel Kabat for a discussion on this point.
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As we had discussed earlier, we will work in the semiclassical regime where the bulk action
is given by (6). By taking the G → 0 limit(N → ∞ limit in the CFT) we get the free field
equation in pure AdS:

(�−M2)φ = 0 , (9)

where � is the D’Alembartian in anti-de Sitter spacetime. and M is the mass parameter for the
field φ.

In this limit, gravity is switched off. So we can neglect gravity and consider the scalar field
in a fixed background. Let us obtain the quantum theory of this field.

From rotational and time translation symmetry of the metric (8) we know that the solu-
tion to (9) will be of the form fωl ~m(r, t,Ω) = ψωl(r)e−iωt Yl ~m(Ω) where Yl ~m(Ω) are the usual
spherical harmonics.

Substituting this in (9) gives:

(1+ r2)ψ′′ +
�

d − 1
r
(1+ r2) + 2r

�

ψ′ +

�

ω2

1+ r2
−

l(l + d − 2)
r2

−M2

�

ψ= 0. (10)

At large r this becomes

r2ψ′′ + (d + 1)rψ′ −M2ψ= 0. (11)

Clearly, this has polynomial solutions of the form r−α. Substituting ψ(r) = r−α in the
above gives us two independent solutions, α=∆, d −∆ where:

∆=
d
2
+

1
2

p

d2 + 4M2 . (12)

So the asymptotic solution to (9) will have the form:

φ(r, t,Ω) = r∆−d K(t,Ω) + r−∆L(t,Ω) . (13)

Normalizable modes are the ones with r−∆ fall-off. These are the ones we need to define a
unitary field theory in AdS. Note that it is the same ∆ that appeared in (3).

We further impose smoothness at r = 0 which quantizes ω:

ωnl =∆+ l + 2n , (14)

where n= 0,1, 2....
The full solution for fωl ~m(r, t,Ω) is given by:

fωl ~m(r, t,Ω) =
1

N∆nl
e−iωnl t Yl ~m(Ω)(

r
p

1+ r2
)l(

1
p

1+ r2
)∆

2F1

�

−n,∆+ l + n, l + d/2,
r2

1+ r2

�

, (15)

where N∆nl is the normalization constant.
Now that we have the modes we can quantize the fields.

φ(r, t,Ω) = φ− +φ+ =
∑

nl ~m

fωl ~m(r, t,Ω)aωl ~m + f ∗ωl ~m(r, t,Ω)a†
ωl ~m , (16)

where a, a† are the annihilation and creation operators. They create normalizable particle
excitations in the bulk.
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2.2 Free field reconstruction in mode sum approach

We want to recreate the free scalar field of the last section as a CFT operator. That is, we want
a CFT operator that satisfies:

〈φ(r1, t1,Ω1)φ(r2, t2,Ω2)〉Pure AdS = 〈0|φC F T (r1, t1,Ω1)φC F T (r2, t2,Ω2)|0〉. (17)

It is enough to consider only two point functions because in free field theory higher-order
correlators factorize to products of two point functions. The dual phenomenon in the CFT is
large N factorization.

How do we obtain such a φC F T ? This problem was originally solved in [18–20]. The
construction below is known as the HKLL construction after Hamilton, Kabat, Lifschytz, and
Lowe. They did some of the pioneering work in this field.

To obtain this representation, we first note that the bulk field satisfies the free field equa-
tion:

(�−M2)φ = 0. (18)

We also note that the extrapolate dictionary looks like a boundary condition for the bulk
field:

lim
r→∞

r∆φ(r, t,Ω) =O(t,Ω). (19)

This equation relates the boundary value of the field to a primary operator in the conformal
field theory. This suggests that if we solve (9) with (19) as the boundary condition we would
get an expression for φ in terms of CFT operators O.

Of course, (19) is not really a boundary condition as it maps fields between two different
spaces. The right-hand side is a CFT operator that acts on the CFT Hilbert space and the left-
hand side is the boundary value of a bulk field. So what we will really do is to try to find a
CFT operator φC F T (r, t,Ω) which satisfies:

(�−M2)φC F T (r, t,Ω) = 0. (20)

Here r can be thought of as a parameter which this CFT operator depends on. Then we
demand that in the limit where this parameter becomes large, φC F T is given by (19). Then
we solve for this CFT operator.

This is the right way of thinking about bulk reconstruction, but as far as the logistics of
solving the problem is concerned, it is exactly the same as solving (9) as a bulk equation
of motion as a boundary value problem with (19) as the boundary value. In the relevant
literature this distinction is not made. The bulk field φ and its CFT representation φC F T are
usually denoted by the same notation. Now that we know what is going on, we too will drop
the distinction and denote φC F T as just φ from here on, except when there is any possibility
of confusion between the bulk field and its CFT representation.

Let us now solve the problem. We should note that (19) is not a standard boundary value
problem. In field theory, we usually specify initial conditions on a spacelike Cauchy surface.
In this case, we are specifying boundary conditions on a timelike surface. This is not a well-
studied problem in mathematics. As we will see, the solution will turn out not to be unique.

That said, it is fairly straightforward to solve this boundary value problem in this case. For
simplicity, we will consider the case where∆ is an integer. Then the solution becomes periodic
in time and we can limit the range of t to −π to π. For the general case, we refer the reader
to [19,20].

We start from the expansion (16) and plug it in (19):

lim
r→∞

r∆φ(r, t,Ω) = lim
r→∞

r∆
∑

nl ~m

fωl ~m(r, t,Ω) aωl ~m + f ∗ωl ~m(r, t,Ω) a†
ωl ~m =O(t,Ω). (21)
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Now

lim
r→∞

r∆ fωl ~m(r, t,Ω)

= lim
r→∞

r∆
1

N∆nl
e−iωnl t Yl ~m(Ω)(

r
p

1+ r2
)l(

1
p

1+ r2
)∆
�

2F1

�

−n,∆+ l + n, l + d/2,
r2

1+ r2

��

=
1

N∆nl
e−iωnl t Yl ~m(Ω)2F1 (−n,∆+ l + n, l + d/2, 1) (22)

:= gωl ~m(t,Ω). (23)

Then (21) simplifies to
∑

nl ~m

gωl ~m(t,Ω)aωl ~m + g∗ωl ~m(t,Ω)a
†
ωl ~m =O(t,Ω). (24)

When ∆ is an integer gωlm are orthogonal to all g∗
ωlm. We would now like to invert this

relation using the orthonormality and completeness of the functions e−iωnl t and Yl ~m(Ω). So
we define:

g̃ωl ~m(t,Ω) =
N∆nl

2F1 (−n,∆+ l + n, l + d/2, 1)
e−iωnl t Yl ~m(Ω) .

Then we can solve for a:

aωl ~m =

∫ π

−π
d t

∫

dΩ g̃∗ωl ~m(t,Ω)O(t,Ω). (25)

Similarly for a†
ωlm.

Plugging it back we get

φ(r, t,Ω) =
∑

nl ~m

fωl ~m(r, t,Ω)

∫ π

−π
d t ′

∫

dΩ′ g̃∗ωl ~m(t
′,Ω′)O(t ′,Ω′)

+ f ∗ωl ~m(r, t,Ω)

∫ π

−π
d t ′′

∫

dΩ′′ g̃ωl ~m(t
′′,Ω′′)O(t ′′,Ω′′)

=
∑

nl ~m

∫ π

−π
d t ′

∫

dΩ′
�

∑

nl ~m

fωl ~m(r, t,Ω) g̃∗ωl ~m(t
′,Ω′) + c.c

�

O(t ′,Ω′). (26)

It turns out that
∑

nl ~m fωl ~m(r, t,Ω ) g̃∗
ωl ~m(t

′,Ω′) is real and therefore equal to its complex
conjugate. This gives the final form for the expression:

φ(r, t,Ω) =

∫ π

−π
d t ′

∫

dΩ′K(r, t,Ω; t ′,Ω′)O(t ′,Ω′) , (27)

where

K(r, t,Ω; t ′,Ω′) = 2

�

∑

nl ~m

fωl ~m(r, t,Ω) g̃∗ωl ~m(t
′,Ω′)

�

. (28)

This is known as the smearing function.
Using (22) we have that

K(r, t,Ω; t ′,Ω′)∝
∑

nl ~m

fωl ~m(r, t,Ω) e−iωnl t Yl ~m(Ω) . (29)

So the smearing function is proportional to the Fourier transform of the mode functions.
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y

Figure 2: The boundary representation of a bulk scalar field at a point y has support
on all boundary points spacelike separated from y.

We note that the smearing function is not unique. We can see from (14) that only modes
between −∆ and ∆ appear in the solution for O(t,Ω). Therefore if we add a term eikt to
the smearing function where k is any integer between −∆ + 1 and ∆ − 1, the integration
∫

d t eiktO(r, t,Ω) vanishes. So we can add any term of the form
∑

k ckeikt to the smearing
function without changing (27).

This freedom allows us to put the smearing function in a convenient form. In particular,
we can arrange for the smearing function to be non-zero only at boundary points spacelike
separated from the bulk point (r, t,Ω). This is the minimal support that it can have (We refer
to section 2.3 of [19] for details).

We now have an expression for the boundary representation of the bulk field. By writing
the bulk coordinate as y and boundary coordinate as X we can denote it simply as:

φ(y) =

∫

dX K(y; X )O(X ). (30)

Where the range of integration is over all points X in the boundary which are spacelike
separated from the bulk point y . Note that this is a non-local operator in the CFT.

Now that we have the CFT representation φ(r, t,Ω) we can check whether it indeed satis-
fies the condition (17). Let us sketch the steps of the check. First we note that

〈0|φ(y)φ(y ′)|0〉=
∫

dX dX ′K(y; X )K(y ′; X ′) 〈0|O(X )O(X ′)|0〉. (31)

Where we have used (30). Now 〈0|O(X )O(X ′)|0〉 is fixed completely by symmetry. We can
therefore easily evaluate the above equation. As may be expected, it turns out to give the
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correct bulk two point function. The information about the bulk has been encoded in the
boundary operator through the smearing function.

Here we worked in global coordinates but we could have worked in the Poincare coordi-
nates. That gives a smearing function with support on the boundary of the Poincare patch.
This matches with the global smearing function in the Poincare patch coordinates, up to the
ambiguities in the definition of the smearing function mentioned above. We refer to Appendix
C of [20] for details.

The generalization to higher-spin fields can be carried out straightforwardly [21–23]. For
bulk reconstruction in the background of a BTZ black hole see [24]. An interesting new tech-
nique for finding a representation for the bulk field using modular Hamiltonians was given
in [25]. This technique can be used to find a CFT representation for the bulk field in a variety
of backgrounds.

3 Boundary Representation for interacting fields

From the CFT point of view, our program is to find the operator that represents the bulk field
at finite N . We can try to approximate this in a perturbation series in 1/N :

φ = φ(0) +
1
N
φ(1) +

1
N2
φ(2) + .. (32)

In the last section, we obtained the 0th order approximation. In this section, our aim is to
obtain higher-order corrections in 1/N .

On the bulk side, the perturbation series above translates to a perturbative expansion in
1/
p

G. The 0th order approximation in CFT corresponded to the free field equation in the
bulk. Obtaining the higher-order corrections in 1/N on the CFT side is equivalent to including
interactions in the bulk theory. We have to take an interacting field in the bulk, expand it in
1/
p

G and try to obtain the boundary representation.
In this section, we will see how to do that. This can be done in several ways. One of them

is an extension of the idea we used in the last section, which is to treat bulk reconstruction as
a boundary value problem. One can then introduce an appropriate Green’s function and solve
the interacting theory order by order. We will discuss this in the next section.

Another approach is to fix the 1/N corrections by demanding that they satisfy microcausal-
ity (i.e spacelike separated fields should commute) in the bulk. We will discuss this as well.

There are other approaches that give the same result which we have not discussed here.
A new and interesting new approach is the one in [26], which obtains the corrections by
demanding that the boundary representation of a bulk field behaves like a good CFT operator.
This demand fixes the operator at 1/N order.

3.1 Interacting scalars through the Green’s function method

Boundary representation for interacting scalars using the Green’s function method was first
considered in [27] and generalized to even dimensions in [28]. We outline this method below.

Let us consider an interacting φ3 theory:

(�−M2)φ =
λ

N
φ2 , (33)

where λ is a O(1) number.
In this section, we will obtain a CFT representation for this bulk field. Once again the

strategy is to solve the bulk equation of motion. For an interacting theory, it is useful to do
this using Green’s function method.
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In the last section we saw that we can arrange it so that the smearing function for a bulk
point has support on only the spacelike separated points from it. With this in mind we intro-
duce a Green’s function which is non zero only for spacelike separated points:

(�−M2)G(y, y ′) =
1
p
−g
δd+1(y − y ′)

G(y, y ′) = 0 for y, y ′ not spacelike separated . (34)

We can now write φ using (34) and do two integrations-by-parts to get:

φ(y) =

∫

dd+1 y ′φ(y ′)δd+1(y − y ′)

=

∫

dd+1 y ′
p

−gφ(y ′) (�−M2)G(y, y ′)

=

∫

dd X nµ
�

φ(X )∂µG(y, X )− G(y, X )∂µφ(X )
�

+

∫

dd+1 y ′
p

−g G(y, y ′)(�−M2)φ(y ′).

Here we have used our convention of using y to denote bulk points and X to denote boundary
points. nµ is the unit vector normal to the boundary.

The first integral can be evaluated from our knowledge of the boundary behavior of both
the field and the Green’s function.

We already know the field falls off as :

lim
r→∞

r∆φ(y) =O(X ). (35)

The Green’s function with one of its points at the boundary is a solution of the homoge-
neous Klein Gordon equation. Its boundary behavior is given by (13):

lim
r→∞

G(y, y ′)→ rd−∆K(y, y ′) + r−∆L(y, y ′). (36)

If we plug this back in the first integral only the leading order terms in r will survive. Now
if we put the interaction term to zero, the second integral vanishes by the equation of motion
and we get back our CFT representation for the free field:5

φ(y) =

∫

dd X K(y; X )O(X ). (37)

One can check that this gives the same smearing function as the one we had obtained
earlier. Now we can add interactions. Then the second term will not be zero but subleading
in 1/N . We can solve it iteratively:

φ(y) =

∫

dd X K(y; X )O(X ) +
∫

dd+1 y ′
p

−g G(y, y ′)(�−M2)φ(y ′)

=

∫

dd X K(y; X )O(X ) (38)

+
λ

N

∫

dd+1 y ′dd X ′dd X ′′
p

−g G(y, y ′)K(y ′; X ′)K(y ′; X ′′)O(X ′)O(X ′′). (39)
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y X y
y ′

X ′

X ′′

Figure 3: Diagrammatic representation of perturbative bulk reconstruction. The first
diagram corresponds to the 0th order representation while the second corresponds
to the first order correction in 1/N .

We used (33) in the last step. This way an iterative series can be built order by order in
1/N . The series can be represented diagrammatically:

The lines connecting bulk to boundary represent the smearing function K(y; X )while bulk-
to-bulk lines represent the spacelike Green’s function G(y, y ′).

3.2 1/N corrections from Microcausality

A different strategy for implementing 1/N corrections comes from demanding microcausality
in the bulk [27]. Let us sketch the idea.

We had obtained the CFT representation for the free field (30):

φ(0)(y) =

∫

dX K∆(y; X )O∆(X ) , (40)

where we have exhibited the operator dimensions explicitly. When we include interactions in
the bulk(1/N corrections in the CFT) we would expect the representation to receive corrections
of the form:

φ(y) = φ(0)(y) +φ(1)(y) =

∫

dX K(y; X )O(X ) + 1
N

∑

n

∫

dX ′K∆n
(y; X ′)O∆n

(X ′) , (41)

where O∆n
(X ′) are higher dimensional primaries. This is a natural guess because φ1(y) falls

off faster than φ(0)(y) near the boundary and does not affect the extrapolate dictionary. Fur-
ther, it doesn’t affect the two-point function (primaries of different dimensions have vanishing
two-point functions).

Now we can fix the K∆n
by demanding microcausality in the bulk. Microcausality is the

property that two spacelike separated fields in the bulk commute: [φ(y),φ(y ′)] = 0 for space-
like separated y, y ′. This a property we can demand of the CFT representation. For 1/N
corrections we demand that this be satisfied in three point functions:

〈0|[φ(y1),O(X2)]O(X3)|0〉= 0. (42)

5Actually we will not get back the same smearing function but the two can be shown to be equivalent using the
ambiguities in smearing function discussed earlier.
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Where we have taken two of the points to lie in the boundary for convenience. If one
substitutes φ(0)(y) in 〈0|[φ(y1),O(X2)]O(X3)|0〉 it does not vanish. 〈0|φ(y1)O(X2)O(X3)|0〉
and 〈0|O(X2)φ(y1)O(X3)|0〉 both turn out to have singularities at different coordinate values.
We can fix Kn by demanding that including the first order correction to φ(y) cancels all the
divergences and satisfies (42).

So we are demanding

〈0|
�∫

dX K∆(y1, X )O(X ) + 1
N

∑

n

∫

dX ′K∆n
(y1; X ′)O∆n

(X ′),O(X2)

�

O(X3)|0〉= 0

=⇒
∫

dX K∆(y1, X )〈0|[O(X ),O(y2)]O(y3)|0〉

+
1
N

∑

n

∫

dX ′K∆n
(y1; X ′)〈0|[O∆n

(X ′),O(X2)]O(X3)|0〉= 0. (43)

Now all CFT three point functions are fixed (up to a constant) by conformal symmetry. This
means that 〈0|[O(X ),O(X2)]O(X3)|0〉 and 〈0|[O∆n

(X ′),O(X2)]O(X3)|0〉 are known. So we
can use the above equation to solve for K∆n

. This is another way of obtaining 1/N corrections.
This may seem to be giving a different result than the one we got from the Green’s func-

tion approach (38). There the correction term was a single product of primaries O(X )O(X ′)
whereas here we have an infinite sum over products of local primaries. However, one can take
the OPE O(X )O(X ′) in (38) and obtain a tower of local primaries which matches precisely
with what we have here.

A limitation of this method is that it doesn’t directly generalize to higher-order corrections
as higher point correlators are not fixed by symmetry alone.

4 Reconstruction of interacting gauge and gravitational fields

Let us consider a complex scalar field coupled to a U(1) gauge field. The action is given by:

S =

∫

dd+1 x
p

−g
�

−Dµφ
∗Dµφ −

1
4

FµνFµν
�

, (44)

where Dµ = ∂µ + iqAµ , field strength Fµν = ∂µAν − ∂νAµ and q is the coupling constant.
The gauge transformations in this theory are:

φ(x)→ φ(x)e−iq f (x) (45)

Aµ(x)→ Aµ(x)− ∂µ f (x) . (46)

Here the scalar field is local but not gauge-invariant. What are the gauge-invariant observ-
ables in this theory? A Wilson line attached to the scalar field is one example:

ΦW (x) = φ(x)e
iq
∫∞

0 dsAµ(xν(s))
d xν(s)

ds , (47)

where the integration is over a curve that runs to some bulk point from the boundary: s =∞
at the boundary while s = 0 at the target point x .

This is gauge-invariant but not local as one needs to know Aµ on an entire line that joins
the boundary to the point x .

More generally we can construct gauge-invariant observables by introducing a function
gµ(x , x ′) [29]:
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Φ(x) = V (x)φ(x)

= eiq
∫

dd x ′gµ(x ,x ′)Aµ(x ′)φ(x).

Under a gauge transformation parametrized given by f (x):

V (x)→ V (x)eiq
∫

dd x ′gµ(x ,x ′)∂µ f (x ′). (48)

Then Φ(x) is invariant under gauge transformations if

∂µgµ(x , x ′) = δd(x − x ′).

Thus for any function gµ(x , x ′) satisfying the above relation, we can construct a gauge-
invariant observable.

We want to reconstruct Φ as a CFT operator. Again we take the coupling constant to be
some q = q′/N . where q′ is some O(1) number. Then we can try to solve the equations of
motion order by order in 1/N . Note that we cannot directly implement microcausality as the
gauge-invariant fields are non-local. However, we can obtain the modified microcausality re-
lations and impose them. Alternately, we can demand that Φ transform suitably under bulk
isometries. They would not transform like bulk scalars but one can figure out the transforma-
tion of, for instance, ΦW from the transformation of φ and Aµ. Imposing suitable transforma-
tion under isometries turns out to be enough to fix the corrections order by order. Typically,
the corrections will include higher-order non-primary operators. This is expected because the
gauge-invariant bulk field does not transform like a scalar. We refer the reader to [30] for
details. An example of reconstructing gauge-invariant observables in a black hole background
can be found in [31].

Similarly, when the gravitational field is considered we have diffeomorphism invariance,
which is the gauge symmetry of Einstein’s equations. This invariance tells us that coordinates
themselves have no physical meaning. There can be no diffeomorphism invariant local observ-
ables, so when gravity is considered we would be forced to work with non-local observables.

Let us briefly discuss the construction of diffeo-invariant observables for gravitational fields.
Given a boundary, it is straightforward to define such diffeomorphism invariant observables.
An example of such an observable is one where a geodesic shoots out from some boundary
point X i . Then the field value φ(X i , z)– where z is geodesic length calculated from the bound-
ary – is a diffeomorphism invariant observable. This is so because diffeomorphisms at the
boundary are not gauge symmetries of the theory.

Another class of diffeomorphism invariant observables are those are integrated over all of
spacetime. An example would be vertex operators in worldsheet string theory.

We refer the reader to [32–36] for discussions on diffeomorphism invariant observables.
We emphasize that diffeomorphism invariance is a gauge symmetry of Einstein’s equations

(or Einstein’s equations coupled to matter fields) and not of matter field equations in a fixed
background. In other words, we have diffeomorphism invariance only when gravity is dynam-
ical and not when we do field theory in a given background.6

In general relativity, matter fields also influence the background geometry through the
right-hand side of Einstein’s equation. This is called backreaction. When we work on a fixed
background we neglect the backreaction of the matter on gravity. Diffeomorphism invariance
only holds when backreaction is taken into account and one obtains the full solution of the
coupled Einstein equations plus equation of motion for matter field.

6One can obtain a diffeomorphism-invariant formulation of a field theory in a given background by introducing
auxiliary variables. This gives us parametrized field theories. The above comment is about when we do field theory
without introducing such auxiliary variables.
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For our program, the main consequence of this discussion is that when gravity is dynamical
we have to work with diffeomorphism invariant observables. But when gravity is not dynam-
ical, we should not use such observables. The construction of CFT representation is along
similar lines as in gauge theories and was carried out in [37].

5 Reconstruction in AdS-Rindler and causal wedge reconstruction
conjecture

In the last section, we saw that we can represent a scalar field at a bulk point y as a non-local
operator in the CFT using a smearing function K(y; X ) that has support at all boundary points
X spacelike separated from y . In this section, we will see that if we work with K(y; X ) that is
a distribution rather than a function we could represent a bulk field in an even smaller region
in the boundary.

5.1 Reconstruction in AdS-Rindler patch

The reader may be familiar with Rindler wedges in Minkowski space. The AdS-Rindler patch
or wedge is an analogous region in AdS. In fact, it is the restriction of a Rindler wedge of the
embedding d+2-dimensional Minkowski space to the AdS hyperboloid:

−X 2
0 + X 2

1 + ...X 2
d − X 2

d+1 = −1 . (49)

Consider a uniformly accelerated observer in the embedding space. Their worldline will
be given by:

X0 = ξ sinhτ (50)

X1 = ξ coshτ . (51)

Here τ is the time measured by the accelerated observer and 1
ξ is their acceleration. We take

ξ,τ to be two of the coordinates in the AdS patch. We choose the rest of the coordinates χ,Ω
to satisfy (49)

Xd+1 =
Æ

ξ2 + 1 coshχ (52)

X 2
2 + ...X 2

d = (ξ
2 + 1) sinh2χ . (53)

This gives us the metric on the AdS-Rindler patch:

ds2 = −ξ2dτ2 +
dξ2

1+ ξ2
+ (1+ ξ2)(dχ2 + sinh2χdΩ2

d−2) . (54)

The Rindler coordinates are related to the global coordinates. Here we give the relation
for AdS3 where the global coordinates are (r, t,θ ) (as in (8)) and the Rindler coordinates are
(ξ,τ,χ). They are related as follows:

r2 = ξ2
�

cosh2χ + sinh2τ
�

+ sinh2χ

tanθ =

p

ξ2 + 1sinhχ
ξ cosh t

cos2(t) =
(ξ2 + 1) cosh2χ

ξ2
�

cosh2χ + sinh2τ
�

+ cosh2χ
. (55)
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τ
=
∞

τ= −∞

Figure 4: AdS/Rindler Wedge.

Note that τ→±∞ as t →±π2 . The Rindler patch covers only a part of the full AdS.
Now we can once again try to obtain a CFT representation for the bulk field by solving the

wave equation. There are a few points of difference from the case of global AdS:
(i) Regularity at r = 0 is no longer imposed so the field modes are no longer quantized.

One gets a continuum of modes. The upshot of this is that for a given Rindler patch one cannot
alter the support of the integration region by adding modes, all modes contribute.

(ii) The smearing function diverges. The smearing function can be formally written as the
Fourier transform of the AdS/Rindler mode functions gk,ω:

K(χ,τ,ξ;τ′,ξ′) =

∫

dk dω e−iωτ′+ikξ′ gk,ω(χ,τ,ξ) . (56)

But the AdS/Rindler mode functions gk,ω grow exponentially with k, which means that the
smearing function diverges.

It was shown in [38] that this is not a problem as such. The smearing function in this case
is not a function but it does make sense as a distribution. Integrating it with O(X ) always
gives sensible results.

The interesting point here is that for a field at any point of the Rindler wedge, the smearing
distribution for the CFT representation has support only on the boundary of the Rindler wedge.
It does not require information about the rest of the boundary.

This means that we can use the CFT Hamiltonian to reconstruct the bulk field in terms of
the operators supported only on a part of the boundary Cauchy slice:

φ(r, t,Ω) =

∫

d t ′dΩ′K(r, t,Ω, t ′,Ω′)eiH t ′O(0,Ω′)e−iH t ′ , (57)

where the integration over Ω is only over the boundary of the Rindler wedge.
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5.2 Causal wedge reconstruction conjecture

First let us define a causal wedge. Let R be a spatial subregion in the boundary. Then we can
define something called the domain of dependence of R or D[R]. This is the set of all boundary
points such that a null or a timelike curve passing through any of them must also intersect the
region R. This is shown in the figure.

X

Y

R

Figure 5: The domain of dependence of a boundary region R.

Now we define the causal wedge of R or C[R] as the set of spacetime events in the bulk
through which there exists a causal curve that starts and ends in D[R]. In the figure, this is
the intersection of all bulk points lying to the causal future of X and all bulk points lying to the
causal past of Y.

R

Figure 6: Causal Wedge of a boundary region R

The AdS-Rindler reconstruction can be extended to a more general class of bulk regions –
the causal wedges of ball-shaped boundary regions (For AdS3 ‘ball-shaped regions’ are simply
intervals on the boundary). An AdS/Rindler chart can be defined on such wedges [38,39] and
the above method applied. This result leads to the causal wedge reconstruction conjecture.

The causal wedge reconstruction conjecture holds that any field at any point in the causal
wedge of any boundary region R in an asymptotically AdS spacetime can be reconstructed as
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an operator in the boundary region D[R]. The intuitive explanation for this is that any point
in C[R] can be accessed by a causal observer starting from and returning to D[R]. But as the
boundary theory is unitary, it already knows the information such an observer may bring. Thus
the information about the entire causal wedge is already present in R. As noted, it is proved
only for causal wedges of ball-shaped subregions in pure Anti-de Sitter spacetimes. For more
general wedges in AdS, as well as for any causal wedges in more general asymptotically AdS
spacetimes, this remains a conjecture.

It has been conjectured that an even bigger region than the causal wedge can be recon-
structed from the information in R. This is the region known as the entanglement wedge of R.
To define the region we first recall the covariant version of the Ryu-Takayangi proposal (usu-
ally called the HRT or Hubeny-Rangamani-Takayanagi proposal) for holographic entanglement
entropy of a boundary region R [40, 41]. According to the HRT proposal, the entanglement
entropy of R is equal to the area of the surface γR, which satisfies the following properties:
(i) It should be an extremal surface i.e a surface whose area is extremal under small variations.
(ii) It should be homologous to R.
(iii) The boundary of γR should be the same as the boundary of R.

From the homology condition, we have that there exists a bulk region HR such that
∂ HR = γR ∪ R. The domain of dependence of HR or D[HR] is called the entanglement wedge
of R (denoted by W [R]).

W [R] = D[HR] . (58)

Generally, the entanglement wedge will contain the causal wedge. The entanglement
wedge reconstruction conjecture holds that one can reconstruct fields in the entanglement
wedge in the boundary of the wedge. We will not discuss entanglement wedge reconstruction
in these lectures. We refer the reader to [42–45].

6 Scalar field reconstruction from symmetries

In this section, we discuss an alternate method of obtaining CFT representations for bulk fields
given by Ooguri and Nakayama [46] based on earlier work by Miyaji et al [47] (see [48] for a
related approach. A similar calculation also appeared in [49]). Unlike the previously described
methods, this approach is based entirely on symmetry considerations. It is purely kinematical.

We will follow the original paper and use (ρ, t, xa) coordinates which are related to global
coordinates as ρ = sinh r and Σi x

a xa = 1. The metric in these coordinates given by

ds2 = − cosh2ρd t2 + dρ2 + sinh2ρd ~x2 . (59)

The key idea is to use the one-to-one correspondence between AdS isometries and the
symmetries of the CFT. We start by asking how a CFT representation of a bulk scalar would
transform under the conformal symmetries. In other words, we are asking what we should
expect the following commutator to be:

[Jµ,φC F T (ρ, t, xa)] , (60)

where Jµ are the generators of conformal symmetry in the CFT.
It is natural to expect the representation φC F T of a bulk field to transform under conformal

symmetries in the same way bulk fields transform under bulk isometries. That is, there should
be compatibility between boundary conformal transformations and bulk isometries.

Therefore they should satisfy the following commutation relations:

[Jµ,φC F T (ρ, t, xa)] = J µ∂µφC F T (ρ, t, xa) , (61)
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where J µ is the killing field on AdS corresponding to the conformal symmetry generated by
Jµ. The Ooguri-Nakayama strategy is to try and find CFT operators φC F T that transform in
this manner.

The conformal generators Jµ on the boundary of the AdS spacetime (which is a cylin-
der R ⊗ Sd−1) are the global Hamilltonian H on R, rotation generators Mab on the d − 1-
dimensional sphere, Pa and Ka. The last two are respectively the translation and the special
conformal generators when the cylinder R⊗ Sd−1 is conformally mapped to Rd .

We will need the following commutation relations:

[Ka, Pb] = 2δabH − 2iMab, [H, Pa] = Pa, [H, Ka] = −Ka. (62)

Before we get to deriving φC F T from (61) let us give an explicit example.
Let us consider AdS2. The conformal symmetry generators in this case are K , P, H. For each

of them there is a corresponding isometry in the bulk. They are:

H = ∂t .

K = 1
2

tanhρe−i t∂t + ie−i t∂ρ.

P = 1
2

tanhρei t∂t − iei t∂ρ.

The condition (61) then translates to the following conditions in AdS2:

[H,φC F T (ρ, t)] = ∂tφC F T (ρ, t).

[K ,φC F T (ρ, t] = (
1
2

tanhρe−i t∂t + ie−i t∂ρ)φC F T (ρ, t).

[P,φC F T (ρ, t)] = (
1
2

tanhρei t∂t − iei t∂ρ)φC F T (ρ, t).

Now we return to AdSd+1 and start trying to construct operators that satisfy (61). First,
we reconstruct the scalar field at the origin. As one can check, the following transformations
leave the scalar field at the origin invariant:

[Mab,φC F T (0)] = 0. (63)

[Pa + Ka,φC F T (0)] = 0. (64)

The second condition can be immediately checked to be true in the AdS2 example above.
Let us define the state φC F T (0)|0〉= |φC F T (0)〉 . Then (63) and (64) translate to

Mab|φC F T (0)〉= 0; (Pa + Ka) |φC F T (0)〉= 0. (65)

To solve this problem we start from a primary scalar of dimension ∆φ:

Mab|O〉= 0; Ka|O〉= 0; H|O〉=∆φ . (66)

We write down an ansatz for a solution to (65) by adding all the descendants of this primary
to it with arbitrary coefficients.

|φ∆〉〉=
∞
∑

n=0

(−1)nan(P
2)n|O〉. (67)

19

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.22


SciPost Phys. Lect Notes 22 (2021)

Now we can impose (65) on the above equation and solve for an. This gives the following
result:

an =
n
∏

k=1

1
4k∆φ + 4k2 − 2kd

. (68)

This defines a scalar field at the origin |φ∆〉〉. We can reconstruct other scalar fields starting
from primaries of different dimensions. A general scalar field at the origin will be given by:

|ψC F T (0)〉=
∑

∆

b∆|φ∆〉〉. (69)

We can shift the field to any other point on the bulk using the generators that don’t leave
the origin invariant:

|φC F T (ρ, t, xa)〉= e−iH t eρ(Pa−Ka)xa |φ∆〉〉. (70)

Note that so far we have made no reference to dynamics. We have reconstructed a general
scalar field.

But as we will now show, the state obtained in (70) is a solution to the Klein Gordon
equation.

To see this, we introduce the quadratic Casimir operator of the CFT. This operator com-
mutes with all the conformal generators:

C2 =
1
2

MµνMµν − KνPµ − dD+ D2 , (71)

where d is the number of dimensions. It is easy to check using (66) that the primary state |O〉
is an eigenstate of this operator with eigenvalue ∆φ(∆φ − d). But since C2 commutes with all
the generators that appear in (70), acting it on |φC F T (ρ, t, xa)〉 we have

C2|φ(ρ, t, xa)〉=∆φ(∆φ − d)|φ(ρ, t, xa)〉. (72)

Defining an operator φC F T (ρ, t, xa) by φC F T (ρ, t, xa)|0〉 = |φC F T (ρ, t, xa)〉 we can write
the above equation as

[C2,φC F T (ρ, t, xa)] =∆φ(∆φ − d)φC F T (ρ, t, xa). (73)

But from (61) and using the explicit form of C2 given in (71) we can translate the commu-
tators of generators to actions of bulk isometries.

This turns out to give us:
�φC F T = M2φC F T , (74)

where � is the usual box operator (also known as the Laplace-Beltrami operator) on AdS and
M2 =∆φ(∆φ − d). This is consistent as the Laplace-Beltrami operator commutes with all the
AdS isometries.

So each CFT state |φC F T 〉 is dual to a solution to a different free field equation in the bulk.
Finally, let us sketch how one can go from the HKLL representation to the one we just

obtained. We will be very schematic and refer the reader to Appendix A.5 of [50] for details.
Let us work in AdS2. We start by acting on the vacuum with φC F T (0), the HKLL represen-

tation of the field at the origin. This gives us :

∫

d tK(0; t)O(t)|0〉=
∫

d tK(0; t)
∑

n

tn

n!
(∂t)

nO(t)|t=0|0〉

=
∑

n

�

1
n!

∫

d t tnK(0; t)

�

Pn|O〉.
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Here we did a Taylor expansion in the first step. For AdS2 it turns out that the integral
∫

d tK(0; t)tn

vanishes for odd n. Then we get exactly the form

|φC F T 〉〉=
∞
∑

n=0

(−1)nan(P
2)n|O〉 , (75)

where

(−1)nan =

∫

d tK(0; t)
tn

n!
. (76)

One can check that they match exactly. The ambiguity in the smearing function discussed
earlier corresponds to the invariance of (67) under the transformation an→ an + bn where

∞
∑

n=0

(−1)n bn(P
2)n|O〉= 0. (77)

Thus the two representations are equivalent.
Further progress along the line of the Ooguri-Nakayama approach was made in [50, 51].

In [50] local states in a BTZ background were constructed. An extension of this approach to
find CFT representation for fields which transform as scalars under asymptotic symmetries in
AdS3 was given in [52,53].

A limitation of this approach is that it is purely kinematical. There is no way to incorporate
dynamical information in the CFT representation constructed in this way.

7 Challenges to bulk reconstruction

In this section, we review the challenges to the bulk reconstruction program. First, there is
the issue of going to the finite N regime. So far we have worked in the infinite N regime
which is dual to semiclassical bulk physics. But ultimately we would need to understand the
finite N regime which is dual to bulk quantum gravity. Even in the large N regime, the bulk
reconstruction program faces challenges in the presence of horizons. In the following sections,
we discuss these issues.

7.1 Challenges at finite N

At finite N , the semiclassical picture of the bulk with local field theories living on some given
background is expected to break down.

One can see this from black hole thermodynamics. From renormalization group wisdom,
we expect any field theory to flow to a conformal field theory at very high energies.7 If quantum
gravity is a local field theory at all energies, we would expect it too to flow to a CFT. Then its
entropy must scale like a (d+1)-dimensional CFT as E

d
d+1 .

Now if high enough energy is concentrated in a bulk region it results in the formation
of a black hole. The high-energy spectrum of gravity is therefore dominated by black holes.
Consequently, we would expect the entropy in the quantum gravity theory to be dominated by
entropy coming from black hole microstates.

But black hole entropy is given by the Bekenstein-Hawking formula

SBH ≈
A
G
=

rd−1
s

G
=

M
d−1

d

G1/d
, (78)

7For those not familiar with the renormalization group, this simply means that at very high energies any field
theory behaves like a CFT.
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where rs is the Schwarzschild radius given by rd
s ≈ GM for AdS-Schwarzschild black holes in

the limit of large Schwarzschild radius.
This is much smaller than required for a d+1-dimensional CFT.
However it is perfect for a d dimensional CFT! The entropy of a d-dimensional CFT with

energy E and central charge N2 is given by:

S = N
2
d E

d−1
d . (79)

Using N2 = 1/G and identifying black hole mass with the energy, this matches exactly.
So we see that the local field theory picture in the bulk over-counts degrees of freedom. If

we try to re-create local field theory from CFT, the process must break down. In the large N
limit, there is no problem. A hand-waving way of seeing this is that in this limit the boundary
entropy also blows up. One can make the agreement between the entropy of a bulk local
theory and a large N CFT precise [16].

So this method of reconstructing bulk observables must fail at finite N . At present, we
don’t know how to go to the finite N regime.

7.2 Challenges to bulk reconstruction behind the horizon

Even in the large N limit one faces some severe challenges when one tries to reconstruct bulk
fields behind the horizon of a black hole.

As we will see, the HKLL construction fails beyond the horizon of a collapsing black hole.
Papadodimas and Raju have a proposal for the construction of operators beyond the horizon in
terms of state-dependent ‘mirror operators’. These operators satisfy all the properties expected
of a bulk field mode beyond the horizon. But their definition depends on the particular state
of the black hole.

On the other hand, there is the Marolf-Wall paradox which says that if bulk fields every-
where (including behind the horizon) can be represented as linear CFT operators, one can
show for the case of an asymptotic AdS space with more than one boundary that the bound-
ary CFTs cannot capture full information about the bulk. There can be more than one bulk
geometry dual to the same boundary state.

In this section, we will discuss the state-dependence proposal of Papadodimas and Raju
and the Marolf-Wall paradox.

7.2.1 Bulk reconstruction in collapsing black holes.

Eternal black holes pose no problem of principle for HKLL construction. Outside the horizon,
the bulk fields are reconstructed as before as operators in either the left or the right boundary
CFT. The field behind the horizon will be represented as a sum of operators of the CFTs of both
the boundaries. This is made clear in the figure below.
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(−)
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ω,m g

(−)
ω,m

ξ
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ω,m ξ

(−)
ω,m

I

II

III

IV

Figure 7: Bulk reconstruction in an eternal black hole. f (±)ω,m are the solutions to the
wave equation in region I which behave like plane waves near the horizon. A linear
combination of them is the normalizable mode. The CFT representation of a field
in region I will be an operator on the right boundary. In region II, we have modes
coming in both from regions I and III. To obtain the CFT representation one continues
back these modes to the boundary. This gives us a sum of two operators – one on the
left CFT and one on the right.

But it fails for collapsing black holes. First, let us understand why the HKLL construction
fails beyond the horizon for collapsing black holes. We consider a black hole formed from the
collapse of a null shell.

I

II

Figure 8: Bulk reconstruction fails for a collapsing black hole. The left moving mode
(in blue) can be continued back to the boundary but the right moving mode (in red)
inside the horizon when continued back collides with the infalling null shell (in olive)
at transplanckian energies

In principle, we can reconstruct the field at any point outside the horizon by solving the
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field equations as before. Inside the horizon, the left moving modes pose no problem of princi-
ple either. They can be continued back to the boundary. It is the right moving modes inside the
horizon that are problematic. To carry out bulk reconstruction beyond the horizon we would
need to continue these modes back to the origin, reflect them through the origin and continue
back till the boundary. However, these modes will get blue-shifted when continued backward.
For sufficiently late modes this means that when continued back they will collide with the col-
lapsing matter at very high (greater than Planck scale) center-of-mass energies. Classical field
equations break down at that point. This ‘transplanckian’ issue is why we cannot construct the
bulk field beyond the horizon.

While HKLL construction fails, Papadodimas and Raju [54–56] have argued that one can
still find boundary representations of bulk fields, but they will be ‘state-dependent’ operators.

We will now sketch the mirror operator construction of Papdodimas and Raju in a simplified
manner. Our presentation will gloss over subtleties for clarity and we refer the reader to
the original papers for an accurate presentation. We also refer to the original papers for a
discussion about how the different versions of the firewall paradox are evaded by these mirror
operators (indeed this was the motivation behind their construction).

Now let us consider a black hole formed from collapse. We consider the black hole to be
big enough not to evaporate.8 We assume that sufficient time has passed after the collapse so
that fluctuations have died down and the black hole is approximately in equilibrium.

At this late time the metric will resemble the eternal black hole geometry:

ds2 = − f (r)d t2 +
1

f (r)
dr2 + r2dΩ2 , (80)

where

f (r) = r2 + 1−
cd GM
rd−2

, (81)

cd is a dimension dependent constant. The horizon is at r0 where f (r0) = 0.
We consider a massless scalar field in this background. We would like to get a CFT repre-

sentation for all the modes of this field. We introduce the tortoise coordinates r∗:

dr∗
dr
=

1
f (r)

; r∗ = 0 at r = 0 . (82)

We can solve the wave equation in this background and find the modes. Sufficiently close
to the horizon they act like plane waves (the near-horizon region of any black hole is approxi-
mated by Rindler space). In what follows we are suppressing the angular dependence, which
does not play a crucial role.

Outside the horizon we have:

φ(t, r∗,Ω) = Σl, ~m

∫

dω
p
ω

�

aω,l, ~me−iω(t+r∗) + eiδω bω,l, ~me−iω(t−r∗)
�

Yl, ~m(Ω) + h.c . (83)

The origin of the phase eiδω is the normalizability condition – modes outside the horizon
must vanish at the boundary and it turns out that only a particular linear combination of the
two modes above vanishes at the boundary.

Inside the horizon:

φ(t, r∗,Ω) = Σl, ~m

∫

dω
p
ω

�

aω,l, ~me−iω(t+r∗) + b̃ω,l, ~meiω(t−r∗)
�

Yl, ~m(Ω) + h.c . (84)

8Remember that AdS is like a box, so only black holes so small that their lifetimes are smaller than the time
taken for radiation from the black hole to be reflected back from the boundary can evaporate.
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All modes other than b̃ can be represented as CFT operators using HKLL construction. To
find a representation for b̃ we will first learn how it behaves inside correlators. Then we can
try to find an operator in the CFT which reproduces the same correlators.

In what follows we will only consider the l = 0 mode and denote bω,l, ~m with l = 0 as
simply bω.

Now for short distances the two point function behaves as:

〈φ(x)φ(y)〉 ≈
1

�

gµν(x − y)µ(x − y)ν
�

d−1
2

. (85)

We can choose the points x , y to be both inside, both outside or on inside and one outside of
the horizon. Substituting (84) and (83) in (85) for each of these cases we obtain the following
correlation functions:

〈b̃ω′ b̃†
ω〉=

1
1− e−βω

δ(ω−ω′) (86)

〈b̃ωbω′〉=
e−

βω
2

1− e−βω
δ(ω−ω′) . (87)

The CFT operator that represents some b̃ must replicate this behavior. The aim then is to
find such CFT operators.

The key idea is to note that we need a CFT operator that reproduces only those bulk cor-
relation functions of a given b̃ω operator which correspond to all reasonable experiments that
a bulk observer might do.

A reasonable experiment is one that can be described by effective field theory in the bulk.
An example of an unreasonable experiment would be one where we localize so much energy
in a small region that a black hole gets formed.

The first step is to obtain this set of operators which describe such reasonable experiments.
To do this one first discretizes the modes by introducing a time band [−Tb, Tb]:

bω =
2π
p

Tb

∫ Tb

−Tb

d t O(t)eiωt . (88)

Then one consider the set of polynomial operators spanned by the set of monomials
{bω1

, bω1
bω2

, ...., bω1
....bωn

}. Polynomials obtained by taking linear combinations of these can
be considered to describe reasonable experiments provided that the following conditions are
met by each monomial:

(i) They should not have so much energy that they form a black hole:
∑

i

ωi �O(N2) . (89)

(ii) There should not be too many insertions, which can also lead to the breakdown of
effective field theory. This gives a condition on the number of insertions k:

k�O(N2) . (90)

The set of polynomials spanned by the monomials satisfying the above conditions is de-
noted as Be f f . To this one also adds BH the set of polynomials in small powers of the CFT
Hamiltonian BH = span{H, H2, ...Hn}; n� N . This gives us the set of operators B.

The upshot of these two conditions is that DB �O(eN2
), where DB is the dimension of B.

With these restrictions, B forms the set of all reasonable experiments. It can be thought of as an
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approximate algebra (sometimes called a small algebra) of effective field theory observables.
It is only an approximate algebra because some compositions of elements of the set B won’t
satisfy the restrictions above and take one outside the set B.

Once we have the set of all reasonable experiments, the next step is to choose an appro-
priate state for the black hole. Here we introduce the notion of ‘equilibrium states’ – states
which are dual to black holes that are in approximate equilibrium. The defining property of
equilibrium states is that the elements of the small algebra will have approximately (i.e up to
1/N corrections) thermal correlators for these states. Note that there can be more than one
equilibrium state dual to a given black hole geometry.

Now we choose such an equilibrium state |ψ〉. We form the linear H|ψ〉 by acting on |ψ〉
by operators in B.

Hψ = B|ψ〉= span

¨

∑

p

bpBp|ψ〉

«

, (91)

where Bp are elements of B. This can be thought of as the subspace corresponding to the
effective field theory near the equilibrium state |ψ〉. It is sometimes called the little Hilbert
Space. It can be shown that the dimension of Hψ is also DB � eN2

.
Now we are ready to define the CFT operators that represent b̃ modes. These are defined

by their action on ψ:

b̃ωBα|ψ〉= e−
βω
2 Bαb†

ω|ψ〉

b̃†
ωBα|ψ〉= e

βω
2 Bαbω|ψ〉 . (92)

For any Bα ∈ B. The b that appears here is the CFT representation of the b modes in the
bulk. The b̃ are called mirror operators as they mirror the action of b modes.

How do we know that one can always find b̃ω and b̃†
ω that satisfy (92)? As all Bα|ψ〉 are

linearly independent, (92) defines the operators b̃ω and b̃†
ω by a set DB equations each. But

the approximate dimension of the full Hilbert space is eN2
so the operators b̃ω and b̃†

ω can be

thought of as a eN2
× eN2

matrices. But as DB � eN2
, solutions can always be found for the

above set of equations.
Such solutions may not be unique but that’s not an issue as the definition completely spec-

ifies the action of mirror operators within the little Hilbert Space. What happens beyond the
little Hilbert Space is irrelevant for our purposes.

Now let us check if the mirror operators in the CFT do indeed reproduce the correct cor-
relators.

We have:
b̃†
ω b̃ω′ |ψ〉= e−

βω
2 b̃†

ωb†
ω′
|ψ〉= b†

ω′
b†
ω|ψ〉 . (93)

Where we have used the definitions (92) at each step. Then

〈b̃†
ω b̃ω′〉= 〈b

†
ω′

bω〉 . (94)

So these are indeed the correct correlators. One can also check from the definition that for
any state in the little Hilbert space Bα|ψ〉, it is true that

[b̃ω, bω]Bα|ψ〉= 0 (95)

and
[b̃ω, b̃†

ω]Bα|ψ〉= Bα|ψ〉 . (96)

The correct commutation relations are recovered, but only within the little Hilbert space.
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In general, b̃ operators won’t commute with b operators. This means that locality is lost.
However, they will commute within the little Hilbert Space so we still have a local effective
field theory.

Let us discuss the state dependence of this construction. The mirror operators that we
obtained were for one equilibrium state |ψ1〉. We could have denoted the operator as b|ψ1〉.
If we started with a different equilibrium state |ψ2〉 which corresponds to the same geometry
we would have obtained a different little Hilbert Space and a different mirror operator b|ψ2〉
for the same bulk modes. So to know which operator to use to describe the modes behind the
horizon, one has to know which exact equilibrium state one is in. It is not enough to know the
geometry.

This is in contrast to the HKLL construction. HKLL construction also has a kind of ‘state-
dependence’ in that they depend on the background geometry, and different background met-
rics correspond to different CFT states. So when we obtain the HKLL representation in pure
AdS, it only holds for the vacuum state in the CFT (and excitations around it). A different
CFT state would have a different bulk geometry dual to it and we would have a different
HKLL representation for that state. However, knowing the geometry is enough. But for mirror
operators, that is not the case.

It has been argued that such state-dependent operators form a non-linear modification of
quantum measurement theory. We refer the reader to [57] for a discussion on this.

7.3 Marolf-Wall paradox: AdS 6= CFT?

In this last section, we review the paradox posed by Marolf and Wall [58]. The Marolf-Wall
argument concerns asymptotically AdS geometries with multiple boundaries.

It is generally believed that if an asymptotic AdS geometry has n boundaries then the dual
to this geometry is an entangled state of n non-interacting CFTs. This is a very reasonable
belief as the two boundaries cannot possibly interact unless there is a traversable wormhole.
The most well-understood example of this is the two-sided eternal black hole, which is dual
to a particular entangled state in the CFT known as the thermofield double state.

The Marolf-Wall argument shows that if semiclassical bulk observables can be translated
to linear operators in the CFT, then an asymptotically AdS spacetime with more than one
boundary cannot be dual to a CFT state. The essence of the argument is that there can be
more than one bulk dual to an entangled CFT state. In other words, the map between CFT
states and bulk duals cannot be one-to-one.

Let us review their argument for the thermofield double state, which is a state in two
entangled non interacting CFTs, which we will call left and right CFT for convenience. We
introduced this state in (4):

|ψTFD〉=
1

Z(β)

∑

E

e
−βE

2 |E〉L|E〉R . (97)

This is dual to the two-sided eternal black hole. But Marolf and Wall argued that there
is another dual. To see this, note that by the AdS/CFT correspondence each CFT in CFTL ⊗
CFTR is dual to a bulk theory living in a one-sided asymptotically AdS geometry. For instance
any factorized state in CFTL ⊗ CFTR can always be interpreted as a tensor product of two
disconnected bulk geometries, which can be possibly quantum (which is to say, they can have
large fluctuations). For instance, |0〉|0〉 is dual to a disconnected pair of pure AdS geometries.
Similarly, any state |E〉|E〉 will be dual to some disconnected pair of (quantum) geometries,
each of which is dual to an energy eigenstate of a CFT. Now we should also be able to interpret
the thermofield double state as a superposition of such disconnected pairs of asymptotically
AdS geometries.

27

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.22


SciPost Phys. Lect Notes 22 (2021)

So we have two possible bulk duals for the thermofield double state.
But can they really be distinguished by an experiment? Could it be that they are different

mathematical representations of the same physical state? In which case no experiment could
ever distinguish between them. Marolf and Wall argued that the answer is no. They proposed
an experiment whose result depends on the choice of bulk dual.

In the experiment, we consider an observer Alice who starts from one of the boundaries
(which we will call the left boundary for convenience)and moves in. We can define such an
Alice for both the eternal black hole and the disconnected geometries.

CFTL CFTRAlice Bob

Figure 9: Alice and Bob travel from the left and right CFTs towards the horizon.

We will describe Alice by unitary an operator eiA. This point may be confusing so let us
digress and elaborate on this point.9 The reader can skip this discussion in the first reading.

To describe an observer in an asymptotic region what we need is a localized wave packet
at the asymptotic infinity. Now in a small enough region in the boundary, all the correlators
will look close to the correlators in pure AdS, irrespective of the interior geometry. Therefore
a localized ‘Alice’ wave packet can be constructed by some operator acting on the CFT vacuum
which would look like:

OA|0〉=
∑

n

∫

dk1...dkn f (k1, ..., kn)a
†
k1

..a†
kn
|0〉 . (98)

Where a†
ω are CFT representations of creation operators for the pure AdS. From the previ-

ous section, we already know how to obtain them. But this is not a unitary operator. However,
we can always find a unitary U which mimics this operator acts exactly the same way in the
vacuum:

〈i|UA|0〉= 〈i|OA|0〉 (99)

for some basis |i〉. This is all we need to represent a localized asymptotic observer. But we still
have complete freedom to fix all other matrix elements 〈i|U | j〉. One can show that it is always
possible to find a unitary operator that satisfies this property.

Let us return to the experiment. First, we consider the case where the dual is an eternal
black hole. We consider the black hole to be large enough so that a semiclassical description
holds inside the horizon (except near the singularity). Now in an eternal black hole, we can
define another observer Bob (defined by another unitary operator eiB) who starts from the
right boundary. It can be arranged so that Alice and Bob meet behind the horizon.

9We thank Aron Wall for explaining this point to us in detail.
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Now we ask the question ‘Does Alice meet Bob when she jumps inside a black hole?’ This
is a well-defined question in the bulk. In an eternal black hole, the probability of Alice meeting
Bob is close to one. We can write this schematically as:

bh〈Does Alice meet Bob when both are created appropriately?〉bh ≈ 1 (100)

Let us translate this to the CFT. In the CFT the answer to this question is given by the
projector P which projects on to the states where Alice meets Bob. Then we have:

〈ψTFD|e−i(A+B)Pei(A+B)|ψTFD〉 ≈ 1 . (101)

If we don’t create the operator Bob on the right boundary we should have

〈ψTFD|e−iAPeiA|ψTFD〉 ≈ 0 . (102)

Now let us ask the same question for the other bulk dual to the thermofield double state,
the superposition of disconnected pairs of one-sided geometries. This is again an operationally
well-defined question in bulkL where Alice lives. By AdS/CFT correspondence we should be
able to answer this question by a projector PL which lives in CFTL . This is an important point
– by AdS/CFT correspondence the answer to the question ‘does Alice meet Bob’ in a one-sided
bulk must be given by a projector in a single CFT.

In this case we can calculate the result directly in the boundary theory:

〈ψTFD|e−i(A+B)PLei(A+B)|ψTFD〉= 〈ψTFDe−iAPLeiA|ψTFD〉 ≈ 0 . (103)

The second step follows because PL is an operator in the left CFT and commutes with
operators from the right CFT. The probability is not exactly zero because quantum fluctuations
can always create a Bob. To make this probability really small we can arrange the experiment
to be so that Bob carries some qubit which Alice will measure. The probability that a Bob-like
wave-packet along with a particular qubit gets created by quantum fluctuations is vanishingly
small(see the discussion in Appendix A of [58]).

So for the bulk dual (which we label as ‘dc’), this translates to;

dc〈Does Alice meet a Bob when both are created appropriately?〉dc ≈ 0 . (104)

So we seem to have arrived at a contradiction. A well-defined question in the bulk elicits
different answers from the same CFT state depending on what bulk interpretation we use. The
two possible bulk duals to the thermofield double state can be distinguished by an operationally
well-defined experiment.

This means that one cannot distinguish between these two bulk geometries from the CFT
– the same CFT state is dual to both. Therefore the general bulk theory which contains both
these states can’t be dual to a CFT ⊗ CFT. Instead, it should be dual to CFT ⊗ CFT ⊗ S, where
S is the space that contains this additional information which can distinguish between the two
states.

There are three possible ways out of the Marolf-Wall paradox which have been suggested
in the literature.

The first comes from state dependence, which says that one can’t construct fields behind
the horizon as linear operators in the CFT. If one can’t construct PL as a linear operator in the
bulk then (103) does not hold. Even if there is a very small probability of Alice meeting Bob in
each factorized state |E〉L|E〉R, the sum over states may yield a number close to one if PL is non-
linear. If observables behind the horizon can’t be represented by state independent operators
as has been argued by Papadodimas and Raju, that would be a way out of the Marolf-Wall
paradox.
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Another way out has been suggested by Jafferis [59], who has argued that the kind of
observables involved in describing this experiment may not be good bulk observables. Jafferis
has argued that good bulk observables must be non-perturbatively diffeomorphism invariant
and these observables do not satisfy that criterion.

A different point of view on the Marolf-Wall paradox [60] is that one should not interpret
the argument to imply that there are superselection sectors. Rather, the more natural inter-
pretation of the argument is that a state in CFT ⊗ CFT can have two bulk duals which differ
in their operator dictionaries. Note that the same bulk question was answered by different
projection operators in the CFT in the two cases. This means that the bulk-boundary operator
dictionaries are different in the two cases. There is no contradiction in the CFT and one could
argue that a single CFT state having multiple bulk duals with differing operator dictionaries is
not a paradox in itself.

8 Conclusion

In these lectures, we reviewed the program of completing the bulk-boundary dictionary. We re-
viewed the HKLL construction in Anti-de Sitter spacetime and obtained the smearing function
for free and interacting theories. We saw that for an AdS-Rindler patch the smearing func-
tion is a distribution instead. However, using a distribution one can obtain a representation
smeared over a smaller boundary region. We discussed bulk reconstruction from symmetries.

We also reviewed challenges to bulk reconstruction. We only understand bulk reconstruc-
tion at large N , the case of finite N (i.e quantum gravity in the bulk) remains a challenge. Even
at large N , the existence of a horizon poses challenges. We saw that for black holes formed
from collapse the HKLL procedure fails. However a prescription for bulk reconstruction in
terms of mirror operators exists, which we reviewed. Finally, we reviewed the Marolf-Wall
paradox which challenges the idea that the AdS/CFT dictionary is one-to-one.
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