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Abstract

As a low-energy effective model emerging in disparate fields throughout all of physics,
the ubiquitous ϕ4-theory is one of the central models of modern theoretical physics. Its
topological defects, or kinks, describe stable, particle-like excitations that play a central
role in processes ranging from cosmology to particle physics and condensed matter the-
ory. In these lecture notes, we introduce the description of kinks in ϕ4-theory and the
various physical processes that govern their dynamics. The notes are aimed at advanced
undergraduate students, and emphasis is placed on stimulating qualitative insight into
the rich phenomenology encountered in kink dynamics. The appendices contain more
detailed derivations, and allow enquiring students to also obtain a quantitative under-
standing. Topics covered include the topological classification of stable solutions, kink
collisions, the formation of bions, resonant scattering of kinks, and kink-impurity inter-
actions.
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1 Introduction

Solitons were introduced into physics by J.S. Russell in 1834 [1], after he observed a solitary
wave travelling for miles along the Union Canal near Edinburgh, Scotland, without altering
its shape or speed. The dynamics of this particular wave were later described using the Ko-
rteweg–de Vries equation [2], but the idea of solitary waves as stable, localized configurations
with finite energy in any medium or field [3], turned out to be much more general. They are
now known to occur and play an important role in almost all areas of physics, including parti-
cle physics [4], cosmology [5, 6], (non-linear) optics [7, 8], condensed matter theory [9–12],
and biophysics [13]. To understand the generic properties of solitary waves, they can be stud-
ied in the most elementary models or field theories possible. Two famous examples are the
sine-Gordon model and the ϕ4-theory.

The sine-Gordon model is an integrable model [14], with infinitely many conserved quan-
tities that allow solitary waves in its field configuration, called solitons, to pass through one
another while retaining their individual sizes and shapes [15]. It has found many applica-
tions including, for example, the analysis of seismic data [16], convecting nematic fluids [17],
Josephson-junction arrays [18,19], and magnetic materials [20].

The ϕ4-theory [21], on the other hand, was first introduced by Ginzburg and Landau as
a phenomenological theory of second-order phase transitions [22]. Since then, it has been
identified as a low-energy effective description of phenomena in almost any field of physics,
making the detailed understanding of its fundamental properties and excitations particularly
relevant. The ϕ4-theory can be extended to higher order [23–26], as well as more structured
fields [27–32], but the classical scalar theory already contains all essential ingredients required
to describe the emergence, dynamics, and interactions of solitary waves called kinks, and will
be the focus of these lecture notes.

The ϕ4-theory is not integrable, and although it possesses stable and localized solitary
wave excitations of finite energy [3], these cannot pass through one another unaffected, as
they do in the sine-Gordon model [33]. Instead, collisions between kinks may result in a wide
array of physical phenomena, such as the excitation of internal modes, resonant and non-
resonant scattering [34–37], and the formation of bound states [37,38]. All of these processes
have found application throughout physics, in effective descriptions of seemingly disparate
things like molecular dynamics [39–41], the motion of domain walls in crystals [42–44], the
formation of abnormal nuclei [45–47], and the folding of protein chains [48–50].

These lecture notes aim to provide a self-contained first introduction to the description of
kinks in ϕ4-theory and the rich collection of physical phenomena arising in their dynamics.
They are suitable for use as a short course for advanced undergraduate students. Familiarity
with basic classical field theory is assumed, and some phenomenological knowledge of, for
example, particle physics or basic condensed matter physics will be useful for appreciating the
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significance of presented results. Sec. 2 forms the basis of these lecture notes, introducing
the classical ϕ4 field theory in (1 + 1) dimensions, and explaining how non-trivial solutions
containing kinks arise. The remaining sections focus on the dynamics and interactions of
kinks in the ϕ4-theory, with the phenomenology of kink-antikink collisions being introduced
in Sec. 3, followed by the modelling of the resulting scattering and formation of bound states
in Secs. 4 and 5, and a discussion of the effect of local disorder in Sec. 6. Exercises appear and
the end of most sections, and guide the reader through the main results presented in the text.
They are not intended to be challenging. Finally, more detailed discussions of several aspects
are presented in appendix A.

We hope these lecture notes provide a basis for understanding some of the ubiquitous
phenomena arising throughout effective low-energy descriptions in all realms of physics. They
explain why localized excitations in a continuous field behave like massive particles that can
scatter, form bound states, and respond to impurities in the continuous medium. They allow
you to appreciate the universal nature of these effects, and they prepare you for independently
investigating the detailed dynamics of solitary waves in any physical setting.

2 Scalar fields in (1+1) dimensions

2.1 Topological sectors

Consider a classical, real, and scalar field ϕ = ϕ(t, x) in (1+ 1)-dimensional space-time [33,
51,52]. Its dynamics is determined by the Lagrangian density:

L= 1
2

�

∂ ϕ

∂ t

�2

−
1
2

�

∂ ϕ

∂ x

�2

− U(ϕ). (2.1)

The specific potential U(ϕ) = m2ϕ2 yields a free massive scalar field theory, whose equation
of motion is described by the classical Klein-Gordon equation. More generally, the function
U(ϕ) can be thought of as a self-interaction potential of the field ϕ. We can always use the
freedom to choose the zero of energy to ensure that U(ϕ) is a non-negative function of ϕ,
whose minimum value is precisely zero.

Using the Euler-Lagrange equation, the equation of motion for ϕ(t, x) is found to be:

∂ 2ϕ

∂ t2
−
∂ 2ϕ

∂ x2
+

dU
dϕ
= 0. (2.2)

For a static, time independent solution this simplifies to d2ϕ/d x2 = dU/dϕ. The dynamics
of an initial field configuration ϕ(t0, x) may be studied by numerically solving the equation
of motion on a discrete lattice [45, 53], or employing an appropriate approximation scheme
such as the collective coordinate approximation (CCA) [24,35,54–57]. Both approaches will
be used in the next sections of these lecture notes.

The instantaneous energy of any field configuration ϕ(t, x) is given by the functional:

E[ϕ] =

+∞
∫

−∞

�

1
2

�

∂ ϕ

∂ t

�2

+
1
2

�

∂ ϕ

∂ x

�2

+ U(ϕ)

�

d x . (2.3)

Notice that in spite of the time dependence of ϕ, the energy E[ϕ] is a time-independent, con-
served quantity. The energy of a static ground state field configuration is sometimes referred
to as the mass of that field and denoted by M . This should not be confused with the Klein-
Gordon mass parameter m in a free field theory. For the energy in Eq. (2.3) to be finite, the
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Figure 2.1: Left: Schematic representation and example of the asymptotic behavior
for a topologically trivial solution. Right: Schematic representation and example of
the asymptotic behavior for a topologically non-trival solution.

integral should converge. This yields the requirement that all physical fields ϕ(t, x) approach
a minimum of U(ϕ) sufficiently quickly as x approaches positive or negative infinity.

If there is only a single minimum, at ϕ = ϕv , then the field configuration ϕ(t, x) = ϕv
will be the vacuum or ground state of the system. If there are multiple, degenerate min-
ima ϕ(1)v , ϕ(2)v , and so on, they together form a vacuum manifold and any field configuration

ϕ(t, x) = ϕv is a possible ground state. It is also possible however, to find static field config-
urations that approach distinct minima at opposing boundaries of space (x = ±∞). These
types of solutions are called topological [51, 52, 58], and more generally, one may divide all
static configurations into topological sectors labelled by the set of minima they approach at
spatial infinity. This is indicated schematically in Fig. 2.1.

The energy of a static field in any topological sector may be written in a particularly con-
venient form by introducing the so-called superpotential W (ϕ) [51], defined by:

U(ϕ) =
1
2

�

dW (ϕ)
dϕ

�2

. (2.4)

Notice that we can always find a smooth, continuously differentiable function W (ϕ) satisfying
this equation because we assumed U(ϕ) to be a non-negative function ofϕ. Using the superpo-
tential, the expression for the energy in Eq. (2.3) can be written for a static field configuration
as:

E[ϕ] =
1
2

+∞
∫

−∞

�

�

dϕ
d x

�2

+
�

dW
dϕ

�2
�

d x

=
1
2

∫

�

dϕ
d x
−

dW
dϕ

�2

d x +

∫

dW
dϕ

dϕ
d x

d x

=
1
2

∫

�

dϕ
d x
−

dW
dϕ

�2

d x +W |ϕ(x=+∞) −W |ϕ(x=−∞). (2.5)

From the final line, it is clear that any field in a given topological sector necessarily has an
energy E ≥ EBPS, with the minimum possible energy EBPS =W |ϕ(x=+∞) −W |ϕ(x=−∞) named
after Bogomolny, Prasad, and Sommerfield [59,60]. Any field configuration with energy equal
to EBPS is said to saturate the BPS bound.
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Figure 2.2: The kink (left) and antikink (right) configurations of Eq. (2.9). The
characteristic width of the kink, lK , is indicated.

Since the integral in the final line of Eq. (2.5) is over a squared function, the only way to
obtain a BPS saturated configuration is to have a field obeying the condition:

dϕ
d x
=

dW
dϕ
=
p

2U . (2.6)

If such a field configuration does exist, it will be guaranteed by the variational principle to also
be a ground state for its topological sector. The Euler-Lagrange equation given by Eq. (2.2) is
therefore automatically satisfied by solutions of Eq. (2.6), even though the latter is only a first
order differential equation.

2.2 Kinks in ϕ4-theory

The simplest scalar field theory having distinct topological sectors is the so-called ϕ4-theory.
It is defined as a particular instance of the general model of Eq. (2.1), with the self-interaction
potential equal to

U(ϕ) =
1
4
(1−ϕ2)2. (2.7)

Here, we write the potential in a dimensionless and mathematically convenient form. The
equation of motion with this potential becomes

∂ 2ϕ

∂ t2
−
∂ 2ϕ

∂ x2
+ϕ3 −ϕ = 0. (2.8)

This equation has non-topological or trivial solutions (approaching the same state at both
spatial boundaries) given by ϕ(t, x) = 0 and ϕ(t, x) = ±1. These correspond to the field
always being at either a maximum or minimum of the potential. The solution ϕ = 0, sitting at
a maximum, is unstable, while the solutions ϕ = ±1 form two stable and degenerate ground
states.

Non-trivial solutions of Eq. (2.8) lie in a topological sector where the field approaches one
minimum as x →−∞, and the other minimum as x →∞. One such solution is:

ϕ(t, x) = tanh
�

x − a
lK

�

, with lK =
p

2. (2.9)

It is easy to check that this solution satisfies both the equation of motion (2.8), and the BPS
condition of Eq. (2.6). It is therefore a stable, non-dissipating configuration, with the minimum
possible energy for any field connecting two distinct vacua. This topological solution is often
called a kink, and denoted by ϕK . Another topological solution, called antikink and written
ϕK = −ϕK , connects the same two vacua, but in the opposite direction. As shown in Fig. 2.2,
the centre of the kink lies at the (arbitrary) position x = a, and it has a characteristic width
lK . From Eq. (2.5) the value MK = 2

p
2/3 can be found for the mass of the kink. Because
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Figure 2.3: The elliptic sine configuration of Eq. (2.11), for different values of the
amplitude parameter ϕ0. The left figure contains solutions with (in order of increas-
ing wave length) ϕ0 = 0.1, ϕ0 = 0.5, and ϕ0 = 0.9. The right figure shows the
solutions with ϕ0 = 0.991 and ϕ0 = 0.999, in order of increasing wave length.

the energy does not depend on the kink position a, translations of the kink in space may be
interpreted as zero-energy excitations. There is also a stable excitation mode of the kink at
non-zero energy [52, 61], which can be interpreted as an internal or vibrational mode (see
appendix A.1). Finally, owing to the Lorentz invariance of Eq. (2.8), the static kink solution
may be boosted to yield a dynamical solution in which the kink (or antikink) moves with a
constant velocity

ϕ(t, x) = ± tanh

�

x − a+ vt
p

2(1− v2)

�

. (2.10)

Here, v is the velocity of the kink measured in units of the speed of light.
You may notice that there is one more static solution to the equation of motion (2.8), given

by the elliptic sine:

ϕ(t, x) = ϕ0 sn(bx , k), with k2 =
ϕ2

0

2−ϕ2
0

, b2 = 1−
ϕ2

0

2
. (2.11)

Here, the amplitude ϕ0 is taken to lie between zero and one. In the limit ϕ0→ 1, the elliptic
sine solution approaches the kink configuration (see Fig. 2.3). A more detailed derivation of
Eq. (2.11) and its limiting form is given in appendix A.2.
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Exercise 2.1 (Dimensional analysis) The Lagrangian density defined by Eqs. (2.1) and
(2.7) is written in dimensionless form, and can be used to represent the dynamics of
many types of physical fields. For example, we can consider a string or piece of rope with
displacement waves characterised by the local displacement u(t, x). In this case, the field
is a physical quantity with units of length, and the physically relevant Lagrangian density
can be written as:

L= 1
2
ρ

�

∂ u
∂ t

�2

−
1
2
τ

�

∂ u
∂ x

�2

− U(u). (2.12)

Here, ρ is the mass density of the string, τ is the tension, and U can be interpreted as
a potential energy density. The potential can be made to have any shape, for example
by exposing the string to a gravitational force and placing it on top of a curved surface.
Notice that the spatial integral over the Lagrangian density L is the Lagrangian, with units
of energy.

(a) Check that all terms in L have the correct units.

To arrive at a u4-theory, we can place the string on a surface whose height does not change
along the length of the string, but which has a double-well shape in the orthogonal direc-
tion:

U(u) = ρgh0

�

1− 2
u2

r2
0

+
u4

r4
0

�

. (2.13)

Here, the gravitational acceleration is denoted by g, the difference in height between the
local maxima and minima in the potential is h0, while ±r0 are the displacement values at
which the string reaches a bottom of one of the wells.

(b) Introduce dimensionless versions of all physical quantities and show that the La-
grangian density can be written in the form of Eqs. (2.1) and (2.7).

Exercise 2.2 (The kink solution) Obtain the kink solution of Eq. (2.9) by integrating the
BPS equation Eq. (2.6) with the potential given by Eq. (2.7).

Exercise 2.3 (The kink mass) The value MK = 2
p

2/3 for the mass of the kink solution
ϕK can be found using the superpotential W .

(a) Starting from Eq. (2.7), show that the superpotential can be written as
W = ϕ/

p
2−ϕ3/

p
18.

(b) Since we showed in Exercise 2.2 that the kink is a BPS-saturated solution, we know
its energy is given by the BPS form EBPS = W |ϕ(x=+∞) −W |ϕ(x=−∞). Use this to
derive the mass MK = 2

p
2/3.

3 Kink-antikink collisions

Field configurations with a kink, like ϕK defined by Eq. (2.10), are exact solutions of the
equation of motion (2.8) and are therefore stable in the sense that the kink cannot decay or
disappear over time. This changes when we consider solutions with multiple kinks [34,45,54].
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For example, a field with both a kink moving to the right and an antikink moving to the left is
described by:

ϕKK(t, x) = tanh

 

x + a− vin t
q

2(1− v2
in)

!

− tanh

 

x − a+ vin t
q

2(1− v2
in)

!

− 1. (3.1)

Here, we chose a frame of reference in which the velocities of the two kinks are precisely
opposite and equal to ±vin, while the initial positions at t = 0 equal ±a and are symmetric
around the origin. For brevity, we will from here on omit the explicit distinction between kink
and antikink, and refer to the configuration of Eq. (3.1) simply as a field with two kinks. As
long as the kinks are far apart, their overlap is negligible and Eq. (3.1) is an exact solution to
the equation of motion up to corrections that are exponentially small in lK/a. In other words,
the kinks are both stable and both evolve as if they were alone.

When the kinks come close together, however, they start to interact. To see why this must
be the case, consider two kinks moving together at high initial speeds, as shown in Fig. 3.1
(how to numerically calculate this time evolution is discussed in appendix A.3). The field
configuration starts out with a vacuum solution in most of space, given by ϕ = −1 at the
edges and ϕ = 1 between the kinks. As the kinks move closer together, the middle region
shrinks, until the kinks meet at x = 0. The kinks may then try and move past one another, but
in doing so they create a region of ϕ = −3 between the antikink that is now on the left, and
the kink on the right. Because ϕ = −3 is not a vacuum solution of the ϕ4-theory, the region
between the kinks now harbours potential energy. As this region grows, the kinetic energy
of the kinks must then decrease, since total energy is conserved. At some point, the kinks
halt altogether, reverse their direction of travel, and start moving towards each other again.
The region between the kinks now shrinks, and potential energy is converted back into kinetic
energy. This time, when the kinks pass through each other, an intermediate region of ϕ = 1 is
created. Since this does not cost any energy to grow, the kinks can continue and move apart
indefinitely. The entire process from beginning to end can be interpreted as a bouncing of two
kinks against each other.

3.1 Bion formation

The intuitive picture of two kinks behaving like classical particles, with well-defined positions
and speeds, whose only effect on each other comes from the order in which they appear in the
field, works well as long as the kinks are well-separated. During the times that they overlap,
however, the field configuration is no longer close to a solution of the equation of motion,
and the two kinks can decay. This can be seen in Fig. 3.1 as the formation of ripples around
the edges of the kink, which propagate outwards as time evolves. This decay process can be
understood intuitively by considering two kinks with zero velocity that are very close together
(lK � a). This situation is very close to the non-topological vacuum solution with ϕ = −1
everywhere. Because the bump in the field around x = 0 is not a solution to the equation of
motion (2.8) its energy can dissipate away to infinity, leaving behind a non-topological vac-
uum, without any kinks. Notice that this same process will also occur if the kinks are initially
far apart. However, because the violations of the equation of motion are exponentially small,
it will take an exponentially long time for the two-kink configuration to fall apart and relax to
the vacuum. Configurations with well-separated kinks are therefore long-lived solutions with
lifetimes that can render them effectively stable for all practical purposes.

As long as the initial speeds of two colliding kinks is high, the time in which they overlap
is short, and only little energy is dissipated in the form of ripples. Still, the ripples do carry off
some energy, and the final speeds at which the kinks move away from one another is lower
than vin. Considering ever lower initial velocities, there must then be a point at which the
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Figure 3.1: The profile of the field ϕ(t, x) for different values of t, as a kink and
antikink collide. While the kinks attempt to pass through one another, kinetic energy
is converted to potential energy in the field and the kinks slow down (three leftmost
panels). The kinks then come to a halt (middle panel) and reverse direction, moving
away from each other again (two rightmost panels). Some of the initial kineteic
energy is radiated away in the form of small ripples (top right panel). For low initial
velocities, the outmoving kinks may not have sufficient kinetic energy to escape to
infinity, and a bion is formed instead.

colliding kinks can no longer retain sufficient kinetic energy to escape their region of overlap.
Below this critical initial velocity, vcr , the kinks can still cross, reverse their velocities, cross
again, and move apart. However, the kinetic energy is then insufficient to lift the field values
between the kinks away from the stable value ϕ = −1, and the kinks are halted for a second
time. They then again reverse their velocities and move back together. As this process keeps
repeating, a localized excitation with large amplitude oscillations is formed [62], as shown in
Fig. 3.2 (left panel). This object is often called a bion [33, 63], although it is also sometimes
referred to an oscillon [64]. Here, we reserve the term oscillon for a particular low amplitude
Gaussian-like solution to the equation of motion that we do not discuss in these lecture notes,
and we use the term bion to describe the bound state of kink and antikink discussed here. In
(3+1) dimensions, bions are often called quasi-breathers [65]. The bion is a quasi-long-lived
state, which will decay to a non-topological vacuum state by emitting ripples or radiation.
However, it does so with a very long halftime [66]. We give a more quantitative description
of bion formation in the following sections.

3.2 Resonances

The phase diagram in Fig. 3.2 shows the outcomes of the kink collisions as a function of their
initial velocities. For vin ≥ vcr , the kinks always bounce and escape to infinity. Having vin < vcr ,
typically results in the formation of a bion. The value of the critical velocity separating these
two regions can be established numerically. For an initial separation of a = 7, no collisions are
observed in the field value at x = 0 up to 300 time steps after the initial collision, suggesting
the value vcr ' 0.2598 for the critical velocity [45,67].

As indicated in Fig. 3.2, ranges of specific values of vin exist that are below the critical
velocity, but that nonetheless do not result in the formation of a bion. For such values of the
initial velocity, the two kinks start out behaving as if they form a bion, by colliding, separating,
reversing velocities, and colliding again. After a fixed number of collisions, however, the two
kinks separate completely and escape to infinity, as shown in the top right panel of Fig. 3.2.
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Figure 3.2: The behaviour of the field ϕ(t, x) at x = 0 as a function of time for
different values of the initial velocity. With vin = 0.15 (top left panel) the kink and
antikink form a bion and keep colliding, separating, and re-approaching. At vin = 0.4
(top center panel) the kinks separate after a single collision, leaving behind small
ripples in the field. Finally, for vin = 0.2384 (top right panel), kinetic energy is
transferred to vibrational modes during the first collision. If the resonance condition
of Eq. (3.2) is met, the stored energy can be converted back during a second or
later collision, allowing the kinks to escape. The time intervals used in Eq. (3.2) are
indicated by blue and red dots. The bottom panel shows a schematic phase diagram
of the possible outcomes of kink collisions, as a function of their initial velocities.
The left, blue region corresponds to bion formation, the right, red region to single
collisions, and the green intervals are reflection windows.

The ranges of vin for which this occurs are called 2-bounce escape windows (or reflection
windows), 3-bounce windows, and so on [45].

The escape process is made possible by the presence of an internal, vibrational excitation
mode of the kinks [52, 61], whose detailed derivation is discussed in appendix A.1. As two
kinks collide, their vibrational modes may be excited, and absorb some of the kinetic energy.
If the initial velocity is such that the vibrational motion of the kink profile passes through its
equilibrium position precisely as the kinks collide for a second (or third, or later) time, the
vibrational energy can be converted back into kinetic energy. This gives the kinks a boost
and allows them to escape to infinity. The internal excitations thus effectively act as a storage
place for kinetic energy, protected against radiative decay. The resonance condition for efficient
conversion of vibrational into kinetic energy is [45]:

ωRT = 2πn+∆ ⇔ T = (n+δ)TR. (3.2)

Here,ωR = 2π/TR, andωR and TR are the frequency and the period of the internal kink vibra-
tions (indicated by red dots in the top right panel of Fig. 3.2), and T is the time between the
final and penultimate collisions of the kinks (blue dots in the top right panel of Fig. 3.2). The
integer n indicates the number of internal oscillations the kink undergoes between collisions,
and ∆= 2πδ is a phase shift incurred during the collision process. Eq. (3.2) thus guarantees
the time between collisions is equal to an integer multiple of the period of internal vibrations,
up to a constant phase shift. The resonance condition has been numerically checked to both
reproduce the analytically derived value of ωR (see appendix A.1), and to correctly predict
the emergence of escape windows, both in ϕ4 and higher-order theories [26,45]. In fact, the
arrangement of bounce windows for vin < vcr predicted this way, and observed in simulations,
is fractal in nature [35].
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Exercise 3.1 (Simulating kink dynamics) Write a numerical code to calculate the field
configuration ϕ(t, x), starting from a configuration at t = 0 with only well-separated
kinks and no other excitations. The initial state is defined by the positions and velocities
of the kinks. Refer to appendix A.3 to set up the code.

(a) Starting from a configuration with only a single kink, show that it is stable, and
propagates without changing its shape.

(b) Consider the initial configuration with two kinks defined in Eq. (3.1), and simulate
one case with colliding kinks, and one in which a bion is formed.

(c) Identify some resonance windows and use Eq. (3.2) to find ωR, the frequency of
internal kink vibrations.

(d) Discuss the limitations of your code, and give a quantitative measure for how well
it performs.

HINT: As a starting point for finding resonances, sections 2.4, 2.8, and 2.9 in Ref. [33]
provide possible sets of parameter values and details about ωR.

4 Collective Coordinate Approximation

Two colliding kinks in ϕ4-theory behave in many aspects like colliding hard-core particles
with a short-range attractive interaction. If the kinetic energy of these particles is sufficiently
large, the particles will scatter without being affected by their short-ranged attraction. If the
kinetic energy is low enough, however, the attraction dominates, and a bound state is formed.
This qualitative observation can be made quantitative by constructing a low-energy effective
theory for the ϕ4 model, in which only the dynamics of kinks is taken into account, and all
other variations in the field are neglected. Such an effective theory is known as the Collective
Coordinate Approximation, or CCA [54,68].

For the sake of concreteness, consider the case of two colliding kinks. In its simplest form,
the CCA consists of constructing a theory in which the only degrees of freedom are the positions
of the kinks [54]. Going to a frame of reference in which the configuration is symmetric
around x = 0, there is then only a single degree of freedom a(t) describing the positions of
the two kinks. At any point in time, the field configuration associated with a given value of
the collective coordinate a is then approximated by:

ϕKK(t, x) = tanh
�

x + a(t)
p

2

�

− tanh
�

x − a(t)
p

2

�

− 1. (4.1)

The effective Lagrangian for the collective coordinate, LCCA(a, ȧ), is obtained by substituting
the Ansatz of Eq. (4.1) into the Lagrangian density for the full ϕ4-theory (Eqs. (2.1) and (2.7))
and integrating over space. Taking into account the time dependence of a(t) in the calculation
of ∂ ϕ/∂ t, this leads to a Lagrangian of the form:

LCCA(a, ȧ) =
1
2

m(a)ȧ2 − V (a). (4.2)

The position-dependent mass and potential energy in this expression can be written in terms
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Figure 4.1: The effective potential V in the collective coordinate approximation, as a
function of the separation a between kinks. The dashed line at V = 2MK denotes the
asymptotic value of the potential. The green arrow on top schematically indicates
an inelastic reflection of the kinks, while the red arrow tending to the bottom of the
potential well shows the formation of a quasi-long-lived bion.

of an auxiliary function as:

m(a) = I+(a),

V (a) =
1
2

I−(a) +
1
4

∫ +∞

−∞
(1−ϕ2

KK
)2d x ,

with I±(a) = 2MK ±
∫ +∞

−∞

d x

cosh2
�

(x + a)/
p

2
�

cosh2
�

(x − a)/
p

2
� . (4.3)

At large separation, the integral in the auxiliary functions vanishes, and we find that the mass
parameter m(a) and the effective potential V (a) both approach 2MK , the mass of two isolated
static kinks. For general values of a, the integrals can be evaluated numerically, and yield the
functional form for the effective potential plotted in Fig. 4.1.

The effective Lagragian of Eq. (4.2) has reduced the initial relativistic field theory to a
non-relativistic description of just a single point particle in an external potential. This can be
easily solved by considering the Euler-Lagrange equation for the collective coordinate:

d
d t
∂ LCCA

∂ a
−
∂ LCCA

∂ a
= 0

⇒ mä+
1
2

dm
da

ȧ2 +
dV
da
= 0. (4.4)

The velocity-dependent term in the final line may be interpreted as a frictional force acting
on the effective particle. This arises due the change of the effective mass m(a) with position,
which is significant only when the two kinks overlap. It is thus a direct manifestation of the
two-kink configuration not being a stable solution to the equation of motion (2.8) for the full
field theory.

Based on the shape of the effective potential V (a) shown in Fig. 4.1, we can distinguish
two qualitatively different types of dynamics. If the initial energy of the particle described
by a(t) is sufficiently high, it can cross the potential well around the origin a = 0, climb up
the potential barrier, which increases linearly with |a| at negative a, then turn around and
return through the well before escaping to infinity. This describes the bouncing of two kinks.
If the initial energy is low enough, however, the particle may lose sufficient energy during its
crossing of the potential well to become stuck. It will then oscillate back and forth across a = 0
with slowly decreasing amplitude. This describes the formation of a quasi-long-lived bion.

In many cases, numerically solving the equation of motion (4.4) for the effective model
yields good agreement with the much more involved numerical solutions for the dynamics

12

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.23


SciPost Phys. Lect.Notes 23 (2021)

of the full field-theoretical model, both in ϕ4-theory and its higher order generalisations like
the ϕ6-model [25]. The Ansatz of Eq. (4.1) does neglect the Lorentz contraction of moving
kinks, so that the CCA fails to reproduce relativistic effects that may appear at high velocities.
Another limitation of the CCA is that it cannot describe the escape windows in the phase
diagram of Fig. 3.2 because the Ansatz does not include a degree of freedom to describe the
internal excitation modes of the kinks. Extensions of the CCA that include resonance dynamics
are possible [57].

Exercise 4.1 (Simulating effective dynamics) Write a numerical code that uses the col-
lective coordinate approximation to calculate the field configurationϕ(t, x), starting from
a configuration at t = 0 with two well-separated kinks.

(a) Consider the initial configuration with two kinks defined in Eq. (3.1), and simulate
one case with colliding kinks, and one in which a bion is formed.

(b) Compare your results to those in part (b) of Exercise 3.1.

(c) Adjust your initial conditions until you start seeing the limitations of the CCA. Quan-
tify the error made in the CCA, as compared to Exercise 3.1.

HINT: Some limitations of the CCA are discussed in Section 2.7 of Ref. [33].

5 Gluing static solutions

The qausi-long-lived bion that we described as a damped oscillator in the previous section,
can also be thought of as a combination of parts of three static solutions to the equation of
motion. Considering the shape of the field configuration ϕ(t, x) for a bion at some particular
time t, you may notice that it looks like half a kink and half an antikink, glued together by
half a period of the elliptic sine, as shown in Fig. 5.1. In fact, we can make this more precise
by constructing a field configuration ϕ(t, x) starting from the static solution in Eq. (2.11).
Taking λ to be the period of the elliptic sine, we keep only half a period, within the range
−λ/4 ≤ x ≤ λ/4. We then attach half a kink to the left, for −∞ < x < λ/4, and half an
antikink to the right, for λ/4 < x <∞. The positions a = −λ/4 of the kink and a = λ/4
of the antikink are chosen such that there are no discontinuities in the field. The value of
ϕ0, and hence λ, has to be chosen such that the three static solutions glue together smoothly
at the connection points x = ±λ/4. We can then consider this configuration of glued static
solutions as an Ansatz for the bion field configuration, and calculate its time evolution. This
has the advantage of the bion description being independent of the particular process that
led to its formations, be it two-kink collisions or otherwise [69]. Notice that in the numerical
simulation of the bion dynamics starting from this Ansatz for ϕ(t, x), the field has to be defied
both at t = 0 and t = ∆t. This can be done by choosing the value of ϕ0 to decrease by a
small amount δϕ0 in the second time step. The result of the ensuing time evolution is shown
in Fig. 5.1 (right panel), and closely resembles that found in the kink collisions described in
Sec. 3. In particular, the dynamics describes a quasi-long-lived state, or bion.

The strategy of gluing together static solutions to find an appropriate Ansatz or initial state
may be applied more generally. For example, dynamical kink-kink pairs and triton solutions
(kink-antikink-kink) were described this way [70]. The latter may be used as an Ansatz for
obtaining the quasi-long-lived solution called a wobbling kink [66,71].
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Figure 5.1: The field ϕ(t, x) obtained by gluing together half a kink, half a period
of an elliptic sine, and half an antikink. Both the spatial profile at t = 0 (left panel),
and the its time evolutions (shown at x = 0 in the right panel) closely approximate
that of the quasi-long-lived bion. For these figures, the parameter values ϕ0 = 0.8
and δϕ = −0.001 were used.

6 Kink-impurity interactions

The dynamics of kink-antikink collisions arose from taking two exact solutions to the equation
of motion in Eq. (2.2), the kink and antikink, and combining them into a single initial state
that is not an exact solution. Similarly interesting dynamics may be obtained by taking an
exact solution to Eq. (2.2), and using it as in initial state whose dynamics is determined by a
slightly different equation of motion. This is the situation encountered in the description of
kinks interacting with impurities [37,72–75].

The ϕ4-theory often arises as a low-energy effective description of some more microscopic
model. Imperfections at the microscopic level may then result in local variations of the poten-
tial in the effective theory [76–78]. For example, in the context of waves propagating through
a solid medium, impurities or defects embedded in the crystal structure may cause impinging
waves to scatter or form bound states. To describe such processes, we consider a modification
of the potential of Eq. (2.7) by taking:

1
4
(1−ϕ2)2 −→

1
4
(1−ϕ2)2(1− εδ(x − x0)). (6.1)

Here, ε is the strength of the Dirac delta impurity located at x = x0. For ε = 0, the impurity
is absent, and the potential equals that of the standard ϕ4-theory. For ε < 0, the impurity
behaves as a potential barrier, while for ε > 0 it acts as a potential well. We may anticipate
that a potential barrier will repel kinks, since the energetic price paid for the field value ϕ
crossing zero is enhanced at x = x0. The potential well on the other hand lowers the local
energy cost of a kink, and will therefore attract it.

To numerically simulate the dynamics of kinks encountering an impurity, we start from the
modified equation of motion:

ϕt t −ϕx x + (ϕ
3 −ϕ)(1− εδ(x − x0)) = 0. (6.2)

The Dirac delta function may be approximated on a discrete lattice either by a Kronecker delta
with height equal to the inverse of a coordinate step [37, 79], or by a Gaussian profile of the
form [67]:

δ(x − x0) −→
1

σ
p

2π
exp

�

−
1
2

� x − x0

σ

�2�

. (6.3)

Here, σ is the spatial width over which the impurity affects the potential. It may either be
used as a free parameter in the modelling of realistic impurity potentials, or be fixed such that
the area under the Gaussian profile equals one [67].

14

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.23


SciPost Phys. Lect.Notes 23 (2021)

Figure 6.1: Phase diagrams (top row) and example evolutions (bottom row) for kink-
impurity collisions with varying initial velocity vin [67]. The left side involves a re-
pulsive impurity of strength ε= −0.5, and the right side an attractive impurity with
ε= 0.5. The example evolutions on the left show the reflection (vin = 0.4) and trans-
mission (vin = 0.8) of a kink by the repulsive impurity. On the right, they indicate
the kink being captured (vin = 0.1), being resonantly reflected in a bounce window
(vin = 0.137), and being transmitted (vin = 0.5) by the attractive impurity.

Since the dynamics and physics of kink-impurity interactions closely resemble those of
kink-antikink collisions, we give only a brief overview of the possible resulting states. More
detailed descriptions can be found in Refs. [37, 67, 72–74, 79]. For the sake of being specific,
we consider a single kink described by Eq. (2.10), starting from a = 6 and moving towards
an impurity located at x0 = 0, with fixed impurity strength |ε| = 0.5. We then describe the
dynamics for various values of the initial velocity. Fig. 6.1 shows a sketch of the corresponding
phase diagram.

For an attractive impurity with ε = 0.5, a kink with sufficiently high initial velocity will
traverse the impurity and continue propagating on the other side. In crossing the impurity
location, it does loose some of its kinetic energy. Some of that energy may be radiated away in
the form of small ripples, and some of it is absorbed in an internal, quasi-long-lived excitation
mode of the impurity [37,67].

As the initial velocity of the kink is reduced, at some point a critical velocity v′cr will be
encountered, below which the loss of kinetic energy is so large that kinks can no longer traverse
the impurity. Typically, the kink is then captured by the impurity, and oscillates around it in a
manner similar to the oscillations of kinks and antikinks in a bion. This too is a quasi-long-lived
solution to the equations of motion, in the sense that the amplitude of oscillations will slowly
decrease to zero. Within a suitably defined CCA, the two types of processes, kinks crossing an
impurity and kinks being captured, can again be described as an effective particle with variable
mass subject to a resistive force [37].

For specific ranges of initial velocities below the critical value, vin < v′cr , the kink may be
scattered from an attractive impurity after a finite number of oscillations around it. Analogous
to the bounce windows in two-kink collisions, this process may be understood as a resonance
between the oscillation time of the kink around the impurity, and the frequency of internal
vibration modes [37].

For a repulsive impurity with ε= −0.5, kinks of sufficiently high initial velocity are trans-
mitted with some loss of kinetic energy. At low enough initial velocities, kinks again cannot
overcome the impurity potential, and are reflected instead. The critical velocity separating the
two behaviours, however, does not have the same value as that associated with the attractive
impurity, and there are no bounce windows.
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Exercise 6.1 (Simulating kink-impurity interactions) Write a numerical code to calcu-
late the field configuration ϕ(t, x), starting from a configuration at t = 0 with a single
kink and a single impurity. Refer to appendix A.3 to set up the code.

(a) Consider an initial configuration with the kink at a = −6, and a repulsive impurity
of strength ε= −0.5 at x0 = 0. Simulate its dynamics for several values of the initial
velocity. Include at least one velocity for which the kink traverses the impurity, and
one for which it is reflected.

(b) Consider an initial configuration with the kink at a = −6, and an attractive impurity
of strength ε= 0.5 at x0 = 0. Simulate its dynamics for several values of the initial
velocity. Include at least one velocity for which the kink traverses the impurity, and
one for which a bound state is formed.

(c) Identify some resonance windows for ε > 0 and use Eq. (3.2) to find the frequencies
of the involved internal excitation modes.

HINT: As a starting point for finding resonances, section 4 in Ref. [67] and section III in
Ref. [37] provide some sets of parameter values and details about frequencies.

7 Discussion

In these lecture notes, we encountered a wide array of qualitatively different types of dynam-
ics involving kinks in ϕ4-theory. Using straightforward numerical calculations and effective
models, we were able to describe effects ranging from the existence of topologically distinct
static solutions to the scattering of kinks, and from the formation of quasi-long-lived states to
resonant interactions.

This entire range of phenomena arises in the simplest possible classical field theory, which
itself is an effective low-energy description for many microscopic models in both solid state and
high-energy physics. We hope that advanced undergraduate students studying these lecture
notes will come to appreciate both the universality of the rich phenomenology encountered
within ϕ4-theory, and the fact that they can qualitatively understand and describe all of it. It
may then serve as a first introduction to the powerful and ubiquitous idea of emergence in
physics.

Acknowledgements This work was performed in the Delta Institute for Theoretical Physics
(DITP) consortium, a program of the Netherlands Organization for Scientific Research (NWO),
funded by the Dutch Ministry of Education, Culture and Science (OCW).
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A Appendices

A.1 Internal excitation mode

To describe internal excitations of any static configuration, we can consider small perturbations
on top of the static solution [52]:

ϕ(t, x) = ϕs(x) +δϕ(t, x). (A.1)

Here, ϕs is a time-independent field satisfying the equation of motion (2.2). The perturbation
δϕ(t, x) may have any shape, but we assume its amplitude |δϕ| � |ϕs| to be small compared
to that of the static field.

Substituting this equation for the field ϕ(t, x) into the equation of motion (2.2), and keep-
ing only terms up to linear order in the perturbation δϕ(t, x), yields the condition:

∂ 2δϕ

∂ t2
−
∂ 2δϕ

∂ x2
−δϕ + 3ϕ2

s δϕ = 0. (A.2)

This equation can be solved using a separation of variables, by substituting the Ansatz:

δϕ(t, x) =
∑

i

ψi(x) cos(ωi t + θi). (A.3)

The temporal phase differences θi between distinct excitation modes will be set to zero from
here on without loss of generality. Inserting the Ansatz into the linearised equation of motion
results in a set of Schrödinger-like equations, Ĥδψi = Eiδψi , with:

Ĥ = −
d2

d x2
+ 3ϕ2

s − 1,

Ei =ω
2
i . (A.4)

Thus, the original problem of solving the linearised equation of motion can be restated as
the search for all eigenvalues ω2

i and eigenstates δψi(x) of the linear operator Ĥ. Notice
however, that these eigenfunctions accurately describe the excitation modes only in the limit of
small amplitude, where ignoring higher order terms in Eq. (A.2) is justified. The exponential
dependence of δϕ on ωi in Eq. (A.3) implies that any eigenstate of the Hamiltonian with
eigenvalueω2

i < 0 corresponds to an instability of ϕs. If the initial configuration ϕs is a stable,
static solution to the equation of motion, such negative-energy excitation modes should not
occur.

For Lagrangian densities with translational symmetry, there always exists a zero-energy
excitation that corresponds to a rigid translation of the initial state [58]. To see this explicitly
for the ϕ4-theory, first notice that the Hamiltonian in Eq. (A.4) can be written in terms of the
potential given by Eq. (2.7) as:

Ĥ = −
∂ 2

∂ x2
+
∂ 2U
∂ ϕ2

. (A.5)

Then, compare this to the spatial derivative of the static equation of motion, which can be
written as:

−
d2ϕ′

d x2
+

d2U
dϕ2

·ϕ′ = 0. (A.6)

Here, ϕ′ = ∂ ϕ/∂ x is the spatial derivative of the static field ϕ(x). Any solution ϕs to the
equation of motion, is also a solution to Eq. (A.6). On the other hand, this equation may
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Figure A.1: The spatial profiles of the field ϕ(t, x) for kinks with the internal excita-
tions of Eq. (A.8). The dashed blue lines show a static kink solution. The red line in
the left panel adds a zero-energy translational excitation to the kink, while the red
line in the right panel shows the excitation of the internal vibrational mode of the
kink.

be interpreted as the Schrödinger equation Ĥϕ′ = Eϕ′ with zero energy and Ĥ defined by
Eq. (A.5). We thus find that for every solution ϕs to the equation of motion, there exists a
zero-energy excitation δϕ(t, x)∝ ϕ′s.

Focusing now on the specific case of kinks in ϕ4-theory, consider ϕs to be the static kink
configuration of Eq. (2.9), with a = 0. The Hamiltonian whose eigenfunctions are the excita-
tion modes of the kink, then becomes:

Ĥ = −
d2

d x2
−

3

cosh2
�

x/
p

2
� + 2. (A.7)

The eigenvalue equation for this specific Hamiltonian happens to be a well-known problem
with an analytic solution [61]. There are two eigenfunctions, corresponding to two distinct
excitation modes of the kink:

δψ0(x) =
�

3

4
p

2

�1/2 1

cosh2
�

x/
p

2
� with ω0 = 0,

δψ1(x) =
�

3

2
p

2

�1/2 sinh2
�

x/
p

2
�

cosh3
�

x/
p

2
� with ω1 =

Æ

3/2. (A.8)

The zero-energy solution δψ0 is proportional to ϕ′s, the spatial derivative of the kink solution.
We thus recognise it as the translational mode that shifts the kink along the spatial axis. The
mode at non-zero excitation energy, δψ1, corresponds to vibrations of the kink around its
equilibrium shape, which do not affect the location at which the field value crosses zero. Both
excitation modes are plotted in Fig. A.1. The vibrational mode at non-zero energy can be
excited during kink collisions, and enables the formation of resonance windows.

Exercise A.1 (Kink excitations) Use Ref. [61] to analytically obtain the eigenvalues and
eigenfunctions of the Hamiltonian operator defined in Eq. (A.7).

A.2 Static solutions

To analytically find static solutions to the equation of motion (2.8) in ϕ4-theory, we assume
that there exists a stationary solution ϕ(x) that must then obey the equation of motion with
vanishing time derivatives:

d2ϕ

d x2
= ϕ3 −ϕ. (A.9)
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Figure A.2: Sketch of the potential V (X ) in Eq. (A.10). The green arrow schemati-
cally indicates an oscillating solution. Using the mapping between X (T ) and ϕ(x),
this corresponds to the static elliptic sine solution in Eq. (A.16) for the ϕ4-theory.

To get some feeling for this equation, notice that it is reminiscent of Newton’s second law of
motion, −dV/dX = m d2X/dT2, where the role of time T is played by the coordinate x , and
the position X corresponds the field value ϕ. In other words, the configuration ϕ(x) may be
read as the trajectory X (T ) of a particle with mass m= 1, subject to the potential:

V (X ) = −
1
4

�

1− X 2
�2

. (A.10)

This potential is displayed in Fig. A.2. For initial conditions X (0) = X0 < Xmax and dX/dT = 0,
the particle motion will consist of periodic oscillations between X0 and −X0. These sta-
ble trajectories all correspond to static solutions of the ϕ4-theory, after substituting back
X (T )→ ϕ(x).

We can find an analytic expression for the static field configurations by first integrating
both sides of Eq. (A.9):

d2ϕ

d x2
+ϕ −ϕ3 = 0,

∫

d x
dϕ
d x

�

d2ϕ

d x2
+ϕ −ϕ3

�

=

∫

d x
dϕ
d x
(0) ,

1
2

�

dϕ
d x

�2

+
1
2
ϕ2 −

1
4
ϕ4 = C . (A.11)

Here, C is a constant of integration. Using the intuition based on the particle trajectory analogy,
we can choose boundary conditions such that ϕ = ϕ0 at the point where dϕ/d x = 0. This
yields C = ϕ2

0/2−ϕ
4
0/4, and suggests separating the amplitude and spatial dependence of the

field, by writing ϕ(x) = ϕ0χ(x), with |χ(x)| ≤ 1. In terms of these new variables, Eq. (A.11)
becomes:

�

dχ
d x

�2

= 1−χ2 −
1
2
ϕ2

0

�

1−χ4
�

≡ b2(1−χ2)
�

1− k2χ2
�

. (A.12)

In the final line, we introduced the definitions:

k2 =
ϕ2

0

2−ϕ2
0

,

b2 = 1−
ϕ2

0

2
. (A.13)
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Because we know from the particle trajectory analogy that there will be no stable solutions for
|ϕ0|> 1, we always have 0≤ k2 ≤ 1, and 1/2≤ b2 ≤ 1. Integrating Eq. (A.12) now yields:

�

dχ
d x

�2

= b2(1−χ2)
�

1− k2χ2
�

,

∫ x ′

0

d x
|dχ/d x |

p

(1−χ2) (1− k2χ2)
=

∫ x ′

0

d x b,

∫ χ(x ′)

χ(0)

dχ
p

(1−χ2) (1− k2χ2)
= bx ′. (A.14)

In the final line, we assumed that dχ/d x is positive over the integration interval. It is easily
checked that the final solution we obtain below will be valid also along intervals where dχ/d x
is negative, and that these intervals connect smoothly. Choosing χ(0) = 0 without loss of
generality, and making the substitutions χ ≡ sin(ψ) and C ′ ≡ arcsinχ(x ′), Eq. (A.14) reduces
to:

∫ C ′

0

dψ
q

�

1− k2 sin2ψ
�

= bx ′. (A.15)

The integral on the left hand side is a standard integral, known as the incomplete elliptic
integral of the first, and is often denoted by F(C ′, k) [80, 81]. Using the known properties of
the elliptic integral, Eq. (A.15) can be inverted, and yields the solution χ(x ′) = sn(bx ′, k),
with sn(bx , k) the elliptic sine [80, 81]. The static solutions to the equation of motion for
ϕ4-theory can thus finally be written as:

ϕs(x) = ϕ0 sn(bx , k). (A.16)

For ϕ0 < 1, these solutions are the elliptic sines shown in Fig. 2.3 of the main text. For
very small values of ϕ0, the elliptic sine approaches sin(x), and the static solution corresponds
to small sinusoidal oscillations around the unstable homogeneous solution ϕ = 0, which it
approaches in the limit ϕ0→ 0.

To understand the opposite limit, of ϕ0 → 1, notice that the period of the static solution
ϕs(x) is given by [81]:

T =
4F(π/2, k)
q

1− 0.5ϕ2
0

. (A.17)

The period is plotted as a function ofϕ0 in Fig. A.3. Asϕ0 approaches one, the period diverges.
In terms of the particle trajectory analogue, this situation corresponds to the massive particle
starting out precisely in an unstable equilibrium state on one of the potential maxima. If
the particle at some point (spontaneously, or due to an infinitesimal perturbation) leaves the
unstable maximum, it will traverse the minimum in the potential and ends up at the opposite
maximum at infinite time.

In terms of the field ϕs(x), the same limiting behaviour corresponds precisely to a kink
configuration. Taking the limitϕ0→ 0 directly in Eq. (A.14), and using k2→ 1 and b→ 1/

p
2,

we see
∫ χ(x ′)

0

dχ
1−χ2

=
x ′
p

2
,

�

1
2

ln
�

1+χ
1−χ

��χ(x ′)

0
=

x ′
p

2
,

χ(x ′) = tanh
�

x ′/
p

2
�

. (A.18)
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Figure A.3: The dependence of the elliptic sine period T in Eq. (A.17) on the value
of the amplitude parameter ϕ0. The period tends to infinity as the amplitude ap-
proaches one.

Since we took ϕ0→ 1, the final static solution ϕs equals χ, and we recover the equation for a
kink, Eq. (2.9), centered at the origin.

Exercise A.2 (Static solutions) Reproduce the derivations of the elliptic sine and kink
solutions in this appendix.

A.3 Numerical method

We would like to numerically integrate the equation of motion (2.2) and determine the time
evolution of any given initial field configuration. To do so, we are first of all forced by the
finite computing power of any numerical code to restrict our attention to a finite interval of
space and time. We thus consider only positions −xmax ≤ x ≤ xmax, and times 0 ≤ t ≤ tmax.
Furthermore, we necessarily have to consider a discrete grid within this continuous space-time
interval. We choose a simple (N +1) by (M +1) rectangular grid, with step sizes∆t = tmax/N
and ∆x = 2xmax/M . Points on this grid can be denoted by (n, j) with 0 ≤ n ≤ N and
−M/2 ≤ j ≤ M/2. These coincide with the continuous space-time coordinates at tn = n∆t
and x j = j∆x . To compute derivatives on the discrete grid, we employ a method of finite
differences:

∂ ϕ

∂ t

�

�

�

�

(t,x)=(tn,x j)
≈
ϕn

j −ϕ
n−1
j

∆t
,

∂ 2ϕ

∂ t2

�

�

�

�

(t,x)=(tn,x j)
≈
ϕn+1

j − 2ϕn
j +ϕ

n−1
j

∆t2
,

∂ ϕ

∂ x

�

�

�

�

(t,x)=(tn,x j)
≈
ϕn

j −ϕ
n
j−1

∆x
,

∂ 2ϕ

∂ x2

�

�

�

�

(t,x)=(tn,x j)
≈
ϕn

j+1 − 2ϕn
j +ϕ

n
j−1

∆x2
. (A.19)

The equation of motion for field values ϕn
j on the discrete grid can now be written as:

ϕn+1
j = 2ϕn

j −ϕ
n−1
j +

∆t2

∆x2
(ϕn

j+1 − 2ϕn
j +ϕ

n
j−1)− ∆t2 dU

dϕ

�

�

�

�

ϕ=ϕn
j

. (A.20)

The initial conditions required to solve the complete dynamics then consist of the field config-
urations ϕ0

j and ϕ1
j at the initial two time slices. This can be thought of as specifying a position

(amplitude) and velocity (rate of change) for all classical degrees of freedom (the field values)
in the classical field theory. In general, the numerical simulation is expected to be stable on the
chosen rectangular grid as long as the temporal step size is smaller than the spatial one [82].

A peculiarity of the finite differences used to compute spatial derivatives, is that they cannot
be reliably computed at the edge of space because no information is available about the field
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values at | j| = M/2 + 1. Physically, this means that any propagating wave in the field that
reaches the edges of space will be reflected by the boundaries. To avoid seeing these unphysical
reflections in the final simulated dynamics, the output of the code should only contain field
values at positions | j|< M/2−N . In this way, even the mistake made in the spatial derivative
at time step n= 0, or equivalently the wave that is reflected at the edge of space at t = 0, has
no time to propagate into the observed spatial interval.

To ensure that the numerical code functions correctly and that the inherent numerical error
of the calculation does not get out of hand, several consistency checks can be considered. First
of all, static solutions like ϕ = ±1 or the kink solution should not change in time. Secondly,
the total energy should be conserved in time, except for the energy flowing out of the window
of observation defined by | j| < M/2 − N . This can be checked by computing the change in
total energy, which should be close to zero:

∆Etot(n
′) = E(n= n′)− E(n= 0)−

n′
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. (A.21)

In these expressions, the partial derivatives should be interpreted in terms of the finite dif-
ferences defined in Eq. (A.19). The conservation of energy (∆Etot ' 0) can be checked at
every time step in the simulation, and provides a quantitative measure for the accuracy of the
simulation.

The final consistency check is to ensure that the field dynamics obtained in the numerical
calculation does not change when decreasing the step sizes ∆t and ∆x . The actual values of
the step sizes can then be chosen empirically such that they ensure a desirable balance between
having a manageable run time for the numerical code, and an adequate level of accuracy in
the results. To quantify the latter, we should use both the independence of the result from the
value of step sizes and the conservation of total energy. To simulate two-kink collisions in ϕ4-
theory, it turns out that ∆t = 0.009 and ∆x = 0.01 are reasonable values [45]. To simulate
kink-impurity interactions the values ∆t = 0.01 and ∆x = 0.02 seem more appropriate.
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